JP4588425B2 - Absorption heat pump - Google Patents

Absorption heat pump Download PDF

Info

Publication number
JP4588425B2
JP4588425B2 JP2004352744A JP2004352744A JP4588425B2 JP 4588425 B2 JP4588425 B2 JP 4588425B2 JP 2004352744 A JP2004352744 A JP 2004352744A JP 2004352744 A JP2004352744 A JP 2004352744A JP 4588425 B2 JP4588425 B2 JP 4588425B2
Authority
JP
Japan
Prior art keywords
absorber
heat
heat exchanger
preheated
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004352744A
Other languages
Japanese (ja)
Other versions
JP2006138614A (en
Inventor
修行 井上
毅一 入江
幸大 福住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2004352744A priority Critical patent/JP4588425B2/en
Priority to US11/247,599 priority patent/US7464562B2/en
Priority to CN2005101135952A priority patent/CN1766461B/en
Publication of JP2006138614A publication Critical patent/JP2006138614A/en
Priority to US12/191,680 priority patent/US7827817B2/en
Application granted granted Critical
Publication of JP4588425B2 publication Critical patent/JP4588425B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、排温水、排ガス、排蒸気等の熱源を用いて高温の被加熱媒体を得る吸収式ヒートポンプに関し、特にこれら加熱源を用いて高温の被加熱媒体蒸気を得る吸収式ヒートポンプに関するものである。   The present invention relates to an absorption heat pump that obtains a high-temperature heated medium using a heat source such as exhaust hot water, exhaust gas, and exhaust steam, and more particularly to an absorption heat pump that obtains a high-temperature heated medium vapor using these heating sources. is there.

排温水を熱源として、該排熱源よりも高温の温水を発生させる吸収式ヒートポンプは、特許文献1により公知である。しかしながら、これらの吸収式ヒートポンプは高温の熱を被加熱流体である高温水(顕熱)として得るため、高温水循環のためのポンプ動力が大きくなるという問題がある。また、これら公知の吸収式ヒートポンプでは被加熱媒体液を加熱し、被加熱媒体蒸気を得るものでないことから、被加熱媒体の予熱ということは考えていなかった。
特公昭58−18574号公報
An absorption heat pump that uses hot exhaust water as a heat source and generates hot water having a temperature higher than that of the exhaust heat source is known from Patent Document 1. However, since these absorption heat pumps obtain high-temperature heat as high-temperature water (sensible heat) that is a fluid to be heated, there is a problem that pump power for circulating the high-temperature water increases. Further, since these known absorption heat pumps do not heat the heated medium liquid to obtain heated medium vapor, they did not consider preheating the heated medium.
Japanese Patent Publication No.58-18574

本発明は上述の点に鑑みてなされたもので、排温水、排ガス、排蒸気等を熱源として被加熱媒体液を加熱し被加熱媒体蒸気を得ることにより、補機動力が削減できると共に、被加熱媒体液を予熱することにより蒸気への変換効率の向上を図ることができる吸収式ヒートポンプを提供することを目的とする。   The present invention has been made in view of the above points, and by heating the heated medium liquid by using the exhaust warm water, exhaust gas, exhaust steam and the like as a heat source to obtain the heated medium vapor, the auxiliary machine power can be reduced and the It aims at providing the absorption heat pump which can aim at the improvement of the conversion efficiency to a vapor | steam by preheating a heating-medium liquid.

上記課題を達成するため請求項1に記載の発明は、吸収器、蒸発器、再生器、凝縮器、及び溶液熱交換器を主要構成機器とし、これを管路で接続して構成し、前記蒸発器及び再生器に熱源を、凝縮器に冷却源を導き、吸収器にて高温の被加熱媒体を得る吸収式ヒートポンプにおいて、吸収器の被加熱媒体入口に被加熱媒体液を導入し、被加熱媒体出口から蒸気の被加熱媒体を導出し、吸収器の被加熱媒体入口側に補給水ポンプを、被加熱媒体出口側に蒸気温度を検出する温度検出手段をそれぞれ配設し、温度検出手段の検出信号より導出される蒸気の過熱度を目標値になるように補給水ポンプを制御して被加熱媒体液導入量を調節する被加熱媒体液導入量調節手段を設け、液滴を含まない目標過熱度の蒸気を得ることを特徴とする。 In order to achieve the above-mentioned object, the invention described in claim 1 is constituted by an absorber, an evaporator, a regenerator, a condenser, and a solution heat exchanger as main components, which are connected by a pipe, In an absorption heat pump that leads an exhaust heat source to an evaporator and a regenerator, a cooling source to a condenser, and obtains a high temperature heated medium in the absorber, a heated medium liquid is introduced into the heated medium inlet of the absorber, deriving a heated medium of the heating medium outlet or et steam, the makeup water pump with the heated medium inlet side of the absorber, the temperature detection means for detecting the steam temperature in the heated medium outlet side disposed respectively, There is provided heated medium liquid introduction amount adjusting means for adjusting the heated medium liquid introduction amount by controlling the makeup water pump so that the degree of superheat of the vapor derived from the detection signal of the temperature detection means becomes a target value, It is characterized by obtaining steam having a target superheat degree not containing any of the above.

請求項に記載の発明は、請求項1に記載の吸収式ヒートポンプにおいて、吸収器で加熱する前に被加熱媒体液を、熱源媒体、蒸発器からの冷媒蒸気、吸収溶液、凝縮器の凝縮熱の少なくとも1つ以上で熱することを特徴とする。 Invention according to claim 2, in an absorption heat pump of claim 1, the heated liquid medium before heating in the absorber, exhaust heat source medium, the refrigerant vapor from the evaporator, the absorption solution, a condenser characterized by pre-heat at least one condensation heat.

請求項に記載の発明は、請求項1又は2に記載の吸収式ヒートポンプにおいて、吸収器と蒸発器の組合せを多段として、温度上昇を多段にしたことを特徴とする。 According to a third aspect of the invention, in the absorption heat pump according to claim 1 or 2, as a multi-stage combination of the intake Osamuki and evaporation Hatsuki, characterized in that the temperature increase was in multiple stages.

請求項1に記載の発明によれば、吸収器の被加熱媒体入口に被加熱媒体液を導入し、被加熱媒体出口から蒸気又は液を含む蒸気の被加熱媒体を得て導出するので、吸収器に被加熱媒体液を供給するためのポンプ動力を削減できる。例えば被加熱媒体が水(H2O)である高温熱を高温水の形で得る場合、高温水の出入口温度差を例えば5Kとすると、これを蒸気の形態で得る本発明では、約100分の1の流量で済むので、ポンプ動力が小さく済む。熱媒体液の量を増やし伝熱を良くし、出口部で気液分離する形態を採用した場合でも、約50分の1の流量で済む。 According to the first aspect of the present invention, the liquid to be heated is introduced into the inlet of the medium to be heated of the absorber, and the liquid to be heated is obtained from the outlet of the medium to be heated and the vapor to be heated is contained. Pump power for supplying the heated medium liquid to the vessel can be reduced. For example, when high-temperature heat in which the medium to be heated is water (H 2 O) is obtained in the form of high-temperature water, if the temperature difference between the inlet and outlet of the high-temperature water is 5K, for example, in the present invention in which this is obtained in the form of steam, about 100 minutes Therefore, the pump power is small. Even when the amount of the heat medium liquid is increased to improve heat transfer and gas-liquid separation is adopted at the outlet, a flow rate of about 1/50 is sufficient.

また、吸収器の被加熱媒体入口側に補給水ポンプを、被加熱媒体出口側に蒸気温度を検出する温度検出手段をそれぞれ配設し、温度検出手段の検出信号より導出される蒸気の過熱度を目標値になるように補給水ポンプを制御して被加熱媒体液導入量を調節する被加熱媒体液導入量調節手段を設けたので、液滴を含まない目標過熱度の蒸気を得ることができる。 In addition, a makeup water pump is disposed on the heated medium inlet side of the absorber, and temperature detection means for detecting the vapor temperature is disposed on the heated medium outlet side, respectively, and the degree of superheat of steam derived from the detection signal of the temperature detection means Since the heating medium liquid introduction amount adjusting means for adjusting the introduction amount of the heating medium liquid by adjusting the replenishing water pump so as to reach the target value is provided, it is possible to obtain steam having a target superheat degree that does not include droplets. it can.

請求項に記載の発明によれば、吸収器で加熱する前に被加熱媒体液を、熱源媒体、蒸発器からの冷媒蒸気、吸収溶液、凝縮器の凝縮熱の少なくとも1つ以上で熱するので、被加熱媒体液が予熱されて吸収器に供給されるから蒸気への変換効率が向上する。 According to the second aspect of the present invention, the heated medium liquid is preliminarily heated with at least one of the exhaust heat source medium, the refrigerant vapor from the evaporator, the absorption solution, and the condensation heat of the condenser before being heated by the absorber. Since it heats, since the to-be-heated medium liquid is preheated and supplied to an absorber, the conversion efficiency into a vapor | steam improves.

請求項に記載の発明によれば、吸収器と蒸発器の組合せを多段として、温度上昇を多段にとすることにより、より高温の加熱媒体蒸気が得られる。


According to the third aspect of the present invention, the combination of the absorber and the evaporator is multistage, and the temperature rise is multistage, so that a higher temperature heating medium vapor can be obtained.


以下、本発明の実施の形態例を図面に基いて説明する。なお、本実施の形態例では再生器G、蒸発器Eの熱源として排温水、排蒸気を用いる例を示すが熱源としては排ガス等でもよい。凝縮器Cの冷却源として冷却水を用いる例を示すが冷却源としては空気(空冷方式)等でもよい。   Embodiments of the present invention will be described below with reference to the drawings. In the present embodiment, an example is shown in which exhaust warm water and exhaust steam are used as the heat source of the regenerator G and the evaporator E, but exhaust gas or the like may be used as the heat source. Although an example in which cooling water is used as the cooling source of the condenser C is shown, air (air cooling method) or the like may be used as the cooling source.

図1は本発明に係る吸収式ヒートポンプの構成例を示す図である。図示するように、本吸収式ヒートポンプは、吸収器A、蒸発器E、再生器G、凝縮器C、及び溶液熱交換器Xを主要構成機器として具備する。再生器Gからの濃溶液を溶液ポンプ1により吸収器Aに導く濃溶液管2と、吸収器Aからの希溶液を再生器Gに導く希溶液管4と、冷媒液を冷媒ポンプ5により蒸発器Eに導く冷媒管6と、蒸発器Eで蒸発した冷媒蒸気を吸収器Aに導く流路7と、再生器Gにて発生した冷媒蒸気を凝縮器Cに導く流路8とが設けられ、各機器を接続している。   FIG. 1 is a diagram showing a configuration example of an absorption heat pump according to the present invention. As shown in the figure, this absorption heat pump includes an absorber A, an evaporator E, a regenerator G, a condenser C, and a solution heat exchanger X as main components. A concentrated solution tube 2 that leads the concentrated solution from the regenerator G to the absorber A by the solution pump 1, a diluted solution tube 4 that guides the diluted solution from the absorber A to the regenerator G, and the refrigerant liquid is evaporated by the refrigerant pump 5. A refrigerant pipe 6 that leads to the regenerator E, a flow path 7 that leads the refrigerant vapor evaporated in the evaporator E to the absorber A, and a flow path 8 that leads the refrigerant vapor generated in the regenerator G to the condenser C are provided. Each device is connected.

凝縮器Cには冷却水101を導く冷却水管9、蒸発器Eと再生器Gとにはそれぞれ熱源温水102を導く温水管10、11、吸収器Aには所望の高温の蒸気を得るための蒸発管12が装備されている。該蒸発管12の入口には加熱媒体液としての水103を補給する補給水管3が接続され、出口は蒸気104を排出する蒸気管13が接続されている。14は補給水ポンプ16により補給水管3を通って吸収器Aに供給される水103を吸収器Aからの希溶液で加熱(予熱)するための熱交換器であり、15は水103を熱源温水102で加熱(予熱)するための熱交換器である。   The condenser C has a cooling water pipe 9 that leads the cooling water 101, the evaporator E and the regenerator G have hot water pipes 10 and 11 that lead the hot water 102, and the absorber A has a desired high-temperature steam. An evaporation tube 12 is provided. A supply water pipe 3 for supplying water 103 as a heating medium liquid is connected to the inlet of the evaporation pipe 12, and a steam pipe 13 for discharging the steam 104 is connected to the outlet. 14 is a heat exchanger for heating (preheating) the water 103 supplied to the absorber A through the makeup water pipe 3 by the makeup water pump 16 with the dilute solution from the absorber A, and 15 is the heat source. It is a heat exchanger for heating (preheating) with hot water 102.

上記構成の吸収式ヒートポンプにおいて、再生器Gの温水管11に熱源温水102を供給することにより、再生器Gの中の溶液は蒸発して濃溶液となり、該濃溶液は溶液ポンプ1により溶液熱交換器Xを通って加熱され、吸収器Aに送られ、蒸発管12の伝熱面上に散布される。一方冷媒ポンプ5により蒸発器Eに送られた冷媒は、温水管10を通る熱源温水102により加熱され蒸発し、該冷媒蒸気は流路7を経て吸収器Aに達し前記散布された濃溶液に吸収され、濃溶液は希溶液となる。この際の吸収熱により濃溶液は加熱され沸点上昇に相当する高温度に達し、蒸発管12の伝熱面を加熱し、蒸発管12を通る水103を加熱し、蒸気104が発生し、蒸気管13から排出される。   In the absorption heat pump having the above-described configuration, when the heat source hot water 102 is supplied to the hot water pipe 11 of the regenerator G, the solution in the regenerator G evaporates to become a concentrated solution. Heated through the exchanger X, sent to the absorber A, and sprayed on the heat transfer surface of the evaporation tube 12. On the other hand, the refrigerant sent to the evaporator E by the refrigerant pump 5 is heated and evaporated by the heat source hot water 102 passing through the hot water pipe 10, and the refrigerant vapor reaches the absorber A through the flow path 7 and becomes the scattered concentrated solution. Absorbed and the concentrated solution becomes a dilute solution. The concentrated solution is heated by the absorption heat at this time and reaches a high temperature corresponding to an increase in boiling point, the heat transfer surface of the evaporation pipe 12 is heated, the water 103 passing through the evaporation pipe 12 is heated, and the steam 104 is generated. It is discharged from the tube 13.

吸収器Aの希溶液は希溶液管4を通り、熱交換器14で補給水管3を通る水103を加熱し、溶液熱交換器Xで濃溶液管2を通る濃溶液を加熱し再生器Gに戻る。熱交換器14で水103を加熱し、この温度を蒸発圧力に対する過熱状態或いは蒸気を発生させられる状態にすると、吸収器Aの入口付近の伝熱を大幅に改良することができる。再生器Gで発生した蒸気は流路8を通って凝縮器Cに達し、冷却水管9を通る冷却水101により冷却され凝縮し、サイクルが繰り返される。なお、熱交換器14は、吸収器A内に設けることにより、吸収器Aの溶液で加熱してもよい。その場合の熱交換器14の位置は、吸収器Aの入口でも中間でも出口でもよい。   The dilute solution in the absorber A passes through the dilute solution tube 4, the water 103 that passes through the replenishment water tube 3 is heated by the heat exchanger 14, the concentrated solution that passes through the concentrated solution tube 2 is heated by the solution heat exchanger X, and the regenerator G Return to. If the water 103 is heated by the heat exchanger 14 and this temperature is brought into a state of being superheated with respect to the evaporation pressure or being able to generate steam, the heat transfer in the vicinity of the inlet of the absorber A can be greatly improved. The steam generated in the regenerator G reaches the condenser C through the flow path 8, is cooled and condensed by the cooling water 101 passing through the cooling water pipe 9, and the cycle is repeated. In addition, you may heat the heat exchanger 14 with the solution of the absorber A by providing in the absorber A. The position of the heat exchanger 14 in that case may be the inlet, the middle or the outlet of the absorber A.

吸収器Aには、該出口液面を検出する液面計17が設けられており、該液面計17の検出出力を溶液ポンプ1を駆動するインバータ18に送り、該溶液ポンプ1を制御することにより、再生器Gから吸収器Aに送る濃溶液の流量を制御して、吸収器Aの出口液面の液位を指定レベルに確保する。また、蒸発器Eにも液面を検出する液面計19が設けられており、液面計19の検出出力を制御弁20に出力し、該制御弁20を制御して、凝縮器Cから供給される冷媒流量を制御して、蒸発器Eの液面を確保する。また、蒸気管13には蒸気の温度を検出する温度計21が設けられおり、この検出出力で蒸気管13を通る蒸気の過熱度を目標値になるように、補給水ポンプ16を制御して水103の流量を制御することにより、液滴を含まない水蒸気104を得ることができる。   The absorber A is provided with a liquid level gauge 17 for detecting the outlet liquid level, and the detection output of the liquid level gauge 17 is sent to an inverter 18 for driving the solution pump 1 to control the solution pump 1. Thus, the flow rate of the concentrated solution sent from the regenerator G to the absorber A is controlled, and the liquid level at the outlet liquid level of the absorber A is ensured at a specified level. Further, the evaporator E is also provided with a liquid level gauge 19 for detecting the liquid level, the detection output of the liquid level gauge 19 is output to the control valve 20, and the control valve 20 is controlled so that the condenser C The liquid level of the evaporator E is secured by controlling the flow rate of the supplied refrigerant. Further, the steam pipe 13 is provided with a thermometer 21 for detecting the temperature of the steam, and the supplementary water pump 16 is controlled so that the degree of superheat of the steam passing through the steam pipe 13 becomes a target value with this detection output. By controlling the flow rate of the water 103, the water vapor 104 that does not contain droplets can be obtained.

上記のように吸収器Aの蒸発管12で補給水管3から供給される被加熱媒体液である水103を加熱し、高温の蒸気104とすることにより、被加熱媒体液である水の流量を少なくできる。例えば蒸発管12の出入口温度差を例えば5Kとすると、これを蒸気104の形態で得る場合は高温水の形態で得る場合に比較し、100分の1の流量となる。被加熱媒体液である水103の流量を増やし伝熱を良くし、図2で示すように気液分離器22を設けて気液分離する形態をとる場合でも、約50分の1の流量で済み、補給水ポンプ16の動力を大幅に削減できる。   As described above, the water 103 that is the medium to be heated supplied from the replenishment water pipe 3 is heated by the evaporation pipe 12 of the absorber A to form the high-temperature steam 104, thereby reducing the flow rate of the water that is the medium to be heated. Less. For example, if the inlet / outlet temperature difference of the evaporation pipe 12 is 5K, for example, when it is obtained in the form of the steam 104, the flow rate is 1/100 compared with the case where it is obtained in the form of high-temperature water. Even when the flow rate of the water 103, which is the medium to be heated, is increased to improve heat transfer and the gas-liquid separator 22 is provided as shown in FIG. The power of the makeup water pump 16 can be greatly reduced.

図2は本発明に係る吸収式ヒートポンプの他の構成例を示す図である。図2において、図1と同一符号を付した部分は同一又は相当部分を示す。他の図においても同様とする。図2に示すように本吸収式ヒートポンプは吸収器Aの蒸発管12の出口に気液分離器22を接続すると共に、補給水管3を該気液分離器22に接続し、該気液分離器22に供給された水103及び気水分離された水をポンプ23で蒸発管12に送るようにしている。また、気液分離器22には液面計24を設け、該液面計24の検出出力で補給水ポンプ16を制御することにより、気液分離器22内の液面の液位を所定レベルに確保する。   FIG. 2 is a diagram showing another configuration example of the absorption heat pump according to the present invention. 2, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. The same applies to other drawings. As shown in FIG. 2, the present absorption heat pump has a gas-liquid separator 22 connected to the outlet of the evaporation pipe 12 of the absorber A and a replenishment water pipe 3 connected to the gas-liquid separator 22. The water 103 supplied to 22 and the water separated from the steam are sent to the evaporation pipe 12 by a pump 23. Further, the gas-liquid separator 22 is provided with a liquid level gauge 24, and the replenishment water pump 16 is controlled by the detection output of the liquid level gauge 24, whereby the liquid level in the gas-liquid separator 22 is set to a predetermined level. To ensure.

上記のように気液分離器22を設け、蒸発量の1〜2倍程度の被加熱媒体液である水103を吸収器Aの蒸発管12に導入することにより、被加熱媒体側の伝熱係数を上げることができ、より高温の蒸気を得ることができる。但しこの場合、ポンプが2台(補給水ポンプ16とポンプ23)になる。なお、液面の位置を高くし、ポンプ23に代えて、気泡ポンプとすることもできる。   As described above, the gas-liquid separator 22 is provided, and the heat 103 on the heated medium side is introduced by introducing the water 103, which is the heated medium liquid of about 1 to 2 times the evaporation amount, into the evaporation pipe 12 of the absorber A. The coefficient can be increased and higher temperature steam can be obtained. However, in this case, there are two pumps (the makeup water pump 16 and the pump 23). It should be noted that the position of the liquid level can be increased and a bubble pump can be used instead of the pump 23.

図3は本発明に係る吸収式ヒートポンプの他の構成例を示す図である。図3に示すように本吸収式ヒートポンプは、凝縮器Cに予熱管25を設け、該予熱管25に補給水管3を接続し、補給水ポンプ16により被加熱媒体液である水103を先ず凝縮器Cの冷媒蒸気で加熱し、次に蒸発器Eに設けた伝熱管15−1を通して蒸発器E内で発生する冷媒蒸気により加熱し、続いて熱交換器15で熱源温水102で加熱し、更に熱交換器14で吸収器Aからの希溶液で加熱し、気液分離器22に送っている。また、気液分離器22の液面計24の検出出力により制御弁26を制御して水103の流量を制御し、気液分離器22内の液面の液位を所定レベルに確保する。このように、加熱媒体液である水103を最初に凝縮器Cの予熱管25に導き再生器Gからの冷媒蒸気と熱交換させることにより、加熱媒体液である水103が冷媒蒸気の飽和温度より低ければ、冷媒蒸気は凝縮し、水103は加熱される。なお、熱交換器15を省略し、蒸発器Eに設けた伝熱管15−1により、水103を蒸発器Eからの冷媒蒸気で加熱するようにしてもよい。そうした場合、熱交換器15よりも熱交換器が簡易に設けられる。また、予熱管25を冷却水管9より再生器G寄りに設置するほうが好ましい。そうした場合、再生器Gで加熱された溶液からは、溶液と同じ温度の過熱状態の蒸気が発生しているため、給水をより効率的に加熱できる。   FIG. 3 is a diagram showing another configuration example of the absorption heat pump according to the present invention. As shown in FIG. 3, this absorption heat pump is provided with a preheating pipe 25 in the condenser C, the replenishment water pipe 3 is connected to the preheating pipe 25, and the water 103 as the medium to be heated is first condensed by the replenishment water pump 16. Heating with the refrigerant vapor of the evaporator C, then heating with the refrigerant vapor generated in the evaporator E through the heat transfer pipe 15-1 provided in the evaporator E, and subsequently heating with the heat source hot water 102 in the heat exchanger 15, Further, the heat exchanger 14 heats the diluted solution from the absorber A and sends it to the gas-liquid separator 22. Further, the control valve 26 is controlled by the detection output of the level gauge 24 of the gas-liquid separator 22 to control the flow rate of the water 103, and the liquid level of the liquid level in the gas-liquid separator 22 is secured at a predetermined level. In this way, the water 103 as the heating medium liquid is first guided to the preheating pipe 25 of the condenser C to exchange heat with the refrigerant vapor from the regenerator G, so that the water 103 as the heating medium liquid is saturated with the refrigerant vapor. If it is lower, the refrigerant vapor condenses and the water 103 is heated. Note that the heat exchanger 15 may be omitted, and the water 103 may be heated with the refrigerant vapor from the evaporator E by the heat transfer tube 15-1 provided in the evaporator E. In such a case, a heat exchanger is provided more simply than the heat exchanger 15. Further, it is preferable to install the preheating pipe 25 closer to the regenerator G than the cooling water pipe 9. In such a case, since the superheated steam having the same temperature as the solution is generated from the solution heated by the regenerator G, the feed water can be heated more efficiently.

図4は本発明に係る吸収式ヒートポンプの他の構成例を示す図である。本吸収式ヒートポンプは2段昇温の例を示す。図4に示すように、高温吸収器AHと気液分離器EHSが設けられている。ここで図1及び図3における吸収器Aは低温吸収器となり、蒸発器Eは低温蒸発器となる。また、高温蒸発器EHは低温吸収器Aの被加熱側となる。凝縮器Cから冷媒管6を通って送られる冷媒液は制御弁32及び冷媒分岐管30を通って気液分離器EHSに供給される。一方高温蒸発器EHからの冷媒蒸気は冷媒管34−1を通って気液分離器EHSに送られる。これにより気液分離器EHSで凝縮器Cから冷媒液は加熱蒸発される。気液分離された冷媒液は冷媒管34−2を通って低温吸収器Aに戻る。気液分離器EHS内にはバッフル板33が設けられている。熱交換器14は低温吸収器Aの出口溶液を加熱流体としているが、熱交換器14を低温吸収器A内に設け、該低温吸収器A内の溶液を加熱流体としてもよい。また、低温吸収器Aの溶液に代えて、高温蒸発器EHの冷媒蒸気を加熱源としてもよい。   FIG. 4 is a diagram showing another configuration example of the absorption heat pump according to the present invention. This absorption heat pump shows an example of two-stage temperature rise. As shown in FIG. 4, a high-temperature absorber AH and a gas-liquid separator EHS are provided. Here, the absorber A in FIGS. 1 and 3 is a low-temperature absorber, and the evaporator E is a low-temperature evaporator. The high temperature evaporator EH is the heated side of the low temperature absorber A. The refrigerant liquid sent from the condenser C through the refrigerant pipe 6 is supplied to the gas-liquid separator EHS through the control valve 32 and the refrigerant branch pipe 30. On the other hand, the refrigerant vapor from the high-temperature evaporator EH is sent to the gas-liquid separator EHS through the refrigerant pipe 34-1. As a result, the refrigerant liquid is heated and evaporated from the condenser C in the gas-liquid separator EHS. The gas-liquid separated refrigerant liquid returns to the low-temperature absorber A through the refrigerant pipe 34-2. A baffle plate 33 is provided in the gas-liquid separator EHS. Although the heat exchanger 14 uses the outlet solution of the low-temperature absorber A as a heating fluid, the heat exchanger 14 may be provided in the low-temperature absorber A, and the solution in the low-temperature absorber A may be used as a heating fluid. Further, instead of the solution of the low temperature absorber A, the refrigerant vapor of the high temperature evaporator EH may be used as a heating source.

再生器Gから濃溶液は溶液ポンプ1により、溶液熱交換器X、及び熱交換器39を通って加熱(予熱)され高温吸収器AHに送られ、ここで気液分離器EHSからの冷媒蒸気は濃溶液に吸収され、濃溶液は希溶液となる。この際の吸収熱により濃溶液は加熱され沸点上昇に相当する高温度に達し、蒸発管35の伝熱面を加熱し、蒸発管35を通る水103は加熱され蒸気となる。該水蒸気は気液分離器22に導入され、気液分離され、水蒸気104が蒸気管13から排出される。   The concentrated solution from the regenerator G is heated (preheated) by the solution pump 1 through the solution heat exchanger X and the heat exchanger 39 and sent to the high temperature absorber AH, where the refrigerant vapor from the gas-liquid separator EHS is sent. Is absorbed in a concentrated solution, which becomes a dilute solution. The concentrated solution is heated by the absorption heat at this time and reaches a high temperature corresponding to an increase in boiling point, heating the heat transfer surface of the evaporation pipe 35, and the water 103 passing through the evaporation pipe 35 is heated to become steam. The water vapor is introduced into the gas-liquid separator 22 to be gas-liquid separated, and the water vapor 104 is discharged from the vapor pipe 13.

高温吸収器AHの希溶液は希溶液管37を通って熱交換器38で気液分離器22に供給される水103を加熱し、更に熱交換器39で高温吸収器AHに送られる濃溶液を加熱して、制御弁40を通って低温吸収器Aに流入する。低温吸収器Aの出口液面を検出する液面計17の出力で制御弁40を制御し、低温吸収器Aの出口の液面の液位を所定レベルに確保する。また、高温吸収器AHには出口液面を検出する液面計36が設けられており、該液面計36の検出出力を溶液ポンプ1を駆動するインバータ18に送り、該溶液ポンプ1を制御することにより、高温吸収器AHに送る濃溶液の流量を制御して、高温吸収器AHの出口の液面の液位を所定レベルに確保する。また、気液分離器EHSには液面計31が設けられており、該液面計31の検出出力で制御弁32を制御して、気液分離器EHSの液面の液位を所定レベルに確保する。また、低温蒸発器Eの液面位も液面計19の検出出力で制御弁20を制御して凝縮器Cからの冷媒液供給量を調整して所定レベルに確保する。   The dilute solution in the high temperature absorber AH passes through the dilute solution tube 37 and heats the water 103 supplied to the gas-liquid separator 22 by the heat exchanger 38, and further the concentrated solution sent to the high temperature absorber AH by the heat exchanger 39. Is heated and flows into the low-temperature absorber A through the control valve 40. The control valve 40 is controlled by the output of the liquid level gauge 17 for detecting the outlet liquid level of the low temperature absorber A, and the liquid level at the liquid level at the outlet of the low temperature absorber A is secured at a predetermined level. Further, the high-temperature absorber AH is provided with a liquid level gauge 36 for detecting the liquid level at the outlet, and the detection output of the liquid level gauge 36 is sent to the inverter 18 for driving the solution pump 1 to control the solution pump 1. By doing this, the flow rate of the concentrated solution sent to the high-temperature absorber AH is controlled to ensure the liquid level at the liquid level at the outlet of the high-temperature absorber AH at a predetermined level. Further, the gas-liquid separator EHS is provided with a liquid level gauge 31. The control valve 32 is controlled by the detection output of the liquid level gauge 31, and the liquid level of the gas-liquid separator EHS is set to a predetermined level. To ensure. Further, the liquid level of the low-temperature evaporator E is also controlled by controlling the control valve 20 with the detection output of the liquid level gauge 19 to adjust the supply amount of the refrigerant liquid from the condenser C to ensure a predetermined level.

なお、図1乃至図4に示す構成の吸収式ヒートポンプにおいては、蒸発器Eを冷媒液中に熱源温水102を導く温水管10を配設した構成としたが、蒸発器Eは図5に示すよう熱源温水102を導く温水管10上に凝縮器Cからの冷媒液を散布する散布式の蒸発器としてもよいことは当然である。   In the absorption heat pump having the configuration shown in FIGS. 1 to 4, the evaporator E has a configuration in which the hot water pipe 10 that guides the heat source hot water 102 into the refrigerant liquid is disposed. The evaporator E is shown in FIG. Of course, it is also possible to use a spray-type evaporator that sprays the refrigerant liquid from the condenser C onto the hot water pipe 10 that guides the heat source hot water 102.

図5は本発明に係る吸収式ヒートポンプの他の構成例を示す図である。本吸収式ヒートポンプが図1乃至図4に示す吸収式ヒートポンプと異なる点は、図1乃至図4の吸収式ヒートポンプでは熱交換器14と溶液熱交換器Xに吸収器Aからの希溶液を直列に流しているのに対し、図5の吸収式ヒートポンプでは、吸収器Aからの希溶液を熱交換器14と溶液熱交換器Xに並列に流している点である。熱交換器14で補給水管3を通る水103を加熱した希溶液と、溶液熱交換器Xで濃溶液管2を通る濃溶液を加熱した希溶液は合流して、再生器Gに供給され、熱源温水102が通る温水管11上に散布される。   FIG. 5 is a diagram showing another configuration example of the absorption heat pump according to the present invention. The absorption heat pump shown in FIGS. 1 to 4 is different from the absorption heat pump shown in FIGS. 1 to 4 in the absorption heat pump shown in FIGS. 1 to 4 in which the dilute solution from the absorber A is connected in series with the heat exchanger 14 and the solution heat exchanger X. In contrast, in the absorption heat pump of FIG. 5, the dilute solution from the absorber A is allowed to flow in parallel to the heat exchanger 14 and the solution heat exchanger X. The dilute solution in which the water 103 passing through the replenishment water pipe 3 is heated by the heat exchanger 14 and the dilute solution in which the concentrated solution passing through the concentrated solution pipe 2 is heated in the solution heat exchanger X are merged and supplied to the regenerator G. It is sprayed on the hot water pipe 11 through which the heat source hot water 102 passes.

なお、本吸収式ヒートポンプでは、蒸発器Eを図5に示すように、熱源温水102を導く温水管10上に凝縮器Cからの冷媒液を散布する散布式を採用しているが、蒸発器Eは図1乃至図4に示すように、冷媒液中に温水管10を配設した構成の蒸発器を用いてもよいことは当然である。   In this absorption heat pump, as shown in FIG. 5, the evaporator E employs a spraying method in which the refrigerant liquid from the condenser C is sprayed on the hot water pipe 10 that guides the heat source hot water 102. Naturally, as shown in FIGS. 1 to 4, E may use an evaporator having a configuration in which the hot water pipe 10 is disposed in the refrigerant liquid.

図1乃至図5に示す構成の吸収式ヒートポンプにおいて、吸収器A又は高温吸収器AHに送る被加熱媒体液である水103を熱源温水102で加熱する熱交換器15、吸収器A又は高温吸収器AHからの希溶液(吸収溶液)で加熱する熱交換器14で加熱(予熱)し、吸収器A又は高温吸収器AH又は気液分離器22へ導入している。これによりCOP=被加熱媒体の加熱量/熱源熱量、COPX=吸収器A又は高温吸収器AHにおける加熱量/熱源熱量としたとき、図1乃至図3及び図5の1段昇温ではCOPXが0.4〜0.5程度である。また、図4の2段昇温ではCOPXが0.26〜0.33程度である。被加熱媒体液である水103の予熱を熱源温水102で行うと、予熱部では、被加熱媒体/熱源熱量=1であるので、COP>COPXとすることができる。また、吸収器A又は高温吸収器AHの溶液の顕熱で予熱すると、被加熱媒体/熱源熱量はCOPXよりも高い値となり、COPを良くすることができる。被加熱媒体の水103の予熱は、蒸発器Eからの冷媒蒸気によっても同様の効果が得られる。   In the absorption heat pump having the configuration shown in FIGS. 1 to 5, the heat exchanger 15, the absorber A, or the high-temperature absorption that heats the water 103 that is the medium to be heated to be sent to the absorber A or the high-temperature absorber AH with the heat source hot water 102. It is heated (preheated) by a heat exchanger 14 that is heated with a dilute solution (absorbing solution) from the vessel AH, and introduced into the absorber A, the high-temperature absorber AH, or the gas-liquid separator 22. Accordingly, when COP = the heating amount of the medium to be heated / the heat source heat amount, and COPX = the heating amount / heat source heat amount in the absorber A or the high-temperature absorber AH, the COPX is increased by the one-step temperature increase in FIGS. 1 to 3 and FIG. It is about 0.4 to 0.5. Moreover, COPX is about 0.26 to 0.33 in the two-step temperature increase in FIG. When preheating of the water 103 that is the liquid to be heated is performed with the heat source hot water 102, since the medium to be heated / heat source heat amount = 1 in the preheating portion, COP> COPX can be satisfied. Further, when preheating is performed by sensible heat of the solution of the absorber A or the high-temperature absorber AH, the amount of heat to be heated / heat source becomes higher than that of COPX, and COP can be improved. The same effect can be obtained by preheating the heated medium 103 with the refrigerant vapor from the evaporator E.

図6は本発明に係る吸収式ヒートポンプの他の構成例を示す図である。本吸収式ヒートポンプが図1に示す吸収式ヒートポンプと異なる点は、本吸収式ヒートポンプでは再生器Gと蒸発器Eの熱源に排蒸気110を用いる点である。図示するように、排蒸気110を蒸発器E内に配置した蒸気管41と再生器G内に配置した蒸気管42に並列に流し、蒸発器E内で冷媒液の加熱、再生器G内で希溶液を加熱する。蒸気管41及び蒸気管42内で熱を失った排蒸気110は凝縮してドレンになるが、このドレンは蒸気の飽和温度と同程度の高温であるためドレン熱交換器43を通し、該ドレン熱交換器43で補給水管3を通る水103を予熱しドレン111として排出する。このように熱源として排蒸気を使用しても図1に示す吸収式ヒートポンプと同様の作用効果が得られる。   FIG. 6 is a view showing another configuration example of the absorption heat pump according to the present invention. This absorption heat pump is different from the absorption heat pump shown in FIG. 1 in that the exhaust heat 110 is used as a heat source for the regenerator G and the evaporator E in the absorption heat pump. As shown in the figure, the exhaust steam 110 is caused to flow in parallel through a steam pipe 41 disposed in the evaporator E and a steam pipe 42 disposed in the regenerator G, and the refrigerant liquid is heated in the evaporator E and in the regenerator G. Heat the dilute solution. The exhaust steam 110 that has lost heat in the steam pipe 41 and the steam pipe 42 condenses and becomes drainage. Since this drain is at a high temperature similar to the saturation temperature of the steam, the drain heat exchanger 43 passes through the drain heat exchanger 43. The water 103 passing through the makeup water pipe 3 is preheated by the heat exchanger 43 and discharged as a drain 111. Thus, even if exhaust steam is used as a heat source, the same effect as the absorption heat pump shown in FIG. 1 can be obtained.

図7は本発明に係る吸収式ヒートポンプにおいて、再生器G及び蒸発器Eの熱源として熱源温水102を用い、該熱源温水102を直列に接続した蒸発器E→再生器Gと流す場合の被加熱媒体である水103の予熱のパターンを示す図である。図7(A)は水103を凝縮器Cの凝縮熱で予熱して吸収器Aに供給する場合を示す。図7(B)は水103を凝縮器Cの凝縮熱で予熱し、更に熱交換器50で直列に接続した蒸発器E及び再生器Gを通った熱源温水102で予熱し、吸収器Aに供給する場合を示す。図7(C)は水103を凝縮器Cの凝縮熱で予熱し、更に熱交換器51で蒸発器Eを通った熱源温水102で予熱し、吸収器Aに供給する場合を示す。図7(D)は水103を凝縮器Cの凝縮熱で予熱し、更に熱交換器52で直列に接続した蒸発器E及び再生器Gを通る前の熱源温水102で予熱し、吸収器Aに供給する場合を示す。図7(E)は水103を凝縮器Cの凝縮熱で予熱し、更に熱交換器53で直列に接続した蒸発器E及び再生器Gをバイパスして流れる熱源温水102で予熱し、吸収器Aに供給する場合を示す。   FIG. 7 shows an absorption heat pump according to the present invention, in which heat source hot water 102 is used as a heat source for the regenerator G and the evaporator E, and the heat source hot water 102 is heated when flowing from the evaporator E to the regenerator G connected in series. It is a figure which shows the pattern of the preheating of the water 103 which is a medium. FIG. 7A shows a case where the water 103 is preheated with the condensation heat of the condenser C and supplied to the absorber A. In FIG. 7B, the water 103 is preheated with the heat of condensation of the condenser C, and further preheated with the heat source hot water 102 passing through the evaporator E and the regenerator G connected in series by the heat exchanger 50, to the absorber A. The supply case is shown. FIG. 7C shows a case where the water 103 is preheated with the condensation heat of the condenser C, further preheated with the heat source hot water 102 that has passed through the evaporator E by the heat exchanger 51, and supplied to the absorber A. In FIG. 7D, the water 103 is preheated with the heat of condensation of the condenser C, and further preheated with the heat source hot water 102 before passing through the evaporator E and the regenerator G connected in series by the heat exchanger 52, and the absorber A The case where it supplies to is shown. In FIG. 7E, the water 103 is preheated with the heat of condensation of the condenser C, and further preheated with the heat source hot water 102 that flows in a bypass by the evaporator E and the regenerator G connected in series by the heat exchanger 53, and the absorber. A case of supplying to A is shown.

図7(F)〜(T)はいずれも吸収式ヒートポンプが再生器Gから吸収器Aに供給される濃溶液と吸収器Aから再生器Gに供給される希溶液間で熱交換を行なう溶液熱交換器Hexを備えた構成であり(溶液熱交換器HexはF〜Tに限らずすべての吸収ヒートポンプに備えられている)、且つ水103を凝縮器Cの凝縮熱で予熱するものである。図7(F)は凝縮器Cの凝縮熱で予熱した水103を熱交換器54で溶液熱交換器Hexを通って再生器Gから吸収器Aに供給される濃溶液を加熱した吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。図7(G)は凝縮器Cの凝縮熱で予熱した水103を熱交換器55で溶液熱交換器Hexを通る前の吸収器Aからの希溶液で予熱し吸収器Aに供給する場合を示す。図7(H)は凝縮器Cの凝縮熱で予熱した水103を熱交換器56で溶液熱交換器Hexをバイパスして流入する吸収器Aからの希溶液で予熱し吸収器Aに供給する場合を示す。   7 (F) to 7 (T) are solutions in which an absorption heat pump exchanges heat between a concentrated solution supplied from the regenerator G to the absorber A and a dilute solution supplied from the absorber A to the regenerator G. The heat exchanger Hex is configured (the solution heat exchanger Hex is provided in all absorption heat pumps, not limited to F to T), and the water 103 is preheated with the condensation heat of the condenser C. . FIG. 7F shows the absorber A in which the concentrated solution supplied from the regenerator G to the absorber A is heated in the heat exchanger 54 through the solution heat exchanger Hex in the water 103 preheated by the condensation heat of the condenser C. The case where it preheats with the dilute solution from and supplies to the absorber A is shown. FIG. 7G shows a case where the water 103 preheated with the heat of condensation of the condenser C is preheated with a dilute solution from the absorber A before passing through the solution heat exchanger Hex in the heat exchanger 55 and supplied to the absorber A. Show. In FIG. 7H, water 103 preheated with the heat of condensation in the condenser C is preheated with the dilute solution from the absorber A that flows in by bypassing the solution heat exchanger Hex in the heat exchanger 56 and supplied to the absorber A. Show the case.

図7(I)は凝縮器Cの凝縮熱で予熱した水103を熱交換器50で直列に接続した蒸発器E及び再生器Gを通った熱源温水102で予熱し、更に熱交換器54で溶液熱交換器Hexを通って再生器Gから吸収器Aに供給される濃溶液を加熱した吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。図7(J)は凝縮器Cの凝縮熱で予熱した水103を熱交換器51で蒸発器Eを通った熱源温水102で予熱し、更に熱交換器54で溶液熱交換器Hexを通って再生器Gから吸収器Aに供給される濃溶液を加熱した吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。図7(K)は凝縮器Cの凝縮熱で予熱した水103を熱交換器54で溶液熱交換器Hexを通って再生器Gから吸収器Aに供給される濃溶液を加熱した吸収器Aからの希溶液で予熱し、更に熱交換器52で直列に接続した蒸発器E及び再生器Gを通る前の熱源温水102で予熱し、吸収器Aに供給する場合を示す。図7(L)は凝縮器Cの凝縮熱で予熱した水103を熱交換器53で直列に接続した蒸発器E及び再生器Gをバイパスして流入する熱源温水102で予熱し、更に熱交換器54で溶液熱交換器Hexを通って再生器Gから吸収器Aに供給される濃溶液を加熱した吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。   In FIG. 7I, the water 103 preheated with the heat of condensation of the condenser C is preheated with the heat source hot water 102 passing through the evaporator E and the regenerator G connected in series with the heat exchanger 50, and further, with the heat exchanger 54. The case where the concentrated solution supplied from the regenerator G to the absorber A through the solution heat exchanger Hex is preheated with the diluted solution from the heated absorber A and supplied to the absorber A is shown. In FIG. 7J, the water 103 preheated with the heat of condensation in the condenser C is preheated with the heat source hot water 102 that has passed through the evaporator E by the heat exchanger 51 and further passed through the solution heat exchanger Hex by the heat exchanger 54. The case where the concentrated solution supplied from the regenerator G to the absorber A is preheated with the diluted solution from the heated absorber A and supplied to the absorber A is shown. FIG. 7K shows the absorber A in which the concentrated solution supplied from the regenerator G to the absorber A is passed through the solution heat exchanger Hex in the water 103 preheated by the condensation heat of the condenser C. In this case, preheating is performed with the dilute solution from the heat source, and further preheated with the heat source hot water 102 before passing through the evaporator E and the regenerator G connected in series by the heat exchanger 52 and supplied to the absorber A. FIG. 7 (L) shows the preheated water 103 preheated by the condensation heat of the condenser C by the heat source hot water 102 which flows in by bypassing the evaporator E and the regenerator G connected in series by the heat exchanger 53, and further heat exchange. The case where the concentrated solution supplied from the regenerator G to the absorber A through the solution heat exchanger Hex is preheated with the diluted solution from the heated absorber A and supplied to the absorber A is shown.

図7(M)は凝縮器Cの凝縮熱で予熱した水103を熱交換器50で直列に接続した蒸発器E及び再生器Gを通った熱源温水102で予熱し、更に熱交換器55で溶液熱交換器Hexを通る前の吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。図7(N)は凝縮器Cの凝縮熱で予熱した水103を熱交換器51で蒸発器Eを通った熱源温水102で予熱し、更に熱交換器55で溶液熱交換器Hexを通る前の吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。図7(O)は凝縮器Cの凝縮熱で予熱した水103を熱交換器55で溶液熱交換器Hexを通る前の吸収器Aからの希溶液で予熱し、更に熱交換器52で直列に接続した蒸発器E及び再生器Gを通る前の熱源温水102で予熱し、吸収器Aに供給する場合を示す。図7(P)は凝縮器Cの凝縮熱で予熱した水103を熱交換器53で直列に接続した蒸発器E及び再生器Gをバイパスして流入する熱源温水102で予熱し、更に熱交換器55で溶液熱交換器Hexを通る前の吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。   In FIG. 7M, the water 103 preheated by the heat of condensation of the condenser C is preheated by the heat source hot water 102 that passes through the evaporator E and the regenerator G connected in series by the heat exchanger 50, and further in the heat exchanger 55. The case where it preheats with the dilute solution from the absorber A before passing the solution heat exchanger Hex, and supplies to the absorber A is shown. In FIG. 7N, the water 103 preheated with the heat of condensation in the condenser C is preheated with the heat source hot water 102 that has passed through the evaporator E in the heat exchanger 51 and further passed through the solution heat exchanger Hex in the heat exchanger 55. The case where it preheats with the dilute solution from the absorber A and supplies to the absorber A is shown. In FIG. 7 (O), the water 103 preheated with the heat of condensation in the condenser C is preheated with the dilute solution from the absorber A before passing through the solution heat exchanger Hex in the heat exchanger 55 and further in series in the heat exchanger 52. The preheated with the heat source hot water 102 before passing through the evaporator E and the regenerator G connected to, and supplied to the absorber A is shown. In FIG. 7 (P), the water 103 preheated by the heat of condensation of the condenser C is preheated by the heat source hot water 102 which flows in by bypassing the evaporator E and the regenerator G connected in series by the heat exchanger 53, and further heat exchange. The case where the preheated with the dilute solution from the absorber A before passing through the solution heat exchanger Hex in the vessel 55 is supplied to the absorber A is shown.

図7(Q)は凝縮器Cの凝縮熱で予熱した水103を熱交換器50で直列に接続した蒸発器E及び再生器Gを通った熱源温水102で予熱し、更に熱交換器56で吸収器Aから溶液熱換器Heをバイパスして流入する吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。図7(R)は凝縮器Cの凝縮熱で予熱した水103を熱交換器51で蒸発器Eを通った熱源温水102で予熱し、更に熱交換器56で溶液熱換器Heをバイパスして流入する吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。図7(S)は凝縮器Cの凝縮熱で予熱した水103を熱交換器56で溶液熱交換器Hexをバイパスして流入する吸収器Aからの希溶液で予熱し、更に熱交換器52で直列に接続した蒸発器E及び再生器Gを通る前の熱源温水102で予熱し、吸収器Aに供給する場合を示す。図7(T)は凝縮器Cの凝縮熱で予熱した水103を熱交換器53で直列に接続した蒸発器E及び再生器Gをバイパスして流入する熱源温水102で予熱し、更に熱交換器56で溶液熱交換器Hexをバイパスして流入する吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。   In FIG. 7Q, the water 103 preheated with the heat of condensation of the condenser C is preheated with the heat source hot water 102 passing through the evaporator E and the regenerator G connected in series with the heat exchanger 50, and further with the heat exchanger 56. A case where the solution heat exchanger He is bypassed from the absorber A and preheated with a dilute solution from the absorber A that flows in and supplied to the absorber A is shown. In FIG. 7 (R), the water 103 preheated by the heat of condensation in the condenser C is preheated by the heat source hot water 102 that has passed through the evaporator E by the heat exchanger 51, and the solution heat exchanger He is bypassed by the heat exchanger 56. The case where it preheats with the dilute solution from the absorber A which flows in and supplies to the absorber A is shown. In FIG. 7S, the water 103 preheated by the heat of condensation of the condenser C is preheated by the dilute solution from the absorber A that flows in by bypassing the solution heat exchanger Hex by the heat exchanger 56, and then the heat exchanger 52. The case where preheating is performed with the heat source hot water 102 before passing through the evaporator E and the regenerator G connected in series in FIG. In FIG. 7 (T), the water 103 preheated by the condensation heat of the condenser C is preheated by the heat source hot water 102 which flows in by bypassing the evaporator E and the regenerator G connected in series by the heat exchanger 53, and further heat exchange. The case where it preheats with the dilute solution from the absorber A which flows in by bypassing the solution heat exchanger Hex by the vessel 56 and supplies it to the absorber A is shown.

図8は本発明に係る吸収式ヒートポンプにおいて、再生器G及び蒸発器Eの熱源として熱源温水102を用い、該熱源温水102を直列に接続した再生器G→蒸発器Eと流す場合の水103の予熱パターンを示す図である。図8(A)は水103を凝縮器Cの凝縮熱で予熱して吸収器Aに供給する場合を示す。図8(B)は水103を凝縮器Cの凝縮熱で予熱し、更に熱交換器50で直列に接続した再生器G及び蒸発器Eを通った熱源温水102で予熱し、吸収器Aに供給する場合を示す。図8(C)は水103を凝縮器Cの凝縮熱で予熱し、更に熱交換器51で再生器Gを通った熱源温水102で予熱し、吸収器Aに供給する場合を示す。図8(D)は水103を凝縮器Cの凝縮熱で予熱し、更に熱交換器52で直列に接続した再生器G及び蒸発器Eを通る前の熱源温水102で予熱し、吸収器Aに供給する場合を示す。図8(E)は水103を凝縮器Cの凝縮熱で予熱し、更に熱交換器53で直列に接続した再生器G及び蒸発器Eをバイパスして流入する熱源温水102で予熱し、吸収器Aに供給する場合を示す。   FIG. 8 shows the water 103 when the heat source hot water 102 is used as the heat source of the regenerator G and the evaporator E in the absorption heat pump according to the present invention, and the heat source hot water 102 is flowed through the regenerator G → the evaporator E connected in series. It is a figure which shows the preheating pattern. FIG. 8A shows a case where the water 103 is preheated with the condensation heat of the condenser C and supplied to the absorber A. In FIG. 8B, the water 103 is preheated with the heat of condensation of the condenser C, and further preheated with the heat source hot water 102 that passes through the regenerator G and the evaporator E connected in series by the heat exchanger 50, and is absorbed by the absorber A. The supply case is shown. FIG. 8C shows a case where the water 103 is preheated with the condensation heat of the condenser C, further preheated with the heat source hot water 102 that has passed through the regenerator G by the heat exchanger 51, and supplied to the absorber A. In FIG. 8D, the water 103 is preheated with the heat of condensation of the condenser C, and further preheated with the heat source hot water 102 before passing through the regenerator G and the evaporator E connected in series by the heat exchanger 52, and the absorber A The case where it supplies to is shown. In FIG. 8E, the water 103 is preheated by the heat of condensation of the condenser C, and further preheated by the heat source hot water 102 flowing in by bypassing the regenerator G and the evaporator E connected in series by the heat exchanger 53, and absorbed. The case where it supplies to the container A is shown.

図8(F)〜(T)はいずれも吸収式ヒートポンプが再生器Gから吸収器Aに供給される濃溶液と吸収器Aから再生器Gに供給される希溶液間で熱交換を行なう溶液熱交換器Hexを備えた構成であり(溶液熱交換器HexはF〜Tに限らずすべての吸収ヒートポンプに備えられている)、且つ水103を凝縮器Cの凝縮熱で予熱するものである。図8(F)は凝縮器Cの凝縮熱で予熱した水103を熱交換器54で溶液熱交換器Hexを通って再生器Gから吸収器Aに供給される濃溶液を加熱した吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。図8(G)は凝縮器Cの凝縮熱で予熱した水103を熱交換器55で溶液熱交換器Hexを通る前の吸収器Aからの希溶液で予熱し吸収器Aに供給する場合を示す。図8(H)は凝縮器Cの凝縮熱で予熱した水103を熱交換器56で溶液熱交換器Hexをバイパスして流入する吸収器Aからの希溶液で予熱し吸収器Aに供給する場合を示す。   8 (F) to 8 (T) all show solutions in which an absorption heat pump exchanges heat between a concentrated solution supplied from the regenerator G to the absorber A and a dilute solution supplied from the absorber A to the regenerator G. The heat exchanger Hex is configured (the solution heat exchanger Hex is provided in all absorption heat pumps, not limited to F to T), and the water 103 is preheated with the condensation heat of the condenser C. . FIG. 8F shows the absorber A in which the concentrated solution supplied from the regenerator G to the absorber A is passed through the solution heat exchanger Hex in the water 103 preheated with the condensation heat of the condenser C. The case where it preheats with the dilute solution from and supplies to the absorber A is shown. FIG. 8G shows a case where the water 103 preheated with the heat of condensation in the condenser C is preheated with the dilute solution from the absorber A before passing through the solution heat exchanger Hex in the heat exchanger 55 and supplied to the absorber A. Show. In FIG. 8H, water 103 preheated with the heat of condensation of the condenser C is preheated with the dilute solution from the absorber A that flows in by bypassing the solution heat exchanger Hex by the heat exchanger 56 and supplied to the absorber A. Show the case.

図8(I)は凝縮器Cの凝縮熱で予熱した水103を熱交換器50で直列に接続した再生器G及び蒸発器Eを通った熱源温水102で予熱し、更に熱交換器54で溶液熱交換器Hexを通って再生器Gから吸収器Aに供給される濃溶液を加熱した吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。図8(J)は凝縮器Cの凝縮熱で予熱した水103を熱交換器51で再生器Gを通った熱源温水102で予熱し、更に熱交換器54で溶液熱交換器Hexを通って再生器Gから吸収器Aに供給される濃溶液を加熱した吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。図8(K)は凝縮器Cの凝縮熱で予熱した水103を熱交換器54で溶液熱交換器Hexを通って再生器Gから吸収器Aに供給される濃溶液を加熱した吸収器Aからの希溶液で予熱し、更に熱交換器52で直列に接続した再生器G及び蒸発器Eを通る前の熱源温水102で予熱し、吸収器Aに供給する場合を示す。図8(L)は凝縮器Cの凝縮熱で予熱した水103を熱交換器53で直列に接続した蒸発器E及び再生器Gをバイパスして流入する熱源温水102で予熱し、更に熱交換器54で溶液熱交換器Hexを通って再生器Gから吸収器Aに供給される濃溶液を加熱した吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。   In FIG. 8I, the water 103 preheated with the heat of condensation of the condenser C is preheated with the heat source hot water 102 passing through the regenerator G and the evaporator E connected in series with the heat exchanger 50, and further with the heat exchanger 54. The case where the concentrated solution supplied from the regenerator G to the absorber A through the solution heat exchanger Hex is preheated with the diluted solution from the heated absorber A and supplied to the absorber A is shown. In FIG. 8J, the water 103 preheated with the heat of condensation in the condenser C is preheated with the heat source hot water 102 that has passed through the regenerator G in the heat exchanger 51 and further passed through the solution heat exchanger Hex in the heat exchanger 54. The case where the concentrated solution supplied from the regenerator G to the absorber A is preheated with the diluted solution from the heated absorber A and supplied to the absorber A is shown. FIG. 8K shows the absorber A in which the concentrated solution supplied from the regenerator G to the absorber A is passed through the solution heat exchanger Hex in the water 103 preheated with the condensation heat of the condenser C. In this case, preheating is performed with the dilute solution from the heat source, and further preheated with the heat source hot water 102 before passing through the regenerator G and the evaporator E connected in series by the heat exchanger 52 and supplied to the absorber A. FIG. 8L shows the preheated water 103 preheated by the condensation heat of the condenser C by the heat source hot water 102 that flows in by bypassing the evaporator E and the regenerator G connected in series by the heat exchanger 53, and further heat exchange. The case where the concentrated solution supplied from the regenerator G to the absorber A through the solution heat exchanger Hex is preheated with the diluted solution from the heated absorber A and supplied to the absorber A is shown.

図8(M)は凝縮器Cの凝縮熱で予熱した水103を熱交換器50で直列に接続した再生器G及び蒸発器Eを通った熱源温水102で予熱し、更に熱交換器55で溶液熱換器Hexを通る前の吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。図8(N)は凝縮器Cの凝縮熱で予熱した水103を熱交換器51で再生器Gを通った熱源温水102で予熱し、更に熱交換器55で溶液熱交換器Hexを通る前の吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。図8(O)は凝縮器Cの凝縮熱で予熱した水103を熱交換器55で溶液熱交換器Hexを通る前の吸収器Aからの希溶液で予熱し、更に熱交換器52で直列に接続した再生器G及び蒸発器Eを通る前の熱源温水102で予熱し、吸収器Aに供給する場合を示す。図8(P)は凝縮器Cの凝縮熱で予熱した水103を熱交換器53で直列に接続した再生器G及び蒸発器Eをバイパスして流れる熱源温水102で予熱し、更に熱交換器55で溶液熱交換器Hexを通る前の吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。   FIG. 8 (M) shows the preheated water 103 preheated by the condensation heat of the condenser C by the heat source hot water 102 passing through the regenerator G and the evaporator E connected in series by the heat exchanger 50, and further by the heat exchanger 55. The case where it preheats with the dilute solution from the absorber A before passing the solution heat exchanger Hex, and supplies to the absorber A is shown. In FIG. 8N, the water 103 preheated with the heat of condensation in the condenser C is preheated with the heat source hot water 102 that has passed through the regenerator G in the heat exchanger 51 and further passed through the solution heat exchanger Hex in the heat exchanger 55. The case where it preheats with the dilute solution from the absorber A and supplies to the absorber A is shown. 8 (O), water 103 preheated by the condensation heat of the condenser C is preheated by the dilute solution from the absorber A before passing through the solution heat exchanger Hex by the heat exchanger 55, and further in series by the heat exchanger 52. The case where the heat source hot water 102 before passing through the regenerator G and the evaporator E connected to the preheater G is preheated and supplied to the absorber A is shown. In FIG. 8 (P), the water 103 preheated by the heat of condensation of the condenser C is preheated by the heat source hot water 102 flowing in a bypass manner through the regenerator G and the evaporator E connected in series by the heat exchanger 53, and further the heat exchanger. 55 shows a case where the preheated diluted solution from the absorber A before passing through the solution heat exchanger Hex is supplied to the absorber A.

図8(Q)は凝縮器Cの凝縮熱で予熱した水103を熱交換器50で直列に接続された再生器G及び蒸発器Eを通った熱源温水102で予熱し、更に熱交換器56で吸収器Aから溶液熱交換器Hexをバイパスして流入する希溶液で予熱して吸収器Aに供給する場合を示す。図8(R)は凝縮器Cの凝縮熱で予熱した水103を熱交換器51で再生器Gを通った熱源温水102で予熱し、更に熱交換器56で吸収器Aから溶液熱交換器Hexをバイパスして流入する希溶液で予熱して吸収器Aに供給する場合を示す。図8(S)は凝縮器Cの凝縮熱で予熱した水103を熱交換器56で吸収器Aから溶液熱交換器Hexをバイパスして流入する希溶液で予熱し、更に熱交換器52で直列に接続した蒸発器E及び再生器Gを通る前の熱源温水102で予熱し、吸収器Aに供給する場合を示す。図8(T)は凝縮器Cの凝縮熱で予熱した水103を熱交換器53で直列に接続した蒸発器E及び再生器Gをバイパスして流入する熱源温水102で予熱し、更に熱交換器56で吸収器Aから溶液熱交換器Hexをバイパスして流入する希溶液で予熱して吸収器Aに供給する場合を示す。   In FIG. 8Q, the water 103 preheated with the heat of condensation of the condenser C is preheated with the heat source hot water 102 passing through the regenerator G and the evaporator E connected in series with the heat exchanger 50, and then the heat exchanger 56. The case where it preheats with the dilute solution which flows in by bypassing the solution heat exchanger Hex from the absorber A, and supplies it to the absorber A is shown. FIG. 8 (R) shows a preheated water 103 preheated by the heat of condensation of the condenser C by the heat source hot water 102 that has passed through the regenerator G by the heat exchanger 51, and further a solution heat exchanger from the absorber A by the heat exchanger 56. The case where it preheats with the dilute solution which flows in by bypassing Hex and supplies it to the absorber A is shown. In FIG. 8S, the water 103 preheated with the heat of condensation in the condenser C is preheated with a dilute solution flowing from the absorber A by bypassing the solution heat exchanger Hex by the heat exchanger 56, and further, The case where it preheats with the heat source warm water 102 before passing through the evaporator E and the regenerator G connected in series, and supplies to the absorber A is shown. In FIG. 8 (T), the water 103 preheated by the condensation heat of the condenser C is preheated by the heat source hot water 102 that flows in by bypassing the evaporator E and the regenerator G connected in series by the heat exchanger 53, and further heat exchange is performed. A case is shown in which a preheated dilute solution is supplied from the absorber A by bypassing the solution heat exchanger Hex from the absorber A to the absorber A.

図9は本発明に係る吸収式ヒートポンプにおいて、再生器G及び蒸発器Eの熱源として熱源温水102を用い、該熱源温水102を並列に接続した再生器Gと蒸発器Eに流す場合の水103の予熱パターンを示す図である。図9(A)は水103を凝縮器Cの凝縮熱で予熱して吸収器Aに供給する場合を示す。図9(B)は水103を凝縮器Cの凝縮熱で予熱し、更に熱交換器50で並列に接続した再生器G及び蒸発器Eを通って合流した熱源温水102で予熱し、吸収器Aに供給する場合を示す。図9(C)は水103を凝縮器Cの凝縮熱で予熱し、更に熱交換器52で並列に接続した再生器G及び蒸発器Eを通る前の熱源温水102で予熱し、吸収器Aに供給する場合を示す。図9(D)は水103を凝縮器Cの凝縮熱で予熱し、更に熱交換器53で並列に接続した蒸発器E及び再生器Gをバイパスして流入する熱源温水102で予熱し、吸収器Aに供給する場合を示す。   FIG. 9 shows the water 103 when heat source hot water 102 is used as a heat source for the regenerator G and the evaporator E in the absorption heat pump according to the present invention, and the heat source hot water 102 flows to the regenerator G and the evaporator E connected in parallel. It is a figure which shows the preheating pattern. FIG. 9A shows a case where the water 103 is preheated with the condensation heat of the condenser C and supplied to the absorber A. In FIG. 9B, the water 103 is preheated with the heat of condensation of the condenser C, and further preheated with the heat source hot water 102 joined through the regenerator G and the evaporator E connected in parallel by the heat exchanger 50. A case of supplying to A is shown. In FIG. 9C, the water 103 is preheated with the heat of condensation of the condenser C, and further preheated with the heat source hot water 102 before passing through the regenerator G and the evaporator E connected in parallel by the heat exchanger 52, and the absorber A The case where it supplies to is shown. In FIG. 9D, the water 103 is preheated with the heat of condensation of the condenser C, and further preheated with the heat source hot water 102 flowing in by bypassing the evaporator E and the regenerator G connected in parallel by the heat exchanger 53, and absorbed. The case where it supplies to the container A is shown.

図9(E)〜(P)はいずれも吸収式ヒートポンプが再生器Gから吸収器Aに供給される濃溶液と吸収器Aから再生器Gに供給される希溶液間で熱交換を行なう溶液熱交換器Hexを備えた構成であり(溶液熱交換器HexはE〜Pに限らずすべての吸収ヒートポンプに備えられている)、且つ被加熱媒体としての水103を凝縮器Cの凝縮熱で予熱するものである。図9(E)は凝縮器Cの凝縮熱で予熱した水103を熱交換器54で溶液熱交換器Hexを通って再生器Gから吸収器Aに供給される濃溶液を加熱した吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。図9(F)は凝縮器Cの凝縮熱で予熱した水103を熱交換器55で溶液熱交換器Hexを通る前の吸収器Aからの希溶液で予熱し吸収器Aに供給する場合を示す。図9(G)は凝縮器Cの凝縮熱で予熱した水103を熱交換器56で溶液熱交換器Hexをバイパスして流入する吸収器Aからの希溶液で予熱し吸収器Aに供給する場合を示す。   9 (E) to 9 (P) all show solutions in which an absorption heat pump exchanges heat between a concentrated solution supplied from the regenerator G to the absorber A and a dilute solution supplied from the absorber A to the regenerator G. It is the structure provided with the heat exchanger Hex (solution heat exchanger Hex is provided in all absorption heat pumps not only EP), and water 103 as a to-be-heated medium is condensed with the condensation heat of the condenser C. It preheats. FIG. 9E shows the absorber A in which the concentrated solution supplied from the regenerator G to the absorber A through the heat exchanger 54 passes through the solution heat exchanger Hex in the water 103 preheated by the condensation heat of the condenser C. The case where it preheats with the dilute solution from and supplies to the absorber A is shown. FIG. 9 (F) shows a case where the water 103 preheated with the heat of condensation of the condenser C is preheated with the dilute solution from the absorber A before passing through the solution heat exchanger Hex in the heat exchanger 55 and supplied to the absorber A. Show. In FIG. 9G, the water 103 preheated with the heat of condensation of the condenser C is preheated with the dilute solution from the absorber A that flows in by bypassing the solution heat exchanger Hex by the heat exchanger 56 and supplied to the absorber A. Show the case.

図9(H)は凝縮器Cの凝縮熱で予熱した水103を熱交換器50で並列に接続した再生器G及び蒸発器Eを通った後合流した熱源温水102で予熱し、更に熱交換器54で溶液熱交換器Hexを通って再生器Gから吸収器Aに供給される濃溶液を加熱した吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。図9(I)は凝縮器Cの凝縮熱で予熱した水103を熱交換器54で溶液熱換器Hexを通って再生器Gから再生器Aに供給される濃溶液を加熱した吸収器Aからの希溶液で予熱し、更に熱交換器52で並列に接続した再生器G及び蒸発器Eを通る前の熱源温水102で予熱し、吸収器Aに供給する場合を示す。図9(J)は凝縮器Cの凝縮熱で予熱した水103を熱交換器53で並列に接続した蒸発器E及び再生器Gをバイパスして流入する熱源温水102で予熱し、更に熱交換器54で溶液熱交換器Hexを通って再生器Gから吸収器Aに供給される濃溶液を加熱した吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。   FIG. 9 (H) shows the preheated water 103 preheated with the heat of condensation in the condenser C by the regenerator G and the evaporator E connected in parallel by the heat exchanger 50 and then the heat source hot water 102 that has joined together, and further heat exchange. The case where the concentrated solution supplied from the regenerator G to the absorber A through the solution heat exchanger Hex is preheated with the diluted solution from the heated absorber A and supplied to the absorber A is shown. FIG. 9 (I) shows an absorber A in which the concentrated solution supplied from the regenerator G to the regenerator A is heated by the heat exchanger 54 through the solution heat exchanger Hex in the water 103 preheated by the condensation heat of the condenser C. In this case, preheating is performed with a dilute solution from the heat source, preheated with the heat source hot water 102 before passing through the regenerator G and the evaporator E connected in parallel by the heat exchanger 52, and supplied to the absorber A. FIG. 9 (J) shows the preheated water 103 preheated by the condensation heat of the condenser C by the heat source hot water 102 which flows in by bypassing the evaporator E and the regenerator G connected in parallel by the heat exchanger 53, and further heat exchange. The case where the concentrated solution supplied from the regenerator G to the absorber A through the solution heat exchanger Hex is preheated with the diluted solution from the heated absorber A and supplied to the absorber A is shown.

図9(K)は凝縮器Cの凝縮熱で予熱した水103を熱交換器50で並列に接続した再生器G及び蒸発器Eを通った後合流した熱源温水102で予熱し、更に熱交換器55で溶液熱交換器Hexを通る前の吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。図9(L)は凝縮器Cの凝縮熱で予熱した水103を熱交換器55で溶液熱交換器Hexを通る前の吸収器Aからの希溶液で予熱し、更に熱交換器52で並列に接続した再生器G及び蒸発器Eを通る前の熱源温水102で予熱し、吸収器Aに供給する場合を示す。図9(M)は凝縮器Cの凝縮熱で予熱した水103を熱交換器53で並列に接続した再生器G及び蒸発器Eをバイパスして流入する熱源温水102で予熱し、更に熱交換器55で溶液熱交換器Hexを通る前の吸収器Aからの希溶液で予熱して吸収器Aに供給する場合を示す。   FIG. 9K shows a preheated water 103 preheated by the heat of condensation in the condenser C by the heat source hot water 102 which has been joined after passing through the regenerator G and the evaporator E connected in parallel by the heat exchanger 50, and further heat exchange. The case where the preheated with the dilute solution from the absorber A before passing through the solution heat exchanger Hex in the vessel 55 is supplied to the absorber A is shown. In FIG. 9L, the water 103 preheated with the condensation heat of the condenser C is preheated with the dilute solution from the absorber A before passing through the solution heat exchanger Hex by the heat exchanger 55 and further paralleled by the heat exchanger 52. The case where the heat source hot water 102 before passing through the regenerator G and the evaporator E connected to the preheater G is preheated and supplied to the absorber A is shown. In FIG. 9M, water 103 preheated by the condensation heat of the condenser C is preheated by the heat source hot water 102 which flows in by bypassing the regenerator G and the evaporator E connected in parallel by the heat exchanger 53, and further heat exchange. The case where the preheated with the dilute solution from the absorber A before passing through the solution heat exchanger Hex in the vessel 55 is supplied to the absorber A is shown.

図9(N)は凝縮器Cの凝縮熱で予熱した水103を熱交換器50で並列に接続した再生器Gと蒸発器Eを通った後合流した熱源温水102で予熱し、更に熱交換器56で吸収器Aから溶液熱交換器Hexをバイパスして流入する希溶液で予熱して吸収器Aに供給する場合を示す。図9(O)は凝縮器Cの凝縮熱で予熱した水103を熱交換器56で溶液熱交換器Hexをバイパスして流入する吸収器Aからの希溶液で予熱し、更に熱交換器52で並列に接続した蒸発器E及び再生器Gを通る前の熱源温水102で予熱し、吸収器Aに供給する場合を示す。図9(P)は凝縮器Cの凝縮熱で予熱した水103を熱交換器53で並列に接続した蒸発器E及び再生器Gをバイパスして流入する熱源温水102で予熱し、更に熱交換器56で吸収器Aから溶液熱交換器Hexをバイパスした希溶液で予熱して吸収器Aに供給する場合を示す。   FIG. 9 (N) shows a preheated water 103 preheated by the condensation heat of the condenser C with the heat exchanger 50 connected in parallel with the heat exchanger 50 and the evaporator E, and then preheated with the heat source hot water 102 that has joined, and further heat exchange. A case is shown in which a preheated dilute solution is supplied from the absorber A by bypassing the solution heat exchanger Hex from the absorber A to the absorber A. 9 (O), the water 103 preheated with the heat of condensation in the condenser C is preheated with the dilute solution from the absorber A that flows in by bypassing the solution heat exchanger Hex in the heat exchanger 56, and further the heat exchanger 52. A case where the heat source hot water 102 before passing through the evaporator E and the regenerator G connected in parallel is preheated and supplied to the absorber A is shown. In FIG. 9 (P), the water 103 preheated by the condensation heat of the condenser C is preheated by the heat source hot water 102 which flows in by bypassing the evaporator E and the regenerator G connected in parallel by the heat exchanger 53, and further heat exchange. The case where the preheated with the dilute solution which bypassed the solution heat exchanger Hex from the absorber A with the absorber 56 is supplied to the absorber A is shown.

図10は本発明に係る2段昇温吸収式ヒートポンプの予熱パターンを示す図で、本吸収式ヒートポンプは、凝縮器C、蒸発器E、再生器G、低温吸収器AL、高温蒸発器EH、及び高温吸収器AHを備えた吸収式ヒートポンプであり、再生器G及び蒸発器Eの熱源として熱源温水102を用いている。そして再生器Gから高温吸収器AHに供給される濃溶液120と、高温吸収器AHから低温吸収器ALに供給される希溶液121と、低温吸収器ALから再生器Gに供給される希溶液122との間で熱交換を行なう溶液熱交換器Hex1、溶液熱交換器Hex2を備えている。水103を凝縮器Cの凝縮熱で予熱し、熱交換器50で直列に接続した再生器G及び蒸発器Eを通った熱源温水102で予熱し、熱交換器59で溶液熱交換器Hex2をバイパスして流入する低温吸収器ALから再生器Gに供給される希溶液122で予熱し、更に熱交換器60で溶液熱交換器Hex1をバイパスして高温吸収器AHから低温吸収器ALに供給される希溶液121で予熱して高温吸収器AHに供給されるようになっている。   FIG. 10 is a diagram showing a preheating pattern of the two-stage temperature rising absorption heat pump according to the present invention. The absorption heat pump includes a condenser C, an evaporator E, a regenerator G, a low temperature absorber AL, a high temperature evaporator EH, In addition, the heat source hot water 102 is used as a heat source of the regenerator G and the evaporator E. The concentrated solution 120 supplied from the regenerator G to the high temperature absorber AH, the dilute solution 121 supplied from the high temperature absorber AH to the low temperature absorber AL, and the dilute solution supplied from the low temperature absorber AL to the regenerator G. A solution heat exchanger Hex1 and a solution heat exchanger Hex2 that exchange heat with 122 are provided. The water 103 is preheated with the condensation heat of the condenser C, preheated with the heat source hot water 102 passing through the regenerator G and the evaporator E connected in series with the heat exchanger 50, and the solution heat exchanger Hex2 is added with the heat exchanger 59. By preheating with the dilute solution 122 supplied to the regenerator G from the low-temperature absorber AL that flows in by bypass, the solution heat exchanger Hex1 is further bypassed by the heat exchanger 60 and supplied from the high-temperature absorber AH to the low-temperature absorber AL. The pre-heated dilute solution 121 is supplied to the high-temperature absorber AH.

図11は本発明に係る2段昇温吸収式ヒートポンプの予熱パターンを示す図で、本吸収式ヒートポンプは、凝縮器C、蒸発器E、再生器G、低温吸収器AL、高温蒸発器EH、及び高温吸収器AHを備えた吸収式ヒートポンプであり、再生器G及び蒸発器Eの熱源として熱源温水102を用いている。そして高温吸収器AHから再生器Gに供給される希溶液123と、低温吸収器ALから高温吸収器AHに供給される濃溶液124と、再生器Gから低温吸収器ALに供給される濃溶液125との間で熱交換を行なう溶液熱交換器Hex1、溶液熱交換器Hex2を備えている。水103を凝縮器Cの凝縮熱で予熱し、熱交換器50で直列に接続した再生器G及び蒸発器Eを通った熱源温水102で予熱し、熱交換器62で溶液熱交換器Hex2をバイパスして流入する並列に接続した溶液熱交換器Hex1及び熱交換器61を通った後合流した高温吸収器AHからの希溶液123で予熱し、更に熱交換器61で溶液熱交換器Hex1をバイパスして流入する高温吸収器AHからの希溶液123で予熱して高温吸収器に供給されるようになっている。   FIG. 11 is a diagram showing a preheating pattern of the two-stage temperature rising absorption heat pump according to the present invention. The absorption heat pump includes a condenser C, an evaporator E, a regenerator G, a low temperature absorber AL, a high temperature evaporator EH, In addition, the heat source hot water 102 is used as a heat source of the regenerator G and the evaporator E. Then, the dilute solution 123 supplied from the high temperature absorber AH to the regenerator G, the concentrated solution 124 supplied from the low temperature absorber AL to the high temperature absorber AH, and the concentrated solution supplied from the regenerator G to the low temperature absorber AL. A solution heat exchanger Hex1 and a solution heat exchanger Hex2 that exchange heat with 125 are provided. The water 103 is preheated with the condensation heat of the condenser C, preheated with the heat source hot water 102 passed through the regenerator G and the evaporator E connected in series with the heat exchanger 50, and the solution heat exchanger Hex2 is set with the heat exchanger 62. The solution heat exchanger Hex1 connected in parallel to flow in and the heat exchanger 61 are preheated with the dilute solution 123 from the high-temperature absorber AH that has passed through the heat exchanger 61, and the solution heat exchanger Hex1 is further heated by the heat exchanger 61. It is preheated with a dilute solution 123 from the high-temperature absorber AH that flows in by bypass, and is supplied to the high-temperature absorber.

図7(A)、図8(A)、図9(A)に示すように本吸収ヒートポンプは凝縮器Cの放熱、即ち冷媒の凝縮熱を被加熱媒体である水103の予熱に利用する。この冷媒の凝縮熱は、本来冷却塔等に捨てる熱であるから、回収して水103の予熱源として利用することが望ましい。水103が凝縮器Cより低温の場合に利用することができ、例えば、冷却塔の冷却水の水温が35℃、水103の水温が25℃であれば、水103を約10℃昇温できる。熱は凝縮器Cから直接とってもよいし冷却水からとってもよい。   As shown in FIGS. 7A, 8A, and 9A, the present absorption heat pump uses the heat released from the condenser C, that is, the heat of condensation of the refrigerant, to preheat the water 103 that is the medium to be heated. Since the heat of condensation of the refrigerant is originally discarded in the cooling tower or the like, it is desirable to recover and use it as a preheating source for the water 103. The water 103 can be used when the temperature is lower than that of the condenser C. For example, when the water temperature of the cooling water in the cooling tower is 35 ° C. and the water temperature of the water 103 is 25 ° C., the water 103 can be heated by about 10 ° C. . Heat may be taken directly from the condenser C or from cooling water.

本発明に係る吸収ヒートポンプの熱源として、排温水、排ガス、排蒸気等各種熱源を利用できる。ここでは排温水である熱源温水102を利用している。排温水は吸収器Aで発生する吸収熱より一般に温度が低いが熱量は豊富にあるため、予熱源として利用することによって、凝縮器Cよりも高い温度まで予熱することができる。予熱の位置、熱源の組み合わせパターンは、例えば、図7(B)〜(T)、図8(B)〜(T)、図9(B)〜(P)に示すように種々のパターンが考えられる。   As the heat source of the absorption heat pump according to the present invention, various heat sources such as exhaust hot water, exhaust gas, and exhaust steam can be used. Here, the heat source hot water 102 which is the waste water is used. Although the temperature of the waste water is generally lower than the absorption heat generated in the absorber A, but the amount of heat is abundant, it can be preheated to a temperature higher than that of the condenser C by using it as a preheating source. As the preheating position and the heat source combination pattern, for example, various patterns are considered as shown in FIGS. 7 (B) to (T), FIGS. 8 (B) to (T), and FIGS. 9 (B) to (P). It is done.

また、多段昇温吸収ヒートポンプの場合も同様に、被加熱媒体である水103の予熱によって低温吸収器AL、高温吸収器AHで発生させる熱量を増やす効果を得ることができる。2段昇温や多段昇温の場合、溶液による予熱サイクルの各部を考えることができる。図10、図11は2段昇温の場合の例を示す。   Similarly, in the case of a multistage temperature rising absorption heat pump, the effect of increasing the amount of heat generated by the low temperature absorber AL and the high temperature absorber AH can be obtained by preheating the water 103 that is the medium to be heated. In the case of two-stage temperature rise or multi-stage temperature rise, each part of the preheating cycle with the solution can be considered. 10 and 11 show examples in the case of two-stage temperature rise.

以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible.

本発明に係る吸収式ヒートポンプの構成例を示す図である。(実施例1)It is a figure which shows the structural example of the absorption heat pump which concerns on this invention. Example 1 本発明に係る吸収式ヒートポンプの構成例を示す図である。(実施例2)It is a figure which shows the structural example of the absorption heat pump which concerns on this invention. (Example 2) 本発明に係る吸収式ヒートポンプの構成例を示す図である。(実施例3)It is a figure which shows the structural example of the absorption heat pump which concerns on this invention. (Example 3) 本発明に係る吸収式ヒートポンプの構成例を示す図である。(実施例4)It is a figure which shows the structural example of the absorption heat pump which concerns on this invention. Example 4 本発明に係る吸収式ヒートポンプの構成例を示す図である。(実施例5)It is a figure which shows the structural example of the absorption heat pump which concerns on this invention. (Example 5) 本発明に係る吸収式ヒートポンプの構成例を示す図である。(実施例6)It is a figure which shows the structural example of the absorption heat pump which concerns on this invention. (Example 6) 本発明に係る吸収式ヒートポンプの予熱パターン例を示す図である。It is a figure which shows the example of the preheating pattern of the absorption heat pump which concerns on this invention. 本発明に係る吸収式ヒートポンプの予熱パターン例を示す図である。It is a figure which shows the example of the preheating pattern of the absorption heat pump which concerns on this invention. 本発明に係る吸収式ヒートポンプの予熱パターン例を示す図である。It is a figure which shows the example of the preheating pattern of the absorption heat pump which concerns on this invention. 本発明に係る吸収式ヒートポンプの予熱パターン例を示す図である。It is a figure which shows the example of the preheating pattern of the absorption heat pump which concerns on this invention. 本発明に係る吸収式ヒートポンプの予熱パターン例を示す図である。It is a figure which shows the example of the preheating pattern of the absorption heat pump which concerns on this invention. 本発明に係る吸収式ヒートポンプの予熱パターン例を示す図である。It is a figure which shows the example of the preheating pattern of the absorption heat pump which concerns on this invention. 本発明に係る2段昇温吸収式ヒートポンプの予熱パターン例を示す図である。It is a figure which shows the example of a preheating pattern of the two-stage temperature rising absorption heat pump which concerns on this invention. 本発明に係る2段昇温吸収式ヒートポンプの予熱パターン例を示す図である。It is a figure which shows the example of a preheating pattern of the two-stage temperature rising absorption heat pump which concerns on this invention.

符号の説明Explanation of symbols

A 吸収器
AH 高温吸収器
C 凝縮器
E 蒸発器
G 再生器
X 溶液熱交換器
1 溶液ポンプ
2 濃溶液管
3 補給水管
4 希溶液管
5 冷媒ポンプ
6 冷媒管
7 流路
8 流路
9 冷却水管
10 温水管
11 温水管
12 蒸発管
13 蒸気管
14 熱交換器
15 熱交換器
16 補給水ポンプ
17 液面計
18 インバータ
19 液面計
20 制御弁
21 温度計
22 気液分離器
23 ポンプ
24 液面計
25 予熱管
30 冷媒分岐管
31 液面計
32 制御弁
33 バッフル板
34 冷媒管
35 蒸発管
36 液面計
37 希溶液管
38 熱交換器
39 熱交換器
40 制御弁
41 蒸気管
42 蒸気管
43 ドレン熱交換器
50 熱交換器
52 熱交換器
53 熱交換器
54 熱交換器
55 熱交換器
56 熱交換器
59 熱交換器
60 熱交換器
61 熱交換器
62 熱交換器
A absorber AH high temperature absorber C condenser E evaporator G regenerator X solution heat exchanger 1 solution pump 2 concentrated solution tube 3 make-up water tube 4 dilute solution tube 5 refrigerant pump 6 refrigerant tube 7 channel 8 channel 9 cooling water tube DESCRIPTION OF SYMBOLS 10 Hot water pipe 11 Hot water pipe 12 Evaporation pipe 13 Steam pipe 14 Heat exchanger 15 Heat exchanger 16 Supplementary water pump 17 Liquid level gauge 18 Inverter 19 Liquid level gauge 20 Control valve 21 Thermometer 22 Gas-liquid separator 23 Pump 24 Liquid level Total 25 Preheating pipe 30 Refrigerant branch pipe 31 Liquid level gauge 32 Control valve 33 Baffle plate 34 Refrigerant pipe 35 Evaporating pipe 36 Liquid level gauge 37 Dilute solution pipe 38 Heat exchanger 39 Heat exchanger 40 Control valve 41 Steam pipe 42 Steam pipe 43 Drain heat exchanger 50 Heat exchanger 52 Heat exchanger 53 Heat exchanger 54 Heat exchanger 55 Heat exchanger 56 Heat exchanger 56 Heat exchanger 59 Heat exchanger 60 Heat exchanger 61 Heat exchanger 6 Heat exchanger

Claims (3)

吸収器、蒸発器、再生器、凝縮器、及び溶液熱交換器を主要構成機器とし、これを管路で接続して構成し、前記蒸発器及び再生器に熱源を、前記凝縮器に冷却源を導き、前記吸収器にて高温の被加熱媒体を得る吸収式ヒートポンプにおいて、
前記吸収器の被加熱媒体入口に被加熱媒体液を導入し、被加熱媒体出口から蒸気の被加熱媒体を導出し、
前記吸収器の被加熱媒体入口側に補給水ポンプを、被加熱媒体出口側に蒸気温度を検出する温度検出手段をそれぞれ配設し、前記温度検出手段の検出信号より導出される蒸気の過熱度を目標値になるように前記補給水ポンプを制御して被加熱媒体液導入量を調節する被加熱媒体液導入量調節手段を設け、液滴を含まない目標過熱度の蒸気を得ることを特徴とする吸収式ヒートポンプ。
Absorber, evaporator, regenerator, condenser, and solution heat exchanger are the main components, and these are connected by pipes. The exhaust heat source is cooled by the evaporator and regenerator, and the condenser is cooled. In an absorption heat pump that leads a source and obtains a high-temperature heated medium in the absorber,
Wherein introducing the heated carrier liquid to the heated medium inlet of the absorber, it derives a heated medium if we steam heated medium outlet,
A supply water pump is disposed on the heated medium inlet side of the absorber, and temperature detecting means for detecting the vapor temperature is disposed on the heated medium outlet side, respectively, and the degree of superheat of the steam derived from the detection signal of the temperature detecting means The heating medium liquid introduction amount adjusting means for adjusting the introduction amount of the heating medium liquid by adjusting the replenishing water pump so as to reach the target value is provided to obtain steam having a target superheat degree not including droplets. Absorption heat pump.
請求項1に記載の吸収式ヒートポンプにおいて、
前記吸収器で加熱する前に被加熱媒体液を、熱源媒体、蒸発器からの冷媒蒸気、吸収溶液、凝縮器の凝縮熱の少なくとも1つ以上で熱することを特徴とする吸収式ヒートポンプ。
In the absorption heat pump according to claim 1 ,
The heated carrier liquid prior to heating at the absorber, exhaust heat source medium, the refrigerant vapor from the evaporator, absorbent solution, absorption heat pump, characterized in that the pre-heat at least one condenser condensing heat .
請求項1又は2に記載の吸収式ヒートポンプにおいて、
前記吸収器と前記蒸発器の組合せを多段として、温度上昇を多段にしたことを特徴とする吸収式ヒートポンプ。
In the absorption heat pump according to claim 1 or 2 ,
An absorption heat pump characterized in that a combination of the absorber and the evaporator is multistage, and the temperature rise is multistage.
JP2004352744A 2004-10-13 2004-12-06 Absorption heat pump Expired - Fee Related JP4588425B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004352744A JP4588425B2 (en) 2004-10-13 2004-12-06 Absorption heat pump
US11/247,599 US7464562B2 (en) 2004-10-13 2005-10-12 Absorption heat pump
CN2005101135952A CN1766461B (en) 2004-10-13 2005-10-13 Absorption type heat pump
US12/191,680 US7827817B2 (en) 2004-10-13 2008-08-14 Absorption heat pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004299168 2004-10-13
JP2004352744A JP4588425B2 (en) 2004-10-13 2004-12-06 Absorption heat pump

Publications (2)

Publication Number Publication Date
JP2006138614A JP2006138614A (en) 2006-06-01
JP4588425B2 true JP4588425B2 (en) 2010-12-01

Family

ID=36619546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352744A Expired - Fee Related JP4588425B2 (en) 2004-10-13 2004-12-06 Absorption heat pump

Country Status (1)

Country Link
JP (1) JP4588425B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101760709B1 (en) * 2016-12-22 2017-07-24 (주)월드이엔씨 Supply water heat exchanger for absorption type heat pump
KR101851230B1 (en) 2017-04-19 2018-04-23 (주)월드이엔씨 High efficiency absorption type heat pump system with increasing function for utilization rate from waste heat
KR101851231B1 (en) * 2017-04-19 2018-04-23 (주)월드이엔씨 Absorption type heat pump system for gaining high temperature

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5395502B2 (en) * 2009-04-23 2014-01-22 株式会社荏原製作所 Absorption heat pump
JP6297377B2 (en) * 2014-03-25 2018-03-20 荏原冷熱システム株式会社 Absorption heat pump
JP6337055B2 (en) * 2015-10-07 2018-06-06 荏原冷熱システム株式会社 Absorption heat pump
EP3455564A4 (en) * 2016-05-11 2020-03-25 Stone Mountain Technologies, Inc. Sorption heat pump and control method
JP6903852B2 (en) * 2016-12-08 2021-07-14 荏原冷熱システム株式会社 Absorption heat exchange system
JP2019113260A (en) * 2017-12-25 2019-07-11 荏原冷熱システム株式会社 Absorption type heat exchange system
CN111238086B (en) * 2020-03-12 2024-06-07 青岛科技大学 Energy complementation and heat cascade utilization system of oilfield united station
CN114812003A (en) * 2022-02-16 2022-07-29 中船双瑞(洛阳)特种装备股份有限公司 Double-heat-source waste heat recovery type heat pump and heat exchange unit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818574B2 (en) * 1975-12-23 1983-04-13 カブシキガイシヤ エバラセイサクシヨ heat pump
JPS5927165A (en) * 1982-08-02 1984-02-13 三洋電機株式会社 Absorption heat pump
JPS5944555A (en) * 1982-09-03 1984-03-13 三洋電機株式会社 Absorption type heat pump
JPS5971964A (en) * 1982-10-15 1984-04-23 日立造船株式会社 Heat recovering device for waste vapor
JPS59107158A (en) * 1982-12-08 1984-06-21 株式会社日立製作所 Absorption type heat pump
JPS61186766A (en) * 1985-02-13 1986-08-20 三洋電機株式会社 Absorption refrigerator
JPH08261600A (en) * 1995-03-22 1996-10-11 Asahi Eng Co Ltd Recovering method for exhaust heat
JPH10213358A (en) * 1997-01-30 1998-08-11 Ebara Corp Cooling operation method of absorption refrigerating machine
JP2001041596A (en) * 1999-07-30 2001-02-16 Denso Corp Refrigerating cycle apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104072B2 (en) * 1987-08-04 1995-11-13 三洋電機株式会社 Absorption heat pump device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818574B2 (en) * 1975-12-23 1983-04-13 カブシキガイシヤ エバラセイサクシヨ heat pump
JPS5927165A (en) * 1982-08-02 1984-02-13 三洋電機株式会社 Absorption heat pump
JPS5944555A (en) * 1982-09-03 1984-03-13 三洋電機株式会社 Absorption type heat pump
JPS5971964A (en) * 1982-10-15 1984-04-23 日立造船株式会社 Heat recovering device for waste vapor
JPS59107158A (en) * 1982-12-08 1984-06-21 株式会社日立製作所 Absorption type heat pump
JPS61186766A (en) * 1985-02-13 1986-08-20 三洋電機株式会社 Absorption refrigerator
JPH08261600A (en) * 1995-03-22 1996-10-11 Asahi Eng Co Ltd Recovering method for exhaust heat
JPH10213358A (en) * 1997-01-30 1998-08-11 Ebara Corp Cooling operation method of absorption refrigerating machine
JP2001041596A (en) * 1999-07-30 2001-02-16 Denso Corp Refrigerating cycle apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101760709B1 (en) * 2016-12-22 2017-07-24 (주)월드이엔씨 Supply water heat exchanger for absorption type heat pump
KR101851230B1 (en) 2017-04-19 2018-04-23 (주)월드이엔씨 High efficiency absorption type heat pump system with increasing function for utilization rate from waste heat
KR101851231B1 (en) * 2017-04-19 2018-04-23 (주)월드이엔씨 Absorption type heat pump system for gaining high temperature

Also Published As

Publication number Publication date
JP2006138614A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
US7464562B2 (en) Absorption heat pump
RU2237172C1 (en) Method of utilization of heat abstracted in process of reduction of carbon dioxide
JP4588425B2 (en) Absorption heat pump
JP2004257705A (en) Concentration device using absorption heat pump
US6487874B2 (en) Absorption refrigerator
JP4287705B2 (en) Single double effect absorption refrigerator and operation control method thereof
US6993933B2 (en) Absorption refrigerating machine
WO1998020289A1 (en) Triple effect absorption refrigeration system
JP2006177570A (en) Absorption heat pump
US20020062647A1 (en) Absorption waste-heat recovery system
US4470269A (en) Absorption refrigeration system utilizing low temperature heat source
JP2006162113A (en) Absorption heat pump
JP2000121196A (en) Cooling/heating system utilizing waste heat
JP2006207883A (en) Absorption heat pump
JPS5812507B2 (en) Hybrid type absorption heat pump
JP4014520B2 (en) Absorption heat pump device and device using the same
KR101045463B1 (en) Absorption type refrigerator having the solution heating condensor
CN201145260Y (en) Exhaust-heat boiler and steam drum thereof
JP3578207B2 (en) Steam heating type double effect absorption refrigerator / cooler / heater, power generation / cooling / heating / hot water supply system using the same, and system control method thereof
JP2003139432A (en) Absorption type heat source device
JP2006112686A (en) Two stage temperature rising type absorption heat pump
JP3381094B2 (en) Absorption type heating and cooling water heater
JP6364238B2 (en) Absorption type water heater
JP2018096673A (en) Absorption type heat exchanging system
JPH05280825A (en) Absorption heat pump

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees