JPH02101354A - Method for controlling absorptive type freezer - Google Patents

Method for controlling absorptive type freezer

Info

Publication number
JPH02101354A
JPH02101354A JP25120788A JP25120788A JPH02101354A JP H02101354 A JPH02101354 A JP H02101354A JP 25120788 A JP25120788 A JP 25120788A JP 25120788 A JP25120788 A JP 25120788A JP H02101354 A JPH02101354 A JP H02101354A
Authority
JP
Japan
Prior art keywords
liquid
concentration
amount
temperature regenerator
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25120788A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yoshii
吉井 一寛
Toshiyuki Kaneko
敏之 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP25120788A priority Critical patent/JPH02101354A/en
Publication of JPH02101354A publication Critical patent/JPH02101354A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a circulating amount of absorption liquid equivalent to a heating amount without having any relation with a variation in temperature of cooling water by a method wherein a difference between a concentration of intermediate liquid and a concentration of rich liquid is set and an amount of intermediate liquid to be sent for a hot regenerator is controlled in such a way as the difference of concentration becomes the set value. CONSTITUTION:A control device 45 may input a concentration signal of rich liquid and a concentration signal of intermediate lquid from a first calculation circuit 33 and a second calculation circuit 36 and its difference of concentration is calculated. The difference of concentration in respect to the rate of heating amount of the hot regenerator 1 is set in the control device 45 in advance and when the calculated difference of concentration and the set value are high, an opening signal is outputted to a second flow rate control valve 13 so as to increase an amount of intermediate liquid flowing from a low regenerator 2 to the hot regenerator 1. Due to this fact, a difference of concentration between the rich liquid and intermediate liquid is decreased and approximately shows the set value. When the difference of concentration is small, a closing signal is outputted to the second flow rate control valve 13, an amount of intermediate liquid flowing to the hot regenerator 1 is reduced, the concentration of the rich liquid is increased, a difference of concentration between the rich liquid and intermediate liquid is increased to obtain an approximate set value.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は高温再生器と低温再生器とを備えた吸収冷凍機
の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method of controlling an absorption refrigerator equipped with a high temperature regenerator and a low temperature regenerator.

(ロ)従来の技術 例えば実開昭56−63951号公報、特公昭61−4
8062号公報、又は特開昭60−133279号公報
には、溶液(吸収液)の循環量を冷水温度、高温再生型
液面、高温再生型溶液温度、高温再生器内圧力、吸収器
内液面、蒸発器冷媒液面等に基づいて制御する吸収冷凍
機が開示されている。
(b) Conventional techniques such as Utility Model Application Publication No. 56-63951, Japanese Patent Publication No. 61-4
No. 8062 or Japanese Patent Application Laid-Open No. 60-133279 describes the circulating amount of solution (absorbing liquid) in terms of cold water temperature, high-temperature regeneration type liquid level, high-temperature regeneration type solution temperature, high-temperature regenerator internal pressure, and absorber internal liquid. An absorption refrigerator is disclosed that is controlled based on the refrigerant level, evaporator refrigerant level, and the like.

(ハ)発明が解決しようとする課題 上記従来の技術において、冷水温度、高温再生型液面等
の物理量は吸収器及び凝縮器を流れる冷却水の温度変化
、吸収冷凍機内の不凝縮ガスの滞留等により変化し、吸
収冷凍機の高温再生器の加熱量に合った溶液循環量制御
を行うことができなくなる虞れがあった。
(c) Problems to be Solved by the Invention In the above-mentioned conventional technology, physical quantities such as chilled water temperature and high-temperature regenerated liquid level are measured by changes in the temperature of cooling water flowing through the absorber and condenser, and retention of non-condensable gas in the absorption refrigerator. etc., and there was a risk that it would not be possible to control the solution circulation amount in accordance with the heating amount of the high-temperature regenerator of the absorption refrigerator.

本発明は加熱量に合った吸収液の循環量を冷却水の温度
変化等に関係なく得ることができる吸収冷凍機を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an absorption refrigerator that can obtain a circulating amount of absorption liquid that matches the amount of heating regardless of changes in the temperature of cooling water.

(ニ)課題を解決するための手段 本発明は上記課題を解決するために、高温再生器(1〉
、低温再生器(2)、凝縮器(6)、蒸発器(7)、吸
収器(3)等をそれぞれ配管接続し、吸収器(3〉から
稀液が低温再生器(2)へ送られ、加熱濃縮きれて中間
液になり、中間液が高温再生器(1)へ送られ加熱濃縮
きれて濃液になりその後降温されて吸収器(3)へ送ら
れる吸収冷凍機において、中間液の濃度と濃液の濃度と
の差を予め設定し、濃度差が設定値になるように高温再
生器(1)へ送られる中間液の量を制御する吸収冷凍機
の制御方法を提供するものである。
(d) Means for solving the problems In order to solve the above problems, the present invention provides a high-temperature regenerator (1)
, low-temperature regenerator (2), condenser (6), evaporator (7), absorber (3), etc. are connected to each other via piping, and the diluted liquid is sent from the absorber (3) to the low-temperature regenerator (2). The intermediate liquid is heated and concentrated to become an intermediate liquid, and the intermediate liquid is sent to the high-temperature regenerator (1).The intermediate liquid is heated and concentrated to become a concentrated liquid.Then, the temperature is lowered and the intermediate liquid is sent to the absorber (3). The present invention provides a method for controlling an absorption chiller in which the difference between the concentration of the concentrated liquid and the concentration of the concentrated liquid is set in advance, and the amount of the intermediate liquid sent to the high temperature regenerator (1) is controlled so that the difference in concentration becomes the set value. be.

又、高温再生器(1)、低温再生器(2)、凝縮器(6
)、蒸発器(7)、吸収器(3)等をそれぞれ配管接続
し、吸収器(3)から稀液が低温再生器(2)へ送られ
、加熱濃縮きれて中間液になり、中間液が高温再生器(
1)へ送られ加熱濃縮されて濃液になり、その後降温さ
れて吸収器(3)へ送られる吸収冷凍機において、中間
液の濃度と濃液の濃度との差を予め設定し、濃度差が設
定値になるように高温再生器(1)へ送られる中間液の
量を制御し、且つ、稀液の濃度と中間液の濃度との差を
予め設定し7、濃度差が設定値になるように低温再生器
(2)へ送られる稀液の量を制御する吸収冷凍機の制御
方法を提供するものである。
In addition, a high temperature regenerator (1), a low temperature regenerator (2), a condenser (6
), evaporator (7), absorber (3), etc. are each connected via piping, and the diluted liquid is sent from the absorber (3) to the low-temperature regenerator (2), where it is heated and concentrated to become an intermediate liquid. is a high temperature regenerator (
In the absorption refrigerator, which is sent to 1), heated and concentrated to become a concentrated liquid, and then cooled down and sent to the absorber (3), the difference between the concentration of the intermediate liquid and the concentration of the concentrated liquid is set in advance, and the concentration difference is The amount of intermediate liquid sent to the high temperature regenerator (1) is controlled so that the concentration becomes the set value, and the difference between the concentration of the dilute liquid and the concentration of the intermediate liquid is set in advance 7, and the concentration difference becomes the set value. This invention provides a method for controlling an absorption refrigerator that controls the amount of dilute liquid sent to the low-temperature regenerator (2) so that the amount of dilute liquid sent to the low-temperature regenerator (2) is controlled.

さらに、高温再生器(1)、低温再生器(2)、凝縮器
(6)、蒸発器(7)、吸収器(3)等をそれぞれ配管
接続し、吸収器(3)から稀液が低温再生器(2)へ送
られ、加熱濃縮されて中間液になり、中間液が高温再生
器(1)へ送られ加熱濃縮されて濃液になり、その後降
温されて吸収器り3)へ送られる吸収冷凍機において、
濃液と中間液との濃度差、あるいは中間液と稀液との濃
度差が加熱量の減少に伴ない大きくなるように高温再生
器(1〉へ送られる中間液の量、あるいは低温再生器(
2)へ送られる稀液の量を制御する吸収冷凍機の制御方
法を提供するものである。
Furthermore, the high-temperature regenerator (1), low-temperature regenerator (2), condenser (6), evaporator (7), absorber (3), etc. are connected through piping, and the diluted liquid is supplied from the absorber (3) at a low temperature. It is sent to the regenerator (2), heated and concentrated to become an intermediate liquid, and the intermediate liquid is sent to the high-temperature regenerator (1), heated and concentrated to become a concentrated liquid, and then the temperature is lowered and sent to the absorber 3). In the absorption refrigerator,
The amount of intermediate liquid sent to the high-temperature regenerator (1) or the low-temperature regenerator so that the concentration difference between the concentrated liquid and the intermediate liquid, or the concentration difference between the intermediate liquid and the dilute liquid, increases as the amount of heating decreases. (
2) Provides a method for controlling an absorption refrigerator that controls the amount of diluted liquid sent to.

(*)作用 吸収冷凍機の運転時、吸収器(3)を流れる冷却水など
の温度変化、不凝縮ガスの吸収器(3)への滞留等の外
乱が発生した場合にも、中間液と濃液との濃度差が設定
値になるように高温再生器(L)へ送られる中間液の量
が制御され、高温再生器(1)にて必要な顕熱量の増加
を抑えることができ、実効効率の向上を図ることが可能
になる。
(*) Effects During operation of the absorption chiller, even if a disturbance occurs such as a temperature change in the cooling water flowing through the absorber (3) or a retention of non-condensable gas in the absorber (3), the intermediate liquid and The amount of intermediate liquid sent to the high-temperature regenerator (L) is controlled so that the concentration difference with the concentrated liquid is the set value, and the increase in the amount of sensible heat required by the high-temperature regenerator (1) can be suppressed. It becomes possible to improve the effective efficiency.

又、吸収冷凍機の運転時、上記のように外乱が発生した
場合にも、中間液と濃液との濃度差、及び稀液と中間液
との濃度差が設定値になるように高温再生器(1)へ送
られる中間液の量、及び低温再生器(2)へ送られる稀
液の量が制御され、高温再生器(1)にて必要な顕熱量
さらには、低温再生器(2)にて必要な顕熱量の外乱に
よる増加を抑えることができ、実効効率を一層向上きせ
ることが可能になる。
In addition, even if a disturbance occurs as described above during operation of the absorption chiller, high-temperature regeneration is performed so that the concentration difference between the intermediate liquid and the concentrated liquid, and the concentration difference between the dilute liquid and the intermediate liquid, reach the set value. The amount of intermediate liquid sent to the reactor (1) and the amount of diluted liquid sent to the low-temperature regenerator (2) are controlled, and the amount of sensible heat required in the high-temperature regenerator (1) is controlled. ), it is possible to suppress the increase in the required amount of sensible heat due to disturbances, making it possible to further improve the effective efficiency.

さらに、吸収冷凍機の運転時、高温再生器(1〉の加熱
量が減少すると、それに伴ない中間液と濃液との濃度差
、あるいは稀液と中間液との濃度差が大きくなるように
、高温再生器(1)へ送られる中間液の量、あるいは低
温再生器(2)へ送られる稀液の量が制御され、それぞ
れの量が減少するため、高温再生器(1)あるいは低温
再生器(2)にて必要な顕熱量を加熱量の減少時に少な
くすることができ、吸収冷凍機の実効効率をさらに向上
させることが可能になる。
Furthermore, when the absorption chiller is operated, as the heating amount of the high-temperature regenerator (1) decreases, the concentration difference between the intermediate liquid and the concentrated liquid or the concentration difference between the dilute liquid and the intermediate liquid increases accordingly. , the amount of intermediate liquid sent to the high-temperature regenerator (1) or the amount of diluted liquid sent to the low-temperature regenerator (2) is controlled, and the amount of each decreases. The amount of sensible heat required in the device (2) can be reduced when the amount of heating is reduced, and it becomes possible to further improve the effective efficiency of the absorption refrigerator.

(へ)実施例 以下、本発明の一実施例を図面に基づいて詳細に説明す
る。
(F) Example Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図はリバースフロー式二重効用吸収冷凍機を示し、
この吸収冷凍機は冷媒に水、吸収剤(溶液)に臭化リチ
ウム水溶液を使用したものである。
Figure 1 shows a reverse flow type dual effect absorption refrigerator.
This absorption refrigerator uses water as a refrigerant and an aqueous lithium bromide solution as an absorbent (solution).

第1図において、(1)は高温再生器、(2)は低温再
生器、(3)は吸収器、(4)は高温熱交換器、(5ン
は低温熱交換器、(6)は凝縮器、(7)は蒸発器であ
り、それぞれは配管により接続されている。(8)は吸
収器(3)と低温再生器(2)との間に接続された稀液
管であり、この稀液管(8)の途中には第1ポンプ(9
)と第1流量制御弁(10)とが設けられている。又、
(11〉は低温再生器(2)と高温再生器(1)との間
に接続された中間液管であり、この中間液管(11)の
途中には第2ポンプ(12〉と第2流量制御弁(13)
とが設けられている。さらに、(14)、乃至(16)
は溶液管であり、(18)は液溜である。
In Figure 1, (1) is a high temperature regenerator, (2) is a low temperature regenerator, (3) is an absorber, (4) is a high temperature heat exchanger, (5) is a low temperature heat exchanger, and (6) is a low temperature heat exchanger. The condenser (7) is an evaporator, each of which is connected by a pipe. (8) is a diluted liquid pipe connected between the absorber (3) and the low temperature regenerator (2), A first pump (9) is located in the middle of this diluted liquid pipe (8).
) and a first flow control valve (10). or,
(11> is an intermediate liquid pipe connected between the low temperature regenerator (2) and the high temperature regenerator (1), and a second pump (12> and a second pump Flow control valve (13)
and is provided. Furthermore, (14) to (16)
is a solution tube, and (18) is a liquid reservoir.

(21)は高温再生器(1)に設けられたバーナ、(2
2)はバーナ(21)への燃料供給を調整する燃料調整
弁である。そして、(21A)は排気筒、(23)は分
離器である。又、(24) 、 (26) 、 (28
)は冷媒液管であり、冷媒液管(28〉の途中には第3
ポンプ(3o)が設けられている。又、(41)は蒸発
器(7)を通る冷水管、(42)は冷却水管である。
(21) is a burner installed in the high temperature regenerator (1), (2
2) is a fuel adjustment valve that adjusts the fuel supply to the burner (21). Further, (21A) is an exhaust stack, and (23) is a separator. Also, (24), (26), (28
) is a refrigerant liquid pipe, and there is a third pipe in the middle of the refrigerant liquid pipe (28>).
A pump (3o) is provided. Further, (41) is a cold water pipe passing through the evaporator (7), and (42) is a cooling water pipe.

さらに、(31)は濃液の温度を検出する第1温度セン
サ、(32)は低温再生器(2)での冷媒凝縮温度を検
出する第2温度センサである。(33)は濃液濃度演算
回路(以後第1演算回路という)であり、この第1演算
回路(33)は上記第1.第2温度センサ(31) 、
 (32)から温度信号を入力し、濃液濃度が求められ
る。又、(34)は低温再生器(2)の出口側に設けら
れ、中間液の温度を検出する第3温度センサ、(35)
は冷媒凝縮温度を検出する第4温度センサ、(36)は
第3.第4温度センサ(34) 、 (35)から温度
信号を入力し、中間液の濃度を演算する中間液濃度演算
回路(以後第2演算回路という)である。
Furthermore, (31) is a first temperature sensor that detects the temperature of the concentrated liquid, and (32) is a second temperature sensor that detects the refrigerant condensation temperature in the low temperature regenerator (2). (33) is a concentrated liquid concentration calculation circuit (hereinafter referred to as the first calculation circuit), and this first calculation circuit (33) is the first calculation circuit (hereinafter referred to as the first calculation circuit). second temperature sensor (31),
A temperature signal is input from (32), and the concentration of the concentrated liquid is determined. Further, (34) is a third temperature sensor that is provided on the outlet side of the low temperature regenerator (2) and detects the temperature of the intermediate liquid; (35)
(36) is the fourth temperature sensor that detects the refrigerant condensation temperature, and (36) is the third temperature sensor. This is an intermediate liquid concentration calculation circuit (hereinafter referred to as a second calculation circuit) which receives temperature signals from the fourth temperature sensors (34) and (35) and calculates the concentration of the intermediate liquid.

(37)は冷水管(41)の蒸発器(7)出口側に設け
られた第5温度センサである。又、(38)は蒸発器(
7〉の冷媒温度を検出する第6温度センサ、(43)は
吸収器(3)の補液温度を検出する第7温度センサ、(
44)は第6.第7温度センサ(38) 、 (43)
から温度信号を入力し、稀液の濃度を演算する補液濃度
演算回路(以後第3演算回路という)である。
(37) is a fifth temperature sensor provided on the evaporator (7) outlet side of the cold water pipe (41). Also, (38) is the evaporator (
A sixth temperature sensor (43) detects the refrigerant temperature of the absorber (3), a seventh temperature sensor (43) detects the refrigerant temperature of the absorber (3);
44) is the 6th. Seventh temperature sensor (38), (43)
This is a replacement fluid concentration calculation circuit (hereinafter referred to as the third calculation circuit) which inputs a temperature signal from and calculates the concentration of the diluted liquid.

(45)はマイコン等により構成された制御装置であり
、この制御装置(45)は第5温度センサ(37)から
の信号に基づいて、燃料調整弁(22)へ信号を出力す
る。又、制御装置(45)は、第1.第2演算回路(3
3) 、 (36)からの信号を入力し、濃液と中間液
との濃度差に基づいて第2流量制御弁(13)へ信号を
出力する。さらに、制御装置(45)は第3演算回路(
44)からの信号を入力し、稀液と中間液との濃度差に
基づいて第1流量制御弁(10)へ信号を出力する。
(45) is a control device composed of a microcomputer or the like, and this control device (45) outputs a signal to the fuel adjustment valve (22) based on the signal from the fifth temperature sensor (37). Further, the control device (45) controls the first. Second arithmetic circuit (3
3) Input the signals from (36) and output the signal to the second flow control valve (13) based on the concentration difference between the concentrated liquid and the intermediate liquid. Furthermore, the control device (45) has a third arithmetic circuit (
44) and outputs a signal to the first flow control valve (10) based on the concentration difference between the dilute liquid and the intermediate liquid.

以下、上記吸収冷凍機の動作について説明する。運転時
、第1ポンプ(9)の運転により吸収器(3)から稀液
が低温再生器(2)へ流れる。又、稀液は低温再生器(
2)にて冷媒管(24)を流れる蒸気にて加熱され、冷
媒が蒸発して中間液になる。そして、第2ポンプ(12
〉の運転により中間液が低温再生器(2)から高温再生
器(1)へ流れる。中間液はバーナ(21)により加熱
され、さら番こ冷媒が蒸発し、濃液になる。この濃液は
高温熱交換器(4)、液溜(18)を通り、バイパス管
(50)を流れて来た中間液と一緒になり、低温熱交換
器(5)を経て吸収器(3)へ流れる。又、分離器(2
3)から冷媒管(24)を流れて来た蒸気は、低温再生
器(2)にて熱交換し、冷却きれ凝縮し、凝縮器(6)
へ流れる。又、低温熱交換器(2)から凝縮器(6)へ
流れた冷媒蒸気は冷却水管(42)を流れる冷却水によ
り冷却され、凝縮する。
The operation of the absorption refrigerator will be explained below. During operation, the operation of the first pump (9) causes dilute liquid to flow from the absorber (3) to the low temperature regenerator (2). In addition, the diluted liquid is treated with a low-temperature regenerator (
In step 2), the refrigerant is heated by the steam flowing through the refrigerant pipe (24), and the refrigerant evaporates to become an intermediate liquid. Then, the second pump (12
> operation causes the intermediate liquid to flow from the low temperature regenerator (2) to the high temperature regenerator (1). The intermediate liquid is heated by a burner (21), the Sarabanko refrigerant evaporates, and it becomes a concentrated liquid. This concentrated liquid passes through the high temperature heat exchanger (4), the liquid reservoir (18), becomes together with the intermediate liquid flowing through the bypass pipe (50), passes through the low temperature heat exchanger (5), and then passes through the absorber (3). ). In addition, a separator (2
The steam flowing through the refrigerant pipe (24) from 3) undergoes heat exchange in the low-temperature regenerator (2), is cooled and condensed, and is transferred to the condenser (6).
flows to Further, the refrigerant vapor flowing from the low temperature heat exchanger (2) to the condenser (6) is cooled by the cooling water flowing through the cooling water pipe (42) and condensed.

凝縮器(6)に溜った冷媒液は冷媒液管(26)を介し
て蒸発器(7)へ流れる。そして、蒸発器(7)に溜っ
た冷媒液は第3ポンプ(30)の運転に伴ない蒸発器(
7)内の冷水管(41)の上方から散布され、冷水管り
41)を流れる水が冷媒液の気化熱により冷却される。
The refrigerant liquid accumulated in the condenser (6) flows to the evaporator (7) via the refrigerant liquid pipe (26). Then, the refrigerant liquid accumulated in the evaporator (7) is removed from the evaporator (7) by the operation of the third pump (30).
7) is sprayed from above the cold water pipe (41), and the water flowing through the cold water pipe 41) is cooled by the heat of vaporization of the refrigerant liquid.

蒸発器(7)にて発生した冷媒蒸気は蒸発器(7)から
吸収器(3)へ流れ、吸収器(3)にて散布された濃液
は冷媒蒸気を吸収して稀液になる。
The refrigerant vapor generated in the evaporator (7) flows from the evaporator (7) to the absorber (3), and the concentrated liquid sprayed in the absorber (3) absorbs the refrigerant vapor and becomes a dilute liquid.

以上のように吸収冷凍機が運転されているとき、第1温
度センサ(31〉が濃液の温度を検出し、第2温度セン
サ(32)が低温再生器(2)の冷媒凝縮温度を検出す
る。そして、第1演算回路(33)にて、第1.第2温
度センサ(31) 、 (32)からの信号に基づいて
濃液の濃度が演算される。ここで、第1演算回路(33
)では、第2温度センサ(32)から冷媒凝縮温度を入
力し、この温度と水の飽和特性とから分離器(23)内
の圧力を演算する。そして、この圧力と第1温度センサ
(31)が検出した濃液の温度とから溶液の濃度曲線に
基づいて濃吸収液の濃度が求められる。又、第3温度セ
ンサ(34〉が中間液の温度を検出し、第4温度センサ
(35)が凝縮器(6)の冷媒凝縮温度を検出する。そ
して、第2演算回路(36)では冷媒凝縮温度と水との
飽和特性とから凝縮、低温再生型態(52)内の圧力を
演算する。そして、この圧力と第3温度検出器(34)
が検出した中間液の温度とから溶液の濃度曲線に基づい
て中間液の濃度が求められる。
When the absorption refrigerator is operated as described above, the first temperature sensor (31) detects the temperature of the concentrated liquid, and the second temperature sensor (32) detects the refrigerant condensation temperature of the low temperature regenerator (2). Then, the concentration of the concentrated liquid is calculated in the first calculation circuit (33) based on the signals from the first and second temperature sensors (31) and (32). (33
), the refrigerant condensation temperature is input from the second temperature sensor (32), and the pressure in the separator (23) is calculated from this temperature and the saturation characteristics of water. Then, from this pressure and the temperature of the concentrated liquid detected by the first temperature sensor (31), the concentration of the concentrated absorption liquid is determined based on the concentration curve of the solution. Further, the third temperature sensor (34) detects the temperature of the intermediate liquid, and the fourth temperature sensor (35) detects the refrigerant condensing temperature of the condenser (6). The pressure in the condensation and low-temperature regeneration type (52) is calculated from the condensation temperature and the saturation characteristics of water.Then, this pressure and the third temperature detector (34) are calculated.
The concentration of the intermediate liquid is determined based on the temperature of the intermediate liquid detected by the temperature of the intermediate liquid and the concentration curve of the solution.

制御装置(45)は第1演算回路(33)、及び第2演
算回路(36)から濃液、及び中間液の濃度信号を入力
する。そして、制御装置(45)は濃液と中間液との濃
度差を演算する。制御装置(45)には高温再生器(1
)の加熱量の割合に対する濃度差が第2図に示したよう
に例えば7%になるように予め設定されている。そして
、求められた濃度差と設定値とが制御装置(45)にて
比較される。そして、濃度差が設定値より大きいときに
は、制御装置(4s)は第2流量制御弁(13)へ開信
号を出力し、弁開度が大きくなり、低温再生器(2)か
ら高温再生器(1)へ流れる中間液の量が増加する。こ
のため、高温再生器(1)での加熱量が変化しない場合
には濃液の濃度が低下し、濃液と中間液との濃度差が小
さくなり、略設定値になる。又、制御袋!(45)にて
求められた濃度差が設定値より小さいときには、制御装
置(45)は第2流量制御弁(13)へ閉信号を出力し
、弁開度が小さくなり、高温再生器(1)へ流れる中間
液の量が減少する。このため、濃液の濃度が大きくなり
、濃液と中間液との濃度差が大きくなり、略設定値にな
る。
The control device (45) receives concentration signals of the concentrated liquid and the intermediate liquid from the first arithmetic circuit (33) and the second arithmetic circuit (36). Then, the control device (45) calculates the concentration difference between the concentrated liquid and the intermediate liquid. The control device (45) includes a high temperature regenerator (1
) is set in advance so that the concentration difference with respect to the heating amount ratio is, for example, 7% as shown in FIG. Then, the determined concentration difference and the set value are compared in the control device (45). When the concentration difference is larger than the set value, the control device (4s) outputs an open signal to the second flow rate control valve (13), the valve opening becomes large, and the low temperature regenerator (2) is transferred to the high temperature regenerator (2). The amount of intermediate liquid flowing to 1) increases. Therefore, when the amount of heating in the high-temperature regenerator (1) does not change, the concentration of the concentrated liquid decreases, and the difference in concentration between the concentrated liquid and the intermediate liquid becomes small, reaching approximately the set value. Also, a control bag! When the concentration difference determined in (45) is smaller than the set value, the control device (45) outputs a close signal to the second flow control valve (13), the valve opening becomes smaller, and the high temperature regenerator (1 ) decreases in the amount of intermediate liquid flowing to Therefore, the concentration of the concentrated liquid increases, and the difference in concentration between the concentrated liquid and the intermediate liquid increases, reaching approximately the set value.

上記のように濃度差が略設定値に保たれているとき、冷
却水管(42)を流れる冷却水の温度変化、吸収器(3
)への不凝縮ガスの滞留等の外乱が発生した場合にも、
濃度差が設定値になるように高温再生器(1)へ流れる
中間液の量が制御され、高温再生器(1)の加熱量、即
ち冷凍負荷に合った中間液の循環量制御が行われる。
As mentioned above, when the concentration difference is maintained at approximately the set value, the temperature change of the cooling water flowing through the cooling water pipe (42) and the absorber (3
), even if a disturbance such as the accumulation of non-condensable gas occurs,
The amount of intermediate liquid flowing to the high temperature regenerator (1) is controlled so that the concentration difference becomes the set value, and the circulating amount of the intermediate liquid is controlled in accordance with the heating amount of the high temperature regenerator (1), that is, the refrigeration load. .

又、第3演算回路(44)は第6温度センサ(38)、
及び第7温度センサ(43)からの信号を入力し、冷媒
温度と水の飽和特性とから蒸発、吸収型態(53)内の
圧力を求める。そして、この圧力と稀液の温度とから溶
液の濃度曲線に基づいて稀液の濃度が求められる。そし
て、制御装置(45)は第3演算回路(44)から稀液
の濃度信号を入力し、稀液と中間液との濃度差を演算す
る。制御装置(45)には、高温再生器(1)の加熱量
に対する濃度差が第2図に示したように例えば4%に設
定きれている。そして、演算により求められた濃度差と
設定値とが制御装置(45)にて比較され、濃度差が設
定値より大きいときには制御装置(45)は第1流量制
御弁(10)へ開信号を出力し、第1流量制御弁(10
)の弁開度は大きくなる。このため、低温再生器(2)
へ流れる稀液の量は増加し、中間液の濃度が低下し稀液
との濃度差が小さくなる。又、濃度差が設定値より小さ
いときには、制御装置(45)は第1流量制御弁(10
)へ閉信号を出力する。すると、第1流量制御弁(10
)の弁開度は小さくなり、低温再生器(2)へ流れる稀
液の量が減少し、中間液の濃度が大きくなり稀液との濃
度差が大きくなる。
Further, the third arithmetic circuit (44) includes a sixth temperature sensor (38),
and the signal from the seventh temperature sensor (43), and calculates the pressure in the evaporation and absorption type (53) from the refrigerant temperature and water saturation characteristics. Then, the concentration of the dilute solution is determined from this pressure and the temperature of the dilute solution based on the concentration curve of the solution. Then, the control device (45) inputs the concentration signal of the diluted liquid from the third calculation circuit (44) and calculates the concentration difference between the diluted liquid and the intermediate liquid. In the control device (45), the concentration difference with respect to the heating amount of the high temperature regenerator (1) is set to, for example, 4% as shown in FIG. Then, the concentration difference obtained by the calculation and the set value are compared in the control device (45), and when the concentration difference is larger than the set value, the control device (45) sends an open signal to the first flow control valve (10). output, and the first flow control valve (10
) becomes larger. For this reason, the low temperature regenerator (2)
The amount of the dilute solution flowing into the intermediate solution increases, the concentration of the intermediate solution decreases, and the difference in concentration between the intermediate solution and the dilute solution becomes smaller. Further, when the concentration difference is smaller than the set value, the control device (45) closes the first flow control valve (10).
) outputs a close signal to Then, the first flow control valve (10
) becomes smaller, the amount of diluted liquid flowing to the low temperature regenerator (2) decreases, the concentration of the intermediate liquid increases, and the difference in concentration from the diluted liquid increases.

以上のように、稀液と中間液との濃度差に応して低温再
生器(2)へ流れる稀液の量が制御され、濃度差が略設
定値に保たれる。このため、冷却水管(42)を流れる
冷却水の温度変化、吸収器(3)への不凝縮ガスの滞留
等の外乱が発生した場合にも、濃度差が設定値になるよ
うに低温再生器(2)へ流れる稀液の量が制御され、低
温再生器(2〉の加熱量に合った稀液の循環量制御が行
われる。
As described above, the amount of the diluted liquid flowing to the low temperature regenerator (2) is controlled according to the concentration difference between the diluted liquid and the intermediate liquid, and the concentration difference is maintained at approximately the set value. Therefore, even if a disturbance occurs such as a change in the temperature of the cooling water flowing through the cooling water pipe (42) or the accumulation of non-condensable gas in the absorber (3), the low temperature regenerator will maintain the concentration difference to the set value. The amount of diluted liquid flowing to (2) is controlled, and the circulation amount of diluted liquid is controlled in accordance with the heating amount of the low temperature regenerator (2>).

上記実施例によれば、中間液と濃液との濃度差が設定値
になるように、高温再生器(1)へ流れる中間液の量が
制御されるため、上記のように外乱が発生した場合にも
、濃度差が設定値になるように高温再生器(1)へ流れ
る中間液の量が制御され、高温再生器(1)の加熱量に
合った中間液の循環量制御が行われる。この結果、高温
再生器(1)にて必要な顕熱量の外乱による増加を抑え
ることができ、吸収冷凍機の実効効率(C,O,P)を
向上きせることができる。
According to the above embodiment, the amount of the intermediate liquid flowing to the high temperature regenerator (1) is controlled so that the concentration difference between the intermediate liquid and the concentrated liquid becomes the set value, so that the disturbance occurs as described above. In this case, the amount of intermediate liquid flowing to the high temperature regenerator (1) is controlled so that the concentration difference becomes the set value, and the circulation amount of the intermediate liquid is controlled in accordance with the heating amount of the high temperature regenerator (1). . As a result, it is possible to suppress an increase in the amount of sensible heat required in the high-temperature regenerator (1) due to disturbance, and it is possible to improve the effective efficiency (C, O, P) of the absorption refrigerator.

又、稀液と中間液との濃度差が設定値になるように低温
再生器(2〉へ流れる稀液の量が制御きれるため、上記
のように外乱が発生した場合にも、高温再生器(1)の
加熱量に合った稀液の循環量制御が行われる。この結果
、低温再生器(λ)にて必要な顕熱量の外乱による増加
を抑えることができ、吸収冷凍機の実効効率を向上させ
ることができる。
In addition, since the amount of diluted liquid flowing to the low temperature regenerator (2) can be controlled so that the concentration difference between the diluted liquid and the intermediate liquid is the set value, even if a disturbance occurs as described above, the high temperature regenerator The circulation amount of the dilute liquid is controlled in accordance with the heating amount in (1).As a result, it is possible to suppress the increase in the amount of sensible heat required by the low temperature regenerator (λ) due to disturbance, and the effective efficiency of the absorption chiller is increased. can be improved.

さらに、第2図に鎖線にて示したように、中間液と濃液
との濃度差が高温再生器(1)の加熱量の減少に伴ない
大きくなるように、即ち、加熱量が100%のときは濃
度差が例えば7%、加熱量が27%のとき濃度差が例え
ば10%になるように制御装置(45)に濃度差を設定
する。そして、中間液と濃液との濃度差が設定値になる
ように低温再生器(2)から高温再生器(1)へ流れる
中間液の量を制御した場合には、加熱量の減少に伴ない
濃度差が大きくなるように制御装置(45)から第2流
量制御弁(13)へ信号が出力される。従って、加熱量
が減少したとき、制御装置(45)からの信号に基づい
て第2流量制御弁(13)の開度は上記のように濃度差
を一定にした場合より小さくなる。この結果、高温再生
器(1)へ流れる中間液の量が減少し、高温再生器(1
〉での顕熱量が減少し、冷媒の蒸発量が増加し実効効率
を一層向上させることが可能になる。
Furthermore, as shown by the chain line in FIG. 2, the concentration difference between the intermediate liquid and the concentrated liquid increases as the heating amount of the high-temperature regenerator (1) decreases, that is, the heating amount reaches 100%. In this case, the concentration difference is set in the control device (45) so that the concentration difference is, for example, 7%, and when the heating amount is 27%, the concentration difference is, for example, 10%. When the amount of intermediate liquid flowing from the low temperature regenerator (2) to the high temperature regenerator (1) is controlled so that the concentration difference between the intermediate liquid and the concentrated liquid becomes the set value, the amount of heating decreases. A signal is output from the control device (45) to the second flow rate control valve (13) so that the difference in concentration increases. Therefore, when the heating amount decreases, the opening degree of the second flow rate control valve (13) becomes smaller based on the signal from the control device (45) than when the concentration difference is kept constant as described above. As a result, the amount of intermediate liquid flowing into the high temperature regenerator (1) decreases, and the amount of intermediate liquid flowing into the high temperature regenerator (1) decreases.
), the amount of sensible heat decreases, and the amount of evaporation of the refrigerant increases, making it possible to further improve the effective efficiency.

又、第2図に鎖線にて示したように1.稀液と中間液と
の濃度差が高温再生器(1)の加熱量の減少に伴ない大
きくなるように、制御装置に濃度差を設定する。そして
、稀液と中間液との濃度差が設定値になるように低温再
生器(2)へ流れる稀吸収液の量を制御した場合には、
加熱量の゛減少に伴ない濃度差が大きくなるように制御
装置(45)から第1流量制御弁(10)へ信号が出力
される。従って、加熱量が減少したとき、制御装置(4
5)からの信号により第1流量制御弁(10)の開度は
濃度差を一定にした場合より小さくなる。この結果、低
温再生器(2)へ流れる稀液の量が減少し、低温再生器
(2)での顕熱量が減少し、冷媒の蒸発量が増加し、実
効効率を一層向上させることが可能になる。
Also, as shown by the chain line in Fig. 2, 1. A concentration difference is set in the control device so that the concentration difference between the dilute liquid and the intermediate liquid increases as the heating amount of the high temperature regenerator (1) decreases. When the amount of dilute absorption liquid flowing to the low temperature regenerator (2) is controlled so that the concentration difference between the dilute liquid and the intermediate liquid becomes the set value,
A signal is output from the control device (45) to the first flow control valve (10) so that the concentration difference increases as the amount of heating decreases. Therefore, when the heating amount decreases, the control device (4
5), the opening degree of the first flow control valve (10) becomes smaller than when the concentration difference is kept constant. As a result, the amount of dilute liquid flowing to the low-temperature regenerator (2) decreases, the amount of sensible heat in the low-temperature regenerator (2) decreases, and the amount of evaporation of the refrigerant increases, making it possible to further improve the effective efficiency. become.

又、濃液濃度を第1.第2温度センサ(31) 、 (
32)からの信号に基づいて第1演算回路(33)にて
求め、中間液濃度を、第3.第4温度検出器(34) 
Also, the concentration of the concentrated liquid should be set to 1. Second temperature sensor (31), (
The first calculation circuit (33) calculates the intermediate liquid concentration based on the signal from the third calculation circuit (32). Fourth temperature detector (34)
.

(35)からの信号に基づいて第2演算回路(36)に
て求め、稀液温度を第6.第7温度検出器(3g> 、
 (43)からの信号に基づいて第3演算回路(44)
にて求めることにより、濃度演算のために冷凍サイクル
には複数の温度センサを設ければ良く、部品コストの低
減を図ることができる。
(35), the second arithmetic circuit (36) calculates the diluted liquid temperature. 7th temperature detector (3g>,
(44) based on the signal from (43).
By calculating the temperature, it is sufficient to provide a plurality of temperature sensors in the refrigeration cycle for concentration calculation, and it is possible to reduce the cost of parts.

さらに、第1図に示したように、高温再生器(1)内、
即ち分離器(23)内の圧力を検出する第1圧カセンサ
(55)、凝縮、低温再生器側(52)内の圧力を検出
する第2圧カセンサ(56)、蒸発、吸収器側(53)
内の圧力を検出する第3圧カセンサ(57)をそれぞれ
設ける。そして、濃液濃度を濃液温度と分離器(23)
内の圧力とから求め、中間液濃度を中間液温度と凝縮、
低温再生器側(52)内の圧力とから求め、さらに、稀
液温度を稀液温度と蒸発、吸収器側(53)内の圧力と
から求めた場合には、上記各圧力を温度に基づいて求め
る場合と比較し、濃液、中間液、及び稀液の濃度を正確
に求めることができ、この結果、稀液又は中間液の循環
量を正確に制御し、実効効率を確実に向上きせることが
できる。
Furthermore, as shown in FIG. 1, inside the high temperature regenerator (1),
That is, a first pressure sensor (55) that detects the pressure inside the separator (23), a second pressure sensor (56) that detects the pressure inside the condensation and low temperature regenerator side (52), and a second pressure sensor (56) that detects the pressure inside the evaporator and absorber side (53). )
A third pressure sensor (57) for detecting the internal pressure is provided respectively. Then, the concentrated liquid concentration is determined by the concentrated liquid temperature and the separator (23).
The intermediate liquid concentration is determined from the intermediate liquid temperature and the condensation,
When the pressure in the low temperature regenerator side (52) is determined, and the dilute liquid temperature is determined from the dilute liquid temperature and the pressure in the evaporator side (53), each of the above pressures is calculated based on the temperature. The concentration of the concentrated liquid, intermediate liquid, and dilute liquid can be determined accurately compared to the case where the concentration is determined by be able to.

又、第1図に示したように、濃液、中間液、及び稀液の
比重をそれぞれ検出する第1.第2.第3比重計(58
) 、 (59) 、 (60)を冷凍サイクルに設け
る。そして、濃液濃度を濃液温度と濃液の比重とから求
め、中間液濃度を中間液濃度と中間液の比重とから求め
、稀液温度を稀液温度と稀液の比重とから求めた場合に
は、濃液、中間液、及び稀液の濃度を一層正確に求める
ことができ、実効効率を確実に向上させることができる
In addition, as shown in FIG. 1, the first section detects the specific gravity of the concentrated liquid, intermediate liquid, and dilute liquid, respectively. Second. Third hydrometer (58
), (59), and (60) are provided in the refrigeration cycle. Then, the concentration of the concentrated liquid was determined from the temperature of the concentrated liquid and the specific gravity of the concentrated liquid, the concentration of the intermediate liquid was determined from the concentration of the intermediate liquid and the specific gravity of the intermediate liquid, and the temperature of the diluted liquid was determined from the temperature of the diluted liquid and the specific gravity of the diluted liquid. In some cases, the concentrations of the concentrated solution, intermediate solution, and diluted solution can be determined more accurately, and the effective efficiency can be reliably improved.

(ト)発明の効果 本発明は以上のように構成された吸収冷凍機の制御方法
であり、吸収器から稀液を低温再生器へ流し、低温再生
器から中間液を高温再生器へ流し、高温再生器から濃液
を吸収器へ流す吸収冷凍機において、濃液と中間液との
濃度差を予め設定し、濃度差が設定値になるように高温
再生器へ流れる中間液の址を制御するため、吸収器を流
れる冷却水の温度変化、又は吸収器への不凝縮ガスの滞
留等の外乱が発生した場合にも、高温再生器にて必要な
顕熱量の外乱による増加を抑えることができ、この結果
、吸収冷凍機の実効効率を向上させることができる。
(G) Effects of the Invention The present invention is a method for controlling an absorption refrigerator configured as described above, which includes flowing a dilute liquid from an absorber to a low-temperature regenerator, flowing an intermediate liquid from the low-temperature regenerator to a high-temperature regenerator, In an absorption refrigerator that flows concentrated liquid from a high-temperature regenerator to an absorber, the concentration difference between the concentrated liquid and intermediate liquid is set in advance, and the flow of the intermediate liquid to the high-temperature regenerator is controlled so that the concentration difference is the set value. Therefore, even if a disturbance occurs such as a change in the temperature of the cooling water flowing through the absorber or the accumulation of non-condensable gas in the absorber, it is possible to suppress the increase in the amount of sensible heat required by the high-temperature regenerator due to the disturbance. As a result, the effective efficiency of the absorption refrigerator can be improved.

又、濃液と中間液との濃度差が設定値になるように高温
再生器へ流れる中間液の量を制御し、且つ、稀液と中間
液との濃度差が設定値になるように低温再生器へ流れる
稀液の量を制御することにより、外乱が発生した場合に
も、高温再生器にて必要な顕然の増加を抑えることがで
きるとともに、低温再生器にて必要な顕熱量の増加をも
抑えることができ、この結果、吸収冷凍機の実効効率を
一層向上させることができる。
In addition, the amount of intermediate liquid flowing to the high temperature regenerator is controlled so that the concentration difference between the concentrated liquid and the intermediate liquid becomes the set value, and the amount of the intermediate liquid flowing to the high temperature regenerator is controlled so that the concentration difference between the dilute liquid and the intermediate liquid becomes the set value. By controlling the amount of dilute liquid flowing to the regenerator, even if a disturbance occurs, it is possible to suppress the increase in the amount of sensible heat required in the high temperature regenerator, and to reduce the amount of sensible heat required in the low temperature regenerator. As a result, the effective efficiency of the absorption refrigerator can be further improved.

さらに、濃液と中間液との濃度差、あるいは稀液と中間
液との濃度差が高温再生器の加熱量の減少に伴ない大き
くなるように高温再生器へ流れる中間液の量、あるいは
低温再生器へ流れる稀液の量を制御することにより、加
熱量に合った量の中間液、あるいは稀液を高温再生器又
は低温再生器へ送ることができ、高温再生器あるいは低
温再生器にて必要な顕熱量を特に加熱量が減少したとき
に減少きせることができ、この結果、実効効率をさらに
向上させることができる。
Furthermore, the amount of intermediate liquid flowing to the high temperature regenerator or the low temperature By controlling the amount of diluted liquid flowing to the regenerator, it is possible to send the amount of intermediate liquid or diluted liquid that matches the amount of heating to the high-temperature regenerator or low-temperature regenerator. The amount of sensible heat required can be reduced, especially when the amount of heating is reduced, and as a result, the effective efficiency can be further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す吸収冷凍機の回路構成
図、第2図は加熱量と濃液濃度、中間液濃度、補液濃度
との関係を示す説明図である。 (1)・・・高温再生器、 (2)・・・低温再生器、
 (3)・・・吸収器、 (6)・・・凝縮器、 (7)・・・蒸発器。
FIG. 1 is a circuit configuration diagram of an absorption refrigerator showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the relationship between the amount of heating and the concentration of concentrated solution, concentration of intermediate solution, and concentration of replacement fluid. (1)...High temperature regenerator, (2)...Low temperature regenerator,
(3)...absorber, (6)...condenser, (7)...evaporator.

Claims (1)

【特許請求の範囲】 1、高温再生器、低温再生器、凝縮器、蒸発器、吸収器
等をそれぞれ配管接続し、吸収器から稀液が低温再生器
へ送られ加熱濃縮されて中間液になり、さらに高温再生
器へ送られ加熱濃縮されて濃液になり、その後降温され
て吸収器へ送られる吸収冷凍機において、中間液の濃度
と濃液の濃度との差を予め設定し、濃度差が設定値にな
るように高温再生器へ送られる中間液の量を制御するこ
とを特徴とする吸収冷凍機の制御方法。 2、高温再生器、低温再生器、凝縮器、蒸発器、吸収器
等をそれぞれ配管接続し、吸収器から稀液が低温再生器
へ送られ加熱濃縮されて中間液になり、さらに高温再生
器へ送られ加熱濃縮されて濃液になり、その後降温され
て吸収器へ送られる吸収冷凍機において、中間液の濃度
と濃液の濃度との差を予め設定し、濃度差が設定値にな
るように高温再生器へ送られる中間液の量を制御し、且
つ、稀液の濃度と中間液の濃度との差を予め設定し、濃
度差が設定値になるように低温再生器へ送られる稀液の
量を制御することを特徴とする吸収冷凍機の制御方法。 3、高温再生器、低温再生器、凝縮器、蒸発器、吸収器
等をそれぞれ配管接続し、吸収器から稀液が低温再生器
へ送られ加熱濃縮されて中間液になり、さらに高温再生
器へ送られ加熱濃縮されて濃液になり、その後降温され
て吸収器へ送られる吸収冷凍機において、濃液と中間液
との濃度差あるいは中間液と稀液との濃度差が加熱量の
減少に伴ない大きくなるように高温再生器へ送られる中
間液の量あるいは低温再生器へ送られる稀液の量を制御
することを特徴とする吸収冷凍機の制御方法。
[Claims] 1. A high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, etc. are each connected through piping, and the diluted liquid is sent from the absorber to the low-temperature regenerator, where it is heated and concentrated to become an intermediate liquid. The difference between the concentration of the intermediate liquid and the concentration of the concentrated liquid is set in advance in the absorption refrigerator, which is then sent to the high-temperature regenerator, where it is heated and concentrated to become a concentrated liquid, and then cooled down and sent to the absorber. A method for controlling an absorption refrigerator, comprising controlling the amount of intermediate liquid sent to a high-temperature regenerator so that the difference becomes a set value. 2. Connect the high-temperature regenerator, low-temperature regenerator, condenser, evaporator, absorber, etc. with piping, and the dilute liquid is sent from the absorber to the low-temperature regenerator, heated and concentrated to become an intermediate liquid, and then transferred to the high-temperature regenerator. The difference between the concentration of the intermediate liquid and the concentration of the concentrated liquid is set in advance in the absorption refrigerator where the liquid is heated and concentrated to become a concentrated liquid, and then the temperature is lowered and sent to the absorber, and the concentration difference becomes the set value. The amount of intermediate liquid sent to the high-temperature regenerator is controlled, and the difference between the concentration of the diluted liquid and the intermediate liquid is set in advance, and the intermediate liquid is sent to the low-temperature regenerator so that the concentration difference becomes the set value. A method for controlling an absorption refrigerator characterized by controlling the amount of diluted liquid. 3. Connect the high-temperature regenerator, low-temperature regenerator, condenser, evaporator, absorber, etc. with piping, and the dilute liquid is sent from the absorber to the low-temperature regenerator, where it is heated and concentrated to become an intermediate liquid, and then to the high-temperature regenerator. In the absorption refrigerator, where the liquid is heated and concentrated to become a concentrated liquid, and then the temperature is lowered and sent to the absorber, the difference in concentration between the concentrated liquid and the intermediate liquid or the difference in concentration between the intermediate liquid and the dilute liquid causes a reduction in the amount of heating. 1. A method for controlling an absorption chiller, comprising controlling the amount of intermediate liquid sent to a high temperature regenerator or the amount of diluted liquid sent to a low temperature regenerator so that the amount increases as the amount of liquid increases.
JP25120788A 1988-10-05 1988-10-05 Method for controlling absorptive type freezer Pending JPH02101354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25120788A JPH02101354A (en) 1988-10-05 1988-10-05 Method for controlling absorptive type freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25120788A JPH02101354A (en) 1988-10-05 1988-10-05 Method for controlling absorptive type freezer

Publications (1)

Publication Number Publication Date
JPH02101354A true JPH02101354A (en) 1990-04-13

Family

ID=17219290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25120788A Pending JPH02101354A (en) 1988-10-05 1988-10-05 Method for controlling absorptive type freezer

Country Status (1)

Country Link
JP (1) JPH02101354A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183034A (en) * 2006-01-06 2007-07-19 Tokyo Gas Co Ltd Absorption water cooler-heater and its control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216044A (en) * 1975-07-28 1977-02-07 Osaka Gas Co Ltd Absorption-type refrigerator
JPS6170353A (en) * 1984-09-13 1986-04-11 株式会社荏原製作所 Double effect absorption refrigerator
JPS6269073A (en) * 1985-09-20 1987-03-30 川重冷熱工業株式会社 Method of controlling absorption refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216044A (en) * 1975-07-28 1977-02-07 Osaka Gas Co Ltd Absorption-type refrigerator
JPS6170353A (en) * 1984-09-13 1986-04-11 株式会社荏原製作所 Double effect absorption refrigerator
JPS6269073A (en) * 1985-09-20 1987-03-30 川重冷熱工業株式会社 Method of controlling absorption refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183034A (en) * 2006-01-06 2007-07-19 Tokyo Gas Co Ltd Absorption water cooler-heater and its control method

Similar Documents

Publication Publication Date Title
WO1999039140A1 (en) Absorption type refrigerating machine
KR101167800B1 (en) Absorption type refrigerating machine
JP2708809B2 (en) Control method of absorption refrigerator
JPH02101354A (en) Method for controlling absorptive type freezer
JP4922872B2 (en) Absorption type water heater
JP2664436B2 (en) Control method of absorption refrigerator
JP2532982B2 (en) Absorption refrigerator control device
JP3831427B2 (en) Heat input control method of absorption refrigerator
JPS6231825Y2 (en)
JPH0989407A (en) Absorption refrigerator
JP2904451B2 (en) Double effect absorption refrigerator
JPH0646125B2 (en) Control method for double-effect absorption refrigerator
JPS6021721Y2 (en) Absorption chiller control device
JPH0275865A (en) Controlling method for absorption refrigerator
JP3326240B2 (en) Control method of absorption refrigerator
JPH0317474A (en) Absorption refrigerator
KR0183567B1 (en) Variable load control apparatus of absorptive refrigerator
JPS6215736Y2 (en)
JPH0356861Y2 (en)
JPH05312429A (en) Absorption water cooling/heating apparatus
JP3831425B2 (en) Control method of absorption chiller / heater
JPS6117319Y2 (en)
JP2883372B2 (en) Absorption chiller / heater
JP3218018B2 (en) Double effect absorption refrigerator
JPH03105171A (en) Absorption type water cooling and heating machine