JPS5971964A - Heat recovering device for waste vapor - Google Patents

Heat recovering device for waste vapor

Info

Publication number
JPS5971964A
JPS5971964A JP57181860A JP18186082A JPS5971964A JP S5971964 A JPS5971964 A JP S5971964A JP 57181860 A JP57181860 A JP 57181860A JP 18186082 A JP18186082 A JP 18186082A JP S5971964 A JPS5971964 A JP S5971964A
Authority
JP
Japan
Prior art keywords
evaporator
heat
regenerator
water
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57181860A
Other languages
Japanese (ja)
Other versions
JPS6125985B2 (en
Inventor
哲郎 古川
加藤 征彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP57181860A priority Critical patent/JPS5971964A/en
Publication of JPS5971964A publication Critical patent/JPS5971964A/en
Publication of JPS6125985B2 publication Critical patent/JPS6125985B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、サーモメカニカルパルプ(以下、TMPと
称する)製造装置から排出される蒸気のような汚れた廃
蒸気から熱を回収する熱回収装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat recovery device for recovering heat from dirty waste steam, such as steam discharged from thermomechanical pulp (hereinafter referred to as TMP) production equipment.

TMP製造装置から排出される廃蒸気は、パルプの繊維
くずや空気などを含んでいるため、従来全く利用されな
いで大気中に放散されていた。しかしこの廃蒸気の熱量
は極めて太き(、そのためこれを回収して有効利用でき
れば、顕著な省エネルギー効果が期待できる。TMPの
0 廃蒸気の温度は100℃程度であり、TMP設備コーテ
ィリティ用の低圧蒸気ラインの蒸気圧は2ko10n’
G程度である。そのため廃蒸気の熱量をこの程度の蒸気
どして回収できれば、廃蒸気の用途が拡大せられ、TM
Pの廃蒸気を利用した熱回収装置を設置することが可能
になる。
The waste steam discharged from the TMP production equipment contains pulp fiber waste and air, so it has conventionally been dissipated into the atmosphere without being used at all. However, the calorific value of this waste steam is extremely large (therefore, if it can be recovered and used effectively, a remarkable energy saving effect can be expected. The steam pressure of the low pressure steam line is 2ko10n'
It is about G. Therefore, if the heat value of waste steam can be recovered by converting it into this amount of steam, the uses of waste steam will be expanded, and TM
It becomes possible to install a heat recovery device that utilizes P waste steam.

ところで、従来より、リチウムブロマイド水溶液に水蒸
気を吸収させて、吸収熱を発生せしめ、この熱で給水を
水蒸気化し、希薄化した上記水溶液を加熱して濃縮し、
濃縮液を水蒸気吸収用に再使用する熱ポンプが知られて
いた。
By the way, conventionally, water vapor is absorbed into a lithium bromide aqueous solution to generate absorption heat, the feed water is turned into water vapor by this heat, and the diluted aqueous solution is heated and concentrated.
Heat pumps have been known that reuse concentrated liquid for water vapor absorption.

この発明は、この熱ポンプに上記廃蒸気の熱を利用する
ことを企図してなされたもので、ト記廃蒸気から熱を回
収して熱ポンプの加熱熱源として利用し、熱ポンプによ
ってクリーンな低圧蒸気を発生させようというものであ
る。
This invention was made with the intention of using the heat of the waste steam in this heat pump. The idea is to generate low-pressure steam.

 3− この発明による廃蒸気の熱回収装置は、水蒸気を生成す
る蒸発器と、蒸発器から来る水蒸気をリチウムハライド
水溶液に吸収させて吸収熱を発生せしめるとともにこの
熱で給水を水蒸気化する吸収器と、吸収器から来るリチ
ウムハライド希薄水溶液を加熱して同濃厚水溶液を再生
する再生器と、再生器から来る水蒸気を凝縮して凝縮水
を蒸発器へ送る凝縮器とよりなる熱ポンプにおいて、蒸
発器および再生器の各頂部にそれぞれ廃蒸気供給管が配
され、これらの各底部から各頂部に凝縮水循環管が配さ
れている、廃蒸気の熱回収装置である。
3- The waste steam heat recovery device according to the present invention includes an evaporator that generates water vapor, and an absorber that absorbs the water vapor coming from the evaporator into a lithium halide aqueous solution to generate absorption heat, and uses this heat to vaporize feed water. A heat pump consisting of a regenerator that heats the dilute lithium halide aqueous solution coming from the absorber to regenerate the same concentrated aqueous solution, and a condenser that condenses the water vapor coming from the regenerator and sends the condensed water to the evaporator. This is a heat recovery device for waste steam, in which waste steam supply pipes are arranged at the tops of the reactor and regenerator, respectively, and condensed water circulation pipes are arranged from the bottoms to the tops.

リチウムハライドとしては1iBr、LiC/、Lir
が例示される。1−i13rが最も好適である。
As lithium halide, 1iBr, LiC/, Lir
is exemplified. 1-i13r is most preferred.

以下、この発明の実施例について具体的に説明する。Examples of the present invention will be specifically described below.

まず熱ポンプについて説明する。第1図において、(1
)は水蒸気を生成する蒸発器である。
First, the heat pump will be explained. In Figure 1, (1
) is an evaporator that produces water vapor.

後述する凝縮器(9)から蒸発器(1)の頂部に導入さ
れる循環水は、後述するTMPの廃蒸気を熱源として加
熱せられ、ここで水蒸気が生じる。
Circulating water introduced into the top of the evaporator (1) from a condenser (9), which will be described later, is heated using TMP waste steam, which will be described later, as a heat source, and water vapor is generated here.

(2)は蒸発器(1)に連通部(3)を介して通じる吸
収器、(4)は吸収器(2)の底部に配された被加熱水
の給水管、(5)は吸収器〈2)の頂部に配された水蒸
気取出管である。
(2) is an absorber that communicates with the evaporator (1) via a communication part (3), (4) is a water supply pipe for heated water arranged at the bottom of the absorber (2), and (5) is an absorber This is the water vapor extraction pipe placed at the top of <2).

蒸発器(1)で生じた水蒸気は、連通部(3)を経て吸
収器〈2)に導かれ、ここでl−i 3r水溶液に吸収
されて、吸収熱が発生する。給水管(4)から吸収器(
2)に供給されかつ内部を上行する被加熱水は、上記吸
収熱によって加5− −今 − 熱されて蒸気化される。生じたクリーン水蒸気は取出管
(5)から取得される。
The water vapor generated in the evaporator (1) is led to the absorber (2) through the communication part (3), where it is absorbed by the l-i 3r aqueous solution and generates absorption heat. From the water supply pipe (4) to the absorber (
2) The water to be heated that is supplied to the tank and flowing upward therein is heated and vaporized by the above-mentioned absorbed heat. The generated clean steam is obtained from the take-off pipe (5).

(6)はl1Bzll厚水溶液を再生ずる再生器、(7
)は吸収器(2)の底部から再生器(6)の頂部に配さ
れた希薄液導管で、熱交換器(8)を有する。吸収器(
2)で水蒸気を吸収して希薄化した1i3r水溶液は、
希薄液導管(7)を経て再生器(6)に導かれる。そし
て1i13r希薄水溶液はここで後述するTMPの廃蒸
気を熱源として加熱濃縮され、同濃厚水溶液が再生せら
れる。LiBram厚水溶液は厚生溶液6)から濃厚液
導管(36)によって熱交換器(8)を経て吸収器(2
)に戻される。
(6) is a regenerator that regenerates l1Bzll thick aqueous solution, (7
) is a dilute liquid conduit placed from the bottom of the absorber (2) to the top of the regenerator (6) and has a heat exchanger (8). Absorber (
The 1i3r aqueous solution diluted by absorbing water vapor in 2) is
It is led to the regenerator (6) via the diluent conduit (7). Then, the 1i13r dilute aqueous solution is heated and concentrated using TMP waste steam, which will be described later, as a heat source, and the same concentrated aqueous solution is regenerated. The LiBram thick aqueous solution is transferred from the welfare solution 6) to the absorber (2) via the concentrated liquid conduit (36) through the heat exchanger (8).
).

(9)は再生器(6)に連通部(10)を介して通じた
凝縮器、(11)は凝縮器(9)の底部から蒸発器(1
)の頂部に配された循環管で、=6− ポンプ(12)を有する。(13)  <14)は凝縮
器(9)の底部および頂部にそれぞれ配され1=冷却水
供給管および同排出管である。再生器(6)において1
−i13r希薄水溶液の加熱によって生じた水蒸気は、
連通部(10)を経て凝縮器(9)に導かれる。そして
この水蒸気は凝縮器(9)を上行する冷却水によって冷
やされて凝縮される。生じた凝縮水は凝縮器(9)から
出て循環管(11)を経て蒸発器(1)に戻される。
(9) is a condenser that communicates with the regenerator (6) via a communication part (10), and (11) is a condenser that connects the bottom of the condenser (9) to the evaporator (1).
) with a =6- pump (12). (13) <14) are arranged at the bottom and top of the condenser (9), respectively, and 1 is a cooling water supply pipe and a cooling water discharge pipe. 1 in the regenerator (6)
-The water vapor generated by heating the i13r dilute aqueous solution is
It is led to the condenser (9) through the communication part (10). This water vapor is cooled and condensed by cooling water flowing up the condenser (9). The resulting condensed water exits the condenser (9) and is returned to the evaporator (1) via the circulation pipe (11).

なお蒸発器(1)において、凝縮器(9)からの循環水
はほぼ全品蒸発されるが、未蒸発分はポンプ(15)を
有J−る循環管(16)によって蒸発器(1)の底部か
ら頂部に戻される。
In the evaporator (1), almost all of the circulating water from the condenser (9) is evaporated, but the unevaporated water is sent to the evaporator (1) through a circulation pipe (16) equipped with a pump (15). returned from the bottom to the top.

蒸発器(1)の内部構造は第2図に示すとおりである。The internal structure of the evaporator (1) is as shown in FIG.

蒸発器(1)の器壁は、胴板(17)とこれの上下に筈
板(18)を介してそれぞれ設けられた鏡板(19)と
よりなる。器内には垂直に複数の伝熱管(20)が配さ
れ、これらの上下部は上下管板(18)を貫通して突出
した状態で管板(1B)に支持されている。そして上部
管板(18)の−l二ニは、伝熱管(20)の突出部(
20a)より厚い肉厚を有するスケール付着防止用の有
孔平板(21)が重ねられ、同板(21)の透孔(22
)に伝熱管(20)の突出部(20a )が水密状には
まり込んでいる。また透孔(22)の上部(22a )
は上広がり状のテーパ孔となされている。
The vessel wall of the evaporator (1) is composed of a body plate (17) and end plates (19) provided above and below this with end plates (18) interposed therebetween. A plurality of heat transfer tubes (20) are arranged vertically within the vessel, and their upper and lower portions extend through the upper and lower tube plates (18) and are supported by the tube plate (1B). -l2 of the upper tube plate (18) is the protruding portion (20) of the heat exchanger tube (20).
20a) A perforated flat plate (21) with a thicker wall thickness for preventing scale adhesion is stacked, and the through hole (22) of the plate (21) is stacked.
) The protrusion (20a) of the heat exchanger tube (20) is fitted in a watertight manner. Also, the upper part (22a) of the through hole (22)
is a tapered hole that widens upward.

