KR0173495B1 - Absorptive type air conditioner - Google Patents

Absorptive type air conditioner Download PDF

Info

Publication number
KR0173495B1
KR0173495B1 KR1019940032186A KR19940032186A KR0173495B1 KR 0173495 B1 KR0173495 B1 KR 0173495B1 KR 1019940032186 A KR1019940032186 A KR 1019940032186A KR 19940032186 A KR19940032186 A KR 19940032186A KR 0173495 B1 KR0173495 B1 KR 0173495B1
Authority
KR
South Korea
Prior art keywords
solution
absorber
temperature regenerator
outlet
high temperature
Prior art date
Application number
KR1019940032186A
Other languages
Korean (ko)
Other versions
KR960018457A (en
Inventor
신기부
강태원
Original Assignee
이해규
삼성중공업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이해규, 삼성중공업주식회사 filed Critical 이해규
Priority to KR1019940032186A priority Critical patent/KR0173495B1/en
Publication of KR960018457A publication Critical patent/KR960018457A/en
Application granted granted Critical
Publication of KR0173495B1 publication Critical patent/KR0173495B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/28Disposition of valves, e.g. of on-off valves or flow control valves specially adapted for sorption cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/09Improving heat transfers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

흡수기(1), 증발기(6), 응축기(9) 및 다수의 열교환기로 구성되는 흡수식 냉온수기(냉동기)에 있어서, 본 발명에 따른 흡수식 냉온수기는 용액과 냉매가 흡수 또는 분리됨으로 증발 열원 및 응축열원을 이용하는 흡수식 냉온수기로서, 고온재생기(2) 출구 농용액 온도를 감지하여 용액 순환량을 제어하도록 온도센서(7)가 설치되고, 흡수기(1)입구 희용액과 고온재생기(2)의 출구 농용액의 순환량을 제어하도록 팽창밸브(8)가 설치되어 비례제어를 할수 있어 증발기에 걸리는 냉방부하를 감지하여 정상부하 도달시간을 대폭 단축하였으며, 응축기에 가해지는 응축열량을 줄이므로 냉각탑 용량을 종래보다 20%작게 할수 있고 기기의 효율(cop)를 기존보다 20% 향상 시켰다.In an absorption chiller (freezer) consisting of an absorber (1), an evaporator (6), a condenser (9), and a plurality of heat exchangers, the absorber cooler according to the present invention is an evaporation heat source and a condensation heat source as a solution and a refrigerant are absorbed or separated. As an absorption cold / hot water machine to be used, a temperature sensor 7 is installed to sense the temperature of the high temperature regenerator (2) outlet concentrate and control the amount of circulation of the solution, and the circulation amount of the inlet absorber (1) inlet solution and the outlet concentrate of the high temperature regenerator (2). Expansion valve (8) is installed to control the proportional control to detect the cooling load on the evaporator, significantly shortening the time to reach the normal load, reducing the amount of condensation heat applied to the condenser 20% smaller than the conventional cooling tower capacity It can improve the efficiency (cop) of the device by 20%.

Description

흡수식 냉온수기Absorption chiller

제1도는 기존의 용액 흐름 싸이클을 도시한 구성도.1 is a schematic diagram illustrating a conventional solution flow cycle.

제2도는 본 발명의 용액 흐름 사이클을 도시한 구성도.2 is a schematic diagram illustrating a solution flow cycle of the present invention.

제3도는 본 발명 용액 흐름 사이클의 팽창 밸브 개도 특성 곡선.3 is an expansion valve opening characteristic curve of the solution flow cycle of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 흡수기 2 : 고온재생기1: absorber 2: high temperature regenerator

3 : 저온재생기 4 : 응축열교환기3: low temperature regenerator 4: condensation heat exchanger

5 : 저온열교환기 6 : 증발기5: low temperature heat exchanger 6: evaporator

7 : 온도센서 8 : 팽창밸브7: temperature sensor 8: expansion valve

9 : 응축기9: condenser

본 발명은 흡수식 냉온수기 및 냉동기의 에너지 효율을 높이기 위한 것으로, 특히 고온재생기 출구의 농용액 온도를 감지하여 용액의 순환량을 조절하도록 하므로서 증발기에 걸리는 냉방부하를 감지하여 정상부하 도달시간을 대폭단축한 흡수식 냉온수기에 관한 것이다.The present invention is to increase the energy efficiency of the absorption chiller and freezer, especially by detecting the temperature of the solution solution at the exit of the hot regenerator to control the circulation of the solution by detecting the cooling load on the evaporator significantly reduced the time to reach the peak load It relates to a cold and hot water machine.

종래 기술은 제1도에서처럼 흡수기(1) 출구의 희용액이 고온재생기(2)와 저온재생기(3)로 분리되어 각각 가열 농축되어 농용액이 되고 저온 열교환기(5) 입구에서 고온재생기 가열용액과 저온재생기 가열용액이 만나도록 구성된 것이다.In the prior art, as shown in FIG. 1, the dilute solution at the outlet of the absorber 1 is separated into a high temperature regenerator 2 and a low temperature regenerator 3, respectively, and concentrated under heating to become a concentrated solution, and a high temperature regenerator heating solution at the inlet of the low temperature heat exchanger 5. And the low temperature regenerator heating solution.

흡수기(1) 출구 희용액(농도 58%)이 흡수기(1) 입구 농용액(농도 63%)이 되기 위해 고온재생기(2)에서 가열하게(QG)된다. 이때 냉매증기가 증발하여 (Qri)용액과 냉매가 분리된다.The absorber 1 outlet rare solution (concentration 58%) is heated (Q G ) in the hot regenerator 2 to become the absorber 1 inlet concentrate (concentration 63%). At this time, the refrigerant vapor evaporates to separate the QQ solution and the refrigerant.

이와 같은 종래 기술은 고온재생기(2)에서 냉매증기가 증발하는데 시간이 오래 걸리고 증발기의 냉방 부하의 변동에 따라 용액 농도를 조절 할 수 없으므로 정상부하 도달 시간이 오래 걸리고 기기의 효율도 낮다.This conventional technique takes a long time to evaporate the refrigerant vapor in the high temperature regenerator (2) and can not control the solution concentration in accordance with the change in the cooling load of the evaporator takes a long time to reach the normal load and low efficiency of the device.

본 발명은 증발기의 냉방부하 변동에 따라 고온재생기에 투입되는 용액 순환량을 조절하므로 부하 도달 시간 (현재 30분 이상 걸림)을 대폭 단축하고 저온재생기를 통과한 냉매증기의 잠열과 희용액을 열교환시킴으로 냉각탑 용량을 줄이고 기기의 효율을 높이기 위한 것이다.The present invention adjusts the amount of circulation of the solution to the high temperature regenerator according to the cooling load of the evaporator, thereby significantly reducing the load arrival time (currently 30 minutes or more) and heat exchange the latent heat and the rare solution of the refrigerant vapor passing through the low temperature regenerator. It is to reduce the capacity and increase the efficiency of the device.

본 발명의 구성은 제2도에 나타낸 것과 같다.The configuration of the present invention is as shown in FIG.

본 발명은 흡수기에서 저온 재생기(3)로 향하는 배관상에 바이패스배관(10)을 설치하여 상기 바이패스배관(10)과 저온재생기에서 응축기(9)로 향하는 배관이 열교환되도록 응축열교환기(4)를 설치하며, 흡수기(1)출구의 희용액(농도 58%)을 고온재생기(2)와 저온재생기(3) 및 응축열교환기(4)로 분리하도록 하고, 응축 열교환기(4)로 흐르는 용액 순환량은 온도식 팽창 밸브(8)를 이용하여 제어하도록 구성한 것이다. 제1도 및 제2도의 실선은 용액흐름을 나타낸 것이고 파선은 냉매흐름을 나타낸 것이다.The present invention installs a bypass pipe (10) on the pipe from the absorber to the low temperature regenerator (3) condensation heat exchanger (4) so that the pipe to the condenser (9) in the bypass pipe 10 and the low temperature regenerator is heat exchanged And dilute the dilute solution (58% concentration) at the outlet of the absorber (1) into the high temperature regenerator (2), the low temperature regenerator (3), and the condensation heat exchanger (4). Is configured to control using the thermostatic expansion valve (8). The solid lines in FIGS. 1 and 2 show the flow of solution and the dashed lines show the flow of refrigerant.

본 발명은 고온재생기 출구 농용액의 온도를 감지하여 온도에 따라 응축열교환기로 흐르는 용액의 양을 비례 제어 하도록 되어 있다.The present invention is to control the amount of the solution flowing to the condensation heat exchanger proportional to the temperature by sensing the temperature of the hot condenser outlet concentrate.

또한 고온재생기(2) 출구 농용액(63%)을 일부는 저온재생기(3)로 보내고 일부는 저온 열교환기(5)를 거쳐 흡수기(1)로 흡입되도록 한 것으로 저온재생기(3)로 흐르는 용액순환량은 상기와 마찬가지로 고온재생기(2) 출구 농용액의 온도를 감지하여 용액의 양을 비례제어 하도록 되어 있다.In addition, a portion of the high temperature regenerator (2) outlet concentrate (63%) is sent to the low temperature regenerator (3) and a part is sucked into the absorber (1) via the low temperature heat exchanger (5). As described above, the amount of circulation is proportional to the amount of the solution by sensing the temperature of the outlet solution of the high temperature regenerator 2.

따라서 저온재생기(3) 입구 용액은 고온재생기(2) 출구의 농용액(농도 63%)과 응축열교환기(4) 출구의 중간 용액(농도 60%)과 흡수기(1) 출구의 희용액(농도 58%)의 3 군데 용액이 혼합되도록 한 혼합유동사이클 (MIXED FLOW CYCLE)을 구성한 것이다.Therefore, the inlet solution of the low temperature regenerator (3) is composed of the concentrated solution (concentration 63%) at the outlet of the high temperature regenerator (2), the intermediate solution (concentration 60%) at the outlet of the condensation heat exchanger (4) and the diluent solution (the concentration 58) at the outlet of the absorber (1). The mixed flow cycle (MIXED FLOW CYCLE) was made to mix 3 solutions.

이로인해, 증발기(6) 입구 냉수 (또는 : 온수)온도가 변화함에 따라(냉방시 25-15℃) 고온 재생기(2) 출구 용액온도를 감지하는 온도센서(7)에 의해 작동하는 팽창밸브(8)의 비례 제어를 이용함으로 흡수식 냉온수기 최대의 단점인 정상 부하(7℃)도달 시간을 대폭 단축한 것이다.Due to this, an expansion valve operated by a temperature sensor 7 which detects the outlet temperature of the hot regenerator 2 as the evaporator 6 inlet cold water (or hot water) temperature changes (25-15 ° C. during cooling) By using proportional control of 8), the shortest delivery time of normal load (7 ℃), which is the biggest disadvantage of absorption chiller, is greatly reduced.

뿐만 아니라 이러한 용액 사이클의 부대 효과로서 응축기(COOLING TOWER)용량을 대폭 줄이므로 투자비 및 경비를 절감한 것이다.In addition, as a side effect of such a solution cycle, the capacity of the cooling tower is drastically reduced, thereby reducing investment costs and expenses.

즉 고온재생기(2)에서 증발한(100℃에서 증발) 냉매 증기(150℃)가 저온재생기(3)에서 열교환에 의해 온도가 낮아지지만 (90℃) 응축기(9)에서 요구하는 40℃ 보다는 훨씬 높은 현열을 가지고 있으므로 응축열교환기(4)를 이용해서 용액과 냉매를 열교환 시킴으로 용액은 가열되고 냉매는 냉각되는 효과를 얻는다. 이로인해 기기의 효율(cop)는 기존 보다 20% 향상된다.That is, the refrigerant vapor evaporated in the high temperature regenerator 2 (evaporated at 100 ° C.) is lowered by heat exchange in the low temperature regenerator 3 (90 ° C.), but is much higher than the 40 ° C. required by the condenser 9. Since it has high sensible heat, heat is exchanged between the solution and the refrigerant using the condensation heat exchanger (4) to obtain the effect that the solution is heated and the refrigerant is cooled. This improves the cop of the device by 20%.

본 발명은 고온 재생기 출구의 농용액 온도를 감지하여 용액의 순환량을 조절하도록 함으로서 증발기에 걸리는 냉방부하를 감지하여 정상 부하 도달 시간을 대폭 단축하였다.The present invention detects the cooling load applied to the evaporator by sensing the concentration of the solution at the outlet of the hot regenerator to control the circulation of the solution, thereby significantly shortening the normal load arrival time.

즉 종래 기술에서는 정상 부하 도달 시간이 30분 이상 걸렸지만 본 발명에 의하면 15분 이하로 단축된다.That is, although the conventional load arrival time took 30 minutes or more in the prior art, the present invention is shortened to 15 minutes or less.

또한 응축기에 가해지는 응축열량을 줄이므로 냉각탑 용량을 종래보다 20% 작게 할수 있고 기기의 효율(cop)를 기존보다 20% 향상 시키는 고효율 용액흐름 사이클을 가능케 한다.In addition, by reducing the amount of heat condensation applied to the condenser, the cooling tower capacity can be 20% smaller than before, and a high efficiency solution flow cycle can be achieved which increases the efficiency (cop) of the device by 20%.

Claims (1)

흡수기(1), 증발기(6), 응축기(9) 및 다수의 열교환기로 구성되는 흡수식 냉온수기(냉동기)에 있어서, 흡수기에서 저온재생기(3)로 향하는 배관상에 바이패스배관(10)을 설치하여 상기 바이패스배관(10)과 저온재생기에서 응축기(9)로 향하는 배관이 열교환되도록 응축열교환기(4)를 설치하고, 고온재생기(2)출구의 농용액과 응축열교환기(4) 출구의 중간 용액과 흡수기(1)출구의 희용액의 3군데의 용액이 혼합되어 저온재생기(3)로 유입되도록 용액라인이 설치되고, 고온재생기(2)출구 농용액 온도를 감지하여 용액순환량을 제어하도록 온도센서(7)가 고온재생기(2)출구측에 설치되고, 흡수기(1)입구의 희용액과 고온재생기(2)의 출구 농용액의 순환량을 제어하도록 팽창밸브(8)가 설치되되 상기 온도센서(7)와 연결되어 용액을 비례제어하는것을 특징으로 하는 흡수식 냉온수기.In an absorption chiller (freezer) consisting of an absorber (1), an evaporator (6), a condenser (9) and a plurality of heat exchangers, a bypass pipe (10) is provided on a pipe from the absorber to the cold regenerator (3). A condensation heat exchanger (4) is installed to exchange heat between the bypass pipe (10) and the pipe from the low temperature regenerator to the condenser (9), and the intermediate solution at the outlet of the high temperature regenerator (2) and the outlet of the condensation heat exchanger (4). The solution line is installed so that the three solutions of the rare solution at the outlet of the absorber (1) are mixed and introduced into the low temperature regenerator (3), and the temperature sensor is configured to control the solution circulation by sensing the temperature of the outlet solution of the high temperature regenerator (2). 7) is installed at the outlet of the high temperature regenerator (2), and an expansion valve (8) is installed to control the circulation amount of the dilute solution at the inlet of the absorber (1) and the outlet concentrate of the high temperature regenerator (2). ) Proportional control of the solution in connection with Formula cold water heater.
KR1019940032186A 1994-11-30 1994-11-30 Absorptive type air conditioner KR0173495B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940032186A KR0173495B1 (en) 1994-11-30 1994-11-30 Absorptive type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940032186A KR0173495B1 (en) 1994-11-30 1994-11-30 Absorptive type air conditioner

Publications (2)

Publication Number Publication Date
KR960018457A KR960018457A (en) 1996-06-17
KR0173495B1 true KR0173495B1 (en) 1999-03-20

Family

ID=19399827

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940032186A KR0173495B1 (en) 1994-11-30 1994-11-30 Absorptive type air conditioner

Country Status (1)

Country Link
KR (1) KR0173495B1 (en)

Also Published As

Publication number Publication date
KR960018457A (en) 1996-06-17

Similar Documents

Publication Publication Date Title
US4023375A (en) Water-ammonia refrigeration system using solar energy
JP4056028B2 (en) Triple effect absorption refrigerator
JP2000018762A (en) Absorption refrigerating machine
JPH08114360A (en) Double effective absorption type water cooler/heater
KR0173495B1 (en) Absorptive type air conditioner
JPH0552441A (en) Method and device for controlling absorption type heater cooler
KR100419480B1 (en) Multi heat pump system with advanced heating and cooling performance
JP2759367B2 (en) Refrigerant system in absorption heat pump air conditioner
KR100213794B1 (en) Ammonia absorption type cooler
JPS60245973A (en) Libr-water system two-stage absorption type cold and hot water device
KR200288627Y1 (en) a device of cooling and heating water to suction method for high degree of efficiency
JPS63176965A (en) Double effect air-cooling type water chiller and heater
KR0124786B1 (en) Diluting operation apparatus for air-cooling absorptive type refrigerator and heater
JP2592014B2 (en) Absorption chiller / heater
KR100322260B1 (en) Absorption refrigerator
JPS6148064B2 (en)
KR0136202Y1 (en) Absorptive type airconditioner
JP2533932B2 (en) Air-cooled absorption type water heater
JP3811632B2 (en) Waste heat input type absorption refrigerator
JPS6110137Y2 (en)
KR0137580Y1 (en) Cooling apparatus of liquid refrigerator absorptive airconditioner
JPS6113885Y2 (en)
JPH01310272A (en) Absorption type air conditioner
JPS60117065A (en) Heat recovery device for absorption cold and hot water machine
JPH03105171A (en) Absorption type water cooling and heating machine

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121030

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20131030

Year of fee payment: 16

EXPY Expiration of term