JPS602583B2 - absorption cold water machine - Google Patents

absorption cold water machine

Info

Publication number
JPS602583B2
JPS602583B2 JP8712577A JP8712577A JPS602583B2 JP S602583 B2 JPS602583 B2 JP S602583B2 JP 8712577 A JP8712577 A JP 8712577A JP 8712577 A JP8712577 A JP 8712577A JP S602583 B2 JPS602583 B2 JP S602583B2
Authority
JP
Japan
Prior art keywords
heating
generator
evaporator
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8712577A
Other languages
Japanese (ja)
Other versions
JPS5421649A (en
Inventor
秋一 高田
光雄 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP8712577A priority Critical patent/JPS602583B2/en
Publication of JPS5421649A publication Critical patent/JPS5421649A/en
Publication of JPS602583B2 publication Critical patent/JPS602583B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明は吸収サイクルを利用した吸収冷温水機に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorption chiller/heater using an absorption cycle.

従来この種吸収冷温水機では冷房サイクルの省エネルギ
は具体例が多いが、一機で年間を通じ、冷暖房用に用い
られる本機種で冷房時の省エネルギ化のみでは片手落ち
であった。
Conventionally, this type of absorption chiller/heater has many concrete examples of energy savings in the cooling cycle, but this model, which is used year-round for air conditioning and heating, has not been able to save energy only during cooling.

従来、暖房サイクルの省エネルギ方策として■ 発生器
の燃焼効率を向上させる。■ 排ガス経路に熱交換器を
設け排ガスと温水を交換させる。
Traditionally, energy saving measures for heating cycles include: ■ Improving the combustion efficiency of the generator. ■ A heat exchanger is installed in the exhaust gas route to exchange exhaust gas and hot water.

■ 空調システム上h導入した外気を排ガス経路に設け
た熱回収器を介して加熱し、加熱コイル入口温度を高め
ることでトータル的省エネルギをはかる。
■ The outside air introduced into the air conditioning system is heated through a heat recovery device installed in the exhaust gas path, increasing the temperature at the heating coil inlet to achieve total energy savings.

などがあった。There was such a thing.

然しながら上記の方式の欠点として ■ 発生器の熱暁効率は既に現在上限値に近く、既存機
で90%近くの効率となっている。
However, the drawback of the above method is (1) The thermal efficiency of the generator is already close to the upper limit, and the efficiency of the existing machine is close to 90%.

燃焼技術上1〜2%の効率上昇はなんとか期待できても
それ以上は無理と判断せざるを得ない現状である。■
通常、暖房に用いられる温水は50oo以上であり、排
ガス対溢水熱交換器を使用した場合も、出口温水は50
qo以上はほしい。
Even if we can somehow hope for a 1-2% increase in efficiency due to combustion technology, we have no choice but to conclude that it is impossible to increase the efficiency further. ■
Normally, the hot water used for heating is 50oo or more, and even when using an exhaust gas to overflow heat exchanger, the outlet hot water is 50oo or more.
I want more than qo.

この為には排ガスとの平均温度差も小さい理由で大型の
熱交換器を設ける必要があり、コストアップになり実施
は難かしい。■ 排ガスと熱回収器を介して外気を加熱
する方式では、排ガス中の不純物C○、N○x〜S○×
などが被空調室へ浸入してくる危険があり人間対象の快
感空調には不向きである。
For this purpose, it is necessary to provide a large heat exchanger because the average temperature difference with the exhaust gas is small, which increases costs and is difficult to implement. ■ In the method of heating outside air via exhaust gas and a heat recovery device, impurities C○, N○x to S○× in the exhaust gas
There is a danger that the air conditioner may enter the air-conditioned room, making it unsuitable for pleasurable air conditioning for humans.

本発明は上記の欠点を除去するため、.発生器の加熱源
として燃料の燃焼ガス高温ガスを用いる場合は排ガス経
路に設けて熱交換器を通る昇溢された水で蒸発器内の冷
煤を縦とうさせることにより排ガスの有する熱を冷媒蒸
発による潜熱に置換利用し、高温水を加熱源として用い
る場合は、高温水を蒸発器へ流過させることで高温水の
有する顕熱を冷煤に潜熱の形で与えることで省エネルギ
を計ることを目的とし、比較的温度レベルは低いまま利
用できるし排ガスの不純物に無関係である特長を有する
The present invention aims to eliminate the above-mentioned drawbacks. When using high-temperature combustion gas from the fuel as a heating source for the generator, it is installed in the exhaust gas path and the cold soot in the evaporator is twisted by the water that has risen through the heat exchanger, thereby converting the heat of the exhaust gas into a refrigerant. When high-temperature water is used as a heating source by replacing it with latent heat from evaporation, the sensible heat of the high-temperature water is transferred to cold soot in the form of latent heat by passing the high-temperature water through the evaporator, thereby saving energy. It has the feature that it can be used at a relatively low temperature level and is unrelated to impurities in the exhaust gas.

本発明の要点は、吸収冷溢水機の暖房サイクル運転に当
たり、排ガス経路中に設けた熱交換器を通る水を蒸発器
へ流遇させるか或いは高温水を直接蒸発器へ流過ごせる
ことにより蒸発器での冷煤の蒸発を促進させこの袷媒蒸
気を吸収器で吸収溶液に吸収させることで、従来は吸収
溶液の顕熱のみ利用していたことに比べ冷嬢の吸収熱分
だけ追加の熱量を吸収袷温水機に与えることができるこ
とである。
The main point of the present invention is that during the heating cycle operation of the absorption cooling/flooding machine, water passing through a heat exchanger installed in the exhaust gas path is allowed to flow to the evaporator, or high-temperature water is allowed to flow directly to the evaporator. By accelerating the evaporation of cold soot and absorbing this medium vapor into the absorbing solution in the absorber, an additional amount of heat is generated by the amount of heat absorbed by the cold soak, compared to conventional methods where only the sensible heat of the absorbing solution was used. can be given to the absorbent water heater.

また、蒸発器の冷媒発生量に左右されて冷煤面が上下す
ることを検出し「あらかじめ設設定された上、下限レベ
ルにより蒸発器へ戻る袷煤液量を制御することも重要な
点である。本発明は、発生器、蒸発器「吸収器、凝縮器
及び熱交換器を備え、冷房あるいは暖房を一機で行なう
ことが可能な吸収冷温水機において、発生器の加熱源の
熱エネルギーを賦与された熱媒体流体を前記蒸発器の加
熱流体経路に導いたことを特徴とする吸収冷溢水機であ
る。
It is also important to detect that the cold soot surface rises and falls depending on the amount of refrigerant generated in the evaporator, and to control the amount of soot liquid that returns to the evaporator based on a preset lower limit level. The present invention provides an absorption chiller/heater that is equipped with a generator, an evaporator, an absorber, a condenser, and a heat exchanger, and is capable of cooling or heating in one unit. This is an absorption cold overflow machine characterized in that a heat transfer fluid imparted with a heat transfer fluid is introduced into a heating fluid path of the evaporator.

本発明の基本的な作用は、燃焼ガス、排ガスを加熱源と
するものにおいては、発生器出口に設けた熱交換器内を
通る水の温度上昇↓ 蒸発器へ通水することにより袷煤の蒸発 ↓ 吸収器での冷媒吸収による吸収熱の温水への供与↓ 暖房用温水温度の上昇 であり、高温水を加熱源とするものにおいては、高温水
を蒸発器へ通水することにより冷嬢の蒸発↓ 吸収器での冷媒吸収による吸収熱の温水への供与↓ 暖房用温水温度の上昇 である。
The basic function of the present invention is that in a device that uses combustion gas or exhaust gas as a heating source, the temperature of water passing through the heat exchanger installed at the generator outlet increases ↓ By passing water to the evaporator, soot is removed. Evaporation ↓ Donation of absorbed heat to hot water by absorption of refrigerant in absorber ↓ This is an increase in the temperature of hot water for heating, and in systems that use high-temperature water as a heating source, cooling is achieved by passing high-temperature water to the evaporator. ↓ Transfer of heat absorbed by refrigerant absorption in the absorber to hot water ↓ This is an increase in the temperature of hot water for heating.

本発明を実施例に塞いて図面を用いて詳細に説明する。The present invention will be described in detail with reference to embodiments and drawings.

第1図の実施例において1は燃料を直接燃焼する装置を
設けた第1発生器、2は排ガス経路中に設けた熱交換器
、3は吸収器であり吸収したあとの稀溶液は4の溶液ポ
ンプで5の第2熱交換器、6の第1熱交換器を経て第1
発生器へ送られる。第1発生器で濃縮された溶液は第1
熱交換器を経て、7の第2発生器へ戻り、一方第1発生
器1で発生した高溢冷煤蒸気は管路8を経て7の第2発
生器内の溶液をさらに加熱する。冷媒ドレンは9の凝縮
器へ入り、第2発生器7で発生した蒸気と一緒になり弁
10を介して11の蒸発器へ戻る。12は冷嬢スプレー
用の冷煤ポンプである。
In the embodiment shown in Fig. 1, 1 is a first generator equipped with a device for directly burning fuel, 2 is a heat exchanger installed in the exhaust gas path, and 3 is an absorber. The solution pump passes through the second heat exchanger (5), the first heat exchanger (6), and then the first heat exchanger.
sent to the generator. The concentrated solution in the first generator is
Via the heat exchanger, it returns to the second generator 7, while the overflowing cold soot vapor generated in the first generator 1 passes through line 8 to further heat the solution in the second generator 7. The refrigerant drain enters the condenser 9 and returns to the evaporator 11 through the valve 10 together with the steam generated in the second generator 7 . 12 is a cold soot pump for cold spray.

13は冷煤液面検出様でこの信号により弁10を制御す
る。
Reference numeral 13 detects the cold soot liquid level, and the valve 10 is controlled by this signal.

14は冷煤低レベル検出端で冷媒ポンプ12の空運転防
止用に用いられる。
Reference numeral 14 denotes a cold soot low level detection end, which is used to prevent the refrigerant pump 12 from running dry.

15は冷却水及び温水用ポンプ、16は冷水及び排ガス
熱交換器と連絡して通水する温水用ポンプ、17は温水
(暖房用)出口温度検出端で、この信号により、燃焼ガ
ス量調整弁18を制御する。
15 is a cooling water and hot water pump, 16 is a hot water pump that communicates with the cold water and exhaust gas heat exchanger, and 17 is a hot water (heating) outlet temperature detection terminal. 18.

19は凝縮器出口の伶煤を第2発生器へ戻すラインに設
けた弁である。
Reference numeral 19 is a valve installed in a line for returning soot from the condenser outlet to the second generator.

弁201ま冷房サイクル時、全開するストップ弁であり
空調器等へ連絡した配管経路中に設けられる。弁21は
冷房サイクル時全開するものであり冷却塔などへ連絡し
た経路中に設けられる。弁22は暖房サイクル時全開す
る。弁23も暖房サイクル時全開し温水熱交等へ連絡し
た経路中に設けられる。本実施例の吸収冷温水機の暖房
サイクル時の作席を以下に説明する。
Valve 201 is a stop valve that opens fully during the cooling cycle, and is provided in a piping route connected to an air conditioner or the like. The valve 21 is fully opened during the cooling cycle and is provided in a path connected to a cooling tower or the like. Valve 22 is fully open during the heating cycle. The valve 23 is also fully opened during the heating cycle and is provided in a path connected to the hot water heat exchanger and the like. The working area of the absorption chiller/heater of this embodiment during the heating cycle will be described below.

第1発生器1におし)て燃焼ガスにより・加熱された溶
液(例えば臭化リチウム水溶液)は冷煤蒸気を発生して
濃縮され、第1熱交換器6で低温度の稀溶液と熱交換し
て温度低下し第2発生器7へ送りこまれる。
A solution (e.g. lithium bromide aqueous solution) heated by combustion gas in the first generator 1 generates cold soot vapor and is concentrated. It is exchanged, the temperature is lowered, and it is sent to the second generator 7.

ここで第1発生器1からの冷媒蒸気により再度加熱され
、残りの冷煤を発生し、溶液はさらに濃縮されたあと第
2熱交換器5を経て吸収器3へ霧る。第2発生器7で発
生した冷煤蒸気は凝縮器9を通る温水に熱を与え凝縮し
たあと弁19を経て第2発生器7へ導かれる。この際凝
縮器で凝縮した冷媒と第2発生器7内の溶液加熱後凝縮
器へ送られた冷煤液量の一部又は全量は制御弁10介し
蒸発器へ戻る。吸収器3へ戻った溶液はこの顕熱と蒸発
器11へ戻った分の冷煤蒸気を吸収した時の吸収潜熱で
吸収器内を通る暖房用の溢水を加熱する。一方、排ガス
経路中に設けた熱交換器2を通る水は排ガスと熱交換さ
れ温度上昇するがこの水が熱媒体流体として弁22を介
して蒸発器11へと導かれ、冷煤液に熱をを与えて冷却
され再度熱交換器2へ循環される。
Here, it is heated again by the refrigerant vapor from the first generator 1 to generate the remaining cold soot, and the solution is further concentrated and then misted into the absorber 3 via the second heat exchanger 5. The cold soot vapor generated in the second generator 7 heats and condenses the hot water passing through the condenser 9, and then is led to the second generator 7 through a valve 19. At this time, part or all of the refrigerant condensed in the condenser and the cooled soot liquid sent to the condenser after heating the solution in the second generator 7 returns to the evaporator via the control valve 10. The solution returned to the absorber 3 uses this sensible heat and the latent heat of absorption when it absorbs the cold soot vapor returned to the evaporator 11 to heat overflow water for heating passing through the absorber. On the other hand, water passing through the heat exchanger 2 installed in the exhaust gas path exchanges heat with the exhaust gas and its temperature rises, but this water is guided as a heat transfer fluid to the evaporator 11 via the valve 22, and the cold soot liquid is heated. is cooled and circulated to the heat exchanger 2 again.

蒸発器内で温水により加熱され蒸気となった冷煤は隣接
した吸収器3で凝縮し暖房用温水に熱を与える。以上の
如く比較的温度レベルの低い温水を熱交換器2によって
得ることで、蒸発器内の冷蝶を加熱蒸発させ潜熱を吸収
器内を通る溢水に与えて暖房サイクルは一循する。
The cold soot that is heated by the hot water in the evaporator and becomes steam is condensed in the adjacent absorber 3 and gives heat to the hot water for heating. As described above, by obtaining hot water with a relatively low temperature level through the heat exchanger 2, the cold butterfly in the evaporator is heated and evaporated, giving latent heat to the overflowing water passing through the absorber, and the heating cycle completes.

暖房負荷の大小により燃焼制御弁18が制御されると熱
交換器2での交換熱量も当然変動し、ひいては蒸発器1
1内の冷媒蒸発量が変化する。
When the combustion control valve 18 is controlled depending on the size of the heating load, the amount of heat exchanged in the heat exchanger 2 naturally changes, and as a result, the amount of heat exchanged in the evaporator 1 changes.
The amount of refrigerant evaporation within 1 changes.

膝面検出器13と制御弁10‘まこのために考慮された
ものであり、蒸発する冷煤量のみを弁10を介して凝縮
器9より蒸発器11へ戻す機能を有する。第1発生器1
の加熱源として高温水管24を通る高温水を用いる吸収
冷温水機の実施例を第2図に示す。この場合「第1発生
器1を出た高温水を直接蒸発器11へ導くことで高温水
の有する頭熱を冷媒の蒸発熱プラス混合熱の形で増中し
て温水に熱を与えるものである。図から明らかな如く高
温水は第1発生器1に入る前でも、併列流でも同様な効
果を生じる。実施例第1図、第2図とも暖房用温水を吸
収器3と凝縮器9へ直列に流しているが、これは夫々に
併列にては、夫々単独に通水しても効果に差異が生じな
い。また第1図にて熱交換器2の挿入位置は発生器排ガ
ス経路中であればどこにしてもよく特に位置を指定する
必要はない。第1図の点線で示す2′でもよい。図3は
燃焼ガスの代りに高温ガス管路25により導かれる高温
ガスを用いた実施例を示す。
The knee surface detector 13 and the control valve 10' are designed for this purpose, and have the function of returning only the amount of evaporated cold soot from the condenser 9 to the evaporator 11 via the valve 10. 1st generator 1
An embodiment of an absorption chiller/heater using high temperature water passing through a high temperature water pipe 24 as a heating source is shown in FIG. In this case, the high-temperature water coming out of the first generator 1 is directly guided to the evaporator 11, and the head heat of the high-temperature water is increased in the form of the evaporation heat of the refrigerant plus the heat of mixing, which gives heat to the hot water. As is clear from the figure, the same effect occurs even before the high-temperature water enters the first generator 1 and in the parallel flow.In both embodiments FIG. 1 and FIG. Although the water is flowing in series with the heat exchanger 2, there is no difference in the effect even if the water is passed in parallel with each other or separately.In addition, in Fig. 1, the insertion position of the heat exchanger 2 is in the generator exhaust gas path. There is no need to specify a particular position as long as it is inside.It may be 2' as shown by the dotted line in Fig. 1. Fig. 3 shows an example in which high-temperature gas guided by high-temperature gas pipe 25 is used instead of combustion gas. An example is shown below.

上記の実施例においては、吸収冷温水機の発生器の排ガ
ス又は高温水の有する熱量を低い温度レベルで有効に利
用することによって暖房時の必要入力量を低減する効果
がもたらされる。また凝縮器戻り冷煤量を蒸発器液面検
出機構により制御することにより連続的かつ安定した暖
房サイクルが容易に行えるようになり、排ガス(燃焼ガ
スを加熱源とした場合)経路中に熱交換器を設けて従来
機に比べ下記の省エネルギ化が可能となる。
In the above-mentioned embodiment, the amount of heat required for heating is reduced by effectively utilizing the amount of heat contained in the exhaust gas or high-temperature water of the generator of the absorption chiller/heater at a low temperature level. In addition, by controlling the amount of cold soot returned to the condenser by the evaporator liquid level detection mechanism, a continuous and stable heating cycle can be easily performed, allowing heat exchange in the exhaust gas (when combustion gas is used as the heating source) path. The following energy savings can be achieved compared to conventional machines.

(一例における試算)従来機の排ガス損失・・…・(排
ガス温度25000、空気比1.3として)→12%本
発明実施後の排ガス損失・・・・・・(排ガス温度10
0oo、空気比1.3として)→4.2%即ち12一4
.2=7.8%の省エネルギになる。
(Estimated as an example) Exhaust gas loss of conventional machine... (Exhaust gas temperature 25000, air ratio 1.3) → 12% Exhaust gas loss after implementation of the present invention... (Exhaust gas temperature 10
0oo, air ratio 1.3) → 4.2% or 12-4
.. 2 = 7.8% energy saving.

また排ガス経路中に熱交換器を設けて緋熱を利用する従
来例に比べて、この熱交換器よりの取出し温度が低くて
よい本発明では熱交換器の平均温度差を大きくとること
が出来るので、熱交換器の大きさを著しく4・さくする
ことが可能である。このため熱交換器のコスト低減、排
ガス経路の流路損失減少がはかれる。本発明は発生器、
蒸発器、吸収器、凝縮器及び熱交換器を備え、冷房ある
いは暖房を一機で行なうことが可能な吸収冷温水機にお
いて、発生器の加熱源の熱ェネルギを賦与された熱媒体
流体を前記蒸発器の加熱流体経路に導いたことにより、
8Eガスの有する熱を袷煤蒸発による潜熱に置換利用し
、あるいは高温水の有する顕熱を冷媒に潜熱の形で与え
ることで、比較的低い温度レベルで有効に利用して省エ
ネルギをはかることができる吸水冷温水機を提供するこ
とができ、実用上、省エネルギ上極めて大なる効果を有
するものである。
Also, compared to the conventional example in which a heat exchanger is installed in the exhaust gas path and uses scarlet heat, the temperature taken out from the heat exchanger is lower, and the present invention allows a larger average temperature difference between the heat exchangers. Therefore, it is possible to significantly reduce the size of the heat exchanger by 4. Therefore, the cost of the heat exchanger and the loss in the exhaust gas path are reduced. The present invention provides a generator,
In an absorption chiller/heater that is equipped with an evaporator, an absorber, a condenser, and a heat exchanger and can perform cooling or heating in one unit, the heating medium fluid to which the heat energy of the heating source of the generator has been applied is By guiding it to the heating fluid path of the evaporator,
To save energy by effectively using the heat of 8E gas at a relatively low temperature level by replacing it with latent heat from soot evaporation, or by giving the sensible heat of high-temperature water to the refrigerant in the form of latent heat. It is possible to provide a water absorption chiller/heater that can do this, which has an extremely large effect in terms of practical use and energy saving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は本発明の異なる実施例を示す
フローシートである。 1・・・・・・第1発生器、2・・・・・・熱交換器、
3・・・・・・吸収器、4…・・・溶液ポンプ、5・・
・・・・第2熱交換器、6・・・・・・第1熱交換器、
7・・・・・・第2発生器、8・・・・・・管路、9・
・・・・・凝縮器、10・・・・・・弁、11……蒸発
器、12・・・・・・冷嬢ポンプ、13・・・・・・袷
媒液面検出端、14・・・・・・冷蝶低レベル検出端、
15,16・・・・・・ポンプ、17・・…・温水出口
温度検出端、18……燃焼ガス量調整弁、翼9,20,
217 22,23…・・・弁、24……高温水管管、
25……高温ガス管路。 第1図 第2図 第3図
1, 2, and 3 are flow sheets showing different embodiments of the present invention. 1...First generator, 2...Heat exchanger,
3...Absorber, 4...Solution pump, 5...
...Second heat exchanger, 6...First heat exchanger,
7...Second generator, 8...Pipeline, 9.
... Condenser, 10 ... Valve, 11 ... Evaporator, 12 ... Cooling pump, 13 ... Medium liquid level detection end, 14. ...Cold butterfly low level detection end,
15, 16...Pump, 17...Hot water outlet temperature detection end, 18...Combustion gas amount adjustment valve, blades 9, 20,
217 22, 23... Valve, 24... High temperature water pipe,
25...High temperature gas pipeline. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 発生器、蒸発器、吸収器、凝縮器及び熱交換器を備
え、冷房あるいは暖房を一機で行なうことが可能な吸収
冷温水機において、発生器の加熱源の熱エネルギーを賦
与された熱媒体流体を前記蒸発器の加熱流体径路に導い
たことを特徴とする吸収冷温水機。 2 前記発生器の加熱源が燃焼ガスであり、前記熱媒体
流体が、前記燃焼ガスの燃焼後のガス経路中に設けられ
た熱交換器によつて加熱される流体である特許請求の範
囲第1項記載の吸収冷温水機。 3 前記発生器の加熱源が高温水であり、前記熱媒体流
体が前記高温水自体である特許請求の範囲第1項記載の
吸収冷温水機。 4 前記発生器の加熱源が高温ガスであり、前記熱媒体
流体が前記高温ガスの経路中に設けられた熱交換器によ
つて加熱される流体である特許請求の範囲第1項記載の
吸収冷温水機。 5 暖房サイクル時、暖房用の温水を前記吸収器又は前
記凝縮器に通水するか或いは前記吸収器、前記凝縮器に
直列または併列に通水するよう構成した特許請求の範囲
第1項、第2項、第3項又は第4項記載の吸収冷温水機
。 6 前記凝縮器から前記蒸発器へ結んだ冷媒戻り経路に
弁などの制御部を設け、前記蒸発器内の冷媒液面検出よ
りの信号で前記制御部を制御するよう構成した特許請求
の範囲第1項、第2項、第3項、第4項又は第5項記載
の吸収冷温水機。
[Claims] 1. In an absorption chiller/heater that is equipped with a generator, evaporator, absorber, condenser, and heat exchanger and can perform cooling or heating in one unit, An absorption chiller/heater characterized in that a heat transfer fluid to which energy has been imparted is guided to a heating fluid path of the evaporator. 2. The heating source of the generator is combustion gas, and the heat transfer fluid is a fluid heated by a heat exchanger provided in a gas path after combustion of the combustion gas. The absorption chiller/heater according to item 1. 3. The absorption chiller/heater according to claim 1, wherein the heating source of the generator is high temperature water, and the heat transfer fluid is the high temperature water itself. 4. The absorber according to claim 1, wherein the heating source of the generator is a high-temperature gas, and the heat transfer fluid is a fluid heated by a heat exchanger provided in a path of the high-temperature gas. Hot and cold water machine. 5. During the heating cycle, hot water for heating is passed through the absorber or the condenser, or in series or in parallel with the absorber and the condenser. The absorption chiller/heater according to item 2, 3, or 4. 6. A control section such as a valve is provided in a refrigerant return path connected from the condenser to the evaporator, and the control section is configured to be controlled by a signal from detection of a refrigerant liquid level in the evaporator. The absorption chiller/heater according to item 1, 2, 3, 4, or 5.
JP8712577A 1977-07-20 1977-07-20 absorption cold water machine Expired JPS602583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8712577A JPS602583B2 (en) 1977-07-20 1977-07-20 absorption cold water machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8712577A JPS602583B2 (en) 1977-07-20 1977-07-20 absorption cold water machine

Publications (2)

Publication Number Publication Date
JPS5421649A JPS5421649A (en) 1979-02-19
JPS602583B2 true JPS602583B2 (en) 1985-01-22

Family

ID=13906227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8712577A Expired JPS602583B2 (en) 1977-07-20 1977-07-20 absorption cold water machine

Country Status (1)

Country Link
JP (1) JPS602583B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250688U (en) * 1985-09-17 1987-03-28

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5995929A (en) * 1982-11-22 1984-06-02 Osaka Gas Co Ltd Class 2 absorption type heat pump
JPH0960463A (en) * 1995-08-21 1997-03-04 Hiroshi Ikeda Drilling shaft and construction method for reinforced pile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250688U (en) * 1985-09-17 1987-03-28

Also Published As

Publication number Publication date
JPS5421649A (en) 1979-02-19

Similar Documents

Publication Publication Date Title
CN105423594B (en) Fume hot-water type lithium bromide absorption cold, the Hot water units of heating normal temperature smoke evacuation
KR20050092031A (en) An absorbtion air conditioner
JPS602583B2 (en) absorption cold water machine
CN105423596A (en) Heating efficient smoke type lithium bromide absorbing type cold and hot water unit
JP2000121196A (en) Cooling/heating system utilizing waste heat
JP3245116B2 (en) Waste heat absorption chiller / heater with load fluctuation control function
CN2667414Y (en) Residual heat type single-effect lithium bromide absorption type cold water, cold/heat water machine set
JP3638408B2 (en) Absorption cogeneration system using engine exhaust heat and its operation control method
CN219177793U (en) Domestic heat supply network coupling low-temperature economizer in-plant heating system and heat recovery device
JPS5812507B2 (en) Hybrid type absorption heat pump
JPS6135900Y2 (en)
KR200154287Y1 (en) Absorption type air conditioner
JPS6110137Y2 (en)
KR910007579Y1 (en) Heat collection system
JP2567662B2 (en) Air-cooled double-effect absorption refrigerator
JP2000088391A (en) Absorption refrigerating machine
KR0173495B1 (en) Absorptive type air conditioner
JP2001141326A (en) Waste heat charging and absorption type refrigerating device
KR100781880B1 (en) Absorption chiller
JPH03105171A (en) Absorption type water cooling and heating machine
JPS5867A (en) Multiple-effect absorption type cold and hot water machine
JPH0443264A (en) Absorption type heat source device
KR950001882Y1 (en) Reheating apparatus for hot water feeder
JPH0350373Y2 (en)
JPH0754209B2 (en) Absorption cold / hot water device and its operating method