JPS5944555A - Absorption type heat pump - Google Patents

Absorption type heat pump

Info

Publication number
JPS5944555A
JPS5944555A JP15445882A JP15445882A JPS5944555A JP S5944555 A JPS5944555 A JP S5944555A JP 15445882 A JP15445882 A JP 15445882A JP 15445882 A JP15445882 A JP 15445882A JP S5944555 A JPS5944555 A JP S5944555A
Authority
JP
Japan
Prior art keywords
generator
temperature
refrigerant
absorption
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15445882A
Other languages
Japanese (ja)
Other versions
JPH06105138B2 (en
Inventor
米造 井汲
吹野 淳夫
坂田 泰雄
順三 加藤
諸田 日出夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP15445882A priority Critical patent/JPH06105138B2/en
Publication of JPS5944555A publication Critical patent/JPS5944555A/en
Publication of JPH06105138B2 publication Critical patent/JPH06105138B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ) 発明の分野 本発明は吸収液と冷媒との密閉循環サイクルを利用して
低温度レベルの流体を熱源として高温度レベルの流体を
得るようにした吸収式ヒートントンプに関する、 (ロ)従来技術 吸収式ヒートポンプは第1種ヒート目しフ゛と第2種ヒ
ートポンプに分類される力1、そのうちの第2gヒート
ポンプは吸収温度が発生湿度より高く、また冷媒の蒸発
温度が凝縮器I¥よりρ1℃・タイツ゛のものであって
、温排水などの低温熱源力・ら汲み一ヒげた熱で冷媒を
蒸発させ、この冷媒蒸気を吸+1又液に吸収させるとき
に発生する吸収熱により高温の温水を取得する装置であ
る。
[Detailed Description of the Invention] (a) Field of the Invention The present invention relates to an absorption type heat pump that uses a low temperature fluid as a heat source to obtain a high temperature fluid by using a closed circulation cycle of an absorption liquid and a refrigerant. (b) Conventional absorption heat pumps are classified into type 1 heat pumps and type 2 heat pumps, of which the absorption temperature is higher than the generated humidity, and the evaporation temperature of the refrigerant is higher. It is generated when the refrigerant is evaporated by the heat drawn from a low-temperature heat source such as heated waste water, and this refrigerant vapor is absorbed into the liquid. This is a device that obtains high-temperature hot water by absorbing heat.

その第2種吸収式ヒートポンプの基本的ヘリ式(ま、例
えば第1図に示すように、上胴1に蒸発e% 2 is
−よび吸収器3が収められ、下胴4に発生器5および凝
縮器6が収められ、効率をよくするため発生器5と吸収
器30間に熱交換器7が設けC)れ、さらに吸収液ポン
プ8および冷媒ポンプ9が付設され、蒸発器2内の液化
冷媒を再循環させるための冷媒再循環ポンプ13とその
接続、配管が付設され、蒸発器2の加熱熱源および発生
器5の駆動熱源として温排水10が、凝縮器6の吸熱熱
源として冷却水11がそれぞれ用いられており、吸収器
3かも高温水または蒸気12が取得されるようになって
いる。冷媒・吸収液には例えば水および臭化リチウム水
溶液が用いられる。
The basic helicopter type of the second type absorption heat pump (for example, as shown in Fig. 1, evaporation e% 2 is
- and an absorber 3 are housed in the lower shell 4, a generator 5 and a condenser 6 are housed in the lower shell 4, and a heat exchanger 7 is provided between the generator 5 and the absorber 30 to improve efficiency; A liquid pump 8 and a refrigerant pump 9 are attached, and a refrigerant recirculation pump 13 for recirculating the liquefied refrigerant in the evaporator 2, its connections, and piping are attached, and is used as a heating heat source for the evaporator 2 and for driving the generator 5. The heated waste water 10 is used as a heat source, the cooling water 11 is used as an endothermic heat source for the condenser 6, and the absorber 3 also receives high-temperature water or steam 12. For example, water and an aqueous lithium bromide solution are used as the refrigerant/absorbing liquid.

第2秤ヒ−トボンブの作「11Jザイクルでは、熱源と
なる温排水10は蒸発器2に導z、・+し、温排水の有
する熱を冷媒に与える。この熱によって蒸発器2におい
て蒸発した冷媒蒸気は吸収器3内において吸収液に吸収
される。この吸収プロセスで発生する熱惜は吸収器3を
通る水を加熱するので高温水または蒸気12が得られる
。冷媒蒸□気を吸収して稀釈された吸収液は熱交換器7
を経て発生器5に送られる。その吸収液は発生器5にお
いて熱源となる温排水10によって加熱され沸騰し濃縮
される。濃縮された吸収液は吸収液ポンプ8によって熱
交神器7を通って吸収器3かもの高淵稀溶液と熱交換後
吸収器3にはいり吸収を繰返す。発生器5において発生
した冷媒蒸気は射縮器6に導かれ、冷却水11によって
冷却され凝縮する、液化冷媒は冷媒ポンプ9によって蒸
発器2に送られ、る。
In the 11J cycle made by the second scale Heat Bomb, heated waste water 10 serving as a heat source is led to the evaporator 2, and the heat of the heated waste water is given to the refrigerant. The refrigerant vapor is absorbed by the absorption liquid in the absorber 3. The heat generated in this absorption process heats the water passing through the absorber 3, resulting in high temperature water or vapor 12. The diluted absorption liquid is transferred to heat exchanger 7.
The signal is sent to the generator 5 via the . The absorbed liquid is heated in the generator 5 by heated waste water 10 serving as a heat source, boils and is concentrated. The concentrated absorption liquid passes through the heat exchanger 7 by the absorption liquid pump 8, exchanges heat with the Takafuchi diluted solution in the absorber 3, and then enters the absorber 3 to repeat absorption. Refrigerant vapor generated in the generator 5 is led to an injection condenser 6, where it is cooled and condensed by cooling water 11. The liquefied refrigerant is sent to the evaporator 2 by a refrigerant pump 9.

蒸発器2内の液化冷媒は冷媒再循環ポンプ13Vcよっ
て再循環される。このようにして温排水と冷却水との間
の熱落差を利用1−ることによって吸収器で温水をさら
に高温にして送り出すのである、(ハ)従来技術の問題
点 このような従来の吸収式ヒートポンプにおいては、例え
ば温排水10の温度が60°Cで冷却水11の温度が1
5℃のときには吸収器3かも1収イ↓(できる高温水1
2は約80℃〜90℃である。前述のヒートポンプサイ
クルを作動させるにあたっては吸収液が結晶するのを防
止する必要があり、従来その吸収液の結晶を未然に防止
するため一般に採用されている方法は、発生器の濃溶液
配管中にザーモスタットを挿入し、濃溶液温度が上昇す
ると機器を停止させるようにするものである。しかしな
がら、この方法は熱源温度が不変であって凝縮圧力が一
定である場合は吸収液の結晶を防止することができるが
、熱源温度が変動すると凝縮圧力も変化するので前述の
濃溶液配管中の一点のみにて濃溶液釈1度を検出する方
法は適当で/fいという問題があった。
The liquefied refrigerant in the evaporator 2 is recirculated by a refrigerant recirculation pump 13Vc. In this way, by utilizing the heat drop between the heated waste water and the cooling water, the absorber heats the hot water to a higher temperature and sends it out. (c) Problems with the conventional technology These conventional absorption types In a heat pump, for example, the temperature of heated waste water 10 is 60°C and the temperature of cooling water 11 is 1
At 5℃, absorber 3 may yield 1 ↓ (high temperature water 1
2 is approximately 80°C to 90°C. In order to operate the heat pump cycle mentioned above, it is necessary to prevent the absorption liquid from crystallizing. Conventionally, the method generally used to prevent the crystallization of the absorption liquid is to A thermostat is inserted to shut down the equipment when the temperature of the concentrated solution rises. However, this method can prevent crystallization of the absorbed liquid when the heat source temperature remains unchanged and the condensation pressure is constant, but as the heat source temperature changes, the condensation pressure also changes. There was a problem that the method of detecting a single addition of a concentrated solution at only one point was inadequate.

に)発明の目的 本発明は前述の問題を解消するために、前述の基本型式
のヒートポンプにおいて、冷媒液および濃溶液の温度差
を検出するため凝縮器および発生器にそれぞれ測温抵抗
体等の温度検出器を挿入し、蒸発器と発生器とを接続す
る配管の途中に電磁弁を介装し、前記温度差が予め定め
られた設定値を越すと前記電磁弁が作動して蒸発器内の
冷媒を発生器内の吸収液に混入させてその吸収液濃度を
低く抑え、それによって吸収液の結晶を防止して、t4
濃度領域内で運転することができるようにした吸収式ヒ
ートポンプを提供しようとするものである。
B) Purpose of the Invention In order to solve the above-mentioned problems, the present invention provides a heat pump of the above-mentioned basic type, in which a temperature measuring resistor or the like is installed in the condenser and generator, respectively, in order to detect the temperature difference between the refrigerant liquid and the concentrated solution. A temperature detector is inserted, and a solenoid valve is interposed in the middle of the piping connecting the evaporator and the generator, and when the temperature difference exceeds a predetermined set value, the solenoid valve is activated and the inside of the evaporator is activated. refrigerant is mixed into the absorption liquid in the generator to keep the concentration of the absorption liquid low, thereby preventing crystallization of the absorption liquid, and achieving t4
The present invention aims to provide an absorption heat pump that can be operated within a concentration range.

(ホ)発明の要点 低温度レベルの熱源を用いて高温度レベルの流体を得る
ようにした吸収式ヒートポンプにおいて、凝縮器の冷媒
液の温度と発生器の濃溶液の温度とを検出し、この液温
の差が予め設定されたイ1−1′1′を越えたときに蒸
発器内の冷媒を発生器内の吸収液に混入し、その吸収液
濃度の低下をはかるようにしたものである。
(e) Main points of the invention In an absorption heat pump that uses a heat source at a low temperature level to obtain a fluid at a high temperature level, the temperature of the refrigerant liquid in the condenser and the temperature of the concentrated solution in the generator are detected. When the difference in liquid temperature exceeds a preset value of 1-1'1', the refrigerant in the evaporator is mixed with the absorbent in the generator to reduce the concentration of the absorbent. be.

(へ)発明の実施例 吸収式ヒートポンプの作動サイクルを示す第2図におい
て、Aは標準の吸収液の循環サイクル、Bは冷媒、tl
  は凝縮器において冷媒蒸気が凝縮する温度、t2 
 は発生器において沸騰濃縮を完了し発生器を出る吸収
液の温度、t3は蒸発器において冷媒が蒸発する温度、
t4は吸収を完了した吸収液が吸収器を出る虚の温度、
PA は上胴内の圧力、P、lは下胴内の圧力であり、
吸収液サイクルA、において2−+ l)は吸収器3に
おける吸収、l) −+ (は稀溶液と濃溶液との熱交
換における稀溶液側の状態変化、C−+ dは発生器5
における沸騰濃縮、d→aは熱交換b−+Cに対応する
濃溶液側の状態変化を示し、吸収器の出熱を温水の加熱
に利用している。
(f) Embodiment of the Invention In Fig. 2 showing the operating cycle of an absorption heat pump, A is a standard absorption liquid circulation cycle, B is a refrigerant, and tl
is the temperature at which the refrigerant vapor condenses in the condenser, t2
is the temperature of the absorption liquid that completes boiling concentration in the generator and exits the generator, t3 is the temperature at which the refrigerant evaporates in the evaporator,
t4 is the imaginary temperature at which the absorption liquid leaves the absorber after completing absorption;
PA is the pressure inside the upper body, P and l are the pressures inside the lower body,
In absorption liquid cycle A, 2-+ l) is absorption in absorber 3, l) -+ ( is state change on the dilute solution side in heat exchange between dilute solution and concentrated solution, C-+ d is absorption in generator 5
Boiling concentration, d→a, indicates a state change on the concentrated solution side corresponding to heat exchange b-+C, and the heat output from the absorber is used to heat hot water.

このデー IJング線図上のサイクルは、吸収式ヒート
ポンプの温度や圧力の条件が変化すれば変るのであるが
、例えば、圧力P、、′−4,5γmI−Tgのもと、
吸収液温度T、、−36,5℃、冷媒温IgTc =O
°Cのときの結晶臨界点の濃度を62%、圧力P。−5
0酊Hgのもと、吸収液温度T、、=95℃、冷媒温度
T、=38°Cのときの結晶臨界点の濃度を66%とす
ると、この二点を結ぶ点線より下の領域りが吸収式ヒー
トポンプとしての運転のできない或いは運転を避けるべ
き領域となる。
The cycle on this data IJ diagram changes if the temperature and pressure conditions of the absorption heat pump change, but for example, under pressure P,,'-4,5γmI-Tg,
Absorption liquid temperature T, -36.5℃, refrigerant temperature IgTc =O
The concentration at the crystal critical point at °C is 62% and the pressure is P. -5
If the concentration at the crystal critical point is 66% when the absorption liquid temperature T = 95°C and the refrigerant temperature T = 38°C under 0 Hg, then the area below the dotted line connecting these two points is This is the area where operation as an absorption heat pump cannot be performed or where operation should be avoided.

一方、この領域を示す境界(第2図の点線)を直線と仮
定すれば、この境界線は冷媒の温度Tcと吸収液の温度
TQ の−次間数として求めることができる。仮に、こ
れらの温度’r、、 、TC、To 、’r、の値を上
述した値(従って、第2図の点線で示した関係)とし、
Tc とT。どの関係を、Tc= aT、+ b   
(但、a、bは定数)とすると、この−次式にTc、T
(、To、T二の値を代入し、a、bを消去して整理す
れば、T、=  1.54Tc+ 36.51なる関係
式が得られる。
On the other hand, if the boundary (dotted line in FIG. 2) indicating this region is assumed to be a straight line, this boundary line can be determined as the -dimensional number between the temperature Tc of the refrigerant and the temperature TQ of the absorbing liquid. Assuming that the values of these temperatures 'r, , TC, To, and 'r are as described above (therefore, the relationship shown by the dotted line in Fig. 2),
Tc and T. Which relation, Tc= aT, + b
(However, a, b are constants), then this - following equation has Tc, T
(, To, by substituting the values of T2 and eliminating a and b, the relational expression T, = 1.54Tc + 36.51 is obtained.

従って、T、(1,54To+36.51の条件で運転
すれば、吸収液の結晶は避けられる訳であり第3図のT
、−T。線図ばこの関係を示している。
Therefore, if the operation is performed under the conditions of T, (1,54To+36.51), crystals of the absorption liquid can be avoided, and T
,-T. Diagram showing the relationship between tobacco.

すなわち、Tl、= 1.54Tc+36.51の直l
¥!iを境にして左上領域りが結晶領域、右下のEが運
転領域である。
That is, Tl, = 1.54Tc + 36.51 straight l
¥! The upper left region with i as the border is the crystal region, and the lower right E is the operating region.

尚、上述の一次判別式は吸収、冷媒液の種類による実際
のデータに合致するよう二次以上の高次の項を加味した
判別式を用いることもできるが、+tlする線によって
分けられる運転領域内で運転できるようにT。およびT
cの温度差を検出し、結晶防止用電磁弁を作動させると
、結晶を防止することができる。
Note that the above-mentioned first-order discriminant can also be used as a discriminant that takes into account a second-order or higher-order term to match the actual data depending on the type of absorption and refrigerant liquid. T so that you can drive inside. and T
Crystals can be prevented by detecting the temperature difference c and activating the solenoid valve for preventing crystals.

以下に本発明の一実施例を示す吸収ヒートポンプの説明
図に従い説明すると、 第4図には第1図と共通のものには同一参照番号を用い
ている。第4図において、上胴1内に蒸発器2、吸収器
3が収められ、上胴4内には発生器5、凝縮器6が収め
られている。外部の接続配管としては、蒸発器2の加熱
熱源および発生器5の駆動熱源として温排水10が流入
流出するようにされ、凝縮器6の吸熱熱源として冷却水
11が流入流出するようにされ、高温水または蒸気12
を吸収器3から取出すように温水が流入流出するように
されている。
The explanation will be given below with reference to an explanatory diagram of an absorption heat pump showing an embodiment of the present invention. In FIG. 4, the same reference numerals are used for the same parts as in FIG. 1. In FIG. 4, an evaporator 2 and an absorber 3 are housed in an upper shell 1, and a generator 5 and a condenser 6 are housed in an upper shell 4. The external connection piping is configured such that heated waste water 10 flows in and out as a heating heat source for the evaporator 2 and as a driving heat source for the generator 5, and cooling water 11 flows in and out as an endothermic heat source for the condenser 6. High temperature water or steam 12
Hot water is made to flow in and out so as to be taken out from the absorber 3.

発生器5と吸収器3の間に効率をよくするだめの熱交換
器7が設けられ、さらに発生器5に吸収液ポンプ8が付
設され、凝縮器6に冷媒ポンプ9が付設され、蒸発器2
内の液化冷媒を伝熱管上に強制的に滴下させるため冷媒
再tiQ環ポンプ13とその接続配管が付設されている
。この冷媒ポンプ9および冷媒再循環ポンプ13はポン
プのキャビテーション等を防止するため液面リレー等に
よるポンプの保護装置を有することは云うまでもない。
A heat exchanger 7 for improving efficiency is provided between the generator 5 and the absorber 3, an absorption liquid pump 8 is attached to the generator 5, a refrigerant pump 9 is attached to the condenser 6, and an evaporator pump 9 is attached to the condenser 6. 2
In order to forcibly drip the liquefied refrigerant inside onto the heat transfer tubes, a refrigerant retiQ ring pump 13 and its connecting piping are provided. It goes without saying that the refrigerant pump 9 and the refrigerant recirculation pump 13 have a pump protection device such as a liquid level relay to prevent pump cavitation or the like.

発生器(5)内の濃溶液の温度を検出するために発生器
(5)に結晶防止用測温抵抗体等の温度検出器05)が
挿入され、凝縮器(6)内の冷媒液の温度を検出するた
めに凝縮器(6)には結晶防止用測温抵抗体等の温度検
出器<16+が挿入されており、蒸発器(2)と発生器
(5)とを接続する配管の途中に結晶防tlz用屯出力
(17)が介装され、発生器(5)内の濃溶液の温度と
凝縮器(6)内の冷媒液の温度との温度差が予め定めら
れた設定値を越すと電磁弁(17)が作動して流路が開
かれるようになっている。
In order to detect the temperature of the concentrated solution in the generator (5), a temperature sensor 05) such as a resistance temperature detector for preventing crystallization is inserted into the generator (5), and the temperature of the refrigerant liquid in the condenser (6) is In order to detect the temperature, a temperature detector <16+, such as a resistance temperature detector for crystallization prevention, is inserted in the condenser (6), and A crystalline anti-TLZ output (17) is interposed in the middle, and the temperature difference between the temperature of the concentrated solution in the generator (5) and the temperature of the refrigerant liquid in the condenser (6) is a predetermined set value. When the temperature exceeds this point, a solenoid valve (17) is activated to open the flow path.

この吸収式ヒートポンプのヒートボンプザイクルについ
て説明する。下胴(4)で発生した冷媒蒸気は凝縮器(
6)において凝縮されて液冷媒となり、冷媒ポンプ(9
)により蒸発器(2)へ送られる。次に吸収液は発生器
(5)において温排水00)により加熱され濃液となっ
て吸収液ポンプ(8)により吸収器(3)へ送られる。
The heat pump cycle of this absorption heat pump will be explained. The refrigerant vapor generated in the lower shell (4) is transferred to the condenser (
6), it is condensed into liquid refrigerant, and the refrigerant is pumped into the refrigerant pump (9).
) to the evaporator (2). Next, the absorption liquid is heated in the generator (5) by heated wastewater 00), becomes a concentrated liquid, and is sent to the absorber (3) by the absorption liquid pump (8).

吸収器(3)では蒸発器(2)から流入する冷媒ガスを
吸収し、このときに生じる吸収熱により吸収器(3)内
を流れる温水(1りを加熱する。冷媒を吸収して濃度の
下った吸収液は発生器(5)に戻り再び加熱され、上述
のサイクルを繰返し、加熱運転が継続される。
The absorber (3) absorbs the refrigerant gas flowing in from the evaporator (2), and the absorption heat generated at this time heats the hot water (1) flowing inside the absorber (3). The descending absorption liquid returns to the generator (5) and is heated again, and the above-mentioned cycle is repeated to continue the heating operation.

而して、このサイクルの間、二つの結晶防止用測温抵抗
体05)、(16)によって検出された発生器(5)内
の濃溶液と凝縮器(6)内の冷媒液との温度差が予め定
められた温IW差の設定値、即ち、第3図に示されたT
、−T、、  の関係から得られる値を越えると、結晶
防止用電磁弁07)が作動して流路が開かれ、蒸発器(
2)内の冷媒が発生器(5)内の吸収液に混入され吸収
液濃度が低く抑えられるようになり、吸収液の結晶が防
止される。
During this cycle, the temperatures of the concentrated solution in the generator (5) and the refrigerant liquid in the condenser (6) detected by the two anti-crystallization resistance thermometers 05) and (16) The difference is a predetermined temperature IW difference setting value, that is, T shown in FIG.
, -T, , when the value obtained from the relationship of
2) The refrigerant in the generator (5) is mixed with the absorption liquid in the generator (5), so that the concentration of the absorption liquid is kept low, and crystallization of the absorption liquid is prevented.

(ト)発明の効果 このように、本発明の吸収式ヒートポンプは、一般の吸
収式ヒートポンプに、凝縮器内の冷媒液と発生器内の濃
溶液との温度差が予め定められた設定値を越えると蒸発
器内の冷媒を発生器内の吸収液に混入させる機構を付設
して吸収液濃度を低く抑えるようにしたので、吸収液の
結晶を防止しつつ吸収式ヒートポンプを高温度領域内で
効率良< ;’A【転することができるものである。
(G) Effects of the Invention As described above, the absorption heat pump of the present invention is different from the general absorption heat pump in that the temperature difference between the refrigerant liquid in the condenser and the concentrated solution in the generator has a predetermined set value. By adding a mechanism that mixes the refrigerant in the evaporator with the absorption liquid in the generator to keep the absorption liquid concentration low, it is possible to prevent the absorption liquid from crystallizing and to operate the absorption heat pump in a high temperature range. Efficient <;'A [It is something that can be converted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は吸収式ヒートポンプの基本構成を示す説明図、
第2図は第1図のヒートポンプの作動を説明するデユー
リング線図、第3図は結晶領域と運転領域との境界線の
一例を示すTC−To線図、第4図は本発明による吸収
ヒートポンプの一例を示す説明図である。 1〜上胴、 2〜蒸発器、 3〜吸収器、4〜下胴、 
5〜発生器、 6〜凝縮器、  15.16〜温度検出
器、 17〜電磁弁。 毎1図 温L (’C) 第3図 Tc (0C)
Figure 1 is an explanatory diagram showing the basic configuration of an absorption heat pump.
Fig. 2 is a Dueling diagram explaining the operation of the heat pump shown in Fig. 1, Fig. 3 is a TC-To diagram showing an example of the boundary line between the crystal region and the operating region, and Fig. 4 is the absorption heat pump according to the present invention. It is an explanatory view showing an example. 1-upper shell, 2-evaporator, 3-absorber, 4-lower shell,
5 - Generator, 6 - Condenser, 15.16 - Temperature detector, 17 - Solenoid valve. Every 1 figure temperature L ('C) 3rd figure Tc (0C)

Claims (1)

【特許請求の範囲】[Claims] (1)上胴内に収められた蒸発器および吸収器と、下胴
内に収められた発生器および凝縮器とを有し、これら蒸
発器および発生器を加熱するのに温排水を、凝縮器を冷
却するのに冷却水を用いてヒートポンプサイクルを作動
させ、前記吸収器から高温水或いは水蒸気がとり出せる
ようにした吸収式ヒートポンプにおいて、凝縮器の冷媒
液および発生器の濃溶液の温度を検出するため、凝縮器
および発生器に夫々測温抵抗体等の温度検出器を装着す
るとともに、前記蒸発器と発生器とを接続する配管の途
中に電磁弁を介装し、凝縮器の冷媒液と発生器の濃溶液
の温度差が予め定められた設定値を越えたとき前記電磁
弁を作動させて蒸発器内の冷媒を発生器内の吸収液に混
入し、その吸収液濃度を抑えて吸収液の結晶を防止しつ
つ高温度領域で運転するようにしたことを特徴とする吸
収式ヒートポンプ。
(1) It has an evaporator and an absorber housed in the upper shell, and a generator and a condenser housed in the lower shell, and hot wastewater is condensed to heat these evaporators and generators. In an absorption heat pump in which the heat pump cycle is operated using cooling water to cool the reactor, and high-temperature water or steam can be taken out from the absorber, the temperature of the refrigerant liquid in the condenser and the concentrated solution in the generator is controlled. In order to detect the refrigerant in the condenser, a temperature detector such as a resistance temperature detector is attached to each of the condenser and generator, and a solenoid valve is inserted in the middle of the piping connecting the evaporator and generator. When the temperature difference between the liquid and the concentrated solution in the generator exceeds a predetermined set value, the solenoid valve is activated to mix the refrigerant in the evaporator into the absorbent in the generator to suppress the concentration of the absorbed liquid. An absorption heat pump characterized in that it can be operated in a high temperature range while preventing crystallization of an absorption liquid.
JP15445882A 1982-09-03 1982-09-03 Absorption heat pump crystallization prevention method Expired - Lifetime JPH06105138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15445882A JPH06105138B2 (en) 1982-09-03 1982-09-03 Absorption heat pump crystallization prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15445882A JPH06105138B2 (en) 1982-09-03 1982-09-03 Absorption heat pump crystallization prevention method

Publications (2)

Publication Number Publication Date
JPS5944555A true JPS5944555A (en) 1984-03-13
JPH06105138B2 JPH06105138B2 (en) 1994-12-21

Family

ID=15584667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15445882A Expired - Lifetime JPH06105138B2 (en) 1982-09-03 1982-09-03 Absorption heat pump crystallization prevention method

Country Status (1)

Country Link
JP (1) JPH06105138B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579361U (en) * 1992-03-24 1993-10-29 日立造船株式会社 Heat recovery equipment in sulfuric acid plant
JP2006138614A (en) * 2004-10-13 2006-06-01 Ebara Corp Absorbing type heat pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579361U (en) * 1992-03-24 1993-10-29 日立造船株式会社 Heat recovery equipment in sulfuric acid plant
JP2006138614A (en) * 2004-10-13 2006-06-01 Ebara Corp Absorbing type heat pump
JP4588425B2 (en) * 2004-10-13 2010-12-01 株式会社荏原製作所 Absorption heat pump

Also Published As

Publication number Publication date
JPH06105138B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
US4553409A (en) Multiple regeneration multiple absorption type heat pump
JPS5849781B2 (en) Absorption heat pump
JPS5944555A (en) Absorption type heat pump
SU1255827A1 (en) Method of empoyment of heat of weak solution
US2192338A (en) Refrigeration
JPH0621736B2 (en) Absorption refrigerator
JP2708809B2 (en) Control method of absorption refrigerator
JPH04268170A (en) Absorption type heat pump device
JP2664436B2 (en) Control method of absorption refrigerator
JPS59109753A (en) Absorption heat pump
JP2785154B2 (en) Single effect absorption refrigerator
JPS54131160A (en) Controller for absorption machines
JPS59137764A (en) Absorption heat pump
JPS59137765A (en) Absorption heat pump
KR940005673B1 (en) Heat-pump
KR0173495B1 (en) Absorptive type air conditioner
JPS6044778A (en) Absorption type cold and hot medium obtaining device
US2151451A (en) Refrigeration
JPH0222311B2 (en)
JPH07248161A (en) Absorption type cooler/heater and hot water supplying apparatus
JP3488953B2 (en) Absorption type simultaneous cooling / heating water supply type heat pump
JPS5989962A (en) Absorption heat pump device
JPS59137763A (en) Absorption heat pump
JP2520974Y2 (en) Proportional control absorption chiller / heater
JPS6222056B2 (en)