JP2532982B2 - Absorption refrigerator control device - Google Patents

Absorption refrigerator control device

Info

Publication number
JP2532982B2
JP2532982B2 JP2227671A JP22767190A JP2532982B2 JP 2532982 B2 JP2532982 B2 JP 2532982B2 JP 2227671 A JP2227671 A JP 2227671A JP 22767190 A JP22767190 A JP 22767190A JP 2532982 B2 JP2532982 B2 JP 2532982B2
Authority
JP
Japan
Prior art keywords
water pump
control valve
opening
moving average
average value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2227671A
Other languages
Japanese (ja)
Other versions
JPH04110572A (en
Inventor
英樹 内田
哲郎 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2227671A priority Critical patent/JP2532982B2/en
Publication of JPH04110572A publication Critical patent/JPH04110572A/en
Application granted granted Critical
Publication of JP2532982B2 publication Critical patent/JP2532982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は吸収冷凍機に関し、特に冷却水ポンプなどの
運転を制御する吸収冷凍機の制御装置に関する。
TECHNICAL FIELD The present invention relates to an absorption refrigerator, and more particularly to a controller for an absorption refrigerator that controls the operation of a cooling water pump or the like.

(ロ)従来の技術 例えば特開昭63−129263号公報には、吸収器及び凝縮
器の冷却水管にクーリングタワー及び冷却水ポンプを設
け、冷却水の温度に応じてクーリングタワーの送風機の
運転を制御する冷却水制御装置を備えた吸収冷凍機の冷
却水制御装置が開示されている。そして、制御装置には
外気温度が低いときに、送風機の運転開始温度と停止温
度との温度幅を小さくする機構が設けられている。
(B) Conventional technology For example, in JP-A-63-129263, a cooling tower and a cooling water pump are provided in the cooling water pipes of the absorber and the condenser, and the operation of the blower of the cooling tower is controlled according to the temperature of the cooling water. A cooling water control device for an absorption refrigerator having a cooling water control device is disclosed. The control device is provided with a mechanism for reducing the temperature range between the operation start temperature and the stop temperature of the blower when the outside air temperature is low.

(ハ)発明が解決しようとする課題 上記従来の技術において、一般に吸収冷凍機の負荷を
例えば再生器の燃料制御弁に取り付けたカムスイッチに
より読み取り、所定時間低負荷の状態(例えば50%以
下)が続いた場合、或いは所定時間高負荷の状態(例え
ば75%以下)が続いた場合、タイマーを用いたリレーシ
ーケンスにより冷却水の流量を制御する。
(C) Problem to be Solved by the Invention In the above-mentioned conventional technique, generally, the load of the absorption refrigerator is read by, for example, a cam switch attached to the fuel control valve of the regenerator, and a low load state for a predetermined time (for example, 50% or less). Or if the high load condition continues for a predetermined time (for example, 75% or less), the flow rate of the cooling water is controlled by a relay sequence using a timer.

このように、カムスイッチと、リレーシーケンスのタ
イマを用いている場合、例えば燃料制御弁の開度が50%
以下の状態が10分間続いたときに低負荷を検知しようと
するとき、負荷が45%の状態が例えば9分間連続した場
合でも、瞬時の外乱或いは燃料制御弁の例えばPID制御
のうちの微分制御によって、一瞬でも制御弁開度が50%
を越えると、タイマがリセットされ、その後、制御弁開
度が50%以下になり、負荷が平均的には50%以下である
にもかかわらず、制御装置は低負荷を検知しないので、
冷却水ポンプの制御が行われないという問題が発生す
る。
In this way, when the cam switch and the relay sequence timer are used, for example, the fuel control valve opening is 50%.
When trying to detect a low load when the following conditions continue for 10 minutes, instantaneous disturbance or differential control of PID control of the fuel control valve, for example, even if the state of 45% load continues for 9 minutes The control valve opening is 50% even for a moment
When it exceeds, the timer is reset, then the control valve opening becomes 50% or less, and the control device does not detect the low load even though the load is 50% or less on average,
There is a problem that the cooling water pump is not controlled.

本発明は、負荷の短時間の変動に左右されることなく
冷却水などの流量を制御する吸収冷凍機の制御装置を提
供することを目的とする。
An object of the present invention is to provide a control device for an absorption refrigerating machine that controls the flow rate of cooling water and the like without being affected by a short-term fluctuation in load.

(ニ)課題を解決するための手段 本発明は上記課題を解決するために、蒸発器(4)に
冷却水ポンプ(24)によって冷水を循環し、吸収器
(5)、及び凝縮器(3)に冷却水ポンプ(28)によっ
て冷却水を循環し、高温再生器(1)の燃料制御弁(3
1)の開度を蒸発器(4)の冷水出口温度によって制御
する吸収冷凍機の制御装置において、燃料制御弁(31)
の開度を読み込み、この開度の所定時間の移動平均値を
算出し、この移動平均値に基づいて冷水ポンプ(24)或
いは冷却水ポンプ(25)の運転を制御する制御器(34)
を備えた吸収冷凍機の制御装置を提供するものである。
(D) Means for Solving the Problems In order to solve the above problems, the present invention circulates cold water through a cooling water pump (24) to an evaporator (4), an absorber (5), and a condenser (3). ) Is circulated by the cooling water pump (28) to the fuel control valve (3) of the high temperature regenerator (1).
In a control device for an absorption chiller in which the opening degree of 1) is controlled by the cold water outlet temperature of the evaporator (4), a fuel control valve (31)
The controller (34) for controlling the operation of the chilled water pump (24) or the cooling water pump (25) on the basis of the moving average value of the opening for a predetermined time is calculated.
The present invention provides a control device for an absorption refrigerating machine including the above.

又、燃料制御弁(31)の開度をPID制御する吸収冷凍
機の制御装置において、燃料制御弁(31)の開度を読み
込み、開度の所定時間の移動平均値から負荷の大きさを
検知して冷水ポンプ(24)或いは冷却水ポンプ(28)の
運転を制御する吸収冷凍機の制御装置を提供するもので
ある。
Further, in an absorption chiller control device that performs PID control of the opening of the fuel control valve (31), the opening of the fuel control valve (31) is read and the magnitude of the load is calculated from the moving average value of the opening for a predetermined time. A control device for an absorption chiller that detects and controls the operation of a chilled water pump (24) or a chilled water pump (28).

さらに、蒸発器(4)に温水ポンプ(24)によって温
水を循環し、高温再生器(1)の燃料制御弁(31)の開
度を蒸発器(4)の温水出口温度によって制御する吸収
冷凍機の制御装置において、燃料制御弁(31)の開度を
読み込み、この開度の所定時間の移動平均値を算出し、
この移動平均値に基づいて温水ポンプ(24)の運転を制
御する制御器を備えた吸収冷凍機の制御装置を提供する
ものである。
Furthermore, absorption refrigeration in which hot water is circulated to the evaporator (4) by a hot water pump (24) and the opening of the fuel control valve (31) of the high temperature regenerator (1) is controlled by the hot water outlet temperature of the evaporator (4). In the control device of the machine, read the opening of the fuel control valve (31), calculate the moving average value of this opening for a predetermined time,
It is intended to provide a control device for an absorption chiller including a controller for controlling the operation of the hot water pump (24) based on the moving average value.

(ホ)作用 吸収冷凍機の運転時、制御器(34)は例えばPID制御
される燃料制御弁(31)の開度の移動平均値を算出し、
この移動平均値から負荷の大きさを検知して冷水ポンプ
(24)或いは冷却水ポンプ(28)の運転を制御し、制御
器(34)は短時間の負荷の変化を吸収するので、平均的
な負荷を検知して、冷水ポンプ(24)、或いは冷水ポン
プ(28)の運転を制御することが可能になる。
(E) Action During operation of the absorption refrigerator, the controller (34) calculates a moving average value of the opening of the fuel control valve (31) that is PID controlled,
The magnitude of the load is detected from this moving average value to control the operation of the chilled water pump (24) or the chilled water pump (28), and the controller (34) absorbs the change in the load for a short time. It is possible to control the operation of the cold water pump (24) or the cold water pump (28) by detecting various loads.

又、蒸発器(4)から温水ポンプ(24)によって温水
を供給する場合にも、制御器は温水の負荷に応じて変化
する燃料制御弁(31)の開度を読み込み、この開度の移
動平均値を算出し、短時間の負荷の変化があった場合に
も移動平均値から温水負荷の大きさを検知して温水ポン
プ(24)の運転を制御することが可能になる。
Also, when hot water is supplied from the evaporator (4) by the hot water pump (24), the controller reads the opening of the fuel control valve (31) that changes according to the load of hot water, and moves the opening. It is possible to calculate the average value and control the operation of the hot water pump (24) by detecting the magnitude of the hot water load from the moving average value even when the load changes for a short time.

(ヘ)実施例 以下、本発明の一実施例を図面に基づいて詳細に説明
す。
(F) Embodiment Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図に示したものは二重効用吸収冷温水機であり、
冷媒に水(H2O)、吸収剤(吸収液)に臭化リチウム(L
iBr)水溶液を使用したものである。
The one shown in Fig. 1 is a double-effect absorption chiller / heater,
Water (H 2 O) as the refrigerant, lithium bromide (L) as the absorbent (absorption liquid)
iBr) aqueous solution is used.

第1図において、(1)はガスバーナ(1B)を備えた
高温再生器、(2)は低温再生器、(3)は凝縮器、
(4)は蒸発器、(5)は吸収器、(6)は低温熱交換
器、(7)は高温熱交換器、(8),(9),(9A),
(10),(11),(12)は吸収液配管、(9a)は第1開
閉弁、(15)は吸収液ポンプ、(16),(16A),(1
7),(18)は冷媒配管、(16a)は第2開閉弁、(19)
は冷媒ポンプ、(22)は冷水配管、(22A)は蒸発器熱
交換器、(23)は冷媒ブロー管、(23a)は第3開閉弁
であり、それぞれは第1図に示したように配管接続され
ている。又、(24)は、冷水配管(22)に設けられた冷
水ポンプである。(25)は冷却水配管であり、この冷却
水配管(25)の途中には吸収器熱交換器(26)、及び凝
縮器熱交換器(27)、冷却水ポンプ(28)が設けられて
いる。
In FIG. 1, (1) is a high-temperature regenerator equipped with a gas burner (1B), (2) is a low-temperature regenerator, (3) is a condenser,
(4) is an evaporator, (5) is an absorber, (6) is a low temperature heat exchanger, (7) is a high temperature heat exchanger, (8), (9), (9A),
(10), (11) and (12) are absorption liquid piping, (9a) is the first on-off valve, (15) is absorption liquid pump, (16), (16A), (1
7) and (18) are refrigerant pipes, (16a) is a second on-off valve, and (19)
Is a refrigerant pump, (22) is a cold water pipe, (22A) is an evaporator heat exchanger, (23) is a refrigerant blow pipe, and (23a) is a third on-off valve, each as shown in FIG. Piping is connected. Further, (24) is a cold water pump provided in the cold water pipe (22). (25) is a cooling water pipe, and an absorber heat exchanger (26), a condenser heat exchanger (27), and a cooling water pump (28) are provided in the middle of this cooling water pipe (25). There is.

(30)は蒸発器(4)の出口側の冷水配管(22)に取
付けられた冷水出口温度検出器、(31)は高温再生器
(1)の燃料供給管(1A)に設けられた燃料制御弁(加
熱量制御弁)、(32)は吸収冷温水機の制御盤であり、
この制御盤(32)には負荷に応じて燃料制御弁(31)の
開度を制御する第1制御器(33)と、冷水ポンプ(2
4)、及び冷却水ポンプ(28)の運転を制御する第2制
御器(34)とを備えている。第1制御器(33)はマイク
ロコンピュータから構成され、冷水出口温度検出器から
温度信号を入力して、負荷に応じて燃料制御弁(31)へ
信号を出力する。又、第1制御器(33)は燃料制御弁
(31)に設けられた例えばポテンショメータ(図示せ
ず)から開度信号を入力して冷水出口温度に応じて開度
を例えばPID制御する。又、第2制御器(34)はマイク
ロコンピュータから構成され、第1制御器(33)から例
えば1分毎に燃料制御弁開度の信号を入力し、例えば5
分間の燃料制御弁開度の移動平均値を算出する。ここ
で、燃料制御弁開度の移動平均値は負荷の移動平均値と
等しい。さらに、第2制御器(34)は、移動平均値が例
えば50%以下の状態が所定時間(例えば10分)続いた場
合に冷水ポンプ(24)、及び冷却水ポンプ(28)へ信号
を出力し、それぞれのポンプの能力は例えば極数変換に
よって例えば100%から50%に低下する。又、第2制御
器(34)は冷水ポンプ(24)、及び冷却水ポンプ(28)
の能力が50%であるとき、移動平均値が例えば75%以上
の状態が所定時間(例えば10分)続いた場合には、冷水
ポンプ(24)、及び冷却水ポンプ(28)への信号を停止
する。そして、各ポンプ(24),(28)の運転能力は50
%から100%に向上する。
(30) is a cold water outlet temperature detector attached to the cold water pipe (22) on the outlet side of the evaporator (4), and (31) is fuel provided in the fuel supply pipe (1A) of the high temperature regenerator (1). The control valve (heating amount control valve), (32) is the control panel of the absorption chiller-heater,
The control panel (32) includes a first controller (33) for controlling the opening of the fuel control valve (31) according to the load, and a chilled water pump (2).
4) and a second controller (34) for controlling the operation of the cooling water pump (28). The first controller (33) is composed of a microcomputer, inputs a temperature signal from the cold water outlet temperature detector, and outputs a signal to the fuel control valve (31) according to the load. Further, the first controller (33) inputs an opening signal from, for example, a potentiometer (not shown) provided in the fuel control valve (31), and PID-controls the opening according to the cold water outlet temperature. Further, the second controller (34) is composed of a microcomputer, and inputs a signal of the fuel control valve opening degree from the first controller (33) every one minute, for example, 5
The moving average value of the fuel control valve opening for each minute is calculated. Here, the moving average value of the fuel control valve opening is equal to the moving average value of the load. Further, the second controller (34) outputs a signal to the cold water pump (24) and the cooling water pump (28) when the moving average value is, for example, 50% or less for a predetermined time (for example, 10 minutes). However, the capacity of each pump is reduced, for example, from 100% to 50% due to pole number conversion. The second controller (34) is a chilled water pump (24) and a chilled water pump (28).
If the moving average value is 75% or more for a predetermined time (for example, 10 minutes) when the capacity of is 50%, a signal to the cold water pump (24) and the cooling water pump (28) is sent. Stop. The operating capacity of each pump (24), (28) is 50.
Improve from 100% to 100%.

上記吸収冷温水機の冷水供給の運転時、従来の吸収冷
温水機と同様に第1、第2、第3開閉弁(9a),(16
a),(23a)は閉じており、高温再生器(1)で蒸発し
た冷媒は低温再生機(2)を経て凝縮器(3)へ流れ、
凝縮器熱交換器(27)を流れる水と熱交換して凝縮液化
した後冷媒配管(17)を介して蒸発器(4)へ流れる。
そして、冷媒が冷水配管(22)内の水と熱交換して蒸発
し、気化熱によって冷水配管(22)内の水が冷却され
る。そして、冷水が負荷に循環して冷房運転が行われ
る。また、蒸発器(4)で蒸発した冷媒は吸収器(5)
で吸収液に吸収される。そして、冷媒を吸収して濃度が
薄くなった吸収液が吸収液ポンプ(15)の運転により低
温熱交換器(6)、及び高温熱交換器(7)を経て高温
再生器(1)へ送られる。高温再生器(1)に入った吸
収液はバーナ(1B)によって加熱され、冷媒が蒸発し、
中濃度の吸収液が高温熱交換器(7)を経て低温再生器
(2)へ入る。そして、吸収液は高温再生器(1)から
冷媒配管(16)を流れて来た冷媒蒸気によって加熱さ
れ、さらに冷媒が蒸発分離され濃度が高くなる。高濃度
になった吸収液(以下濃液という)は低温熱交換器
(6)を経て温度低下して吸収器(5)へ送られ、散布
される。
During the operation of supplying cold water to the absorption chiller-heater, the first, second and third on-off valves (9a), (16
a) and (23a) are closed, the refrigerant evaporated in the high temperature regenerator (1) flows through the low temperature regenerator (2) to the condenser (3),
After heat exchange with the water flowing through the condenser heat exchanger (27) to condense and liquefy, it flows to the evaporator (4) through the refrigerant pipe (17).
Then, the refrigerant exchanges heat with the water in the cold water pipe (22) to evaporate, and the water in the cold water pipe (22) is cooled by the heat of vaporization. Then, cold water is circulated through the load to perform the cooling operation. The refrigerant evaporated in the evaporator (4) is absorbed by the absorber (5).
Is absorbed by the absorbent. Then, the absorption liquid which has absorbed the refrigerant and becomes thin in concentration is sent to the high temperature regenerator (1) through the low temperature heat exchanger (6) and the high temperature heat exchanger (7) by the operation of the absorption liquid pump (15). To be The absorbing liquid that has entered the high temperature regenerator (1) is heated by the burner (1B), the refrigerant evaporates,
The medium-concentration absorption liquid enters the low temperature regenerator (2) through the high temperature heat exchanger (7). Then, the absorbing liquid is heated by the refrigerant vapor flowing from the high temperature regenerator (1) through the refrigerant pipe (16), and the refrigerant is evaporated and separated to have a high concentration. The highly concentrated absorption liquid (hereinafter referred to as the concentrated liquid) is sent to the absorber (5) after being lowered in temperature through the low temperature heat exchanger (6) and sprayed.

上記のように吸収冷凍機が運転しているとき、第1制
御器(33)は冷水出口温度検出器(30)から温度信号を
入力する。そして、第1制御器(33)は冷水出口温度、
即ち負荷に応じて燃料制御弁(31)へ信号を出力し、燃
料制御弁(31)の開度は変化して高温再生器(1)の加
熱量は変化する。又、第2制御器(34)は第1制御器
(33)から所定時間毎に燃料制御弁(31)の開度を読み
込む。そして、第2図の時刻(T1)では第2制御器(3
4)は5分間、即ち1分毎の計5回の燃料制御弁開度の
移動平値を算出する。また、時刻(T1)から1分後の時
刻(T2)で第2制御器(34)は5分間の燃料制御弁開度
の移動平均値を算出する。その後、同様に1分毎に第2
制御器(34)は燃料制御弁開度の移動平均値を算出す
る。
When the absorption refrigerator is operating as described above, the first controller (33) inputs a temperature signal from the cold water outlet temperature detector (30). And, the first controller (33) is the chilled water outlet temperature,
That is, a signal is output to the fuel control valve (31) according to the load, the opening of the fuel control valve (31) changes, and the heating amount of the high temperature regenerator (1) changes. Further, the second controller (34) reads the opening degree of the fuel control valve (31) from the first controller (33) every predetermined time. Then, at the time (T 1 ) in FIG. 2, the second controller (3
In step 4), the moving average of the fuel control valve opening is calculated for 5 minutes, that is, every 5 minutes in total. Further, the second controller (34) calculates a moving average value of the fuel control valve opening degree for 5 minutes at time (T 2 ) one minute after the time (T 1 ). After that, similarly every 2 minutes
The controller (34) calculates a moving average value of the fuel control valve opening.

その後、負荷が減少して燃料制御弁(31)の開度が50
%以下になり、時刻(T3)にて、燃料制御弁開度の移動
平均値が50%以下になり、この状態、即ち低負荷の状態
が時刻(T4)まで10分間継続した場合には第2制御器
(34)は動作して制御信号を冷水ポンプ(24)及び冷却
水ポンプ(28)へ出力する。ここで、時刻(T3)から時
刻(T4)までの間の時刻(t1)で燃料制御弁(31の開度
が50%と短い時間越えた場合も移動平均値は変化しな
い。このため、冷水ポンプ(24)、及び冷却水ポンプ
(28)の極数変換により、各ポンプの能力は100%から5
0%に減少し、冷水及び冷却水の流量が100%から50%に
なる。
After that, the load is reduced and the fuel control valve (31) is opened to 50 degrees.
%, The moving average value of the fuel control valve opening becomes 50% or less at time (T 3 ), and if this state, that is, the low load state continues for 10 minutes until time (T 4 ). The second controller (34) operates to output a control signal to the cold water pump (24) and the cooling water pump (28). Here, the moving average value does not change even when the opening degree of the fuel control valve (31) exceeds a short time of 50% at the time (t 1 ) between the time (T 3 ) and the time (T 4 ). Therefore, by changing the number of poles of the chilled water pump (24) and the chilled water pump (28), the capacity of each pump is from 5% to 5%.
It decreases to 0% and the flow rate of cold water and cooling water goes from 100% to 50%.

その後、負荷が増加して燃料制御弁(31)の開度が50
%より大きくなり、時刻(T5)にて燃料制御弁開度の移
動平均値が例えば75%より高くなり、この状態、即ち負
荷が増加した状態が10分間継続した場合には第2制御器
(34)は制御信号を停止する。このため、冷水ポンプ
(24)、及び冷却水ポンプ(28)の極数変換により、各
ポンプの能力は50%から100%に増加し、冷水及び冷却
水の流量が50%から100%に増加する。
After that, the load increases and the fuel control valve (31) is opened to 50 degrees.
%, The moving average value of the fuel control valve opening becomes higher than, for example, 75% at time (T 5 ), and if this state, that is, the state where the load increases continues for 10 minutes, the second controller (34) stops the control signal. Therefore, by changing the number of poles of the cold water pump (24) and the cooling water pump (28), the capacity of each pump increases from 50% to 100%, and the flow rate of cold water and cooling water increases from 50% to 100%. To do.

その後、負荷が減少し、燃料制御弁(31)の開度が50
%以下になり、第2制御器(34)にて算出された燃料制
御弁開度の移動平均値が50%以下になり、この状態が所
定時間継続した場合には第2制御器(34)から冷水ポン
プ(24)及び冷却水ポンプ(28)へ信号が出力され、上
記と同様に冷水及び冷却水の流量は100%から50%に減
少する。
After that, the load decreases and the fuel control valve (31) is opened by 50 degrees.
%, The moving average value of the fuel control valve opening calculated by the second controller (34) becomes 50% or less, and if this state continues for a predetermined time, the second controller (34) A signal is output from the cold water pump (24) to the cooling water pump (28), and the flow rate of the cold water and the cooling water is reduced from 100% to 50% as described above.

以後、同様に負荷の変化に伴い燃料制御弁(31)の開
度が変化し、この開度の移動平均値が75%以上の状態が
所定時間継続した場合には冷水ポンプ(24)及び冷却水
ポンプ(28)の能力は100%になり、冷水、及び冷却水
の流量は増加する。又、燃料制御弁開度の移動平均値が
50%以下の状態が所定時間継続した場合には第2制御器
(34)が動作して冷水ポンプ(24)、及び冷却水ポンプ
(28)の能力は減少する。
After that, if the opening of the fuel control valve (31) changes in the same way as the load changes and the moving average value of this opening remains at 75% or more for a predetermined time, the chilled water pump (24) and the cooling The capacity of the water pump (28) becomes 100%, and the flow rate of cold water and cooling water increases. Also, the moving average value of the fuel control valve opening is
When the state of 50% or less continues for a predetermined time, the second controller (34) operates and the capacity of the cold water pump (24) and the cooling water pump (28) decreases.

又、上記吸収冷温水機の温水供給運転時には、第1、
第2、第3開閉弁(9a),(16a),(23a)は例えば手
動により開かれる。又、冷水ポンプ(24)は温水ポンプ
として運転され、冷却水ポンプ(28)の運転は停止して
いる。このため、高温再生器(1)で蒸発した冷媒は冷
媒配管(16A)から吸収器(5)へ流れ、吸収器(5)
から蒸発器(4)へ流れる。そして、蒸気は蒸発器熱交
換器(22A)を流れる温水と熱交換し、凝縮した冷媒液
は蒸発器(4)から冷媒ブロー管(23)を経て吸収器
(5)へ流れる。又、高温再生器(1)で冷媒が分離し
て濃度が高くなった吸収液が吸収液配管(9A)を経て吸
収器(5)へ流れる。
In the hot water supply operation of the absorption chiller-heater, the first,
The second and third on-off valves (9a), (16a), (23a) are opened manually, for example. Further, the cold water pump (24) is operated as a hot water pump, and the operation of the cooling water pump (28) is stopped. Therefore, the refrigerant evaporated in the high temperature regenerator (1) flows from the refrigerant pipe (16A) to the absorber (5), and the absorber (5)
To the evaporator (4). Then, the vapor exchanges heat with the hot water flowing through the evaporator heat exchanger (22A), and the condensed refrigerant liquid flows from the evaporator (4) through the refrigerant blow pipe (23) to the absorber (5). Further, the absorbing liquid whose concentration has increased due to the separation of the refrigerant in the high temperature regenerator (1) flows to the absorber (5) through the absorbing liquid pipe (9A).

上記のように吸収冷温水機から温水が供給されている
とき、上記の冷水供給時と同様に、第1制御器(33)は
温水出口温度に応じて燃料制御弁(31)へ信号を出力
し、開度は変化する。又、第1制御器(33)は燃料制御
弁(31)に設けられたポテンショメータから開度信号を
入力して温水出口温度に応じて開度を制御する。又、第
2制御器(34)は冷水供給時と同様に第1制御器(33)
から燃料制御弁開度の信号を入力し、燃料制御弁開度の
移動平均値を算出する。そして、例えば温水の負荷が低
下して移動平均値が50%以下の状態が10分間継続した場
合には、第2制御器(34)は制御信号を冷水ポンプ(2
4)へ出力する。このため、ポンプ(24)の能力は100%
から50%に減少して温水の流量が減少する。その後、温
水の負荷が増加して移動平均値が75%以上の状態が10分
間継続した場合には、第2制御器(34)は制御信号の出
力を停止して冷水ポンプ(24)の能力は50%から100%
に増加する。
When hot water is being supplied from the absorption chiller-heater as described above, the first controller (33) outputs a signal to the fuel control valve (31) according to the hot water outlet temperature, as in the case of supplying cold water as described above. However, the opening changes. Further, the first controller (33) inputs an opening signal from a potentiometer provided in the fuel control valve (31) to control the opening according to the hot water outlet temperature. Also, the second controller (34) is the same as the first controller (33) when the cold water is supplied.
Then, a signal of the fuel control valve opening is input to calculate a moving average value of the fuel control valve opening. Then, for example, when the load of hot water is reduced and the state where the moving average value is 50% or less continues for 10 minutes, the second controller (34) sends a control signal to the cold water pump (2
Output to 4). Therefore, the capacity of the pump (24) is 100%.
The flow rate of hot water decreases from 50% to 50%. After that, when the load of hot water increases and the moving average value remains at 75% or more for 10 minutes, the second controller (34) stops outputting the control signal and the capacity of the cold water pump (24). Is 50% to 100%
Increase to.

その後、同様に第2制御器(34)は燃料制御弁(31)
の開度の移動平均値を算出し、冷水ポンプ(24)の運転
を制御する。
After that, similarly, the second controller (34) causes the fuel control valve (31) to move.
The moving average value of the opening of is calculated and the operation of the chilled water pump (24) is controlled.

上記実施例によれば、第2制御器(34)は所定時間毎
に燃料制御弁(31)の開度を読み込み、所定時間の燃料
制御弁開度の移動平均値を算出し、この移動平均値が50
%以下の状態が10分間継続した場合に信号を出力し、冷
水ポンプ(24)、及び冷却水ポンプ(28)の能力を低下
させるので、負荷が一度50%以下になった後例えば短時
間負荷が増加し、燃料制御弁開度が50%を越えた場合に
も、この短時間の負荷が変化を吸収して平均的な負荷を
検知することができ、この結果、負荷が低下したことを
確実に検知して各ポンプ(24),(28)の運転を制御す
ることができる。
According to the above-mentioned embodiment, the second controller (34) reads the opening of the fuel control valve (31) at every predetermined time, calculates the moving average value of the fuel control valve opening at the predetermined time, and calculates the moving average. Value 50
A signal is output when the condition below 10% continues for 10 minutes and the capacity of the cold water pump (24) and the cooling water pump (28) is reduced. Is increased and the fuel control valve opening exceeds 50%, this short-time load can absorb the change and detect the average load. It is possible to reliably detect and control the operation of each pump (24), (28).

又、第2制御器(34)は所定時間の燃料制御弁開度の
移動平均値を算出し、低負荷の状態から高負荷の状態に
移り、移動平均値が75%以上の状態が10分間続いた場合
には冷水ポンプ(24)及び冷却水ポンプ(28)への信号
の出力を停止するので、高負荷に移った後に例えばPID
制御での微分効果などによって短時間低負荷になった場
合にも、この短時間の負荷の変化を吸収して平均的な負
荷を検知することができ、この結果、低負荷から高負荷
に移ったときにも確実に負荷の変化を検知して冷水ポン
プ(24)、及び冷却水ポンプ(28)の運転を制御するこ
とができる。
The second controller (34) calculates a moving average value of the fuel control valve opening for a predetermined time, shifts from a low load state to a high load state, and the moving average value is 75% or more for 10 minutes. If it continues, the output of signals to the chilled water pump (24) and the chilled water pump (28) will be stopped.
Even if the load is low for a short time due to the differential effect of control, etc., it is possible to detect the average load by absorbing the change in the load for a short time.As a result, the load changes from low to high. In this case, it is possible to reliably detect the load change and control the operation of the cold water pump (24) and the cooling water pump (28).

さらに、吸収冷温水機から温水を供給する場合にも、
第2制御器(34)は所定時間の燃料制御弁の移動平均値
を算出し、低負荷、或いは高負荷の状態が継続したとき
には、短時間の負荷の大きな変化が発生した場合にも、
この変化を吸収して平均的な負荷を検知することがで
き、この結果、確実に負荷の変化を検知して冷水ポンプ
(24)の運転を制御することができる。
Furthermore, when supplying hot water from the absorption chiller-heater,
The second controller (34) calculates a moving average value of the fuel control valve for a predetermined time, and when a low load or a high load continues, even when a large change in load occurs for a short time,
This change can be absorbed to detect the average load, and as a result, the change in the load can be reliably detected and the operation of the cold water pump (24) can be controlled.

尚、上記実施例において、高温再生器(1)にボイラ
ーを備えた吸収冷温水機について説明したが、高温再生
器(1)の駆動熱源が高温高圧の蒸気であり、加熱量制
御弁によって高温再生器の蒸気の流量を制御する吸収冷
凍機においても、加熱量制御弁の開度の移動平均値を算
出して冷水ポンプ(24)、或いは冷却水ポンプ(28)の
運転を制御することにより同様の作用効果を得ることが
できる。
In the above embodiment, the absorption chiller-heater equipped with the boiler in the high temperature regenerator (1) has been described, but the driving heat source of the high temperature regenerator (1) is high temperature and high pressure steam, and the high temperature regenerator controls the high temperature. Even in an absorption refrigerator that controls the flow rate of steam in the regenerator, the moving average value of the opening of the heating amount control valve is calculated to control the operation of the cold water pump (24) or the cooling water pump (28). The same effect can be obtained.

又、燃料制御弁開度を冷水出口温度、或いは温度出口
温度などに基づいてPID制御以外の例えばファジィ制御
などによって制御する吸収冷凍機においても、上記実施
例と同様に燃料制御弁開度の移動平均値に基づいて冷水
ポンプ(24)、或いは冷却水ポンプ(28)の運転を制御
することによって同様の作用効果を得ることができる。
Further, even in an absorption refrigerating machine in which the fuel control valve opening degree is controlled by, for example, fuzzy control other than the PID control based on the cold water outlet temperature or the temperature outlet temperature, the movement of the fuel control valve opening degree is the same as in the above embodiment. Similar operations and effects can be obtained by controlling the operation of the cold water pump (24) or the cooling water pump (28) based on the average value.

さらに、蒸発器(4)から冷水のみを供給する吸収冷
凍機においても上記実施例と同様に燃料制御弁開度の移
動平均値に基づいて冷水ポンプなどを制御することによ
って同様の作用効果を得ることができる。
Further, also in the absorption refrigerating machine which supplies only cold water from the evaporator (4), similar effects can be obtained by controlling the cold water pump or the like based on the moving average value of the fuel control valve opening degree as in the above embodiment. be able to.

又、複数の冷水ポンプ及び冷却水ポンプを備えた吸収
冷凍機において、燃料制御弁開度の移動平均値に基づい
て低負荷、又は高負荷を検知して冷水ポンプ及び冷却水
ポンプの運転台数を制御した場合にも同様の作用効果を
得ることができる。又、冷水ポンプ及び冷却水ポンプを
インバータによって回転数制御する吸収冷凍機の制御装
置においても、上記移動平均値に基づいて各ポンプの運
転を制御することによって同様の作用効果を得ることが
できる。
In addition, in an absorption chiller equipped with multiple chilled water pumps and cooling water pumps, the number of operating chilled water pumps and cooling water pumps is detected by detecting low load or high load based on the moving average value of the fuel control valve opening. Similar effects can be obtained even when controlled. Further, also in the control device for the absorption chiller in which the chilled water pump and the chilled water pump are controlled in rotation speed by the inverter, the same operational effect can be obtained by controlling the operation of each pump based on the moving average value.

(ト)発明の効果 本発明は以上のように構成された吸収冷凍機の制御装
置であり、再生器の燃料制御弁などの加熱量制御弁の開
度を読み込み、この開度の所定時間の移動平均値を算出
し、この移動平均値に基づいて冷水ポンプ、冷却水ポン
プ、或いは温水ポンプの運転を制御する制御器を備えて
いるので、高負荷、或いは低負荷を短時間の加熱量制御
弁の開度変化に関係なく確実に検知することができ、こ
の結果、冷水ポンプ、冷却水ポンプ、或いは温水ポンプ
を高負荷、又は低負荷に対応して変流量制御することが
できる。
(G) Effect of the Invention The present invention is a control device for an absorption chiller configured as described above, which reads the opening of a heating amount control valve such as a fuel control valve of a regenerator, and reads the opening for a predetermined time. It has a controller that calculates the moving average value and controls the operation of the chilled water pump, cooling water pump, or hot water pump based on this moving average value. It is possible to surely detect regardless of the change in the opening of the valve, and as a result, it is possible to control the variable flow rate of the cold water pump, the cooling water pump, or the hot water pump according to high load or low load.

又、加熱量制御弁の開度をマイコンに読み込み、開度
の所定時間の移動平均値から負荷の大きさを検知して冷
水ポンプ或いは冷却水ポンプの運転を制御するので、吸
収冷凍機の高負荷、或いは低負荷の状態が続いたとき、
短時間の加熱量制御弁の開度の変化を吸収して、上記高
負荷、或いは低負荷を確実に検知することができ、この
結果、加熱量制御弁の開度の短時間の変化に関係なく、
冷水ポンプ或いは、冷却水ポンプを高負荷、又は低負荷
に対応して変流量制御することができる。
Also, the opening of the heating control valve is read into the microcomputer, and the operation of the chilled water pump or the chilled water pump is controlled by detecting the magnitude of the load from the moving average value of the opening for a predetermined time. When the load or low load continues,
It is possible to reliably detect the high load or the low load by absorbing the change in the opening of the heating amount control valve for a short time. Without
The cold water pump or the cooling water pump can be subjected to variable flow rate control in response to high load or low load.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す吸収冷温水機の回路構
成図、第2図は制御弁開度、移動平均値の算出タイミン
グ、移動平均値、第2制御器の信号出力の状況を示すタ
イミングチャートである。 (1)……高温再生器、(2)……低温再生器、(3)
……凝縮器、(4)……蒸発器、(5)……吸収器、
(24)……冷水ポンプ(温水ポンプ)、(28)……冷却
水ポンプ、(31)……加熱量制御弁(燃料制御弁)、
(34)……第2制御器。
FIG. 1 is a circuit configuration diagram of an absorption chiller-heater showing an embodiment of the present invention, and FIG. 2 is a control valve opening, a moving average value calculation timing, a moving average value, and a signal output state of a second controller. 2 is a timing chart showing (1) …… High temperature regenerator, (2) …… Low temperature regenerator, (3)
… Condenser, (4) …… Evaporator, (5) …… Absorber,
(24) …… Cold water pump (hot water pump), (28) …… Cooling water pump, (31) …… Heating amount control valve (fuel control valve),
(34) …… Second controller.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蒸発器、吸収器、再生器、及び凝縮器を配
管接続して冷凍サイクルを形成すると共に、蒸発器に冷
水ポンプによって冷水を循環し、かつ、吸収器及び凝縮
器に冷却水ポンプによって冷却水を循環し、再生器の加
熱量制御弁の開度を蒸発器の冷水温度によって制御する
吸収冷凍機の制御装置において、加熱量制御弁の開度を
読み込み、この開度の所定時間の移動平均値を算出し、
この移動平均値に基づいて上記冷水ポンプ、或いは冷却
水ポンプの運転を制御する制御器を備えたことを特徴と
する吸収冷凍機の制御装置。
1. An evaporator, an absorber, a regenerator, and a condenser are connected by piping to form a refrigeration cycle, and cold water is circulated to the evaporator by a cold water pump, and cooling water is supplied to the absorber and the condenser. In an absorption chiller control device that circulates cooling water with a pump and controls the opening of the heating amount control valve of the regenerator according to the cold water temperature of the evaporator, reads the opening of the heating amount control valve and Calculate the moving average of time,
An absorption chiller control device comprising a controller for controlling the operation of the chilled water pump or the chilled water pump based on the moving average value.
【請求項2】蒸発器の冷水出口温度により再生器の燃料
制御弁をPID制御する吸収冷凍機の制御装置において、
燃料制御弁の開度をマイコンに読み込み、上記開度の所
定時間の移動平均値から負荷の大きさを検知して冷水ポ
ンプ或いは冷却水ポンプの運転を制御することを特徴と
する吸収冷凍機の制御装置。
2. A control device for an absorption chiller, which PID-controls a fuel control valve of a regenerator according to a cold water outlet temperature of an evaporator,
The absorption chiller is characterized by reading the opening of the fuel control valve into a microcomputer and detecting the magnitude of the load from the moving average value of the opening for a predetermined time to control the operation of the cold water pump or the cooling water pump. Control device.
【請求項3】蒸発器、吸収器、再生器、及び凝縮器を配
管接続して冷凍サイクルを形成すると共に、蒸発器にポ
ンプによって温水を循環し、再生器の加熱量制御弁の開
度を蒸発器の温水温度によって制御する吸収冷凍機の制
御装置において、加熱量制御弁の開度を読み込み、この
開度の所定時間の移動平均値を算出し、この移動平均値
に基づいて上記温水ポンプの運転を制御する制御器を備
えたことを特徴とする吸収冷凍機の制御装置。
3. An evaporator, an absorber, a regenerator, and a condenser are connected by piping to form a refrigeration cycle, and hot water is circulated to the evaporator by a pump to adjust the opening of a heating amount control valve of the regenerator. In a controller for an absorption chiller controlled by the hot water temperature of an evaporator, the opening of a heating amount control valve is read, a moving average value of this opening for a predetermined time is calculated, and the hot water pump is based on this moving average value. An absorption chiller control device comprising a controller for controlling the operation of the absorption chiller.
JP2227671A 1990-08-28 1990-08-28 Absorption refrigerator control device Expired - Fee Related JP2532982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2227671A JP2532982B2 (en) 1990-08-28 1990-08-28 Absorption refrigerator control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2227671A JP2532982B2 (en) 1990-08-28 1990-08-28 Absorption refrigerator control device

Publications (2)

Publication Number Publication Date
JPH04110572A JPH04110572A (en) 1992-04-13
JP2532982B2 true JP2532982B2 (en) 1996-09-11

Family

ID=16864507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2227671A Expired - Fee Related JP2532982B2 (en) 1990-08-28 1990-08-28 Absorption refrigerator control device

Country Status (1)

Country Link
JP (1) JP2532982B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102074912B1 (en) * 2019-04-16 2020-03-17 (주)월드에너지 Refrigerator for controlling pump inverter depending on loading amount

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309032A (en) * 2003-04-08 2004-11-04 Hiroshi Ogawa Central air conditioning and heating equipment and its operation control method
JP2017172896A (en) * 2016-03-24 2017-09-28 東京瓦斯株式会社 Absorption refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102074912B1 (en) * 2019-04-16 2020-03-17 (주)월드에너지 Refrigerator for controlling pump inverter depending on loading amount

Also Published As

Publication number Publication date
JPH04110572A (en) 1992-04-13

Similar Documents

Publication Publication Date Title
JP2532982B2 (en) Absorption refrigerator control device
JP2985513B2 (en) Absorption cooling and heating system and its control method
JP2010078298A (en) Absorption refrigerator
JP2001099474A (en) Air conditioner
JP2708809B2 (en) Control method of absorption refrigerator
JPS602584B2 (en) Absorption chiller safety device
JPS6117319Y2 (en)
JP3831425B2 (en) Control method of absorption chiller / heater
JPH05312429A (en) Absorption water cooling/heating apparatus
JPS6118366Y2 (en)
JPH0275865A (en) Controlling method for absorption refrigerator
JP2885637B2 (en) Absorption refrigeration apparatus and control method thereof
JP2918665B2 (en) Operation stop method and stop control device for absorption chiller / chiller / heater
JP2744034B2 (en) Absorption refrigerator
JP3831427B2 (en) Heat input control method of absorption refrigerator
JP2883372B2 (en) Absorption chiller / heater
JP3326240B2 (en) Control method of absorption refrigerator
JPH0868572A (en) Dual-effect absorption refrigerator
JP3157668B2 (en) Absorption chiller / heater
JP2002005538A (en) Absorptive freezer and cooling water flow rate control method
JP3429904B2 (en) Absorption refrigerator
JP2592014B2 (en) Absorption chiller / heater
JPH0317473A (en) Absorption cold and hot water air conditioner
JPH05312430A (en) Absorption refrigerator
JPH1038403A (en) Input-heat controller of absorption type water chiller/ heater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees