JP2904451B2 - Double effect absorption refrigerator - Google Patents
Double effect absorption refrigeratorInfo
- Publication number
- JP2904451B2 JP2904451B2 JP17705291A JP17705291A JP2904451B2 JP 2904451 B2 JP2904451 B2 JP 2904451B2 JP 17705291 A JP17705291 A JP 17705291A JP 17705291 A JP17705291 A JP 17705291A JP 2904451 B2 JP2904451 B2 JP 2904451B2
- Authority
- JP
- Japan
- Prior art keywords
- solution
- temperature regenerator
- absorber
- low
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、二重効用吸収式冷凍機
に係り、高負荷から部分負荷域まですぐれた運転特性を
得るのに好適な運転制御機構を備えた二重効用吸収式冷
凍機に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double effect absorption refrigerator, and more particularly to a double effect absorption refrigerator having an operation control mechanism suitable for obtaining excellent operation characteristics from a high load to a partial load region. It is about the machine.
【0002】[0002]
【従来の技術】従来、二重効用吸収式冷凍機において、
その部分負荷特性を改善する手段としては、SANYO
TECHNICAL REVIEW,VOL.22,
No.2,JUN,1990に記載されているように、
負荷量に敏感な高温再生器の再生温度や冷却水入口温度
をもとに、吸収液ポンプをインバータにより回転数制御
し、吸収液の循環量を制御することが知られている。2. Description of the Related Art Conventionally, in double effect absorption refrigerators,
As means for improving the partial load characteristics, SANYO
TECHNICAL REVIEW, VOL. 22,
No. 2, JUN, 1990,
It is known that the rotation speed of an absorption liquid pump is controlled by an inverter based on a regeneration temperature of a high temperature regenerator and a cooling water inlet temperature which are sensitive to a load amount, thereby controlling a circulation amount of the absorption liquid.
【0003】[0003]
【発明が解決しようとする課題】従来の技術によると、
負荷に応じて溶液循環量を制御するその溶液量制御系を
構成するために、温度センサ、その検知温度により溶液
循環量を算出するマイコン等の変換器、変換値を機械量
に変換するインバータとそれにより駆動される溶液ポン
プ等が必要であり、装置が大形化するなどの問題があっ
た。According to the prior art,
A temperature sensor, a converter such as a microcomputer that calculates the solution circulation amount based on the detected temperature, an inverter that converts the conversion value into a mechanical amount, and a temperature sensor, to configure the solution amount control system that controls the solution circulation amount according to the load. This requires a solution pump or the like to be driven, and there is a problem that the apparatus becomes large.
【0004】本発明は、上記従来技術の問題点を解決す
るためになされたもので、その目的は、特に大がかりな
装置を必要とせずに、溶液循環量制御が実現され、高負
荷から部分負荷域まですぐれた運転特性を得る二重効用
吸収式冷凍機を提供することにある。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art. It is an object of the present invention to realize control of a solution circulation amount without particularly requiring a large-scale device, and to reduce a load from a high load to a partial load. It is an object of the present invention to provide a double-effect absorption refrigerator having excellent operating characteristics up to the range.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明に係る二重効用吸収式冷凍機の構成は、蒸発
器、吸収器、凝縮器、高温再生器、低温再生器、溶液熱
交換器、溶液ポンプ、冷媒ポンプ、およびこれら機器を
作動的に接続する配管系からなり、吸収器からの稀溶液
を高温再生器と低温再生器とに並列に送液するようにし
た吸収式冷凍機において、高温再生器から吸収器に還流
する溶液循環系の濃溶液量を計測する流量計と、該流量
計の計測結果に応じて開閉する流量調整弁とを前記溶液
循環系に設け、該流量調整弁の弁開度により吸収器から
高温,低温両再生器に送液される稀溶液循環量を制御す
るものである。In order to achieve the above object, a double effect absorption refrigerator according to the present invention comprises an evaporator, an absorber, a condenser, a high temperature regenerator, a low temperature regenerator, and a solution. An absorption type that consists of a heat exchanger, a solution pump, a refrigerant pump, and a piping system that operatively connects these devices, and sends the dilute solution from the absorber to the high-temperature regenerator and the low-temperature regenerator in parallel. In the refrigerator , reflux from the high-temperature regenerator to the absorber
A flow meter for measuring the amount of concentrated solution in the solution circulation system,
A flow control valve that opens and closes according to the measurement result of the
It is provided in a circulation system, and controls the circulation amount of the dilute solution sent from the absorber to the high-temperature and low-temperature regenerators according to the valve opening of the flow control valve .
【0006】[0006]
【作用】上記技術的手段による働きは、下記のとおりで
ある。負荷に応じて高温再生器へ供給される熱源量は増
減制御されるため、再生冷媒量は高負荷時に多く、低負
荷時に少なくなる。一方において、再生冷媒が凝縮熱交
換する低温再生器の伝熱面積は一定であるため、高負荷
時は凝縮温度が高く、低負荷時は低い。すなわち、高負
荷時は再生圧力が高く、低負荷時は低くなる。The function of the above technical means is as follows. Since the amount of heat source supplied to the high-temperature regenerator is controlled to increase or decrease according to the load, the amount of the regenerated refrigerant is large when the load is high and is small when the load is low. On the other hand, since the heat transfer area of the low-temperature regenerator in which the regenerated refrigerant exchanges condensing heat is constant, the condensing temperature is high at high load and low at low load. That is, the regeneration pressure is high when the load is high, and is low when the load is low.
【0007】また、稀溶液運転濃度は高負荷時は高く、
低負荷時は低い。ここで、吸収器からの稀溶液を2つに
分けて高温再生器と低温再生器とに並列に送液する並列
溶液循環方式を採用すると、低温再生器へ供給される稀
溶液濃度は、途中に濃縮過程が無いから負荷に応じた濃
度の溶液が供給されることになる。したがって、高温再
生器の再生冷媒と熱交換する低温再生器の稀溶液濃度
は、その濃度に比例し、高負荷時は高く、低負荷時は低
くなる。結局、高負荷な高温再生器の再生圧が高くな
り、低負荷時は低くなる。The operating concentration of the diluted solution is high when the load is high,
Low at low load. Here, if the parallel solution circulation system in which the dilute solution from the absorber is divided into two and sent in parallel to the high-temperature regenerator and the low-temperature regenerator is adopted, the dilute solution concentration supplied to the low-temperature regenerator Since there is no concentration step, a solution having a concentration corresponding to the load is supplied. Therefore, the concentration of the dilute solution in the low-temperature regenerator, which exchanges heat with the regenerated refrigerant in the high-temperature regenerator, is proportional to the concentration, and is high at high load and low at low load. As a result, the regeneration pressure of the high-temperature regenerator with a high load increases, and decreases at a low load.
【0008】以上を総合的に評価すると、高温再生器の
再生圧力は、並列溶液循環方式を採用すると負荷に比例
して適宜に変動することになる。ところで、高温再生器
から吸収器に還流する濃溶液の循環に要する駆動力は、
1に高温再生器圧力、2に位置ヘッドであり、その比は
約4.5:1程度で、高温再生器圧力によるところが大
きい。ここで、高温再生器から吸収器へ還流する濃溶液
量を感知し、循環量に比例して開閉する弁によって2つ
の再生器へ供給される稀溶液循環量を制御すれば、従来
技術同様、負荷に比例した稀溶液循環量制御機構を構成
することが可能になる。また、循環量の検知は、直接の
循環駆動力である高温再生器の再生圧力や、圧力と相関
関係にある高温再生器の温度により行なっても良い。Comprehensively evaluating the above, the regeneration pressure of the high-temperature regenerator fluctuates appropriately in proportion to the load when the parallel solution circulation system is adopted. By the way, the driving force required for circulation of the concentrated solution refluxing from the high-temperature regenerator to the absorber is:
1 is a high temperature regenerator pressure, and 2 is a position head, and the ratio is about 4.5: 1, which largely depends on the high temperature regenerator pressure. Here, if the amount of the concentrated solution flowing back from the high-temperature regenerator to the absorber is sensed, and the amount of the dilute solution supplied to the two regenerators is controlled by a valve that opens and closes in proportion to the amount of circulation, as in the prior art, It becomes possible to configure a dilute solution circulation amount control mechanism proportional to the load. Further, the amount of circulation may be detected based on the regeneration pressure of the high-temperature regenerator, which is a direct circulation driving force, or the temperature of the high-temperature regenerator correlated with the pressure.
【0009】[0009]
【実施例】以下、本発明の各実施例を図1ないし図5を
参照して説明する。まず、一般的な二重効用吸収式冷凍
機の冷凍サイクルを図5を参照して説明する。図5は、
一般的な二重効用吸収式冷凍機のサイクル系統図であ
る。蒸発器1内は約百分の1気圧に保たれている。冷媒
である水は、冷媒ポンプ2により蒸発器1へ送られ、冷
水が流通する伝熱管3の上に撤布され冷水の熱を奪って
蒸発する。これにより冷却作用が発生する。蒸発した冷
媒蒸気は、伝熱管4内を通る冷却水による冷却によって
低圧に保たれた吸収器5へ流れ込み、ここで溶液ポンプ
6により撤布された臭化リチウム水溶液により吸収さ
れ、臭化リチウム水溶液は薄くなる。この稀溶液は溶液
ポンプ6により溶液熱交換器7を経て、一部は稀溶液配
管11により高温再生器8へ、残りは稀溶液配管12に
より低温再生器9へ送り込まれる。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS. First, a refrigeration cycle of a general double effect absorption refrigerator will be described with reference to FIG. FIG.
It is a cycle system diagram of a general double effect absorption refrigerator. The inside of the evaporator 1 is maintained at about 1/100 atm. Water, which is a refrigerant, is sent to the evaporator 1 by the refrigerant pump 2, is removed on the heat transfer tube 3 through which the cold water flows, and evaporates by removing heat of the cold water. Thereby, a cooling action occurs. The evaporated refrigerant vapor flows into the absorber 5 maintained at a low pressure by cooling by the cooling water passing through the heat transfer tube 4, where it is absorbed by the aqueous solution of lithium bromide removed by the solution pump 6, Becomes thinner. The dilute solution is sent to a high-temperature regenerator 8 by a dilute solution pipe 11 via a dilute solution pipe 11 and a low-temperature regenerator 9 by a dilute solution pipe 12.
【0010】この稀溶液は、高温再生器8では直接熱源
(ボイラ)により加熱されて蒸気と濃溶液に分離され、
また低温再生器9では高温再生器8で発生した蒸気によ
り加熱されて蒸気と濃溶液に分離される。このようにし
て濃縮された溶液は、高温再生器8からは濃溶液配管1
3により、低温再生器9からは濃溶液配管14により再
び溶液熱交換器7を経て吸収器5に導かれる。低温再生
器9で溶液を加熱し凝縮したドレンは、凝縮器10に導
かれる。また、低温再生器9で発生した蒸気は凝縮器1
0で凝縮する。このようにしてできた凝縮冷媒は、蒸発
器1へ導かれ、サイクルを一巡する。In the high-temperature regenerator 8, the diluted solution is directly heated by a heat source (boiler) to be separated into a vapor and a concentrated solution.
In the low-temperature regenerator 9, the steam is heated by the high-temperature regenerator 8 and separated into a vapor and a concentrated solution. The concentrated solution is supplied from the high-temperature regenerator 8 to the concentrated solution pipe 1.
By 3, the low-temperature regenerator 9 is guided again to the absorber 5 through the solution heat exchanger 7 by the concentrated solution pipe 14. The drain obtained by heating and condensing the solution in the low-temperature regenerator 9 is led to the condenser 10. The steam generated by the low-temperature regenerator 9 is supplied to the condenser 1
Condenses at 0. The condensed refrigerant thus produced is guided to the evaporator 1 and goes through a cycle.
【0011】高温再生器8へ供給される直接熱源は、制
御装置15によりその量を制御される。また、吸収器5
からの稀溶液は高温再生器8、低温再生器9へ送られる
並列溶液循環方式を採用しているから、高温再生器8の
機内圧力は負荷に比例した圧力に保たれる。高温再生器
8から吸収器5への還流濃溶液量は、およそその圧力に
より決定されるので還流濃溶液量は負荷に比例してい
る。The amount of the direct heat source supplied to the high-temperature regenerator 8 is controlled by the controller 15. In addition, absorber 5
Since the parallel solution circulation system in which the dilute solution is sent to the high temperature regenerator 8 and the low temperature regenerator 9 is adopted, the internal pressure of the high temperature regenerator 8 is maintained at a pressure proportional to the load. Since the amount of the concentrated reflux solution from the high temperature regenerator 8 to the absorber 5 is determined by the pressure, the amount of the concentrated concentrated solution is proportional to the load.
【0012】次に、本発明の各実施例のサイクル系統お
よび作用を説明する。 〔実施例 1〕 図1は、本発明の一実施例に係る二重効用吸収式冷凍機
のサイクル系統図である。図中、図5と同一符号のもの
は同等部分であるから、その説明を省略する。図1にお
いて、20はフロート弁、21は、該フロート弁20を
備え溶液循環系中に液タンクを構成したフロート室であ
り、このフロート室21は、高温再生器8から吸収器5
に還流する溶液循環系に係る濃溶液配管13Aに設けら
れている。Next, the cycle system and operation of each embodiment of the present invention will be described. Embodiment 1 FIG. 1 is a cycle diagram of a double-effect absorption refrigerator according to one embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 5 denote the same parts, and a description thereof will be omitted. In FIG. 1, reference numeral 20 denotes a float valve, and reference numeral 21 denotes a float chamber provided with the float valve 20 and constituting a liquid tank in a solution circulating system.
Is provided in a concentrated solution pipe 13A related to a solution circulation system that is refluxed.
【0013】高温再生器8により濃縮された濃溶液は、
フロート室21に入る。フロート室21内にはフロート
弁20が配置され濃溶液量すなわち負荷に応じてフロー
ト弁20が開閉する。一方、吸収器5で薄くなった稀溶
液は、溶液ポンプ6により溶液熱交換器7を経たのち、
稀溶液配管11Aによりフロート弁20を介して一部は
稀溶液配管11Bにより高温再生器8へ、残りは稀溶液
配管12Aにより低温再生器9へ送り込まれる。The concentrated solution concentrated by the high-temperature regenerator 8
Enter the float chamber 21. A float valve 20 is disposed in the float chamber 21 and opens and closes according to the amount of concentrated solution, that is, the load. On the other hand, the diluted solution thinned by the absorber 5 passes through the solution heat exchanger 7 by the solution pump 6,
A part is sent to the high temperature regenerator 8 by the dilute solution pipe 11B via the float valve 20 by the dilute solution pipe 11A, and the remaining part is sent to the low temperature regenerator 9 by the dilute solution pipe 12A.
【0014】図1の実施例によれば、フロート弁20に
より稀溶液循環量が制御されるから、負荷に応じた溶液
循環量制御が実現され、したがって、部分負荷域でも効
率の良い運転を行うことができる。According to the embodiment shown in FIG. 1, the amount of circulation of the dilute solution is controlled by the float valve 20, so that the amount of circulation of the solution according to the load can be controlled, so that efficient operation can be performed even in a partial load region. be able to.
【0015】〔実施例 2〕 図2は、本発明の他の実施例に係る二重効用吸収式冷凍
機のサイクル系統図である。図中、図1または図5と同
一符号のものは同等部分であるから、その説明を省略す
る。図2の実施例が図1の実施例と相違するところは、
高温再生器8から吸収器5へ濃溶液配管13により還流
する濃溶液量を、直接、流量計22により計測し、制御
装置15の指令により、稀溶液配管11に設けた流量調
整弁23を開閉することによって溶液循環量制御を行う
ようにしたことである。図2の実施例によれば、先の図
1の実施例と同様の効果が得られる。Embodiment 2 FIG. 2 is a cycle diagram of a double-effect absorption refrigerator according to another embodiment of the present invention. In the drawing, those having the same reference numerals as those in FIG. 1 or FIG. 5 are the same parts, and the description thereof is omitted. The difference between the embodiment of FIG. 2 and the embodiment of FIG.
The amount of the concentrated solution refluxed from the high-temperature regenerator 8 to the absorber 5 by the concentrated solution pipe 13 is directly measured by the flow meter 22, and the flow control valve 23 provided in the diluted solution pipe 11 is opened and closed by a command from the control device 15. Thus, the solution circulation amount is controlled. According to the embodiment of FIG. 2, the same effect as the embodiment of FIG. 1 can be obtained.
【0016】〔実施例 3〕 図3は、本発明のさらに他の実施例に係る二重効用吸収
式冷凍機のサイクル系統図である。図中、図2または図
5と同一符号のものは同等部分であるから、その説明を
省略する。図3の実施例が図2の実施例と相違するとこ
ろは、高温再生器8から吸収器5へ濃溶液配管13によ
り還流する濃溶液量を、圧力計24で計測する高温再生
器圧力により検知し、制御装置15の指令により流量調
整弁23を開閉することによって溶液循環量制御を行う
ものである。図3の実施例によれば、先の各実施例と同
様の効果が得られる。Embodiment 3 FIG. 3 is a cycle system diagram of a double effect absorption refrigerator according to still another embodiment of the present invention. In the drawing, those having the same reference numerals as those in FIG. 2 or FIG. 5 are the same parts, and the description thereof is omitted. The embodiment of FIG. 3 differs from the embodiment of FIG. 2 in that the amount of the concentrated solution flowing back from the high temperature regenerator 8 to the absorber 5 through the concentrated solution pipe 13 is detected by the high temperature regenerator pressure measured by the pressure gauge 24. Then, the solution circulation amount control is performed by opening and closing the flow control valve 23 according to a command from the control device 15. According to the embodiment of FIG. 3, the same effects as those of the previous embodiments can be obtained.
【0017】〔実施例 4〕 図4は、本発明のさらに他の実施例に係る二重効用吸収
式冷凍機のサイクル系統図である。図中、図2または図
5と同一符号のものは同等部分であるから、その説明を
省略する。図4の実施例が図2の実施例と相違するとこ
ろは、高温再生器8から吸収器5へ濃溶液配管13によ
り還流する濃溶液量を、温度計25で計測する高温再生
器温度により検知し、制御装置15の指令により流量調
整弁23を開閉することによって溶液循環量制御を行う
ものである。図4の実施例によれば、先の各実施例と同
様の効果が得られる。Embodiment 4 FIG. 4 is a cycle system diagram of a double-effect absorption refrigerator according to still another embodiment of the present invention. In the drawing, those having the same reference numerals as those in FIG. 2 or FIG. 5 are the same parts, and the description thereof is omitted. 4 differs from the embodiment of FIG. 2 in that the amount of the concentrated solution flowing back from the high-temperature regenerator 8 to the absorber 5 through the concentrated solution pipe 13 is detected by the high-temperature regenerator temperature measured by the thermometer 25. Then, the solution circulation amount control is performed by opening and closing the flow control valve 23 according to a command from the control device 15. According to the embodiment of FIG. 4, the same effects as those of the previous embodiments can be obtained.
【0018】[0018]
【発明の効果】以上詳細に説明したように、本発明によ
れば、特に大がかりな装置を必要とせずに、溶液循環量
制御が実現され、高負荷から部分負荷域まですぐれた運
転特性を得る二重効用吸収式冷凍機を提供することがで
きる。また、負荷の変動を、内部のサイクル量により検
知しているため、外部負荷変動過渡期でも機械の時定数
に合った制御系が構成される。As described above in detail, according to the present invention, control of the circulation amount of the solution is realized without particularly requiring a large-scale device, and excellent operation characteristics from a high load to a partial load region are obtained. A double-effect absorption refrigerator can be provided. In addition, since the change in load is detected based on the internal cycle amount, a control system that matches the time constant of the machine is configured even in the transition period of the external load change.
【図1】本発明の一実施例に係る二重効用吸収式冷凍機
のサイクル系統図である。FIG. 1 is a cycle diagram of a double effect absorption refrigerator according to one embodiment of the present invention.
【図2】本発明の他の実施例に係る二重効用吸収式冷凍
機のサイクル系統図である。FIG. 2 is a cycle system diagram of a double effect absorption refrigerator according to another embodiment of the present invention.
【図3】本発明のさらに他の実施例に係る二重効用吸収
式冷凍機のサイクル系統図である。FIG. 3 is a cycle diagram of a double-effect absorption refrigerator according to still another embodiment of the present invention.
【図4】本発明のさらに他の実施例に係る二重効用吸収
式冷凍機のサイクル系統図である。FIG. 4 is a cycle system diagram of a double-effect absorption refrigerator according to still another embodiment of the present invention.
【図5】一般的な二重効用吸収式冷凍機のサイクル系統
図である。FIG. 5 is a cycle diagram of a general double-effect absorption refrigerator.
1 蒸発器 2 冷媒ポンプ 5 吸収器 6 溶液ポンプ 7 溶液熱交換器 8 高温再生器 9 低温再生器 10 凝縮器 11,11A,11B,12,12A 稀溶液配管 13,13A,14 濃溶液配管 15 制御装置 20 フロート弁 21 フロート室 22 流量計 23 流量調整弁 24 圧力計 25 温度計 DESCRIPTION OF SYMBOLS 1 Evaporator 2 Refrigerant pump 5 Absorber 6 Solution pump 7 Solution heat exchanger 8 High temperature regenerator 9 Low temperature regenerator 10 Condenser 11,11A, 11B, 12,12A Dilute solution piping 13,13A, 14 Concentrated solution piping 15 Control Apparatus 20 Float valve 21 Float chamber 22 Flow meter 23 Flow control valve 24 Pressure gauge 25 Thermometer
Claims (1)
低温再生器、溶液熱交換器、溶液ポンプ、冷媒ポンプ、
およびこれら機器を作動的に接続する配管系からなり、
吸収器からの稀溶液を高温再生器と低温再生器とに並列
に送液するように構成した吸収式冷凍機において、 高温再生器から吸収器に還流する溶液循環系の濃溶液量
を計測する流量計と、 該流量計の計測結果に応じて開閉する流量調整弁とを前
記溶液循環系に設け、 該流量調整弁の弁開度により吸収器から高温,低温両再
生器に送液される稀溶液循環量を制御することを特徴と
する二重効用吸収式冷凍機。An evaporator, an absorber, a condenser, a high-temperature regenerator,
Low temperature regenerator, solution heat exchanger, solution pump, refrigerant pump,
And a piping system that operatively connects these devices,
In an absorption refrigerator configured to send a dilute solution from an absorber to a high-temperature regenerator and a low-temperature regenerator in parallel, measure the amount of concentrated solution in the solution circulation system that returns from the high-temperature regenerator to the absorber. A flow meter and a flow control valve that opens and closes according to the measurement result of the flow meter are provided in the solution circulation system, and the liquid is sent from the absorber to both the high-temperature and low-temperature regenerators according to the valve opening of the flow control valve. A double-effect absorption refrigerator characterized by controlling the circulation amount of a dilute solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17705291A JP2904451B2 (en) | 1991-07-18 | 1991-07-18 | Double effect absorption refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17705291A JP2904451B2 (en) | 1991-07-18 | 1991-07-18 | Double effect absorption refrigerator |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33831198A Division JP3218018B2 (en) | 1991-07-18 | 1998-11-30 | Double effect absorption refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0526533A JPH0526533A (en) | 1993-02-02 |
JP2904451B2 true JP2904451B2 (en) | 1999-06-14 |
Family
ID=16024296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17705291A Expired - Fee Related JP2904451B2 (en) | 1991-07-18 | 1991-07-18 | Double effect absorption refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2904451B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0785168A (en) * | 1993-09-10 | 1995-03-31 | Toa Medical Electronics Co Ltd | Display device for clinical examination result |
-
1991
- 1991-07-18 JP JP17705291A patent/JP2904451B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0526533A (en) | 1993-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1999039140A1 (en) | Absorption type refrigerating machine | |
JP3887204B2 (en) | Two-stage absorption chiller / heater | |
JP2904451B2 (en) | Double effect absorption refrigerator | |
JP3218018B2 (en) | Double effect absorption refrigerator | |
JP2708809B2 (en) | Control method of absorption refrigerator | |
JP2664436B2 (en) | Control method of absorption refrigerator | |
JPH0989407A (en) | Absorption refrigerator | |
JPS6231825Y2 (en) | ||
JP3138164B2 (en) | Absorption refrigerator | |
KR0183567B1 (en) | Variable load control apparatus of absorptive refrigerator | |
JPH02101354A (en) | Method for controlling absorptive type freezer | |
JPS6215736Y2 (en) | ||
JP3203552B2 (en) | Absorption chiller controller | |
JP2567663B2 (en) | Air-cooled double-effect absorption refrigerator | |
JPS5824705B2 (en) | absorption refrigerator | |
JPH0868572A (en) | Dual-effect absorption refrigerator | |
JP3280261B2 (en) | Absorption refrigeration equipment | |
JPH0317474A (en) | Absorption refrigerator | |
JPS602583B2 (en) | absorption cold water machine | |
KR0173495B1 (en) | Absorptive type air conditioner | |
JPS5851577Y2 (en) | Double effect absorption chiller | |
JPH0198864A (en) | Method of controlling quantity of absorbing solution circulated in absorption refrigerator | |
KR980010251A (en) | Direct-burn adsorption-type air-conditioning system using adsorber with each burner | |
JPH0638010B2 (en) | Drain controller for absorption refrigerator | |
JPS5921957A (en) | Absorption cold and hot water machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20080326 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20080326 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20080326 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080326 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080326 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080326 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20090326 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090326 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20100326 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110326 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |