JP2708809B2 - Control method of absorption refrigerator - Google Patents

Control method of absorption refrigerator

Info

Publication number
JP2708809B2
JP2708809B2 JP63243291A JP24329188A JP2708809B2 JP 2708809 B2 JP2708809 B2 JP 2708809B2 JP 63243291 A JP63243291 A JP 63243291A JP 24329188 A JP24329188 A JP 24329188A JP 2708809 B2 JP2708809 B2 JP 2708809B2
Authority
JP
Japan
Prior art keywords
temperature regenerator
temperature
liquid
concentration
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63243291A
Other languages
Japanese (ja)
Other versions
JPH0293259A (en
Inventor
一寛 吉井
敏之 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63243291A priority Critical patent/JP2708809B2/en
Publication of JPH0293259A publication Critical patent/JPH0293259A/en
Application granted granted Critical
Publication of JP2708809B2 publication Critical patent/JP2708809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は高温再生器と低温再生器とを備えた吸収冷凍
機の制御方法に関する。
The present invention relates to a method for controlling an absorption refrigerator having a high-temperature regenerator and a low-temperature regenerator.

(ロ)従来の技術 例えば実開昭56−63951号公報、特公昭61−48062号公
報、又は特開昭60−133279号公報には、溶液(吸収液)
の循環量を冷水温度、高温再生器液面、高温再生器溶液
温度、高温再生器内圧力、吸収器内液面、蒸発器冷媒液
面等に基づいて制御する吸収冷凍機が開示されている。
(B) Prior art For example, Japanese Unexamined Utility Model Publication No. Sho 56-63951, Japanese Examined Patent Publication No. Sho 61-48062, or Japanese Unexamined Patent Publication No. Sho 60-133279 discloses a solution (absorbing liquid).
An absorption refrigerator is disclosed which controls the amount of circulating water based on a cold water temperature, a high-temperature regenerator liquid level, a high-temperature regenerator solution temperature, a high-temperature regenerator internal pressure, an absorber liquid level, an evaporator refrigerant liquid level, and the like. .

(ハ)発明が解決しようとする課題 上記従来の技術において、冷水温度、高温再生器液面
等の物理量は吸収器及び凝縮器を流れる冷却水の温度変
化、吸収冷凍機内の不凝縮ガスの滞留等により変化し、
吸収冷凍機の高温再生器の加熱量に合った溶液循環量制
御を行うことができなくなる虞れがあった。
(C) Problems to be Solved by the Invention In the above-mentioned conventional technology, the physical quantities such as the cold water temperature and the liquid level of the high-temperature regenerator are changed by the temperature change of the cooling water flowing through the absorber and the condenser, and the retention of non-condensable gas in the absorption refrigerator. Etc.,
There is a possibility that it may not be possible to control the solution circulation amount in accordance with the heating amount of the high-temperature regenerator of the absorption refrigerator.

本発明は加熱量に合った吸収液の循環量を冷却水の温
度変化等に関係なく得ることができる吸収冷凍機を提供
することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an absorption refrigerator capable of obtaining a circulation amount of an absorption liquid suitable for a heating amount irrespective of a temperature change of cooling water.

(ニ)課題を解決するための手段 本発明は上記課題を解決するために、高温再生器
(1)、低温再生器(2)、凝縮器(4)、蒸発器
(5)、吸収器(3)をそれぞれ配管し、吸収器(3)
から流出した稀液が高温再生器(1)と低温再生器
(2)とに分配され、それぞれで加熱濃縮されて濃液、
及び稀液になり吸収器(3)へ流れる吸収冷凍機におい
て、稀液の濃度と濃液の濃度との差、又は稀液の濃度と
中間液の濃度との差が高温再生器(1)の加熱量の増加
に伴ない小さくなるように高温再生器(1)へ送られる
稀液の量及び低温再生器(2)へ送られる稀液の量とを
制御する吸収冷凍機の制御方法を提供するものである。
(D) Means for Solving the Problems In order to solve the above problems, the present invention provides a high-temperature regenerator (1), a low-temperature regenerator (2), a condenser (4), an evaporator (5), an absorber ( 3) Piping each, absorber (3)
Dilute solution flowing out of the reactor is distributed to a high-temperature regenerator (1) and a low-temperature regenerator (2), and each is heated and concentrated to a concentrated solution.
And the difference between the concentration of the diluted liquid and the concentration of the concentrated liquid, or the difference between the concentration of the diluted liquid and the concentration of the intermediate liquid, in the absorption refrigerating machine that flows into the absorber (3) as a diluted liquid. A method for controlling an absorption refrigerator that controls the amount of dilute solution sent to the high-temperature regenerator (1) and the amount of dilute solution sent to the low-temperature regenerator (2) so that the amount decreases with an increase in the amount of heating. To provide.

(ホ)作 用 吸収冷凍機の運転時、高温再生器(1)の加熱量が減
少するのに伴ない高温再生器(1)、又は低温再生器
(2)へ流れる稀液の量が減少した場合には、それに伴
ない高温再生器(1)、又は低温再生器(2)での顕熱
量が減少し、高温再生器(1)、又は低温再生器(2)
での熱交換効率が向上するため、吸収冷凍機の実効効率
を一層向上させることが可能になる。
(E) Operation During operation of the absorption refrigerator, the amount of dilute liquid flowing to the high-temperature regenerator (1) or the low-temperature regenerator (2) decreases as the heating amount of the high-temperature regenerator (1) decreases. In this case, the amount of sensible heat in the high-temperature regenerator (1) or the low-temperature regenerator (2) decreases, and the high-temperature regenerator (1) or the low-temperature regenerator (2)
Since the heat exchange efficiency of the absorption refrigerator is improved, the effective efficiency of the absorption refrigerator can be further improved.

(ヘ)実施例 以下、本発明の一実施例を図面に基づいて詳細に説明
する。
(F) Example Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図はパラレルフロー式二重効用吸収冷凍機を示
し、この吸収冷凍機は冷媒に水、吸収剤(溶液)に臭化
リチウム水溶液を使用したものである。第1図におい
て、(1)は高温再生器、(2)は低温再生器、(3)
は吸収器、(4)は凝縮器、(5)は蒸発器、(6)は
高温熱交換器、(7)は低温熱交換器、(8)ないし
(11)は溶液管、(12)ないし(14)は冷媒液管、(1
5)は冷水管、(16)は冷却水管である。又、(17)は
冷媒液管(14)の途中に設けられた冷媒循環用の第1ポ
ンプ、(18)は溶液管(11)の吸収液出口側に設けられ
た溶液循環用の第2ポンプである。さらに、(20)は溶
液管(8)の高温熱交換器(6)より高温再生器(1)
側に設けられた第1流量調整弁、(21)は溶液管(9)
の途中に設けられた第2流量調整弁、(23)は高温再生
器(1)に設けられたバーナ(24)への燃料供給を調整
する燃料調整弁である。
FIG. 1 shows a parallel flow double effect absorption refrigerator, which uses water as a refrigerant and an aqueous solution of lithium bromide as an absorbent (solution). In FIG. 1, (1) is a high-temperature regenerator, (2) is a low-temperature regenerator, (3)
Is an absorber, (4) is a condenser, (5) is an evaporator, (6) is a high-temperature heat exchanger, (7) is a low-temperature heat exchanger, (8) to (11) are solution tubes, and (12). Or (14) is the refrigerant liquid pipe, (1
5) is a cold water pipe, and (16) is a cooling water pipe. Also, (17) is a first pump for circulating the refrigerant provided in the middle of the refrigerant liquid pipe (14), and (18) is a second pump for circulating the liquid provided on the absorbent outlet side of the solution pipe (11). It is a pump. Furthermore, (20) is a higher temperature regenerator (1) than the high temperature heat exchanger (6) of the solution pipe (8).
The first flow control valve provided on the side, (21) is a solution pipe (9)
Is a second flow control valve provided in the middle of the process, and (23) is a fuel control valve for controlling fuel supply to a burner (24) provided in the high temperature regenerator (1).

(25)は高温再生器(1)の濃液温度を検出する第1
温度検出器、(26)は低温再生器(2)での冷媒凝縮温
度を検出する第2温度検出器、(27)は第1,第2温度検
出器(25),(26)から信号を入力し、それぞれの温度
に基づいて濃液の濃度を演算する第1演算回路である。
(28)は稀液の温度を検出する第3温度検出器、(30)
は蒸発器(5)の冷媒温度を検出する第4温度検出器で
ある。又、(31)は第2演算回路であり、この第2演算
回路(31)は第3,第4温度検出器(28),(30)から信
号を入力し、各信号に基づいて稀液の濃度を演算する。
さらに、(32)は冷水管(15)の蒸発器(5)出口側に
設けられた第5温度検出器である。
(25) is a first method for detecting the temperature of the concentrated liquid in the high-temperature regenerator (1).
A temperature detector, (26) is a second temperature detector for detecting the refrigerant condensing temperature in the low-temperature regenerator (2), and (27) is a signal from the first and second temperature detectors (25), (26). This is a first arithmetic circuit which inputs and calculates the concentration of the concentrated liquid based on each temperature.
(28) is a third temperature detector for detecting the temperature of the diluted liquid, (30)
Is a fourth temperature detector for detecting the refrigerant temperature of the evaporator (5). Reference numeral (31) denotes a second arithmetic circuit. The second arithmetic circuit (31) receives signals from the third and fourth temperature detectors (28) and (30) and dilutes based on each signal. Is calculated.
Further, (32) is a fifth temperature detector provided on the evaporator (5) outlet side of the cold water pipe (15).

(33)はマイコン等により構成された制御装置であ
り、この制御装置(33)は第1,第2演算回路(27),
(31)からの信号を入力し、濃液と稀液との濃度差に基
づいて第1,第2流量調整弁(20),(21)へ信号を出力
する。さらに、制御装置(33)は第5温度検出器(32)
からの信号に基づいて動作し、燃料調整弁(23)へ信号
を出力する。
(33) is a control device constituted by a microcomputer or the like, and the control device (33) includes first and second arithmetic circuits (27),
The signal from (31) is input, and a signal is output to the first and second flow control valves (20) and (21) based on the concentration difference between the concentrated liquid and the diluted liquid. Further, the control device (33) includes a fifth temperature detector (32).
It operates based on the signal from the controller and outputs a signal to the fuel regulating valve (23).

以下、上記吸収冷凍機の動作について説明する。運転
時、第2ポンプ(18)の運転により稀液が溶液管(8)
を介して高温再生器(1)へ流れる。稀液は高温再生器
(1)のバーナ(24)により加熱され、冷媒が蒸発し、
濃液になり溶液管(10)を通り溶液管(11)へ流れる。
又、冷媒蒸気が冷媒管(12)を通り低温再生器(2)へ
流れ凝縮する。さらに、稀液が溶液管(9)を介して低
温再生器(2)へ流れ、低温再生器(2)にて冷媒が蒸
発し、中間液になる。この中間液は低温再生器(2)か
ら溶液管(11)へ流れ、高温再生器(1)から流れて来
た濃液と一緒になり、吸収器(3)へ流れる。
Hereinafter, the operation of the absorption refrigerator will be described. During operation, the second pump (18) drives the dilute solution into the solution pipe (8).
To the high temperature regenerator (1). The diluted liquid is heated by the burner (24) of the high-temperature regenerator (1), and the refrigerant evaporates.
It becomes a concentrated liquid and flows through the solution pipe (10) to the solution pipe (11).
Further, the refrigerant vapor flows through the refrigerant pipe (12) to the low-temperature regenerator (2) and condenses. Further, the diluted liquid flows to the low-temperature regenerator (2) via the solution pipe (9), and the refrigerant evaporates in the low-temperature regenerator (2) to become an intermediate liquid. This intermediate liquid flows from the low-temperature regenerator (2) to the solution pipe (11), and together with the concentrated liquid flowing from the high-temperature regenerator (1), flows to the absorber (3).

又、低温再生器(2)から冷媒蒸気が凝縮器(4)へ
流れ、凝縮器(4)にて冷却水管(16)を流れる冷却水
と熱交換し凝縮する。そして、凝縮器(4)に溜った冷
媒液が冷媒管(13)を通り蒸発器(5)へ流れる。蒸発
器(5)に溜った冷媒液は第1ポンプ(17)の運転によ
り冷媒管(14)を流れ、冷水管(15)へ散布される。そ
して、冷媒液と熱交換し、温度が低下した冷水が蒸発器
(5)から流出する。
The refrigerant vapor flows from the low-temperature regenerator (2) to the condenser (4), and exchanges heat with the cooling water flowing through the cooling water pipe (16) in the condenser (4) to condense. Then, the refrigerant liquid accumulated in the condenser (4) flows through the refrigerant pipe (13) to the evaporator (5). The refrigerant liquid accumulated in the evaporator (5) flows through the refrigerant pipe (14) by operation of the first pump (17), and is sprayed to the cold water pipe (15). Then, heat exchange occurs with the refrigerant liquid, and the cold water whose temperature has decreased flows out of the evaporator (5).

上記のように吸収冷凍機が運転されているとき、第5
温度検出器(32)からの信号に基づいて制御装置(33)
が動作し、蒸発器(5)から流出する冷水の温度が設定
値より上昇すると、燃料調整弁(23)へ開信号を出力す
る。すると、燃料調整弁(23)の開度が大きくなり、高
温再生器(1)の加熱量が増加する。そして、凝縮器
(4)の冷媒液量が増加し、蒸発器(5)での熱交換量
が増加して冷却水の温度が低下する。そして、冷却水の
温度が設定値より低くなると、制御装置(33)から燃料
調整弁(23)へ閉信号が出力され、高温再生器(1)の
加熱量が減少し、上記の動作とは逆に冷水の温度が上昇
する。以上のように、第5温度検出器(32)が検出する
冷水温度に基づいて高温再生器(1)の加熱量が制御さ
れ、冷水温度が略一定に制御される。
When the absorption chiller is operating as described above,
Control device (33) based on the signal from the temperature detector (32)
Operates to output an open signal to the fuel regulating valve (23) when the temperature of the cold water flowing out of the evaporator (5) rises above a set value. Then, the opening of the fuel regulating valve (23) increases, and the heating amount of the high-temperature regenerator (1) increases. Then, the amount of the refrigerant liquid in the condenser (4) increases, the amount of heat exchange in the evaporator (5) increases, and the temperature of the cooling water decreases. Then, when the temperature of the cooling water becomes lower than the set value, a close signal is output from the control device (33) to the fuel regulating valve (23), and the heating amount of the high temperature regenerator (1) decreases. Conversely, the temperature of the cold water rises. As described above, the heating amount of the high-temperature regenerator (1) is controlled based on the cold water temperature detected by the fifth temperature detector (32), and the cold water temperature is controlled to be substantially constant.

又、第1,第2温度検出器(25),(26)が検出する濃
液温度と冷媒凝縮温度とに基づいて、第1演算回路(2
7)で濃液濃度が演算される。すなわち、第1演算回路
(27)では、第2温度検出器(26)が検出した冷媒凝縮
温度と水の飽和特性とから計算した高温再生器(1)内
の圧力と第1温度検出器(25)の高温再生器(1)出口
側の濃液温度とから溶液濃度曲線に従って濃液濃度を演
算する。又、第3,第4温度検出器(28),(30)が検出
する稀液温度と冷媒温度とに基づいて稀液濃度が演算さ
れる。そして、第1,第2演算回路(27),(31)から濃
液、及び稀液の信号が制御装置(33)へ出力され、濃液
と稀液との濃度差が制御装置(33)にて求められる。こ
こで、制御値(33)には第2図に示したように濃液と稀
液との濃度差が例えば5.5%に設定されている。そし
て、濃液と稀液との濃度差が、設定値になるように、制
御装置(33)は第1,第2流量調整弁(20),(21)へ信
号を出力する。そして、濃度差が設定値より大きいとき
には、制御装置(33)は第1,第2流量調整弁(20)(2
1)の開度を大きくする信号を出力し、高温再生器
(1)、低温再生器(2)へ流れる稀液の量は増加す
る。すると、濃液温度、及び冷媒凝縮温度が低下し、濃
液濃度が低下し、濃度差が略設定値になる。ここで、第
1流量調整弁(20)より第2流量調整弁(21)の開度が
小さくなるように、制御装置(33)はそれぞれの調整弁
(20)(21)へ信号を出力する。又、濃度差が設定値よ
り小さいときには、制御装置(33)は、第1,第2流量調
整弁(20),(21)の開度を小さくする信号を出力し、
濃液濃度が上昇し、濃度差が略設定値になる。
Further, based on the concentrated liquid temperature and the refrigerant condensing temperature detected by the first and second temperature detectors (25) and (26), the first arithmetic circuit (2
The concentrated liquid concentration is calculated in 7). That is, in the first arithmetic circuit (27), the pressure in the high-temperature regenerator (1) calculated from the refrigerant condensation temperature and the saturation characteristic of water detected by the second temperature detector (26) and the first temperature detector ( The concentration of the concentrated solution is calculated from the temperature of the concentrated solution at the outlet side of the high temperature regenerator (1) of 25) according to the solution concentration curve. Further, the concentration of the diluted liquid is calculated based on the diluted liquid temperature and the refrigerant temperature detected by the third and fourth temperature detectors (28) and (30). Then, signals of the concentrated liquid and the diluted liquid are output from the first and second arithmetic circuits (27) and (31) to the control device (33), and the concentration difference between the concentrated liquid and the diluted liquid is determined by the control device (33). Is required. Here, in the control value (33), the concentration difference between the concentrated liquid and the diluted liquid is set to, for example, 5.5% as shown in FIG. Then, the control device (33) outputs a signal to the first and second flow control valves (20) and (21) such that the concentration difference between the concentrated liquid and the diluted liquid becomes the set value. When the concentration difference is larger than the set value, the control device (33) controls the first and second flow control valves (20) (2).
A signal for increasing the opening degree of 1) is output, and the amount of the diluted liquid flowing to the high-temperature regenerator (1) and the low-temperature regenerator (2) increases. Then, the concentrated liquid temperature and the refrigerant condensing temperature decrease, the concentrated liquid concentration decreases, and the concentration difference becomes substantially the set value. Here, the control device (33) outputs a signal to each of the control valves (20) and (21) such that the opening of the second flow control valve (21) is smaller than that of the first flow control valve (20). . When the concentration difference is smaller than the set value, the control device (33) outputs a signal for reducing the opening of the first and second flow rate regulating valves (20) and (21),
The concentration of the concentrated liquid increases, and the concentration difference substantially reaches the set value.

又、吸収冷凍機の運転時、冷却水管(16)を流れる冷
却水温度の変化、又は、吸収器(3)への不凝縮ガスの
滞留等の外乱が発生し、稀液又は濃液の濃度が変化した
場合にも、稀液と濃液との濃度差が設定値になるように
制御装置(33)から第1,第2流量調整弁(20),(21)
へ信号が出力され、高温再生器(1)、及び低温再生器
(2)へ流れる稀液の量が制御される。
In addition, during operation of the absorption refrigerator, disturbance such as a change in the temperature of the cooling water flowing through the cooling water pipe (16) or stagnation of non-condensable gas in the absorber (3) occurs, and the concentration of the diluted liquid or the concentrated liquid is increased. The first and second flow control valves (20), (21) are controlled by the control device (33) so that the concentration difference between the dilute solution and the concentrated solution becomes the set value even when the pressure changes.
And the amount of the dilute solution flowing to the high-temperature regenerator (1) and the low-temperature regenerator (2) is controlled.

上記本発明の実施例によれば、冷却水温度の変化、又
は吸収器(3)への不凝縮ガスの滞留等の外乱により稀
液、又は濃液の濃度が変化した場合には、濃度差が設定
値になるように、制御装置(33)からの信号により第1,
第2流量調整弁(20),(21)の開度が調整され、高温
再生器(1)、及び低温再生器(2)へ流れる稀液の量
が制御されるため、高温再生器(1)の加熱量に合った
量の稀液を高温再生器(1)、及び低温再生器(2)へ
流すことができ、この結果、吸収冷凍機の実効効率(C.
O.P)の向上を図ることができる。
According to the above-described embodiment of the present invention, when the concentration of the diluted liquid or the concentrated liquid changes due to a change in the temperature of the cooling water or disturbance such as stagnation of the non-condensable gas in the absorber (3), the concentration difference is reduced. Is set to the set value by the signal from the control device (33).
The openings of the second flow control valves (20) and (21) are adjusted to control the amount of the dilute solution flowing to the high temperature regenerator (1) and the low temperature regenerator (2). ) Can be supplied to the high-temperature regenerator (1) and the low-temperature regenerator (2) in an amount corresponding to the amount of heating, and as a result, the effective efficiency (C.
OP) can be improved.

又、中間液の温度を検出する第6温度検出器(35)と
冷媒凝縮温度を検出する第7温度検出器(36)とを第1
図に示したように冷凍サイクルに設ける。そして、第3
演算回路(37)にて第6,第7温度検出器(35),(36)
からの信号に基づいて中間液の濃度を演算し、稀液と中
間液との濃度差が設定値になるように制御装置(33)か
ら第1,第2流量調整弁(20),(21)へ信号を出力し、
それぞれの調整弁(20),(21)の開度を調整する。そ
して、高温再生器(1)、及び低温再生器(2)へ流れ
る稀液の量を制御することにより、上記実施例と同様の
作用効果を得ることができる。
Further, a sixth temperature detector (35) for detecting the temperature of the intermediate liquid and a seventh temperature detector (36) for detecting the refrigerant condensing temperature are provided in the first.
Provided in the refrigeration cycle as shown in the figure. And the third
The sixth and seventh temperature detectors (35) and (36) in the arithmetic circuit (37)
The concentration of the intermediate liquid is calculated based on the signal from the controller, and the first and second flow regulating valves (20), (21) are operated by the control device (33) so that the concentration difference between the diluted liquid and the intermediate liquid becomes a set value. ) And output a signal to
Adjust the opening of each adjustment valve (20), (21). Then, by controlling the amount of the dilute solution flowing to the high-temperature regenerator (1) and the low-temperature regenerator (2), it is possible to obtain the same operation and effect as in the above embodiment.

さらに、第2図に鎖線にて示したように稀液と濃液と
の濃度差、又は稀液と中間液との濃度差が高温再生器
(1)の加熱量の増加に伴ない小さくなるように、高温
再生器(1)へ送られる稀液の量と低温再生器(2)へ
送られる稀液の量とを制御することにより、加熱量が小
さいときには濃度差を大きくするために、高温再生器
(1)、及び低温再生器(2)へ流れる稀液の量が上記
実施例の場合より絞られ、高温再生器(1)、及び低温
再生器(2)での熱交換効率を向上させ、C.O.Pを一層
向上させることができる。
Further, as indicated by the chain line in FIG. 2, the concentration difference between the dilute solution and the concentrated solution or the concentration difference between the dilute solution and the intermediate solution becomes smaller as the heating amount of the high-temperature regenerator (1) increases. Thus, by controlling the amount of the dilute solution sent to the high-temperature regenerator (1) and the amount of dilute solution sent to the low-temperature regenerator (2), when the heating amount is small, the concentration difference is increased. The amount of the dilute solution flowing into the high-temperature regenerator (1) and the low-temperature regenerator (2) is reduced as compared with the case of the above embodiment, and the heat exchange efficiency in the high-temperature regenerator (1) and the low-temperature regenerator (2) is reduced. And COP can be further improved.

又、濃液、中間液、及び稀液の濃度をそれぞれ温度検
出器による検出温度に基づく第1,第2,第3演算回路(2
7),(31),(37)での演算により求めているため、
圧力検出器等を使用して濃度を求める場合と比較して、
安価に濃度を求めることができる。
Further, the concentrations of the concentrated liquid, the intermediate liquid, and the diluted liquid are respectively determined by first, second, and third arithmetic circuits (2
7), (31), (37)
Compared to the case where the concentration is obtained using a pressure detector, etc.,
The concentration can be obtained at low cost.

又、高温再生器胴(40)、凝縮低温再生器胴(41)、
及び蒸発吸収器胴(42)に、それぞれ、第1,第2,第3圧
力検出器(43),(44),(45)を設ける。そして、第
1圧力検出器(43)が検出した高温再生器胴(40)内の
圧力と、濃液温度とから第1演算回路(27)にて濃液濃
度を演算し、第2圧力検出器(44)が検出した凝縮低温
再生器胴(41)内の圧力と、中間液温度とから第3演算
回路(37)にて中間液濃度を演算し、且つ、第3圧力検
出器(45)が検出した蒸発吸収器胴(42)内の圧力と、
稀液温度とから第2演算回路(31)にて稀液濃度を演算
する。このことにより、高温再生器胴(40)、凝縮低温
再生器胴(41)、及び蒸発吸収器胴(42)内の各圧力を
演算により求める場合と比較して濃液、稀液、及び中間
液の濃度を正確に求めることができ、濃度差に基づいた
稀液の流量制御を正確に行うことができ、一層C.O.Pを
向上させることができる。
In addition, high temperature regenerator body (40), condensation low temperature regenerator body (41),
The first, second, and third pressure detectors (43), (44), and (45) are provided on the evaporator absorber body (42), respectively. Then, the concentration of the concentrated liquid is calculated by the first arithmetic circuit (27) from the pressure in the high temperature regenerator body (40) detected by the first pressure detector (43) and the temperature of the concentrated liquid. A third arithmetic circuit (37) calculates the intermediate liquid concentration from the pressure in the condensed low-temperature regenerator body (41) detected by the unit (44) and the intermediate liquid temperature, and outputs a third pressure detector (45). ) Detects the pressure inside the evaporator absorber body (42),
A dilute solution concentration is calculated in the second arithmetic circuit (31) from the dilute solution temperature. As a result, compared with the case where each pressure in the high temperature regenerator body (40), the condensing low temperature regenerator body (41), and the evaporative absorber body (42) is calculated, the concentrated liquid, the dilute liquid, and the intermediate liquid are compared. The concentration of the liquid can be obtained accurately, the flow rate of the diluted liquid can be accurately controlled based on the concentration difference, and the COP can be further improved.

又、濃液、稀液、及び中間液の比重を検出する第1,第
2、及び第3比重検出器(51),(52),(53)をそれ
ぞれ設け、各比重と濃液、稀液、及び中間液の温度とか
ら濃液濃度、稀液濃度、及び中間液濃度を第1,第2,第3
演算回路(27),(31).(37)にて演算する。このこ
とにより、濃液、稀液、及び中間液の濃度を正確に求め
ることができ、上記のように各圧力を利用して各濃度を
求めた場合と同様にC.O.Pを向上させることができる。
Further, first, second, and third specific gravity detectors (51), (52), and (53) for detecting the specific gravity of the concentrated liquid, the diluted liquid, and the intermediate liquid are provided, respectively. From the temperature of the liquid and the intermediate liquid, the concentration of the concentrated liquid, the concentration of the diluted liquid, and the concentration of the intermediate liquid are determined as the first, second, and third concentrations.
Arithmetic circuits (27), (31). Calculate in (37). As a result, the concentrations of the concentrated solution, the diluted solution, and the intermediate solution can be accurately obtained, and the COP can be improved in the same manner as when the respective concentrations are obtained using the respective pressures as described above.

第3図は本発明の他の実施例を示したフルパラレルフ
ロー式二重効用吸収冷凍機であり、第1図と同様の構成
のものには同符号が付してあり、詳細な説明は省略す
る。第3図において、(55)は第3ポンプ、(56)は吸
収器(3)と低温再生器(2)との間に配管された溶液
管である。
FIG. 3 shows a full-parallel flow type double effect absorption refrigerator showing another embodiment of the present invention, and the same components as those in FIG. 1 are denoted by the same reference numerals. Omitted. In FIG. 3, (55) is a third pump, and (56) is a solution pipe provided between the absorber (3) and the low-temperature regenerator (2).

上記吸収冷凍機の運転時には、第2,第3ポンプ(1
8),(55)がともに運転され、吸収器(3)内の稀液
が溶液管(8),(56)を介して高温再生器(1)、及
び低温再生器(2)へ流れる。そして、高温再生器
(1)から流出した濃液と、低温再生器(2)から流出
した中間液とがそれぞれ高温熱交換器(6)、及び低温
熱交換器(7)にて稀液と熱交換され降温された後、一
緒になり、吸収器(3)へ流れる。
During the operation of the absorption chiller, the second and third pumps (1
8) and (55) are operated together, and the dilute solution in the absorber (3) flows to the high-temperature regenerator (1) and the low-temperature regenerator (2) via the solution pipes (8) and (56). The concentrated liquid flowing out of the high-temperature regenerator (1) and the intermediate liquid flowing out of the low-temperature regenerator (2) are combined with the dilute liquid in the high-temperature heat exchanger (6) and the low-temperature heat exchanger (7), respectively. After heat exchange and cooling, they are combined and flow to the absorber (3).

上記のようなフルパラレルフロー式二重効用吸収冷凍
機においても、第1図に示したパラレルフロー式二重効
用吸収冷凍機と同様に、稀液と濃液との濃度差、あるい
は稀液と中間液との濃度差が設定値になるように、第1,
第2流量調整弁(20),(21)を調整し、高温再生器
(1)、及び低温再生器(2)へ流れる稀液の量を制御
することにより、同様の作用効果を得ることができる。
In the full parallel flow type double effect absorption refrigerator as described above, similarly to the parallel flow type double effect absorption refrigerator shown in FIG. First and second so that the concentration difference with the intermediate solution becomes the set value.
By adjusting the second flow control valves (20) and (21) to control the amount of the dilute solution flowing to the high-temperature regenerator (1) and the low-temperature regenerator (2), the same operation and effect can be obtained. it can.

さらに、上記実施例において、吸収器(3)から高温
再生器(1)、及び低温再生器(2)へ流れる稀液の量
を第1,第2流量調整弁(20),(21)の開度を調節して
行っていたが、流量の調整を第2ポンプ(18)、又は第
3ポンプ(55)の回転数を制御することにより行った場
合にも、同様の作用効果を得ることができる。
Further, in the above embodiment, the amount of the dilute solution flowing from the absorber (3) to the high-temperature regenerator (1) and the low-temperature regenerator (2) is controlled by the first and second flow control valves (20) and (21). The same operation and effect can be obtained when the flow rate is adjusted by controlling the rotation speed of the second pump (18) or the third pump (55). Can be.

(ト)発明の効果 本発明は以上のように構成された吸収冷凍機の制御方
法であり、吸収器から流出した稀液が高温再生器と低温
再生器とに分かれて流れる吸収冷凍機において、稀液の
濃度と濃液の濃度との差、又は稀液の濃度と中間液の濃
度との差が高温再生機の加熱量の増加に伴ない小さくな
るように高温再生器へ送られる稀液の量、又は低温再生
器へ送られる稀液の量とを制御するため、加熱量が小さ
いときには、高温再生器、及び低温再生器へ流れる稀液
の量を絞ることができ、高温再生器、又は低温再生器の
熱交換効率を向上させ、C.O.Pを一層向上させることが
できる。
(G) Effect of the Invention The present invention is a method for controlling an absorption refrigerator configured as described above. In the absorption refrigerator in which the diluted liquid flowing out of the absorber flows separately into a high-temperature regenerator and a low-temperature regenerator, The diluted liquid sent to the high-temperature regenerator so that the difference between the concentration of the diluted liquid and the concentration of the concentrated liquid, or the difference between the concentration of the diluted liquid and the concentration of the intermediate liquid becomes smaller as the heating amount of the high-temperature regenerator increases. To control the amount of diluted liquid sent to the low-temperature regenerator, or the amount of diluted liquid flowing to the high-temperature regenerator and the low-temperature regenerator when the heating amount is small. Alternatively, the heat exchange efficiency of the low-temperature regenerator can be improved, and the COP can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す吸収冷凍機の回路構成
図、第2図は高温再生器の加熱量と濃液の濃度、稀液の
濃度との関係を示す説明図、第3図は本発明の他の実施
例を示す吸収冷凍機の回路構成図である。 (1)……高温再生器、(2)……低温再生器、(3)
……吸収器、(4)……凝縮器、(5)……蒸発器。
FIG. 1 is a circuit configuration diagram of an absorption refrigerator showing one embodiment of the present invention, FIG. 2 is an explanatory diagram showing a relationship between a heating amount of a high-temperature regenerator and a concentration of a concentrated solution and a concentration of a diluted solution, The figure is a circuit configuration diagram of an absorption refrigerator showing another embodiment of the present invention. (1) High-temperature regenerator (2) Low-temperature regenerator (3)
... absorber, (4) ... condenser, (5) ... evaporator.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高温再生器、低温再生器、凝縮器、蒸発
器、吸収器等をそれぞれ配管し、吸収器から流出した稀
液が低温再生器と高温再生器とへ分配され、低温再生
器、及び高温再生器にて加熱濃縮されて中間液、及び濃
液になり、吸収器へ流れる吸収冷凍機において、稀液の
濃度と濃液の濃度との差、又は稀液の濃度と中間液の濃
度との差が高温再生器の加熱量の増加に伴い小さくなる
ように高温再生器へ送られる稀液の量及び低温再生器へ
送られる稀液の量とを制御することを特徴とする吸収冷
凍機の制御方法。
1. A high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber and the like are respectively piped, and a diluted liquid flowing out of the absorber is distributed to the low-temperature regenerator and the high-temperature regenerator. , And concentrated by heating in a high-temperature regenerator into an intermediate liquid and a concentrated liquid, and in the absorption refrigerator that flows to the absorber, the difference between the concentration of the diluted liquid and the concentration of the concentrated liquid, or the concentration of the diluted liquid and the concentrated liquid The amount of the dilute solution sent to the high-temperature regenerator and the amount of dilute solution sent to the low-temperature regenerator are controlled so that the difference from the concentration of the dilute solution becomes smaller as the heating amount of the high-temperature regenerator increases. Control method of absorption refrigerator.
JP63243291A 1988-09-28 1988-09-28 Control method of absorption refrigerator Expired - Fee Related JP2708809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63243291A JP2708809B2 (en) 1988-09-28 1988-09-28 Control method of absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63243291A JP2708809B2 (en) 1988-09-28 1988-09-28 Control method of absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH0293259A JPH0293259A (en) 1990-04-04
JP2708809B2 true JP2708809B2 (en) 1998-02-04

Family

ID=17101659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63243291A Expired - Fee Related JP2708809B2 (en) 1988-09-28 1988-09-28 Control method of absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2708809B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005033990B3 (en) * 2005-07-21 2006-11-02 TWA Wärmeanlagenbau Tühringen GmbH & CO.KG Device for specifying the solution concentration in an absorption cooling machine comprises two identical sections located between abosrber~s solution pump and solution heat exchanger and solution heat exchanger and choke valve
JP2012077950A (en) * 2010-09-30 2012-04-19 Sanyo Electric Co Ltd Valve device and absorption refrigerator using the same
JP5646385B2 (en) * 2011-03-30 2014-12-24 三洋電機株式会社 Absorption refrigerator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548360Y2 (en) * 1975-07-28 1980-11-12
JPS6170353A (en) * 1984-09-13 1986-04-11 株式会社荏原製作所 Double effect absorption refrigerator

Also Published As

Publication number Publication date
JPH0293259A (en) 1990-04-04

Similar Documents

Publication Publication Date Title
WO1999039140A1 (en) Absorption type refrigerating machine
JP2708809B2 (en) Control method of absorption refrigerator
JP2664436B2 (en) Control method of absorption refrigerator
JP3910014B2 (en) Absorption refrigerator
JP2000274864A (en) Method for controlling absorption refrigerator
JP2708900B2 (en) Absorption refrigerator
JP2532982B2 (en) Absorption refrigerator control device
JP2904451B2 (en) Double effect absorption refrigerator
JPH02101354A (en) Method for controlling absorptive type freezer
JPH0621736B2 (en) Absorption refrigerator
JPS6231825Y2 (en)
JP3218018B2 (en) Double effect absorption refrigerator
JP2883372B2 (en) Absorption chiller / heater
JP3203552B2 (en) Absorption chiller controller
JPH01123960A (en) Dilution driving device for absorption refrigerator
JP3710907B2 (en) Absorption refrigeration system
JPH05312429A (en) Absorption water cooling/heating apparatus
JP3138164B2 (en) Absorption refrigerator
JPH0810090B2 (en) Double-effect air cooling absorption type water heater
JPH0868572A (en) Dual-effect absorption refrigerator
JPH0356861Y2 (en)
JPS6117319Y2 (en)
KR0173495B1 (en) Absorptive type air conditioner
JPS6215736Y2 (en)
JPH0275865A (en) Controlling method for absorption refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees