JP3326240B2 - Control method of absorption refrigerator - Google Patents

Control method of absorption refrigerator

Info

Publication number
JP3326240B2
JP3326240B2 JP16192093A JP16192093A JP3326240B2 JP 3326240 B2 JP3326240 B2 JP 3326240B2 JP 16192093 A JP16192093 A JP 16192093A JP 16192093 A JP16192093 A JP 16192093A JP 3326240 B2 JP3326240 B2 JP 3326240B2
Authority
JP
Japan
Prior art keywords
heating
temperature
regenerator
concentration
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16192093A
Other languages
Japanese (ja)
Other versions
JPH0719651A (en
Inventor
圭司 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP16192093A priority Critical patent/JP3326240B2/en
Publication of JPH0719651A publication Critical patent/JPH0719651A/en
Application granted granted Critical
Publication of JP3326240B2 publication Critical patent/JP3326240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は吸収式冷凍機に関し、特
に、再生器の加熱量を冷水出口音頭に基づいて制御する
吸収式冷凍機の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator, and more particularly to a control device for an absorption refrigerator which controls the heating amount of a regenerator based on a chilled water outlet.

【0002】[0002]

【従来の技術】例えば実公昭62−6449号公報に
は、蒸発器の冷水出口温度による再生器の加熱量を冷却
水の吸収器への入口温度により補償し、冷却水の温度が
次第に低くなるのに従い冷水出口温度の設定値を高くす
ることにより燃料制御弁の開度を調節する吸収冷凍機の
制御装置が開示されている。
2. Description of the Related Art For example, Japanese Utility Model Publication No. Sho 62-6449 discloses that the amount of heating of a regenerator due to the temperature of a cooling water outlet of an evaporator is compensated for by the temperature of the cooling water at the inlet to the absorber, and the temperature of the cooling water gradually decreases. Discloses a control device for an absorption refrigerator that adjusts the opening of a fuel control valve by increasing the set value of a chilled water outlet temperature in accordance with the above.

【0003】たとえば特開昭58−160783号公報
には、凝縮器の冷媒凝縮温度から凝縮圧力を算出する
か、直接凝縮圧力を検出し、この圧力と低温再生温度と
により濃液濃度を算出し、この濃液の温度が一番低くな
る低温熱交換器出口温度を別に算出し、この温度の吸収
液結晶濃度と算出した濃液濃度との差を濃度余裕度と
し、この濃度余裕度が設定値より大きいときには加熱源
の入力を増大させ、設定値より小さいときには減少させ
る制御を行い、結晶防止と高効率運転とを図るようにし
た吸収冷凍機の制御装置が開示されている。
For example, Japanese Patent Application Laid-Open No. 58-160783 discloses that the condensing pressure is calculated from the refrigerant condensing temperature of the condenser, or the condensing pressure is directly detected, and the concentration of the concentrated liquid is calculated from this pressure and the low temperature regeneration temperature. The outlet temperature of the low-temperature heat exchanger at which the temperature of the concentrated liquid becomes the lowest is separately calculated, and the difference between the crystal concentration of the absorbing liquid at this temperature and the calculated concentration of the concentrated liquid is defined as the concentration margin, and the concentration margin is set. A control device for an absorption refrigerator is disclosed in which the input of the heating source is increased when the value is larger than the set value, and the control is performed to decrease the input when the value is smaller than the set value.

【0004】[0004]

【発明が解決しようとする課題】上記実公昭62−64
49号公報に開示されている吸収冷凍機の制御装置にい
おいて、冷却水入口温度が高いときに冷水負荷が大きく
なった場合には、再生器の温度あるいは圧力が高くな
り、吸収冷凍機が安全停止する虞れがあった。また、外
気温度が低く冷却水入口温度が低くなったとき、再生器
での加熱量が大きく再生器から吸収器に流れる濃液濃度
が高い場合には結晶が発生する虞れがあり、また、再生
器での加熱量が大きく、再生器の燃料消費量が大きくな
るという問題が発生していた。
Problems to be Solved by the Invention
In the absorption chiller control device disclosed in Japanese Patent Publication No. 49, when the cooling water load increases when the cooling water inlet temperature is high, the temperature or pressure of the regenerator increases and the absorption chiller increases. Could be safely stopped. Also, when the outside air temperature is low and the cooling water inlet temperature is low, when the amount of heating in the regenerator is large and the concentration of the concentrated liquid flowing from the regenerator to the absorber is high, crystals may be generated. There has been a problem that the amount of heating in the regenerator is large and the fuel consumption of the regenerator is large.

【0005】上記特開昭58−160783号公報に開
示された吸収冷凍機の制御装置において、再生器の加熱
源の入力は濃液余裕度に基づいて制御されるとともに、
冷水出口温度に基づいて加熱源がの入力が制御され、双
方の制御量が加熱源の制御量として加熱量制御弁に与え
られる。このため、例えば冷水出口温度が設定値に達し
ているとき、濃液濃度が上昇して濃度余裕度が設定値よ
り小さくなると、加熱量は減少される。しかしながら、
濃度が薄くなると、冷凍能力が出にくくなるので、冷水
出口温度温度は上昇してくる。すると、冷水出口温度温
度の上昇に伴い、加熱量が増大されて冷凍能力が増大す
るように制御される。すると、また、濃液の濃度が上昇
して濃度余裕度が小さくなり、結晶の危険はいっこうに
緩和されないという問題が発生する。
In the control apparatus of the absorption refrigerator disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 58-160783, the input of the heating source of the regenerator is controlled based on the margin of concentrated liquid,
The input of the heating source is controlled based on the chilled water outlet temperature, and both control amounts are given to the heating amount control valve as the control amount of the heating source. Therefore, for example, when the chilled water outlet temperature has reached the set value, if the concentration of the concentrated solution increases and the concentration margin becomes smaller than the set value, the heating amount is reduced. However,
When the concentration becomes low, the refrigeration capacity becomes difficult to appear, so that the temperature of the cold water outlet temperature rises. Then, as the chilled water outlet temperature rises, the amount of heating is controlled so that the refrigeration capacity is increased. Then, the concentration of the concentrated solution increases, the concentration margin becomes small, and the danger of crystallization is not alleviated further.

【0006】以上のように、冷水出口温度と濃度余裕度
の両方を同時に設定値に合わせようとする制御を成立さ
せることは困難であり、優先順位をもった制御が必要で
ある。
As described above, it is difficult to establish control for simultaneously adjusting both the chilled water outlet temperature and the concentration allowance to the set values, and control with a priority is required.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するために、再生器4、凝縮器6、蒸発器1及び吸収器
2などを配管接続し、蒸発器1の冷水出口温度に基づい
て再生器4の加熱を停止、弱加熱、強加熱の3位置で制
御する吸収冷凍機の制御方法において、吸収器2の冷却
水入口温度が高温設定値より高いとき、あるいは低温設
定値より低いときには、冷却水の入口温度に基づいて再
生器4の加熱の最大位置を制御し、且つ、再生器4の加
熱が最大位置になるまでは冷却水入口温度に関係なく冷
水出口温度に基づいて再生器4の加熱を停止、弱加熱、
強加熱の3位置で制御する吸収式冷凍機の制御方法を提
供するものである。
In order to solve the above-mentioned problems, the present invention connects a regenerator 4, a condenser 6, an evaporator 1, an absorber 2 and the like with a pipe, and determines a temperature of a cold water outlet of the evaporator 1 based on the temperature. In the control method of the absorption refrigerator in which the heating of the regenerator 4 is stopped and controlled at three positions of weak heating and strong heating, when the cooling water inlet temperature of the absorber 2 is higher than the high temperature set value or lower than the low temperature set value In some cases, the maximum heating position of the regenerator 4 is controlled based on the cooling water inlet temperature, and regeneration is performed based on the cooling water outlet temperature regardless of the cooling water inlet temperature until the heating of the regenerator 4 reaches the maximum position. Stop heating of vessel 4, weak heating,
An object of the present invention is to provide a control method of an absorption refrigerator controlled at three positions of strong heating.

【0008】また、濃液濃度が上昇して所定濃度になっ
たときには、再生器4の加熱を所定時間毎に濃液濃度が
所定濃度になったときの加熱位置と、濃液濃度が所定濃
度になったときの加熱位置より加熱量の少ない加熱位置
とに制御する収式冷凍機の制御方法を提供するものであ
る。また、濃液濃度が上昇して所定濃度になったときに
は、再生器4の加熱を濃液濃度が所定濃度になったとき
の加熱位置より加熱量の少ない加熱位置に所定時間制御
する吸収式冷凍機の制御方法を提供するものである。
When the concentration of the concentrated liquid rises to a predetermined concentration, the heating of the regenerator 4 is performed at predetermined time intervals when the concentration of the concentrated liquid reaches the predetermined concentration, It is intended to provide a control method of a collecting refrigeration machine that controls the heating position to a heating position having a smaller heating amount than the heating position at the time of becoming. Further, when the concentration of the concentrated solution rises to the predetermined concentration, the heating of the regenerator 4 is controlled to a heating position having a smaller heating amount than the heating position when the concentration of the concentrated solution reaches the predetermined concentration for a predetermined time. The present invention provides a method of controlling a machine.

【0009】[0009]

【作用】冷却水の温度が上昇して高温設定値より高くな
った場合には、冷却水入口温度の上昇に対応して再生器
4の加熱の最大位置が弱加熱に制限され、冷水出口温度
に基づく再生器4の加熱が強加熱になった場合にも、再
生器4は弱加熱の運転を行い、再生器4での吸収液の加
熱が抑えられ、再生器4の温度あるいは圧力の大幅な上
昇を容易に回避することができ、冷却水温度の上昇によ
る吸収式冷凍機の停止を回避することが可能になる。
When the temperature of the cooling water rises above the high temperature set value, the maximum heating position of the regenerator 4 is limited to weak heating in response to the rise of the cooling water inlet temperature, and the cooling water outlet temperature is reduced. Even if the heating of the regenerator 4 based on the above becomes strong heating, the regenerator 4 performs the operation of weak heating, the heating of the absorbent in the regenerator 4 is suppressed, and the temperature or pressure of the regenerator 4 is greatly increased. Such a rise can be easily avoided, and the stoppage of the absorption refrigerator due to a rise in the cooling water temperature can be avoided.

【0010】また、冷却水の温度が低下して低温設定値
より低くなった場合には、冷却水入口温度の低下に対応
して再生器4の加熱の最大位置が弱加熱に制限され、冷
水出口温度に基づく再生器4の加熱が強加熱になった場
合にも、再生器4は弱加熱の運転を行い、再生器4での
吸収液の加熱が抑えられ、冷媒蒸気の発生は減少して再
生器4から吸収器に戻る吸収液の濃度の大幅な上昇を防
止して結晶の発生を回避することができと共に、吸収冷
凍機の運転コストを低減することが可能になる。
When the temperature of the cooling water drops below the low temperature set value, the maximum heating position of the regenerator 4 is limited to weak heating in response to the cooling water inlet temperature drop. Even when the heating of the regenerator 4 based on the outlet temperature becomes a strong heating, the regenerator 4 performs a weak heating operation, the heating of the absorbing liquid in the regenerator 4 is suppressed, and the generation of refrigerant vapor is reduced. As a result, it is possible to prevent a significant increase in the concentration of the absorbing liquid returning from the regenerator 4 to the absorber, to avoid generation of crystals, and to reduce the operating cost of the absorption refrigerator.

【0011】また、濃液濃度が上昇して所定濃度になっ
たときには、再生器4の燃焼は所定濃度になった時の加
熱位置とこの加熱位置より少ない加熱位置とに所定時間
毎に繰り返し制御され、再生器4の加熱を冷水出口温度
に基づいて停止、弱加熱及び強加熱の3位置のうちのい
ずれかに制御しており、加熱が弱加熱あるいは強加熱の
いずれの位置に制御されている場合にも再生器4での吸
収液加熱量が減少するため、吸収液の濃縮が減速される
と共に、吸収器2での冷媒蒸気の吸収が続き、再生器4
から吸収器2に戻る濃液の濃度が薄くなり、吸収液の結
晶を防止することが可能になる。
When the concentration of the concentrated liquid increases and reaches a predetermined concentration, the combustion of the regenerator 4 is repeatedly controlled at a predetermined time interval between a heating position when the predetermined concentration is reached and a heating position lower than the heating position. The heating of the regenerator 4 is stopped based on the cold water outlet temperature, and controlled to one of three positions of weak heating and strong heating, and the heating is controlled to any position of weak heating or strong heating. Also, when the amount of heating of the absorbent in the regenerator 4 is reduced, the concentration of the absorbent is reduced, and the absorption of the refrigerant vapor in the absorber 2 is continued.
The concentration of the concentrated liquid returning from the filter to the absorber 2 becomes thin, and it becomes possible to prevent crystallization of the absorbing liquid.

【0012】また、加熱が3位置に制御されている再生
器4において、濃液濃度が所定濃度まで上昇した場合に
は、再生器4の加熱は所定濃度になった時の加熱位置と
この加熱位置より少ない加熱位置とに所定時間毎に繰り
返し制御され、上記3位置の制御のうち再生器4の加熱
を2位置の制御に限定することによって再生器4の加熱
量を容易に減少させることができ、濃液濃度の上昇に容
易に対応することが可能になる。
Further, in the regenerator 4 in which the heating is controlled at three positions, when the concentration of the concentrated liquid rises to a predetermined concentration, the heating of the regenerator 4 is performed at the heating position when the concentration reaches the predetermined concentration and the heating position. The heating amount of the regenerator 4 is easily reduced by controlling the heating of the regenerator 4 to the two-position control among the three-position control at a predetermined time interval. It is possible to easily cope with an increase in the concentration of the concentrated solution.

【0013】さらに、濃液濃度が上昇して所定濃度にな
ったときには高温再生器4の燃焼は所定濃度になった時
の加熱位置より少ない加熱位置に制御され、再生器4の
加熱を冷水出口温度に基づいて停止、弱加熱及び強加熱
の3位置のうちのいずれかに制御しており、加熱が弱加
熱あるいは強加熱のいずれの位置に制御されている場合
にも再生器4での吸収液加熱量が減少するため、吸収液
の濃縮が速やかに減速されると共に、吸収器2での冷媒
蒸気の吸収が続き、再生器4から吸収器2に戻る濃液の
濃度が薄くなり、吸収液の結晶を防止することが可能に
なる。
Further, when the concentration of the concentrated liquid rises to a predetermined concentration, the combustion of the high-temperature regenerator 4 is controlled to a heating position lower than the heating position at the time when the concentration reaches the predetermined concentration. Based on the temperature, it is controlled to one of the three positions of stop, weak heating and strong heating. Even if the heating is controlled to any position of weak heating or strong heating, absorption by the regenerator 4 is performed. Since the amount of liquid heating decreases, the concentration of the absorbing liquid is quickly decelerated, and the absorption of the refrigerant vapor in the absorber 2 continues. It becomes possible to prevent crystallization of the liquid.

【0014】[0014]

【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。図1は冷媒に例えば水、吸収液(溶液)
に臭化リチウム(LiBr)溶液を用いた吸収式冷凍機
の概略構成図であり、1は蒸発器、2は吸収器、3は蒸
発器1及び吸収器2を収納した蒸発器吸収器胴(以下、
下胴という)、4は高温熱源によって加熱される高温再
生器、5A及び5Bはそれぞれ高温再生器4に収納され
た第1、第2ガスバーナ、6は低温再生器、7は凝縮
器、8は低温再生器6及び凝縮器7を収納した低温再生
器凝縮器胴(以下、上胴という)、9は低温熱交換器、
10は高温熱交換器、11ないし15は吸収液配管、1
6は吸収液ポンプ、17及び18は冷媒配管、19は冷
媒循環配管、20は冷媒ポンプ、21A及び21Bはそ
れぞれ各ガスバ−ナ5A、5Bに接続されたガス配管、
22A及び22Bはそれぞれ各ガス配管21A及び21
Bの途中に設けられた第1、第2燃料制御弁、23は途
中に蒸発器熱交換器24が設けられた冷水配管であり、
それぞれは図1に示したように配管接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows that the refrigerant is, for example, water and an absorbing liquid (solution).
FIG. 1 is a schematic configuration diagram of an absorption refrigerator using a lithium bromide (LiBr) solution as an evaporator, 1 is an evaporator, 2 is an absorber, 3 is an evaporator absorber body (3) containing an evaporator 1 and an absorber 2. Less than,
4 is a high-temperature regenerator heated by a high-temperature heat source, 5A and 5B are first and second gas burners housed in the high-temperature regenerator 4, 6 is a low-temperature regenerator, 7 is a condenser, and 8 is a condenser. A low-temperature regenerator condenser body (hereinafter referred to as an upper body) housing the low-temperature regenerator 6 and the condenser 7, a low-temperature heat exchanger 9;
10 is a high-temperature heat exchanger, 11 to 15 are absorption liquid pipes, 1
6 is an absorption liquid pump, 17 and 18 are refrigerant pipes, 19 is a refrigerant circulation pipe, 20 is a refrigerant pump, 21A and 21B are gas pipes connected to the respective gas burners 5A and 5B,
22A and 22B are gas pipes 21A and 21B, respectively.
The first and second fuel control valves 23 provided in the middle of B are cold water pipes provided with the evaporator heat exchanger 24 in the middle,
Each is connected by piping as shown in FIG.

【0015】また、25は冷却水配管であり、この冷却
水配管25の途中に吸収器熱交換器26及び凝縮器熱交
換器27が設けられている。また、28は冷却塔、30
は冷却水ポンプであり、冷却塔28及び冷却水ポンプ3
0を配管接続することにより冷却回路が形成される。3
1は冷水配管23の蒸発器1の出口側に設けられた冷水
出口温度検出器である第1温度検出器、32は冷却水配
管25の吸収器入口側に設けられた冷却水の温度を検出
する第2温度検出器である。また、33は例えばマイコ
ンにより構成された制御装置であり、この制御装置33
は第1、第2温度検出器31、32から温度信号を入力
して動作し、第1、第2燃料制御弁22A、22Bに開
閉信号を出力する。
Reference numeral 25 denotes a cooling water pipe, and an absorber heat exchanger 26 and a condenser heat exchanger 27 are provided in the cooling water pipe 25. 28 is a cooling tower, 30
Denotes a cooling water pump, and the cooling tower 28 and the cooling water pump 3
A cooling circuit is formed by connecting 0 to the pipe. 3
1 is a first temperature detector which is a cold water outlet temperature detector provided on the outlet side of the evaporator 1 of the cold water pipe 23, and 32 detects the temperature of the cooling water provided on the absorber inlet side of the cooling water pipe 25. A second temperature detector. Reference numeral 33 denotes a control device constituted by a microcomputer, for example.
Operates by inputting temperature signals from the first and second temperature detectors 31 and 32 and outputs an open / close signal to the first and second fuel control valves 22A and 22B.

【0016】以下、制御装置33の構成について説明す
る。34は第1、第2温度検出器31、32から信号を
入力して信号変換して中央演算処理装置(以下CPUと
いう)35へ出力する入力インタ−フェ−ス、36は本
発明に関する制御プログラムなどが記憶されている記憶
装置(以下ROMという)、37はCPU35からの信
号を入力して第1、第2燃料制御弁22A、22Bに信
号を出力する出力インタ−フェ−ス、38は所定時間毎
に信号を出力する信号発生器(以下CLOOCKとい
う)、40は各温度検出器が検出した温度を記憶する読
み込み消去可能な記憶装置(以下RAMという)であ
る。
Hereinafter, the configuration of the control device 33 will be described. Reference numeral 34 denotes an input interface for inputting signals from the first and second temperature detectors 31 and 32, converting the signals, and outputting the converted signals to a central processing unit (hereinafter referred to as a CPU) 35; A storage device (hereinafter referred to as a ROM) in which a signal from the CPU 35 is input and an output interface for outputting a signal to the first and second fuel control valves 22A and 22B is designated by a reference numeral 37; A signal generator (hereinafter, referred to as CLOOCK) that outputs a signal every time, and a read / erasable storage device (hereinafter, referred to as RAM) 40 that stores the temperature detected by each temperature detector.

【0017】上記ROM36には、図2に示したように
ヒステリシスを有した冷却水入口温度と加熱量最大位置
との関係、及び図3に示したようにヒステリシスを有し
た冷水出口温度と第1、第2燃料制御弁22A、22B
へ出力する開閉信号即ち、加熱量との関係が記憶され、
ここで、冷水出口温度に基づいて第1、第2燃料制御弁
22A、22Bへ出力する開閉信号は図2に示された加
熱量最大位置に制限される。
The ROM 36 stores the relationship between the cooling water inlet temperature having hysteresis as shown in FIG. 2 and the maximum heating amount position, and the cold water outlet temperature having hysteresis as shown in FIG. , The second fuel control valve 22A, 22B
Open / close signal to be output to, that is, the relationship with the heating amount is stored,
Here, the open / close signals output to the first and second fuel control valves 22A and 22B based on the chilled water outlet temperature are limited to the heating amount maximum position shown in FIG.

【0018】上記吸収式冷凍機の冷水供給の運転時、従
来の吸収式冷凍機と同様に高温再生器4で蒸発した冷媒
は低温再生器6を経て凝縮器7へ流れ、凝縮器熱交換器
27を流れる冷却水と熱交換して凝縮液化した後冷媒配
管18を介して蒸発器1へ流れる。そして、冷媒が蒸発
器熱交換器24を流れる水と熱交換して蒸発し、気化熱
によって蒸発器熱交換器24を流れる水が冷却される。
そして、冷水が負荷に循環する。また、蒸発器1で蒸発
した冷媒は吸収器2で吸収液に吸収される。冷媒を吸収
して濃度が薄くなった吸収液が吸収液ポンプ16の運転
によって低温熱交換器9及び高温熱交換器10を経て高
温再生器4へ送られる。高温再生器4へ送られた吸収液
は加熱されて冷媒が蒸発し、中濃度の吸収液が高温熱交
換器10を経て低温再生器6は流れる。低温再生器6で
吸収液は高温再生器10から冷媒配管17を流れてきた
冷媒蒸気によって加熱され、さらに冷媒蒸気が分離され
濃度が高くなる。高濃度になった吸収液は低温熱交換器
9を経て温度低下して吸収器2へ送られ、散布される。
During the operation of the above-mentioned absorption chiller for supplying cold water, the refrigerant evaporated in the high-temperature regenerator 4 flows to the condenser 7 through the low-temperature regenerator 6 similarly to the conventional absorption chiller, and the heat exchanger is connected to the condenser. After being condensed and liquefied by exchanging heat with the cooling water flowing through 27, it flows to the evaporator 1 via the refrigerant pipe 18. Then, the refrigerant exchanges heat with water flowing through the evaporator heat exchanger 24 to evaporate, and the water flowing through the evaporator heat exchanger 24 is cooled by heat of vaporization.
Then, cold water circulates through the load. Further, the refrigerant evaporated in the evaporator 1 is absorbed by the absorbing liquid in the absorber 2. The absorption liquid whose concentration has been reduced by absorbing the refrigerant is sent to the high-temperature regenerator 4 via the low-temperature heat exchanger 9 and the high-temperature heat exchanger 10 by the operation of the absorption liquid pump 16. The absorbing liquid sent to the high-temperature regenerator 4 is heated to evaporate the refrigerant, and the medium-density absorbing liquid flows through the high-temperature heat exchanger 10 to the low-temperature regenerator 6. In the low-temperature regenerator 6, the absorbing liquid is heated by the refrigerant vapor flowing from the high-temperature regenerator 10 through the refrigerant pipe 17, and the refrigerant vapor is further separated to increase the concentration. The high-concentration absorbent is cooled down through the low-temperature heat exchanger 9 and sent to the absorber 2 where it is dispersed.

【0019】以上のように、吸収式冷凍機が運転されて
いるときの高温再生器4の加熱量制御について説明す
る。第1、第2温度検出器31、32各温度は入力イン
タ−フェ−ス34及びCPU35を介してRAM38に
一時記憶される。そして、CLOCK40からの信号に
基づいて所定時間毎にRAM38に記憶されている冷水
入口温度及び冷却水入口温度がCPU35へ読み込まれ
ると共に、ROM36に記憶されている図2に示された
関係及び図3に示された関係が読み込まれる。そして、
CPU35にて、検出された冷水出口温度及び冷却水温
度と上記の関係から第1、第2燃料制御弁22A、22
Bの開閉即ち、加熱量が決定される。
The control of the heating amount of the high-temperature regenerator 4 during the operation of the absorption refrigerator as described above will be described. The temperatures of the first and second temperature detectors 31 and 32 are temporarily stored in a RAM 38 via an input interface 34 and a CPU 35. Then, the cooling water inlet temperature and the cooling water inlet temperature stored in the RAM 38 are read into the CPU 35 at predetermined time intervals based on the signal from the CLOCK 40, and the relationship shown in FIG. Is read. And
The CPU 35 detects the first and second fuel control valves 22A, 22A from the above relationship between the detected chilled water outlet temperature and the chilled water temperature.
The opening and closing of B, that is, the heating amount is determined.

【0020】例えば、夏期で外気温度が上昇する前で第
2温度検出器32が検出する冷却水入口温度が例えば2
8℃のときには、図2に示されているように高温再生器
4の加熱量最大位置は強燃焼、即ち加熱量の最大時には
第2燃料制御弁22A、22Bの双方が開いて高温再生
器4で吸収液の強加熱が行われるように制御される。こ
のため、第1温度検出器31が検出した冷水出口温度と
図3に示された関係に基づいてCPU35は第1、第2
燃料制御弁22A、22Bへ開閉信号を出力し、高温再
生器4の加熱は第1、第2燃料制御弁22A、22B双
方が閉じている停止、第1燃料制御弁22Aのみが開き
第1ガスバーナ5Aの燃焼による弱加熱(弱燃焼)、第
1、第2燃料制御弁22A、22Bが開き第1、第2ガ
スバーナ5A、5Bの燃焼による強加熱(強燃焼)の3
位置に制御される。
For example, in summer, before the outside air temperature rises, the cooling water inlet temperature detected by the second temperature detector 32 is, for example, 2
When the temperature is 8 ° C., as shown in FIG. 2, the maximum heating amount of the high temperature regenerator 4 is strong combustion, that is, when the heating amount is the maximum, both the second fuel control valves 22A and 22B are opened and the high temperature regenerator 4 is opened. Is controlled so that the absorption liquid is strongly heated. Therefore, based on the relationship between the cold water outlet temperature detected by the first temperature detector 31 and the relationship shown in FIG.
An open / close signal is output to the fuel control valves 22A and 22B, heating of the high-temperature regenerator 4 is stopped when both the first and second fuel control valves 22A and 22B are closed, and only the first fuel control valve 22A is opened and the first gas burner is opened. 3 of weak heating (combustion) by combustion of 5A, and strong heating (combustion) by combustion of first and second gas burners 5A and 5B by opening first and second fuel control valves 22A and 22B.
Controlled by position.

【0021】また、夏期に外気温度が上昇して冷却塔3
5の冷却能力が低下し、第2温度検出器32が検出した
冷却水入口温度が高温設定値(例えば34℃)より高く
なると、制御装置33が動作して図2に示したように高
温再生器4の加熱量最大位置が弱加熱、即ち第1燃料制
御弁22Aが開いて第1ガスバーナ5Aのみが燃焼する
状態に制限される。従って、冷却水入口温度が34℃よ
り高くなった場合には冷水出口温度が上昇して設定温度
より高くなり、冷水出口温度に基づく加熱位置が強加
熱、即ち第1、第2燃料制御弁22A、22Bの開閉制
御が双方の弁を開く位置になった場合にも、第1燃料制
御弁22Aのみの開による弱加熱に制限される。そし
て、冷水出口温度に応じて高温発生器4の加熱位置は弱
加熱または停止(消火)に制御され、高温再生器4の温
度あるいは圧力が大幅に上昇することが回避される。
In the summer, the outside air temperature rises and the cooling tower 3
5, when the cooling water inlet temperature detected by the second temperature detector 32 becomes higher than the high temperature set value (for example, 34 ° C.), the control device 33 operates to regenerate the high temperature as shown in FIG. The maximum heating position of the heater 4 is limited to a state in which weak heating is performed, that is, the first fuel control valve 22A is opened and only the first gas burner 5A burns. Therefore, when the cooling water inlet temperature becomes higher than 34 ° C., the chilled water outlet temperature rises and becomes higher than the set temperature, and the heating position based on the chilled water outlet temperature is strongly heated, that is, the first and second fuel control valves 22A. , 22B is limited to weak heating by opening only the first fuel control valve 22A. Then, the heating position of the high-temperature generator 4 is controlled to be weakly heated or stopped (extinguished) according to the cold water outlet temperature, so that the temperature or pressure of the high-temperature regenerator 4 is prevented from increasing significantly.

【0022】さらに、外気温度が上昇して冷却塔35の
冷却能力が低下し、第2温度検出器32が検出した冷却
水入口温度が設定値(例えば38℃)より高くなると、
制御装置33が動作して図2に示したように高温再生器
4の加熱量最大位置が停止に切り替わり、第1、第2燃
料制御弁22A、22Bの開閉が双方の弁が閉じて加熱
が停止する状態に制限される。従って、冷却水入口温度
が38℃より高くなった場合には冷水出口温度が上昇し
て設定温度より高くなり、冷水出口温度に基づく加熱位
置が弱加熱あるいは強加熱、即ち第1、第2燃料制御弁
22A、22Bの開閉制御が第1燃料制御弁22Aのみ
を開く位置あるいは第1、第2燃料制御弁22A、22
B双方の弁を開く位置になった場合にも、第1、第2燃
料制御弁22A、22Bの双方が閉じた停止の状態に制
限され、冷水出口温度が変化した場合にも高温再生器4
の加熱位置は停止に制御され、高温再生器4の温度ある
いは圧力が大幅に上昇することが確実に回避される。
Further, when the outside air temperature rises and the cooling capacity of the cooling tower 35 decreases, and the cooling water inlet temperature detected by the second temperature detector 32 becomes higher than a set value (for example, 38 ° C.),
The control device 33 operates to switch the heating amount maximum position of the high-temperature regenerator 4 to stop as shown in FIG. 2, and the first and second fuel control valves 22A and 22B are opened and closed to heat both the valves. It is limited to a state where it stops. Therefore, when the cooling water inlet temperature becomes higher than 38 ° C., the cold water outlet temperature rises and becomes higher than the set temperature, and the heating position based on the cold water outlet temperature is weakly or strongly heated, that is, the first and second fuels. The opening / closing control of the control valves 22A and 22B is performed by opening only the first fuel control valve 22A or the first and second fuel control valves 22A and 22B.
B, both the first and second fuel control valves 22A, 22B are limited to a closed stop state when both valves are in the open position, and even when the chilled water outlet temperature changes, the high temperature regenerator 4
The heating position is controlled to be stopped, so that the temperature or pressure of the high-temperature regenerator 4 is prevented from significantly increasing.

【0023】その後、外気温度が低下して冷却塔35の
冷却能力が向上し、第2温度検出器32が検出した冷却
水入口温度が設定値(例えば36℃)より低くなると、
制御装置33が動作して図2に示したように高温再生器
4の加熱量最大位置が弱加熱に切り替わり、第1温度検
出器31が検出した冷水出口温度に基づいて高温再生器
4の加熱は第1、第2燃料制御弁22A、22B双方が
閉じている停止、第1燃料制御弁22Aのみが開き第1
ガスバーナ5Aの燃焼による弱加熱、第1、第2燃料制
御弁22A、22Bが開き第1、第2ガスバーナ5A、
5Bの燃焼による強加熱の3位置に制御される。
Thereafter, when the outside air temperature decreases and the cooling capacity of the cooling tower 35 improves, and the cooling water inlet temperature detected by the second temperature detector 32 becomes lower than a set value (for example, 36 ° C.),
The controller 33 operates to switch the maximum heating amount of the high-temperature regenerator 4 to weak heating as shown in FIG. 2, and to heat the high-temperature regenerator 4 based on the cold water outlet temperature detected by the first temperature detector 31. Is a stop in which both the first and second fuel control valves 22A and 22B are closed, and only the first fuel control valve 22A is open and the first
Weak heating due to combustion of the gas burner 5A, the first and second fuel control valves 22A and 22B are opened, and the first and second gas burners 5A,
It is controlled to three positions of strong heating by combustion of 5B.

【0024】その後、さらに、外気温度が低下して冷却
塔35の冷却能力が向上し、第2温度検出器32が検出
した冷却水入口温度が設定値(例えば18℃)より低く
なると、制御装置33が動作して図2に示したように高
温再生器4の加熱量最大位置が弱加熱に切り替わり、第
1燃料制御弁22Aが開いて第1ガスバーナ5Aのみが
燃焼する状態に制限される。従って、冷却水入口温度が
18℃より低くなった場合には冷水出口温度に応じて高
温発生器4の加熱位置は弱加熱または停止に制御され、
高温再生器4の燃料消費を低減することができ、且つ冷
水出口温度が上昇した場合にも、高温再生器4の加熱位
置が弱加熱に制限され、高温再生器4での冷媒蒸気の分
離量が少なくなり、高温再生器4から流出する吸収液の
濃度は下がり、低温再生器6から流出する吸収液の濃度
を下げることができ、低温熱交換器9などでの結晶の発
生を回避することができる。
Thereafter, when the outside air temperature further decreases and the cooling capacity of the cooling tower 35 improves, and the cooling water inlet temperature detected by the second temperature detector 32 becomes lower than a set value (for example, 18 ° C.), the controller 2, the maximum heating amount of the high-temperature regenerator 4 is switched to the weak heating as shown in FIG. 2, the first fuel control valve 22A is opened, and the state where only the first gas burner 5A burns is limited. Therefore, when the cooling water inlet temperature becomes lower than 18 ° C., the heating position of the high temperature generator 4 is controlled to be weakly heated or stopped according to the cold water outlet temperature,
The fuel consumption of the high-temperature regenerator 4 can be reduced, and even when the cold water outlet temperature rises, the heating position of the high-temperature regenerator 4 is limited to weak heating, and the amount of refrigerant vapor separated in the high-temperature regenerator 4 And the concentration of the absorbing solution flowing out of the high-temperature regenerator 4 decreases, and the concentration of the absorbing solution flowing out of the low-temperature regenerator 6 can be reduced, thereby avoiding the generation of crystals in the low-temperature heat exchanger 9 and the like. Can be.

【0025】なお、上記実施例において高温再生器4に
ガスバーナーを2個設け、各ガスバーナーに接続された
第1、第2燃料配管21A、21Bに第1、第2燃料制
御弁22A、22Bを設け、それぞれの燃料制御弁の開
閉によって停止、弱加熱及び強加熱の3位置制御を行う
ようにしたが、例えば高温再生器4にガスバーナー5
A、5Bを合わせた能力のガスバーナーを1個設け、こ
のガスバーナーに供給されるガスの量を燃料配管に設け
られた制御弁の開度を0%、50%及び100%に切り
替え、高温再生器4の加熱を停止、弱加熱及び強加熱の
3位置に制御するようにしてもよい。
In the above embodiment, two gas burners are provided in the high-temperature regenerator 4, and the first and second fuel control valves 22A and 22B are provided in the first and second fuel pipes 21A and 21B connected to each gas burner. The three-position control of stop, weak heating and strong heating is performed by opening and closing the respective fuel control valves.
A gas burner having the combined capacity of A and 5B is provided, and the amount of gas supplied to the gas burner is switched to 0%, 50% and 100% by opening the control valve provided in the fuel pipe. The heating of the regenerator 4 may be stopped, and the heating may be controlled to three positions of weak heating and strong heating.

【0026】さらに、高温再生器4の熱源が例えば高温
高圧の蒸気の場合にも高温再生器4に設けられる加熱器
を2個に分割し、それぞれの加熱器に供給される蒸気を
蒸気ガスバーナーの場合と同様に制御してもよい。ま
た、加熱器を1個設けて蒸気の供給量を制御する制御弁
の開度を0%、50%及び100%に切り替え、高温再
生器4の加熱を停止、弱加熱及び強加熱の3位置に制御
するようにしてもよい。
Further, even when the heat source of the high-temperature regenerator 4 is, for example, high-temperature and high-pressure steam, the heater provided in the high-temperature regenerator 4 is divided into two parts, and the steam supplied to each heater is separated by a steam gas burner. The control may be performed in the same manner as in the case of. Further, the opening degree of the control valve for controlling the steam supply amount by providing one heater is switched between 0%, 50% and 100%, and the heating of the high-temperature regenerator 4 is stopped. May be controlled.

【0027】以下本発明の第2の実施例について図4に
基づいて説明する。なお、図4において図1と同様の構
成のものには同様の符号を付し、その詳細な説明は省略
する。42は凝縮器7に設けられた冷媒の凝縮温度を検
出する第3温度検出器、43は低温再生器6の出口側に
設けられて再生温度を検出する第4温度検出器である。
44は制御装置であり、この制御装置は第1の実施例に
て示した制御装置と同様に第1、第3及び第4温度検出
器31、42、43から信号を入力して信号変換して中
央演算処理装置(以下CPUという)35へ出力する入
力インタ−フェ−ス34、本発明に関する制御プログラ
ムなどが記憶されている記憶装置(以下ROMという)
36、CPU35からの信号を入力して第1、第2燃料
制御弁22A、22Bに信号を出力する出力インタ−フ
ェ−ス37、所定時間毎に信号を出力する信号発生器
(以下CLOOCKという)38、所定時間をカウント
するタイマ39、各温度検出器が検出した温度を記憶す
る読み込み消去可能な記憶装置(以下RAMという)4
0から構成されている。さらに、45は表示器、46は
ブザーであり、低温再生器6から吸収器2に戻る濃度が
高い吸収液の濃度(以下濃液濃度という。)が所定濃度
を越え、所定時間経過後も所定濃度以上の場合には信号
が制御装置44からの表示器45及びブザー46に出力
され、表示器45が点灯すると共に、ブザー46が発音
する。
Hereinafter, a second embodiment of the present invention will be described with reference to FIG. In FIG. 4, the same components as those in FIG. 1 are denoted by the same reference numerals, and the detailed description thereof will be omitted. Reference numeral 42 denotes a third temperature detector provided in the condenser 7 for detecting the condensation temperature of the refrigerant, and reference numeral 43 denotes a fourth temperature detector provided on the outlet side of the low-temperature regenerator 6 for detecting the regeneration temperature.
Reference numeral 44 denotes a control device which receives signals from the first, third and fourth temperature detectors 31, 42 and 43 and converts the signals in the same manner as the control device shown in the first embodiment. Interface 34 for outputting to a central processing unit (hereinafter referred to as CPU) 35, and a storage device (hereinafter referred to as ROM) storing a control program and the like relating to the present invention.
36, an output interface 37 for inputting a signal from the CPU 35 and outputting a signal to the first and second fuel control valves 22A and 22B, and a signal generator (hereinafter referred to as a CLOOCK) for outputting a signal at predetermined time intervals. 38, a timer 39 for counting a predetermined time, a readable and erasable storage device (hereinafter referred to as RAM) 4 for storing the temperature detected by each temperature detector.
0. Further, reference numeral 45 denotes a display, and 46 denotes a buzzer. The concentration of the absorbent having a high concentration returning from the low-temperature regenerator 6 to the absorber 2 (hereinafter referred to as "concentrated liquid concentration") exceeds a predetermined concentration. If the density is higher than the threshold, a signal is output from the control device 44 to the display 45 and the buzzer 46, and the display 45 is turned on and the buzzer 46 sounds.

【0028】また、ROM36には第1の実施例と同様
に図3に示したような冷水出口温度と第1、第2燃料制
御弁22A、22Bへ出力する開閉信号即ち、高温再生
器4の加熱量との関係が記憶され、さらに、第3温度検
出器42が検出した凝縮温度T1と第4温度検出器43
が検出した低温再生器6の再生温度T2から濃液濃度X
を算出するための近似式である
The ROM 36 stores a cold water outlet temperature and an open / close signal output to the first and second fuel control valves 22A and 22B as shown in FIG. The relationship with the heating amount is stored, and the condensation temperature T1 detected by the third temperature detector 42 and the fourth temperature detector 43
From the regeneration temperature T2 of the low temperature regenerator 6 detected by
Is an approximate expression for calculating

【0029】[0029]

【数1】 (Equation 1)

【0030】が記憶されている。近似式においてa1、
a2、a3及びa4は定数である。上記のように構成さ
れた吸収式冷凍機の運転時、第1の実施例に示した吸収
式冷凍機と同様に吸収液及び冷媒が循環し、蒸発器1か
ら冷水が負荷に供給される。このとき、制御装置33が
第1温度検出器31から温度信号を入力して図3に示し
た関係に基づいて第1、第2燃料制御弁22A、22B
に開閉信号を出力して高温再生器4の加熱を停止、弱加
熱及び強加熱の3位置に切り替える。
Is stored. In the approximate expression, a1,
a2, a3 and a4 are constants. During the operation of the absorption refrigerator configured as described above, the absorption liquid and the refrigerant circulate, and the chilled water is supplied from the evaporator 1 to the load, similarly to the absorption refrigerator described in the first embodiment. At this time, the control device 33 receives a temperature signal from the first temperature detector 31 and based on the relationship shown in FIG. 3, the first and second fuel control valves 22A and 22B.
The heating of the high-temperature regenerator 4 is stopped by switching to three positions of weak heating and strong heating.

【0031】また、制御装置33のCPU35は 第
3、第4温度検出器42、43が検出した凝縮温度T1
と再生温度T2と上記近似式とから濃液濃度を算出す
る。そして、CPU35にて算出した濃液濃度と予め設
定された所定の濃度とが比較され、濃液濃度が上昇して
所定濃度になった場合にはその時点の高温再生器4の加
熱とこの加熱よりも低い加熱とを所定時間毎に繰り返す
加熱制御が行われる。即ち、濃液濃度が所定濃度になっ
た時に第1、第2燃料制御弁22A、22Bに開信号が
出力されており、第1、第2ガスバーナー5A、5Bが
ともに燃焼しており、高温再生器4の加熱が例えば強加
熱位置の場合には、制御装置33は第2燃料制御弁22
Bに所定時間(例えば1分)毎に閉信号と開信号とを繰
り返して出力すると共に、第1燃料制御弁22Aに開信
号を継続して出力し、図5に示したように高温再生器4
の加熱は弱加熱と強加熱との2位置に所定時間毎に制御
される。また、濃液濃度が所定濃度になった時に第1燃
料制御弁22Aに開信号が出力されており、第1ガスバ
ーナー5Aのみが燃焼しており、高温再生器4の加熱が
例えば弱加熱の位置の場合には、制御装置33は第1燃
料制御弁22Aに第1の所定時間(例えば1分)毎に閉
信号と開信号とを繰り返して出力し、図6に示したよう
に高温再生器4の加熱は停止と弱加熱との2位置に第1
の所定時間毎に制御される。さらに、濃液濃度が所定濃
度になった時、CPU53からの信号に基づいてタイマ
39がカウントを開始する。
The CPU 35 of the control device 33 calculates the condensation temperature T1 detected by the third and fourth temperature detectors 42 and 43.
The concentration of the concentrated solution is calculated from the temperature, the regeneration temperature T2, and the approximate expression. Then, the concentration of the concentrated liquid calculated by the CPU 35 is compared with a predetermined concentration set in advance, and when the concentration of the concentrated liquid increases and reaches the predetermined concentration, the heating of the high-temperature regenerator 4 at that time and the heating Heating control in which lower heating is repeated at predetermined time intervals is performed. That is, when the concentration of the concentrated liquid reaches a predetermined concentration, an open signal is output to the first and second fuel control valves 22A and 22B, and both the first and second gas burners 5A and 5B are burning. When the heating of the regenerator 4 is, for example, at the strong heating position, the controller 33 controls the second fuel control valve 22
B repeatedly outputs a close signal and an open signal every predetermined time (for example, one minute), and continuously outputs an open signal to the first fuel control valve 22A, as shown in FIG. 4
Is controlled at two positions of weak heating and strong heating at predetermined time intervals. When the concentration of the concentrated liquid reaches a predetermined concentration, an open signal is output to the first fuel control valve 22A, only the first gas burner 5A is burning, and the heating of the high-temperature regenerator 4 is, for example, weak heating. In the case of the position, the control device 33 repeatedly outputs the close signal and the open signal to the first fuel control valve 22A every first predetermined time (for example, one minute), and as shown in FIG. The heating of the vessel 4 is first in two positions: stop and weak heating.
Is controlled every predetermined time. Further, when the concentration of the concentrated liquid reaches a predetermined concentration, the timer 39 starts counting based on a signal from the CPU 53.

【0032】このように高温再生器4の加熱が弱加熱と
強加熱とを第1の所定時間毎に繰り返すように、あるい
は弱加熱と停止とを第1の所定時間毎に繰り返すように
制御され、高温再生器4での吸収液の加熱量が減少して
高温再生器4で発生する冷媒蒸気の量が減少して吸収液
の濃縮が減少する。また、高温再生器4から低温再生器
6に流れる吸収液の量が増加すると共に、吸収液の温度
も低下する。また、吸収器2での冷媒蒸気の吸収が続
き、吸収液の濃度が低下する。
As described above, the heating of the high-temperature regenerator 4 is controlled so that the weak heating and the strong heating are repeated at every first predetermined time, or the weak heating and the stop are repeated at every first predetermined time. In addition, the amount of heating of the absorbing liquid in the high-temperature regenerator 4 is reduced, the amount of refrigerant vapor generated in the high-temperature regenerator 4 is reduced, and the concentration of the absorbing liquid is reduced. Further, as the amount of the absorbing liquid flowing from the high-temperature regenerator 4 to the low-temperature regenerator 6 increases, the temperature of the absorbing liquid also decreases. Further, the absorption of the refrigerant vapor in the absorber 2 continues, and the concentration of the absorbing liquid decreases.

【0033】濃液濃度が所定濃度になってから第2の所
定時間(例えば10分)経過すると、タイマ39が信号
を出力してこの信号を入力したCPU35がタイマ39
から信号を入力した時点の濃液濃度と所定濃度とを比較
する。そして濃液濃度が所定濃度より低い場合には、C
PU35は冷水出口温度に基づいた開閉信号を出力し、
図3に示したような高温再生器4の燃焼制御が行われ
る。
When a second predetermined time (for example, 10 minutes) elapses after the concentration of the concentrated liquid reaches the predetermined concentration, the timer 39 outputs a signal, and the CPU 35 which has received the signal outputs the signal.
Then, the concentration of the concentrated liquid at the time when the signal is input from the controller is compared with the predetermined concentration. When the concentration of the concentrated liquid is lower than the predetermined concentration, C
PU 35 outputs an open / close signal based on the chilled water outlet temperature,
The combustion control of the high temperature regenerator 4 as shown in FIG. 3 is performed.

【0034】第2の所定時間経過後の濃液濃度が所定濃
度以上の場合には、CPU35は第1、第2燃料制御弁
22A、22Bに閉信号を出力し、書く弁が閉じて第
1、第2ガスバーナー5A、5Bの燃焼が停止する。そ
して、吸収液ポンプ16は運転を継続し、吸収液が吸収
器2から高温再生器4及び低温再生器6へ順次流れ、通
常の希釈運転が行われる。また、CPU35は表示器4
5及びブザー46にオン信号を出力し、制御装置33か
らの信号に基づいて表示器45が点灯すると共に、ブザ
ー46が発音する。そして、希釈運転が終了すると吸収
式冷凍機が停止する上記第2の実施例によれば、濃液濃
度が上昇して所定濃度になったときには制御装置33が
動作し、高温再生器4の加熱は所定濃度になった時の加
熱位置とこの加熱位置より少ない加熱位置とに第1の所
定時間毎に繰り返し制御され、高温再生器4の加熱を冷
水出口温度に基づいて停止、弱加熱及び強加熱の3位置
のうちのいずれかに制御しており、加熱が弱加熱あるい
は強加熱のいずれの位置に制御されている場合にも高温
再生器4での吸収液加熱量が減少するため、吸収液の濃
縮が減速されると共に、吸収器2での冷媒蒸気の吸収が
続き、高温再生器4から低温再生器6を経て吸収器2に
戻る濃液の濃度が薄くなる。この結果、吸収液の結晶を
防止することができる。
When the concentration of the concentrated liquid after the lapse of the second predetermined time is equal to or higher than the predetermined concentration, the CPU 35 outputs a close signal to the first and second fuel control valves 22A and 22B, and the writing valve is closed to close the first fuel control valve. Then, the combustion of the second gas burners 5A and 5B is stopped. Then, the absorbent pump 16 continues to operate, the absorbent flows from the absorber 2 to the high-temperature regenerator 4 and the low-temperature regenerator 6 sequentially, and a normal dilution operation is performed. The CPU 35 is connected to the display 4
An ON signal is output to the buzzer 5 and the buzzer 46, and based on the signal from the control device 33, the display 45 lights up and the buzzer 46 sounds. According to the second embodiment in which the absorption chiller stops when the dilution operation is completed, according to the second embodiment, when the concentration of the concentrated liquid increases and reaches a predetermined concentration, the control device 33 operates to heat the high-temperature regenerator 4. Is repeatedly controlled at a first predetermined time interval between a heating position when the concentration reaches a predetermined concentration and a heating position less than the heating position, and stops the heating of the high-temperature regenerator 4 based on the cold water outlet temperature; Since the heating is controlled to any one of the three heating positions, and the heating is controlled to either the weak heating or the strong heating, the amount of heating of the absorbent in the high-temperature regenerator 4 is reduced. While the concentration of the liquid is reduced, the absorption of the refrigerant vapor in the absorber 2 continues, and the concentration of the concentrated liquid returning from the high-temperature regenerator 4 to the absorber 2 via the low-temperature regenerator 6 decreases. As a result, crystallization of the absorbing solution can be prevented.

【0035】また、加熱が3位置に制御されている高温
再生器4において、濃液濃度が所定濃度まで上昇した場
合には、高温再生器4の加熱は所定濃度になった時の加
熱位置とこの加熱位置より少ない加熱位置とに第1の所
定時間毎に繰り返し制御され、上記3位置の制御のうち
高温再生器4の燃焼を2位置の制御に限定することによ
って高温再生器4の加熱量を容易に減少させることがで
き、濃液濃度の上昇に容易に対応することができる。
In the high-temperature regenerator 4 in which the heating is controlled at three positions, when the concentration of the concentrated solution rises to a predetermined concentration, the heating of the high-temperature regenerator 4 is performed at the heating position when the predetermined concentration is reached. The heating position of the high-temperature regenerator 4 is repeatedly controlled to a heating position smaller than the heating position at every first predetermined time. Can be easily reduced, and it is possible to easily cope with an increase in the concentration of the concentrated solution.

【0036】また、濃液濃度が上昇して所定濃度になっ
てから第2の所定時間が経過した時の濃液濃度が所定濃
度以上の場合には、高温再生器4の運転が停止されるの
で、例えば不凝縮ガスの滞留あるいは冷却水温度の低下
などによる濃液濃度の上昇を防止し、結晶の発生を回避
することができる。さらに、第2の所定時間の経過後に
濃吸収液の濃度が所定濃度より低い場合には冷水出口温
度に基づく高温再生器4の加熱の3位置制御が再び行わ
れ、一時的な濃液濃度の上昇に吸収式冷凍機を停止させ
ることなすく対応することができ、この結果、冷水出口
温度の大幅な上昇を回避することができる。
When the concentration of the concentrated liquid is equal to or higher than the predetermined concentration when the second predetermined time has elapsed after the concentration of the concentrated liquid has increased to the predetermined concentration, the operation of the high-temperature regenerator 4 is stopped. Therefore, it is possible to prevent the concentration of the concentrated liquid from increasing due to, for example, the retention of non-condensable gas or the decrease in the temperature of the cooling water, thereby avoiding the generation of crystals. Further, when the concentration of the concentrated absorbent is lower than the prescribed concentration after the lapse of the second prescribed time, the three-position control of the heating of the high-temperature regenerator 4 based on the cold water outlet temperature is performed again, and the concentration of the concentrated liquid is temporarily reduced. It is possible to cope with the rise without stopping the absorption refrigerator, and as a result, it is possible to avoid a large rise in the chilled water outlet temperature.

【0037】なお、第2の実施例においても第1の実施
例と同様に例えば高温再生器4にガスバーナー5A、5
Bを合わせた能力のガスバーナーを1個設け、このガス
バーナーに供給されるガスの量を燃料配管に設けられた
制御弁の開度を0%、50%及び100%に切り替え、
高温再生器4の燃焼を停止、弱加熱及び強加熱の3位置
に制御するようにしてもよい。また、高温再生器4の加
熱源は上気ガスに限定されるものではない。
In the second embodiment, for example, the gas burners 5A, 5A,
One gas burner having the capacity corresponding to B is provided, and the amount of gas supplied to the gas burner is switched between 0%, 50%, and 100% by opening the control valve provided in the fuel pipe.
The combustion of the high-temperature regenerator 4 may be stopped, controlled to three positions of weak heating and strong heating. Further, the heating source of the high temperature regenerator 4 is not limited to the upper gas.

【0038】以下、第3の実施例について説明する。第
3の実施例においては、冷水出口温度に基づく高温再生
器4の加熱の3位置制御は上記第1及び第2実施例と同
様であり、濃液濃度が上昇して所定濃度になった時の高
温再生器4の加熱制御が異なる。このため、第3の実施
例についてもの第2の実施例にて説明した図4に基づい
て説明する。
Hereinafter, a third embodiment will be described. In the third embodiment, the three-position control of the heating of the high-temperature regenerator 4 based on the cold water outlet temperature is the same as in the first and second embodiments. Is different in the heating control of the high temperature regenerator 4. Therefore, the third embodiment will be described with reference to FIG. 4 described in the second embodiment.

【0039】濃液濃度が所定濃度になった時には、制御
装置33が動作して冷水出口温度の変化に関係なく高温
再生器4の加熱をその時の加熱位置より少ない加熱位置
に例えば第2の所定時間制御する。即ち、濃液濃度が所
定濃度になった時の高温再生器4の加熱が例えば強加熱
であった場合には冷水出口温度の変化に関係なく、高温
再生器4の加熱は弱加熱に制限される。また、濃液濃度
が所定濃度になった時の高温再生器4の加熱が例えば弱
加熱であった場合には高温再生器4の各ガスバーナー5
A、5Bへの燃料の供給は遮断され、高温再生器4の加
熱は停止する。そして、高温再生器4での冷媒蒸気の発
生量が速やかに減少する。
When the concentration of the concentrated liquid reaches a predetermined concentration, the control device 33 operates to move the heating of the high-temperature regenerator 4 to a heating position smaller than the heating position at that time, for example, at a second predetermined position irrespective of a change in the chilled water outlet temperature. Control the time. That is, when the heating of the high-temperature regenerator 4 when the concentration of the concentrated liquid reaches the predetermined concentration is, for example, strong heating, the heating of the high-temperature regenerator 4 is limited to the weak heating regardless of the change in the outlet temperature of the cold water. You. When the heating of the high-temperature regenerator 4 when the concentration of the concentrated liquid reaches a predetermined concentration is, for example, weak heating, each gas burner 5 of the high-temperature regenerator 4 is heated.
The supply of fuel to A and 5B is shut off, and the heating of the high-temperature regenerator 4 is stopped. Then, the amount of refrigerant vapor generated in the high-temperature regenerator 4 is rapidly reduced.

【0040】上記第3の実施例によれば、濃液濃度が上
昇して所定濃度になったときには制御装置33が動作
し、高温再生器4の加熱は所定濃度になった時の加熱位
置より少ない加熱位置に制御され、高温再生器4の加熱
を冷水出口温度に基づいて停止、弱加熱及び強加熱の3
位置のうちのいずれかに制御しており、加熱が弱加熱あ
るいは強加熱のいずれの位置に制御されている場合にも
高温再生器4での吸収液加熱量が減少するため、吸収液
の濃縮が減速されると共に、吸収器2での冷媒蒸気の吸
収が続き、高温再生器4から低温再生器6を経て吸収器
2に戻る濃液の濃度が薄くなる。この結果、吸収液の結
晶を防止することができる。
According to the third embodiment, when the concentration of the concentrated liquid rises to the predetermined concentration, the control device 33 operates, and the heating of the high-temperature regenerator 4 starts from the heating position when the predetermined concentration is reached. The heating of the high-temperature regenerator 4 is controlled based on the temperature of the cold water outlet, and is controlled to a small heating position.
When the heating is controlled to either the weak heating or the strong heating, the heating amount of the absorbing liquid in the high-temperature regenerator 4 is reduced. And the absorption of the refrigerant vapor in the absorber 2 continues, and the concentration of the concentrated liquid returning from the high temperature regenerator 4 to the absorber 2 via the low temperature regenerator 6 decreases. As a result, crystallization of the absorbing solution can be prevented.

【0041】[0041]

【発明の効果】本発明は上記実施例のように構成された
吸収式冷凍機の制御装置であり、請求項1の発明によれ
ば、吸収器の冷却水入口温度が高温設定値より高いと
き、あるいは低温設定値より低いときには、冷却水の入
口温度に基づいて再生器の加熱の最大位置を制御し、且
つ、再生器の加熱が最大位置になるまでは冷却水入口温
度に関係なく冷水出口温度に基づいて再生器の加熱を停
止、弱加熱あるいは強加熱の3位置で制御するので、再
生器の加熱の3位置制御に制限を制限を加えることによ
って冷却水の温度が上昇したときの再生器の温度あるい
は圧力の大幅な上昇を容易に回避することができ、この
結果、冷却水温度の上昇による吸収式冷凍機の停止を回
避することができ、吸収式冷凍機の運転を安定すること
ができる。
According to the present invention, there is provided a control apparatus for an absorption refrigerator configured as in the above embodiment. According to the first aspect of the present invention, when the cooling water inlet temperature of the absorber is higher than a high temperature set value. Or, when the temperature is lower than the low temperature set value, the maximum heating position of the regenerator is controlled based on the cooling water inlet temperature, and the cooling water outlet is independent of the cooling water inlet temperature until the heating of the regenerator reaches the maximum position. Heating of the regenerator is stopped based on the temperature, and control is performed at three positions of weak heating or strong heating. Restriction is imposed on the three-position control of heating of the regenerator to regenerate when the temperature of the cooling water rises. A large increase in the temperature or pressure of the chiller can be easily avoided, and as a result, the stop of the absorption chiller due to an increase in the cooling water temperature can be avoided, and the operation of the absorption chiller can be stabilized. Can be.

【0042】また、冷却水の温度が低下したときには、
再生器の加熱量を冷水出口温度による制御より優先して
減少させることができ、この結果、吸収液の濃度の大幅
な上昇を防止して結晶の発生を回避することができと共
に、吸収冷凍機の運転コストを低減することができる。
また、請求項2の発明によれば、濃液濃度が上昇して所
定濃度になったときには、再生器の加熱を所定時間毎に
濃液濃度が所定濃度になったときの加熱位置と、濃液濃
度が所定濃度になったときの加熱位置より加熱量の少な
い加熱位置とに制御するので、再生器の加熱を冷水出口
温度に基づいて停止、弱加熱及び強加熱の3位置のうち
のいずれかに制御しており、加熱が弱加熱あるいは強加
熱のいずれの位置に制御されている場合にも吸収液の結
晶を防止することができる。
When the temperature of the cooling water drops,
The amount of heating of the regenerator can be reduced in preference to the control by the chilled water outlet temperature, and as a result, it is possible to prevent a significant increase in the concentration of the absorbing solution, to avoid the generation of crystals, and to reduce the absorption chiller. Operating cost can be reduced.
According to the second aspect of the present invention, when the concentration of the concentrated liquid rises to the predetermined concentration, the heating of the regenerator is performed at predetermined time intervals at a heating position when the concentration of the concentrated liquid reaches the predetermined concentration, and Since the heating position is controlled to a heating position with a smaller heating amount than the heating position when the liquid concentration reaches the predetermined concentration, heating of the regenerator is stopped based on the cold water outlet temperature, and any one of the three positions of weak heating and strong heating. When the heating is controlled to either the weak heating or the strong heating, crystallization of the absorbing liquid can be prevented.

【0043】また、加熱が3位置に制御されている再生
器において、濃液濃度が所定濃度まで上昇した場合に
は、高温再生器4の加熱は所定濃度になった時の加熱位
置とこの加熱位置より少ない加熱位置とに第1の所定時
間毎に繰り返し制御され、上記3位置の制御のうち再生
器の加熱を2位置の制御に限定することによって再生器
の加熱量を容易に減少させることができ、濃液濃度の上
昇に容易に対応することができる。
In the regenerator whose heating is controlled at three positions, when the concentration of the concentrated liquid rises to a predetermined concentration, the heating of the high-temperature regenerator 4 is performed at the heating position when the concentration reaches the predetermined concentration and the heating position. The heating amount of the regenerator is easily reduced by limiting the heating of the regenerator to the control of the two positions among the control of the three positions, which is repeatedly controlled to the heating position less than the position at every first predetermined time. Thus, it is possible to easily cope with an increase in the concentration of the concentrated liquid.

【0044】さらに、請求項3の発明によれば、濃液濃
度が上昇して所定濃度になったときには、再生器の加熱
を濃液濃度が所定濃度になったときの加熱位置より加熱
量の少ない加熱位置に所定時間制御するので、濃液濃度
が上昇して所定濃度になったときには再生器の加熱を冷
水出口温度に基づいて停止、弱加熱及び強加熱の3位置
のうちのいずれかに制御しており、加熱が弱加熱あるい
は強加熱のいずれの位置に制御されている場合にも再生
器での吸収液加熱量が減少するため、吸収液の濃縮が速
やかに減速されると共に、吸収器での冷媒蒸気の吸収が
続き、再生器から吸収器に戻る濃液の濃度が薄くなる。
この結果、吸収液の結晶を防止することができる。
Further, according to the third aspect of the present invention, when the concentration of the concentrated solution rises to the predetermined concentration, the heating of the regenerator is started from the heating position when the concentration of the concentrated solution reaches the predetermined concentration. Since the concentration of the concentrated liquid is increased to the predetermined concentration, the heating of the regenerator is stopped based on the cold water outlet temperature, and the heating is controlled to one of the three positions of weak heating and strong heating. When the heating is controlled to either weak heating or strong heating, the amount of heating of the absorbent in the regenerator is reduced, so that the concentration of the absorbent is quickly decelerated and the absorption is reduced. The absorption of the refrigerant vapor in the reactor continues, and the concentration of the concentrated liquid returning from the regenerator to the absorber decreases.
As a result, crystallization of the absorbing solution can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す吸収式冷凍機の概
略構成図である。
FIG. 1 is a schematic configuration diagram of an absorption refrigerator showing a first embodiment of the present invention.

【図2】冷水出口温度と加熱量最大値との関係図であ
る。
FIG. 2 is a relationship diagram between a cold water outlet temperature and a heating amount maximum value.

【図3】冷水出口温度と加熱位置との関係図である。FIG. 3 is a relationship diagram between a cold water outlet temperature and a heating position.

【図4】本発明の第2の実施例を示す吸収式冷凍機の概
略構成図である。
FIG. 4 is a schematic configuration diagram of an absorption refrigerator showing a second embodiment of the present invention.

【図5】強加熱のときに濃液濃度が所定濃度になった場
合の加熱位置制御の説明図である。
FIG. 5 is an explanatory diagram of heating position control when the concentration of a concentrated liquid reaches a predetermined concentration during strong heating.

【図6】弱加熱のときに濃液濃度が所定濃度になった場
合の加熱位置制御の説明図である。
FIG. 6 is an explanatory diagram of heating position control when the concentration of the concentrated liquid reaches a predetermined concentration during weak heating.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 吸収器 4 高温再生器 6 低温再生器 9 低温熱交換器 10 高温熱交換器 20 冷媒ポンプ 31 第1温度検出器 32 第2温度検出器 33 制御装置 DESCRIPTION OF SYMBOLS 1 Evaporator 2 Absorber 4 High temperature regenerator 6 Low temperature regenerator 9 Low temperature heat exchanger 10 High temperature heat exchanger 20 Refrigerant pump 31 First temperature detector 32 Second temperature detector 33 Controller

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 再生器、凝縮器、蒸発器及び吸収器など
を配管接続し、蒸発器の冷水出口温度に基づいて再生器
の加熱を停止、弱加熱、強加熱の3位置で制御する吸収
冷凍機の制御方法において、吸収器の冷却水入口温度が
高温設定値より高いとき、あるいは低温設定値より低い
ときには、冷却水の入口温度に基づいて再生器の加熱の
最大位置を制御し、且つ、再生器の加熱が最大位置にな
るまでは冷却水入口温度に関係なく冷水出口温度に基づ
いて再生器の加熱を停止、弱加熱、強加熱の3位置で制
御することを特徴とする吸収式冷凍機の制御方法。
1. An absorption system in which a regenerator, a condenser, an evaporator, an absorber, and the like are connected by piping, and the heating of the regenerator is stopped, weakly heated, and strongly heated based on the cold water outlet temperature of the evaporator. In the control method of the refrigerator, when the cooling water inlet temperature of the absorber is higher than the high temperature set value or lower than the low temperature set value, the maximum heating position of the regenerator is controlled based on the cooling water inlet temperature, and The absorption type wherein heating of the regenerator is stopped based on the cold water outlet temperature regardless of the cooling water inlet temperature until the heating of the regenerator reaches the maximum position, and the heating is controlled at three positions of weak heating and strong heating. Refrigerator control method.
【請求項2】 再生器、凝縮器、蒸発器及び吸収器など
を配管接続し、蒸発器の冷水出口温度に基づいて再生器
の加熱を停止、弱加熱、強加熱の3位置で制御する吸収
冷凍機の制御方法において、濃液濃度が上昇して所定濃
度になったときには、再生器の加熱を所定時間毎に濃液
濃度が所定濃度になったときの加熱位置と、濃液濃度が
所定濃度になったときの加熱位置より加熱量の少ない加
熱位置とに制御することを特徴とする吸収式冷凍機の制
御方法。
2. An absorption system in which a regenerator, a condenser, an evaporator, an absorber, and the like are connected by piping, and the heating of the regenerator is stopped, weakly heated, and strongly heated based on the cold water outlet temperature of the evaporator. In the control method of the refrigerator, when the concentration of the concentrated solution rises to the predetermined concentration, the heating of the regenerator is performed at predetermined time intervals when the concentration of the concentrated solution reaches the predetermined concentration, A method for controlling an absorption refrigerator, wherein the heating position is controlled to a heating position having a smaller heating amount than a heating position when the concentration is reached.
【請求項3】 再生器、凝縮器、蒸発器及び吸収器など
を配管接続し、蒸発器の冷水出口温度に基づいて再生器
の加熱を停止、弱加熱、強加熱の3位置で制御する吸収
冷凍機の制御方法において、濃液濃度が上昇して所定濃
度になったときには、再生器の加熱を濃液濃度が所定濃
度になったときの加熱位置より加熱量の少ない加熱位置
に所定時間制御することを特徴とする吸収式冷凍機の制
御方法。
3. A regenerator, a condenser, an evaporator, an absorber and the like are connected by piping, and the heating of the regenerator is stopped based on the cold water outlet temperature of the evaporator, and the absorption is controlled at three positions of weak heating and strong heating. In the control method of the refrigerator, when the concentrated liquid concentration rises to a predetermined concentration, the heating of the regenerator is controlled to a heating position having a smaller heating amount than the heating position when the concentrated liquid concentration reaches the predetermined concentration for a predetermined time. A method for controlling an absorption refrigerator.
JP16192093A 1993-06-30 1993-06-30 Control method of absorption refrigerator Expired - Lifetime JP3326240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16192093A JP3326240B2 (en) 1993-06-30 1993-06-30 Control method of absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16192093A JP3326240B2 (en) 1993-06-30 1993-06-30 Control method of absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH0719651A JPH0719651A (en) 1995-01-20
JP3326240B2 true JP3326240B2 (en) 2002-09-17

Family

ID=15744547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16192093A Expired - Lifetime JP3326240B2 (en) 1993-06-30 1993-06-30 Control method of absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3326240B2 (en)

Also Published As

Publication number Publication date
JPH0719651A (en) 1995-01-20

Similar Documents

Publication Publication Date Title
KR100716706B1 (en) Operating Method of Single or Double Effect Absorption Refrigerator
JP3732877B2 (en) Absorption refrigerator control method and control apparatus
KR100585352B1 (en) Absorption refrigerator
JP3326240B2 (en) Control method of absorption refrigerator
JP2532982B2 (en) Absorption refrigerator control device
JP3075944B2 (en) Absorption chiller / heater
JPS5844182B2 (en) absorption refrigerator
JP3831427B2 (en) Heat input control method of absorption refrigerator
JP2883372B2 (en) Absorption chiller / heater
JP3831425B2 (en) Control method of absorption chiller / heater
JPS6118366Y2 (en)
JP3157349B2 (en) Absorption refrigerator control device
JP2654137B2 (en) Control method of absorption refrigerator
JPH0379630B2 (en)
JPS6021721Y2 (en) Absorption chiller control device
JP4115020B2 (en) Control method of absorption refrigerator
JP2895974B2 (en) Absorption refrigerator
JP3280261B2 (en) Absorption refrigeration equipment
JPH04151470A (en) Control device for absorption type cold-hot water heater
JPH0275865A (en) Controlling method for absorption refrigerator
JPS6117319Y2 (en)
JPH02101354A (en) Method for controlling absorptive type freezer
JP2000257979A (en) Method for operating absorption heater chiller utilizing exhaust heat
JPH04161766A (en) Control device for absorption type freezer
JPH04161767A (en) Control device for absorption type freezer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

EXPY Cancellation because of completion of term