再生器(6)の頂部構造も、上記蒸発器(1)のそれと
同じ構成をなす。
The top structure of the regenerator (6) also has the same configuration as that of the evaporator (1).

上記構成の熱ポンプにおいて、(23)は丁MPブロー
サイクロン、(24)は同サイクロン(23)から蒸発
器(1)および再生器(6)に7− 廃蒸気を送る廃蒸気供給管で、分岐部(24a )(2
4b)がそれぞれ蒸発器(1)および再生器(6)の各
頂部に接続している。(25)は蒸発器〈1)および再
生器(6)の各底部から出る凝縮水をこれらの頂部に戻
ず循環管で、下側分岐部(25a )  (25b )
がそれぞれ蒸発器(1)および再生器(6)の各底部に
接続し、上側分岐部(25c )  (25d )がそ
れぞれこれらの各頂部内に至っている。(26)は蒸発
器(1)の頂部内に突出した上側分岐部(2jC>の突
出部分に設けられた複数のノズルで、有孔平板(21)
を上から臨んでいる。(27)は再生器(6)の頂部内
に突出した上側分岐部(25d )の突出部分に設けら
れた複数のノズルで、やはり有孔平板を上から臨んでい
る。
In the heat pump having the above configuration, (23) is a MP blow cyclone, (24) is a waste steam supply pipe that sends waste steam from the cyclone (23) to the evaporator (1) and the regenerator (6), Branch part (24a) (2
4b) are respectively connected to the top of the evaporator (1) and the regenerator (6). (25) is a circulation pipe that circulates the condensed water coming out from the bottom of the evaporator (1) and the regenerator (6) without returning it to the top of these, and the lower branch part (25a) (25b)
are respectively connected to the respective bottoms of the evaporator (1) and the regenerator (6), and the upper branches (25c) (25d) lead respectively into their respective tops. (26) are a plurality of nozzles provided in the protruding part of the upper branch part (2jC>) protruding into the top of the evaporator (1), and the perforated flat plate (21)
facing from above. (27) is a plurality of nozzles provided on the protruding part of the upper branch part (25d) protruding into the top of the regenerator (6), which also faces the perforated flat plate from above.

蒸発器(1)および再生器(6)において、=9− =8− (28)はこれらから非凝縮ガスを取出す排気管で、排
気ファン(29)を有する。同情(28)の分岐部(2
8a >  (28b )は蒸発器(1)および再生器
(6)の各底部気液分離帯域(30)  (31)の気
相部に接続し、分1II11された非凝縮ガスを系外へ
放出せしめる。
In the evaporator (1) and the regenerator (6), =9- =8- (28) is an exhaust pipe for taking out non-condensable gas from these, and has an exhaust fan (29). Branch of sympathy (28) (2
8a > (28b) is connected to the gas phase of the bottom gas-liquid separation zone (30) (31) of the evaporator (1) and regenerator (6), and discharges the separated non-condensable gas to the outside of the system. urge

循環管(25)において、(32)は同情(25)に設
けられたポンプ、(33)はポンプ(32)の下流側に
設けられた調節弁、(34)は向弁(33)の前後にお
いて循環管(25)に接続するバイパス管で、電磁弁(
35)を有で−る。電磁弁(35)は吸収器(2)で生
成せられるクリーン水蒸気の流量または圧力、ないしは
蒸発器(1)および再生器(6)から排出される非凝縮
ガスの圧、力をそれぞれ検知し、この値が所定値以下に
なった場合に開いて、多聞の水を間欠的に通すよ−1n
 − うに設定されている。
In the circulation pipe (25), (32) is a pump provided on the commuting (25), (33) is a control valve provided on the downstream side of the pump (32), and (34) is a valve provided before and after the opposite valve (33). A bypass pipe connected to the circulation pipe (25) at the solenoid valve (
35). The solenoid valve (35) detects the flow rate or pressure of clean steam generated in the absorber (2), or the pressure and force of non-condensable gas discharged from the evaporator (1) and regenerator (6), respectively; When this value falls below a predetermined value, it will open and allow a large amount of water to pass intermittently.
− is set to

上記の構成において、ブ【コー・サイクロン(23)に
よって繊維くずその伯が除かれIζ廃蒸気は、95〜9
7℃の調度を有している。この廃蒸気は供給管(24)
を介して蒸発器(1)および再生器(6)に供給され、
伝熱管(20)を下行しつつ被加熱水に熱を与え、ぞの
結果凝縮せられる。生じた凝縮水は蒸発器(1)および
再生器(6)の各底部から循環管(25)を経て各頂部
に常時少量戻される。また凝縮水は、電磁弁(35)が
開くことにより、上記頂部に間欠的に多量戻される。こ
の多聞の還流水によって伝熱管上部その他に付着したス
ケールが除去せられる。
In the above configuration, the fiber waste is removed by the Buco cyclone (23), and the Iζ waste steam is reduced to 95 to 9
It has a temperature of 7℃. This waste steam is transferred to the supply pipe (24)
is supplied to the evaporator (1) and the regenerator (6) via
Heat is applied to the water to be heated as it travels down the heat transfer tube (20), resulting in condensation. The resulting condensed water is constantly returned in small amounts from the bottom of the evaporator (1) and the regenerator (6) to the top of each of the evaporators (1) and the regenerator (6) via the circulation pipe (25). Further, a large amount of condensed water is intermittently returned to the top by opening the solenoid valve (35). This large amount of refluxed water removes scale attached to the upper part of the heat transfer tube and other areas.

以上のとおりで、この発明によれば、蒸発器および再生
器の各頂部にそれぞれ廃蒸気供給管が配され、これらの
各底部から各頂部に凝縮水循環管が配されているので、
汚れた廃蒸気の熱を回収して熱ポンプの加熱熱源として
利用し、同然ポンプによってクリーンな低圧蒸気を発生
させることができる。したがってこの発明による熱回収
装置は、省エネルギー的にきわめて有利である。
As described above, according to the present invention, waste steam supply pipes are arranged at the tops of the evaporator and regenerator, and condensed water circulation pipes are arranged from the bottoms to the tops of the evaporators and regenerators.
The heat from dirty waste steam can be recovered and used as a heating source for a heat pump, which in turn can generate clean, low-pressure steam. Therefore, the heat recovery device according to the present invention is extremely advantageous in terms of energy saving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示すフロー図、第2図は蒸
発器の頂部を示す縦断面図である。 (1)・・・蒸発器、(2)・・・吸収器、(6)・・
・再生器、(9)・・・凝縮器、(24)・・・廃蒸気
供給管、(25)・・・凝縮水、循環管。 以  上 特許出願人   日立造船 株式会社
FIG. 1 is a flow diagram showing an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view showing the top of the evaporator. (1)...Evaporator, (2)...Absorber, (6)...
- Regenerator, (9)...Condenser, (24)...Waste steam supply pipe, (25)...Condensed water, circulation pipe. Patent applicant: Hitachi Zosen Corporation

Claims (3)

【特許請求の範囲】[Claims] (1)水蒸気を生成する蒸発器と、蒸発器から来る水蒸
気をリチウムハライド水溶液に吸収させて吸収熱を発生
せしめるとともにこの熱で給水を水蒸気化する吸収器と
、吸収器から来るリチウムハライド希薄水溶液を加熱し
て同濃厚水溶液を再生する再生器と、再生器から来る水
蒸気を凝縮して凝縮水を蒸発器へ送る凝縮器とよりなる
熱ポンプにおいて、蒸発器および再生器の各頂部にそれ
ぞれ廃蒸気供給管が配され、これらの各底部から各頂部
に凝縮水循環管が配されている、廃蒸気の熱回収′IA
置。 1−
(1) An evaporator that generates water vapor, an absorber that absorbs the water vapor coming from the evaporator into a lithium halide aqueous solution to generate absorption heat, and uses this heat to vaporize feed water, and a dilute lithium halide aqueous solution that comes from the absorber. A heat pump consists of a regenerator that heats water to regenerate the concentrated aqueous solution, and a condenser that condenses water vapor coming from the regenerator and sends the condensed water to the evaporator. Waste steam heat recovery 'IA' with steam supply pipes arranged and condensed water circulation pipes arranged from each bottom to each top.
Place. 1-
(2)廃蒸気がサーモメカニカルパルプ製造装置から排
出される蒸気である、特許請求の範囲第1項記載の熱回
収装置。
(2) The heat recovery device according to claim 1, wherein the waste steam is steam discharged from a thermomechanical pulp manufacturing device.
(3)リチウムハライドがLiBrである、特許請求の
範囲第1項記載の熱回収装置。
(3) The heat recovery device according to claim 1, wherein the lithium halide is LiBr.
JP57181860A 1982-10-15 1982-10-15 Heat recovering device for waste vapor Granted JPS5971964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57181860A JPS5971964A (en) 1982-10-15 1982-10-15 Heat recovering device for waste vapor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57181860A JPS5971964A (en) 1982-10-15 1982-10-15 Heat recovering device for waste vapor

Publications (2)

Publication Number Publication Date
JPS5971964A true JPS5971964A (en) 1984-04-23
JPS6125985B2 JPS6125985B2 (en) 1986-06-18

Family

ID=16108096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57181860A Granted JPS5971964A (en) 1982-10-15 1982-10-15 Heat recovering device for waste vapor

Country Status (1)

Country Link
JP (1) JPS5971964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138614A (en) * 2004-10-13 2006-06-01 Ebara Corp Absorbing type heat pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138614A (en) * 2004-10-13 2006-06-01 Ebara Corp Absorbing type heat pump
JP4588425B2 (en) * 2004-10-13 2010-12-01 株式会社荏原製作所 Absorption heat pump

Also Published As

Publication number Publication date
JPS6125985B2 (en) 1986-06-18

Similar Documents

Publication Publication Date Title
EP0659258B1 (en) Absorption heat pump with direct heat exchange between a second cycle generator and a first cycle absorber and condenser
EP0485375B1 (en) Method and apparatus for evaporation of liquids
CN107940801A (en) A kind of space division system for recycling compressed air waste-heat
KR101702219B1 (en) The optimized condensing heat recovery system using absorbing liquid fluidized bed heat exchanger and front heat exchanger for boiler flue gas
US2320349A (en) Refrigeration
JPS5971964A (en) Heat recovering device for waste vapor
US4864830A (en) Air conditioning process and apparatus
US3452550A (en) Maintaining effectiveness of additives in absorption refrigeration systems
JP2001082821A (en) Absorption heat pump
US5426955A (en) Absorption refrigeration system with additive separation method
CN211316230U (en) Flue gas waste heat and moisture recycle&#39;s system
JPH09125126A (en) Method for utilizing exhaust heat in converter and device for recovering exhaust heat in converter
US2563575A (en) Absorption refrigeration
JPH05322358A (en) Absorption type water cooler using reverse osmotic film
US3977211A (en) Alcohol separator
JP2018096673A (en) Absorption type heat exchanging system
CN113091082B (en) System for flue gas waste heat and moisture recycle
JPS58219371A (en) Double effect absorption type heat pump
CN108375238A (en) Absorption refrigerator
GB2132327A (en) Heat transfer apparatus
JPS6044778A (en) Absorption type cold and hot medium obtaining device
JPS6337301B2 (en)
JPS6291761A (en) Absorption type water chiller and heater
SU12162A1 (en) Mode of action of the absorption (absorption) installation
JPS61268962A (en) Exhaust-heat recovery type absorption system heat pump