JPH0198864A - Method of controlling quantity of absorbing solution circulated in absorption refrigerator - Google Patents

Method of controlling quantity of absorbing solution circulated in absorption refrigerator

Info

Publication number
JPH0198864A
JPH0198864A JP25565387A JP25565387A JPH0198864A JP H0198864 A JPH0198864 A JP H0198864A JP 25565387 A JP25565387 A JP 25565387A JP 25565387 A JP25565387 A JP 25565387A JP H0198864 A JPH0198864 A JP H0198864A
Authority
JP
Japan
Prior art keywords
absorption liquid
control
signal
absorption
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25565387A
Other languages
Japanese (ja)
Other versions
JPH07104070B2 (en
Inventor
Shuzo Takahata
高畠 修蔵
Kunihiko Nakajima
邦彦 中島
Mokichi Kurosawa
黒沢 茂吉
Shinichi Kanno
閑納 真一
Sadatoshi Takemoto
竹本 貞寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP25565387A priority Critical patent/JPH07104070B2/en
Publication of JPH0198864A publication Critical patent/JPH0198864A/en
Publication of JPH07104070B2 publication Critical patent/JPH07104070B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE: To shorten a time required for control while simplifying a control process in an absorption refrigerating machine by a method wherein a load signal is detected to adjust the travel of a control valve of a heating means based on the load signal and the resulting travel signal is detected to control the number of revolutions of an absorbing liquid pump based on the signal. CONSTITUTION: A load of an absorption refrigerating machine is detected to adjust the travel of a control valve 32 of a heating means 7 based on the load signal to decrease or increase the supply quantity of a fuel while the travel of the control valve 32 is detected. Moreover, the number of revolutions of absorbing liquid pumps 13 and 14 is increased or decreased based on the resulting travel signal so that the delivery quantities of the absorbing liquid pumps 13 and 14 are controlled to be optimal to a set load. This control requires no feedback from an object to be controlled to allow quick determination of the supply of energy and the delivery quantities of the absorber pumps 13 and 14 thereby achieving a higher astringent rate and a shorter control time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は吸収冷凍機における吸収液循環量制御方法に係
り、詳しくは、吸収冷凍機の内外流路を循環する吸収液
の循環量制御を簡単な構成により実現した制御方法に関
するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for controlling the circulation amount of absorption liquid in an absorption refrigerator, and more specifically, a method for controlling the circulation amount of absorption liquid circulating in the internal and external channels of an absorption refrigerator. This invention relates to a control method realized with a simple configuration.

〔従来技術〕[Prior art]

臭化リチウム水溶液が蒸発や凝縮を繰り返す間に発生す
る熱の授受により、冷水が得られようになっている吸収
冷凍機では、臭化リチウムの稀吸収液から多量の蒸気と
高濃度吸収液が得られ、吸収冷凍機の性能を向上させる
ことができる。
In an absorption refrigerator, cold water is obtained by giving and receiving heat generated during repeated evaporation and condensation of a lithium bromide aqueous solution.A large amount of steam and high concentration absorption liquid are produced from a dilute lithium bromide absorption liquid. As a result, the performance of the absorption refrigerator can be improved.

その−例として、特公昭53−30534号公報に記載
された多重効用吸収冷凍機がある。この種の吸収冷凍機
にあっては第6図に示すように、高温再生器5から吸収
器2に供給される濃吸収液が散布されると、蒸発器lよ
り吸収器2に送られている冷媒蒸気を吸収し、稀吸収液
となって底部から稀吸収液ポンプ13によって管路22
を経て第一熱交換器6で加熱された後、低温再生器4に
送られる。
As an example, there is a multiple effect absorption refrigerator described in Japanese Patent Publication No. 53-30534. In this type of absorption refrigerating machine, as shown in FIG. It absorbs the refrigerant vapor that is present, becomes a dilute absorption liquid, and is pumped from the bottom into the pipe 22 by the dilute absorption liquid pump 13.
After being heated in the first heat exchanger 6, it is sent to the low-temperature regenerator 4.

その低温再生器4でさらに加熱されることにより、冷媒
が蒸発して中間濃度吸収液に濃縮された吸収液は、中間
濃度吸収液ポンプ14によって管路24を経て第二熱交
換器8で加熱された後、高温再生器5に送られる。その
中間濃度吸収液は高温再生器5でさらに加熱され、冷媒
を蒸発させて高濃度に濃縮され、冷媒蒸気を吸収する機
能が高められる。そして、高温再生器5から真空に近い
低圧の吸収器2へ、濃吸収液が圧力差や位置落差を利用
して送られる。その濃吸収液は蒸発器1からの冷媒蒸気
を吸収して稀吸収液となり、一方、蒸発器1では、凝縮
器3で凝縮された冷媒が蒸発して冷水から蒸発熱を奪っ
て冷水を冷却する。
By being further heated in the low-temperature regenerator 4, the refrigerant evaporates and the absorption liquid is concentrated to an intermediate concentration absorption liquid. After that, it is sent to the high temperature regenerator 5. The intermediate concentration absorption liquid is further heated in the high-temperature regenerator 5 to evaporate the refrigerant and concentrate it to a high concentration, thereby enhancing its ability to absorb refrigerant vapor. Then, the concentrated absorption liquid is sent from the high-temperature regenerator 5 to the low-pressure near-vacuum absorber 2 using the pressure difference and positional difference. The concentrated absorption liquid absorbs the refrigerant vapor from the evaporator 1 and becomes a dilute absorption liquid.Meanwhile, in the evaporator 1, the refrigerant condensed in the condenser 3 evaporates and removes the heat of evaporation from the cold water to cool the cold water. do.

このような吸収冷凍機に限らず高温再生器を有しないも
のにおいても、稀吸収液ポンプ13などは誘導電動機で
駆動され、一定の回転数が維持されるので、吸収冷凍機
が部分負荷運転においてもそれが保持され、過剰な吸収
液量が循環されている。最近、部分負荷においても省エ
ネルギ運転が叫ばれ、上述したポンプの吐出量を負荷に
応じて増減することが望まれる。それを可能にする手段
の一例として、上述した第6図中に記載したようなカス
ケード調節器41やインバータ30によるポンプ制御が
挙げられる。
Not only in such absorption refrigerators but also in those without a high-temperature regenerator, the dilute absorption liquid pump 13 and the like are driven by an induction motor and a constant rotation speed is maintained, so that the absorption refrigerator can be operated at partial load. It is also retained and the excess amount of absorption liquid is circulated. Recently, there has been a demand for energy-saving operation even under partial loads, and it is desired to increase or decrease the discharge amount of the pump described above in accordance with the load. An example of means for making this possible is pump control using the cascade regulator 41 and inverter 30 as described in FIG. 6 above.

蒸発器1の蒸発器管1aの出口側では、冷水の温度が温
度検出器31で検出され、その温度信号が調節器40を
介して供給燃料量を制御する制御弁32およびカスケー
ド調節器41に入力される。
On the outlet side of the evaporator tube 1a of the evaporator 1, the temperature of the cold water is detected by a temperature detector 31, and the temperature signal is sent via a regulator 40 to a control valve 32 and a cascade regulator 41 that control the amount of fuel to be supplied. is input.

その入力信号により制御弁32は開度を変更して供給燃
料量が増減され、さらに、カスケード調節器41からの
信号がインバータ30Aおよび30Bに入力され、吸収
液ポンプ13、中間濃度吸収液ポンプ14の電動機に供
給される電力周波数がともに変更される。したがって、
両ポンプ13゜14の回転数は周波数に比例して駆動さ
れ、その吐出量が例えば減少される。そして、加熱源7
への燃料ガス量や重油量および配管22.24における
吐出量が流量計43〜45で計測され、計測後の信号が
カスケード調節器41にフィードバックされ、そのとき
の負荷に見合った最適な燃料供給量および吸収液iJi
!r環量とされる。その結果、消費エネルギは最小限度
に留めることができ、電力消費量および加熱エネルギの
節減が図られる。
In response to the input signal, the control valve 32 changes the opening degree to increase or decrease the amount of fuel supplied, and furthermore, a signal from the cascade regulator 41 is input to the inverters 30A and 30B, and the absorption liquid pump 13 and the intermediate concentration absorption liquid pump 14 are inputted. The power frequencies supplied to the motors are both changed. therefore,
The rotational speed of both pumps 13, 14 is driven in proportion to the frequency, and the discharge amount thereof is reduced, for example. And heating source 7
Flowmeters 43 to 45 measure the fuel gas amount, heavy oil amount, and discharge amount in the pipes 22 and 24, and the measured signals are fed back to the cascade controller 41, which provides the optimal fuel supply commensurate with the load at that time. Amount and absorption liquid iJi
! It is considered to be the r-ring quantity. As a result, energy consumption can be kept to a minimum, and power consumption and heating energy can be reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したカスケード制御法において、燃料流量や吐出量
がカスケード調節器41にフィードバックされにような
複雑なプロセスを経る。したがって、精度よく制御でき
る反面、フィードバックでの制御時間が長くなる問題が
ある。さらには、制御装置の数が増加しまた高価なもの
となる問題もある。
In the above-described cascade control method, the fuel flow rate and discharge amount are fed back to the cascade regulator 41 and undergoes a complicated process. Therefore, although accurate control is possible, there is a problem in that the feedback control time becomes long. Furthermore, there is a problem that the number of control devices increases and the cost becomes high.

本発明は上述の問題を解決するためになされたもので、
その目的は、制御プロセスの簡素化を図ると共に制御に
要する時間の短縮も図り、安価で高い精度の制御が可能
となる吸収冷凍機における吸収液循環量制御方法を提供
することである。
The present invention was made to solve the above-mentioned problems.
The purpose is to provide a method for controlling the circulation amount of absorption liquid in an absorption refrigerator that simplifies the control process, shortens the time required for control, and enables inexpensive and highly accurate control.

〔発明の構成〕[Structure of the invention]

本発明の吸収冷凍機における吸収液循環量制御方法の特
徴を、第1図を参照して説明する。吸収器2、再生器4
,5、凝縮器3および蒸発器1を有し、吸収液を送出す
る吸収液ポンプ13.14で吸収液を循環させるように
なっている吸収冷凍機にあって、負荷信号を検出し、そ
の負荷信号をもとに加熱手段7の制御弁32の開度を調
整し、その開度信号を検出して、それをもとに吸収液ポ
ンプ13.14の回転数を制御するようにしたことであ
る。
The features of the absorption liquid circulation amount control method in an absorption refrigerator of the present invention will be explained with reference to FIG. Absorber 2, regenerator 4
, 5, an absorption refrigerator which has a condenser 3 and an evaporator 1, and which circulates the absorption liquid by an absorption liquid pump 13. The opening degree of the control valve 32 of the heating means 7 is adjusted based on the load signal, the opening degree signal is detected, and the rotation speed of the absorption liquid pump 13, 14 is controlled based on it. It is.

〔作   用〕[For production]

吸収冷凍機の負荷が検出され、その負荷信号をもとに加
熱手段7の制御弁32の開度が調整され、供給燃料量が
増減されると共に制御弁32の開度が検出される。さら
に、その開度信号をもとに吸収液ポンプ13.14の回
転数が増減されるので、吸収液ポンプ13.14の吐出
量は、設定負荷に対して最適となるように制御される。
The load of the absorption refrigerator is detected, and the opening degree of the control valve 32 of the heating means 7 is adjusted based on the load signal, and the amount of fuel to be supplied is increased or decreased, and the opening degree of the control valve 32 is detected. Furthermore, since the rotational speed of the absorption liquid pump 13.14 is increased or decreased based on the opening degree signal, the discharge amount of the absorption liquid pump 13.14 is controlled to be optimal for the set load.

この制御は、制御対象からのフィードバックがなく、負
荷信号に応じたエネルギの供給と吸収器ポンプ13,1
4の吐出量が迅速に決定される。その結果、収斂速度が
早められ、制御時間が短くなる。
This control has no feedback from the controlled object, and the energy supply according to the load signal and the absorber pumps 13, 1
The discharge amount of No. 4 is quickly determined. As a result, the convergence speed is accelerated and the control time is shortened.

〔発明の効果〕〔Effect of the invention〕

本発明の吸収冷凍機における吸収液循環量制御方法は、
検出された負荷信号をもとに加熱手段の制御弁の開度が
調整され、その検出された開度信号をもとに吸収液ポン
プの回転数が制御されるので、フィードバック操作が省
かれ、制御プロセスの簡素化および制御に要する時間の
短縮化を図ることができる。加えて、制御プロセスの簡
素化に伴って、高価な部品の点数を省略することができ
るので、安価でしかも高い精度を有する制御を実現でき
る。
The absorption liquid circulation amount control method in an absorption refrigerator of the present invention is as follows:
The opening degree of the control valve of the heating means is adjusted based on the detected load signal, and the rotation speed of the absorption liquid pump is controlled based on the detected opening signal, so feedback operation is omitted. It is possible to simplify the control process and shorten the time required for control. In addition, with the simplification of the control process, the number of expensive parts can be omitted, making it possible to realize inexpensive control with high precision.

〔実 施 例〕〔Example〕

以下に本発明をその実施例に基づいて詳細に説明する。 The present invention will be explained in detail below based on examples thereof.

第1図は本発明の一実施例である吸収冷凍機の系統図お
よび制御の系統図を示すもので、下部低圧室には蒸発器
1および吸収器2が、上部高圧室には凝縮器3および低
温再生器4が形成され、いずれも所要の流体を管内に流
通させる管群が設置されている。5は高温再生器、6は
吸収器2から低温再生器4への稀吸収液供給管路21に
設けた第一熱交換器、8は第二熱交換器、12は冷媒ポ
ンプ、13は稀吸収液ポンプ、14は中間濃度吸収液ポ
ンプ、15は冷媒液溜め、16は稀吸収液溜めである。
FIG. 1 shows a system diagram and a control system diagram of an absorption refrigerator that is an embodiment of the present invention, in which an evaporator 1 and an absorber 2 are installed in the lower low pressure chamber, and a condenser 3 is installed in the upper high pressure chamber. and a low-temperature regenerator 4 are formed, each of which is equipped with a group of tubes through which the required fluid flows. 5 is a high temperature regenerator, 6 is a first heat exchanger provided in the dilute absorption liquid supply pipe 21 from the absorber 2 to the low temperature regenerator 4, 8 is a second heat exchanger, 12 is a refrigerant pump, and 13 is a rare 14 is an intermediate concentration absorption liquid pump, 15 is a refrigerant liquid reservoir, and 16 is a dilute absorption liquid reservoir.

本図において、蒸発器1で冷却作用を行なって蒸発した
冷媒蒸気が吸収器2で吸収液に吸収され、吸収液は濃度
が低下して吸収力を失い下部の稀吸収液溜め16に溜め
られる。この稀吸収液を稀吸収液ポンプ13で管路22
、第一熱交換器6および稀吸収液供給管路21を経て低
温再生器4に送り、その送られた稀吸収液は、低温再生
器4において、高温再生器5で発生された冷媒蒸気が導
入される加熱管4aで加熱される。低温再生器4で稀吸
収液を加熱して冷媒を蒸発分離すると、稀吸収液の濃度
が上昇する一方、蒸発した冷媒は凝縮器3で凝縮器管3
aの冷却水により凝縮される。
In this figure, the refrigerant vapor that is evaporated by the cooling effect in the evaporator 1 is absorbed by the absorption liquid in the absorber 2, and the absorption liquid decreases in concentration and loses its absorbing power, and is stored in the diluted absorption liquid reservoir 16 at the bottom. . This diluted absorption liquid is transferred to the pipe line 22 by the diluted absorption liquid pump 13.
, the dilute absorption liquid is sent to the low temperature regenerator 4 via the first heat exchanger 6 and the dilute absorption liquid supply line 21, and the sent dilute absorption liquid is transferred to the low temperature regenerator 4 where the refrigerant vapor generated in the high temperature regenerator 5 is It is heated by the introduced heating tube 4a. When the dilute absorption liquid is heated in the low temperature regenerator 4 and the refrigerant is evaporated and separated, the concentration of the dilute absorption liquid increases, while the evaporated refrigerant is transferred to the condenser pipe 3 in the condenser 3.
It is condensed by the cooling water in a.

濃度の上昇した稀吸収液は中間濃度吸収液となり、中間
濃度吸収液ポンプ14により、管路23、管路24を流
過し、第二熱交換器8でさらに昇温された後、管路25
を流過して高温再生器5に導入される。そのとき、高温
再生器5に備えられた加熱手段7で、外部から供給され
る燃料が燃焼され、その排ガスが排気筒9から排出され
るようになっており、中間濃度吸収液は加熱されて冷媒
が蒸発し、吸収液は圧力上昇と共に高濃度に濃縮され、
濃吸収液となって吸収力を高める。高温再生器5で蒸発
した冷媒蒸気は上述のように、低温再生器4で加熱に用
いられ、自らは凝縮して冷媒液となって凝縮器3に導か
れ、冷却水で冷却されてさらに温度が下がり、前述の冷
媒液と共に管路26を経て蒸発器1に戻り、そこで蒸発
することによって冷却作用をする。
The dilute absorption liquid with increased concentration becomes an intermediate concentration absorption liquid, which flows through the pipes 23 and 24 by the intermediate concentration absorption liquid pump 14, and is further heated in the second heat exchanger 8, and then passes through the pipes. 25
is introduced into the high temperature regenerator 5. At this time, the fuel supplied from the outside is burned in the heating means 7 provided in the high-temperature regenerator 5, and the exhaust gas is discharged from the exhaust stack 9, and the intermediate concentration absorption liquid is heated. The refrigerant evaporates and the absorption liquid becomes highly concentrated as the pressure increases.
It becomes a concentrated absorption liquid and increases absorption capacity. As mentioned above, the refrigerant vapor evaporated in the high-temperature regenerator 5 is used for heating in the low-temperature regenerator 4, and is condensed into a refrigerant liquid that is guided to the condenser 3, where it is cooled with cooling water and further raised to a temperature. The refrigerant drops and returns to the evaporator 1 through the pipe 26 together with the above-mentioned refrigerant liquid, where it evaporates to provide a cooling effect.

一方、高温再生器5で濃縮された濃吸収液は、真空に近
い低圧の吸収器2に向け、その圧力差および位置落差を
利用して、管路27、第二熱交換器8、管路28、第一
熱交換器6、管路29を経て移動し、その間に熱交換器
8,6で放熱して、散布装置から散布され、吸収器2に
戻って吸収作用を行なう。なお、蒸発器1の蒸発器管l
a内には冷やされる液体すなわち冷水が流されており、
後述する温度検出器31の信号により高温再生器5の加
熱を調節し、冷水の冷却を調整するようになっている。
On the other hand, the concentrated absorption liquid concentrated in the high-temperature regenerator 5 is directed to the low-pressure absorber 2, which is close to vacuum, by using the pressure difference and positional difference between the pipe line 27, the second heat exchanger 8, and the pipe line 27, the second heat exchanger 8, 28, the first heat exchanger 6, and the conduit 29, during which it radiates heat in the heat exchangers 8 and 6, is dispersed from the dispersion device, and returns to the absorber 2 to perform an absorption action. In addition, the evaporator tube l of the evaporator 1
A liquid to be cooled, that is, cold water, is flowing inside a.
The heating of the high-temperature regenerator 5 is adjusted based on a signal from a temperature detector 31, which will be described later, and the cooling of the cold water is adjusted.

吸収器2の吸収器管2a内には矢示のごとく冷却水33
が流され、吸収器2の管表面に散布される吸収液が低温
なほど吸収能力が大きいので、吸収液を冷却させつ一蒸
発器lで発生した冷却蒸気を吸収する。また、凝縮器3
の凝縮器管3a内にも冷却水が流されており、低温再生
器4からの冷却蒸気や冷媒ドレーンを冷却する。ちなみ
に、吸収冷凍機の吸収器2の下部は著しく低い圧力にな
るため、不凝縮性ガスが溜りやすく、吸収器2の下部よ
り抽気装置によって不凝縮性ガスを外部に排出すること
ができるようになっている。34はその排出用の抽気ポ
ンプである。
Cooling water 33 is in the absorber tube 2a of the absorber 2 as shown by the arrow.
The lower the temperature of the absorption liquid that is flowed and the absorption liquid that is sprinkled on the tube surface of the absorber 2, the greater its absorption capacity, so that the absorption liquid is cooled and absorbs the cooling vapor generated in the evaporator 1. Also, condenser 3
Cooling water is also flowed into the condenser pipe 3a to cool the cooling steam from the low-temperature regenerator 4 and the refrigerant drain. By the way, since the pressure at the bottom of the absorber 2 of an absorption refrigerator is extremely low, non-condensable gas tends to accumulate, so non-condensable gas can be discharged to the outside from the bottom of the absorber 2 using a bleed device. It has become. 34 is a bleed pump for discharging the air.

このような吸収冷凍機の蒸発器lの蒸発器管1aの出口
側には、吸収冷凍機の負荷を検出するための冷水温度を
検出する温度検出器31が取り付けられている。一方、
制御装置を構成する調節器40が設けられ、温度検出器
31により検出された負荷信号が調節器40に入力され
るようになっている。なお、調節器40として例えばダ
イヤル式のものを採用しておけば、その冷凍機ごとに設
定を変えることができる。これは、温度センサ31で検
出される負荷信号をもとに制御弁32の開度を変える信
号を出力する。その開度の調整により、外部から供給さ
れる加熱手段7へ供給される燃料ガス量や重油量が増減
される。
A temperature detector 31 is attached to the outlet side of the evaporator tube 1a of the evaporator 1 of such an absorption refrigerator to detect the temperature of cold water for detecting the load of the absorption refrigerator. on the other hand,
A regulator 40 constituting a control device is provided, and a load signal detected by the temperature detector 31 is input to the regulator 40. Note that if a dial type regulator is used as the regulator 40, the settings can be changed for each refrigerator. This outputs a signal that changes the opening degree of the control valve 32 based on the load signal detected by the temperature sensor 31. By adjusting the opening degree, the amount of fuel gas and heavy oil supplied from the outside to the heating means 7 is increased or decreased.

この制御弁32の近傍には、その開度を検出するための
ポテンショ46が取り付けられ、その開度が検出される
ようになっている。一方、吸収液ポンプ13や中間濃度
吸収液ポンプ14の回転数を変えるためのインバータ3
0が設けられている。
A potentiometer 46 is attached near the control valve 32 to detect its opening degree. On the other hand, an inverter 3 is used to change the rotation speed of the absorption liquid pump 13 and the intermediate concentration absorption liquid pump 14.
0 is set.

制御弁32の開度信号をもとにインバータ30がポンプ
を駆動する誘導電動機へ供給する電力周波数を増減させ
る。したがって、各ポンプ13,14の回転数が変更さ
れ、吐出量がそのときの負荷に合わせて例えば減少され
るようになっている。
Based on the opening signal of the control valve 32, the inverter 30 increases or decreases the power frequency supplied to the induction motor that drives the pump. Therefore, the rotational speed of each pump 13, 14 is changed, and the discharge amount is reduced, for example, in accordance with the load at that time.

このような構成の制御系にあっては、第6図のフィード
バック制御に比べて、最適な供給燃料量および吐出量を
迅速に実現することができる。その構成を第2図を参照
して説明する。温度検出器31で検出された温度信号が
調節器30で処理され、制御弁32の開度を演算する。
With the control system having such a configuration, the optimal amount of fuel to be supplied and the amount of discharge can be quickly achieved compared to the feedback control shown in FIG. Its configuration will be explained with reference to FIG. A temperature signal detected by the temperature detector 31 is processed by the regulator 30, and the opening degree of the control valve 32 is calculated.

その開度信号が出力されて所望量の燃料が制御弁32を
介して加熱手段7に供給される。それによって高温再生
器5におけるそのときの負荷に応じた中間濃度吸収液の
加熱がなされる。一方、ポテンショ46でその開度が制
御弁32から直接検出され、抵抗電流変換器47で電流
信号に変換される。その信号がインバータ調節器48で
、下限リミットやゲインバイアス調整される。その出力
信号がインバータ30に入力されて、電力周波数が変更
される。
The opening signal is output, and a desired amount of fuel is supplied to the heating means 7 via the control valve 32. Thereby, the intermediate concentration absorption liquid is heated in accordance with the load at that time in the high temperature regenerator 5. On the other hand, the opening degree of the control valve 32 is directly detected by the potentiometer 46 and converted into a current signal by the resistance current converter 47. The signal is subjected to lower limit and gain bias adjustment by an inverter adjuster 48. The output signal is input to the inverter 30 to change the power frequency.

その電力で誘導電動機の回転数が変えられ、ポンプの吐
出量が変わる。このようにして吸収液の循環量がそのと
きの制御弁32の開度に応して選定される。なお、イン
バータ調節器48における調節動作を第3図と第4図と
を参照して簡単に説明する。第3図に示されるように、
供給燃料計の増減に伴う吸収液循環量の変化は原則的に
は原点を通過する直線Aのように比例する。ところで、
冷凍機によっては、理論的な直線Aを離れて傾斜の少な
い直線Bとなったりして、大なり小なり傾斜が異なる直
線に沿って増減する場合がある。一方、吸収液循環量が
20%以下に減少すると、吸収液循環■の制御が不安定
となりやすい。それを避けるため、供給燃料量が20%
以下に減少しても、吸収液循環量を20%に維持するよ
うに、吸収液循環量の下限を設定する必要がある。その
ため、インバータ調節器48では循環量の下限値設定と
、その設定値からの増加が得られるような傾斜を変更す
るゲイン調整がなされるのである。したがって、制御弁
32の開度信号に対して、例えば直線Bに沿って吸収液
循環量が増加するような制御が実現されるようになって
いる。
The electric power changes the rotational speed of the induction motor, which changes the pump's discharge volume. In this way, the circulation amount of the absorption liquid is selected according to the opening degree of the control valve 32 at that time. The adjustment operation in the inverter regulator 48 will be briefly explained with reference to FIGS. 3 and 4. As shown in Figure 3,
In principle, the change in the amount of absorbed liquid circulating as the supplied fuel meter increases or decreases is proportional to the straight line A passing through the origin. by the way,
Depending on the refrigerator, the theoretical straight line A may be deviated from the theoretical straight line A to become a straight line B with less slope, and the slope may increase or decrease along a straight line with a different slope. On the other hand, if the absorption liquid circulation amount decreases to 20% or less, the control of the absorption liquid circulation (2) tends to become unstable. To avoid this, the amount of fuel supplied is reduced by 20%.
It is necessary to set the lower limit of the absorption liquid circulation amount so that the absorption liquid circulation amount is maintained at 20% even if the absorption liquid circulation amount decreases to below. Therefore, the inverter regulator 48 sets a lower limit value for the circulating amount and performs gain adjustment to change the slope such that an increase from the set value can be obtained. Therefore, the opening signal of the control valve 32 is controlled so that the absorption liquid circulation amount increases along the straight line B, for example.

一方、ポンプの吐出量は一般にその回転数の二乗に比例
するので、電力周波数と循環量とは第4図のような関係
になる。本制御においては周波数を変化させて循IJj
量を変える必要があるので、両者の相関はできるだけ直
線的な関係を維持できることが望ましい。したがって、
インバータ関節器48では負荷に応じて周波数を変化さ
せる際、直線性の良い個所例えば領域Mのような範囲を
選定できるように調整する必要があり、その機能をも有
しているのである。
On the other hand, since the discharge amount of a pump is generally proportional to the square of its rotational speed, the relationship between the power frequency and the circulation amount is as shown in FIG. 4. In this control, the frequency is changed to circulate IJj.
Since it is necessary to change the amount, it is desirable that the correlation between the two be able to maintain a linear relationship as much as possible. therefore,
When changing the frequency according to the load, the inverter articulator 48 needs to be adjusted so that a region with good linearity, such as region M, can be selected, and the inverter articulator 48 also has this function.

このような調節を行なうことにより、負荷信号をもとに
、制御弁32の開度が調整され、その開度信号をもとに
、稀吸収液ポンプや高濃度吸収液ポンプの吸収液循環量
が制御される。これはフィードバック制御を採用してお
らず、極めて応答性が高い。負荷が低下すると蒸発器管
1aからの冷水温度は低くなる。その温度が温度検出器
31で検出され、第2図を参照して述べたような手順で
制御がなされる。その結果、フィードハック制御の場合
とは異なり、制御プロセスの簡素化および制御に要する
時間の短縮化を図ることができる。
By performing such adjustment, the opening degree of the control valve 32 is adjusted based on the load signal, and the absorption liquid circulation amount of the diluted absorption liquid pump and the high concentration absorption liquid pump is adjusted based on the opening degree signal. is controlled. It does not employ feedback control and is extremely responsive. When the load decreases, the temperature of the cold water from the evaporator tube 1a decreases. The temperature is detected by the temperature detector 31, and control is performed according to the procedure described with reference to FIG. As a result, unlike the case of feedhack control, it is possible to simplify the control process and shorten the time required for control.

加えて、制御プロセスの簡素化に伴って、高価な部品点
数を省略することができるので、安価でしかも高い精度
を有する制御を実現できる。
In addition, with the simplification of the control process, the number of expensive parts can be omitted, making it possible to realize inexpensive control with high precision.

以上は高温再生器5を有する吸収冷凍機を例に述べたが
、第5図に示すように吸収液ポンプが13Aのみを有し
、加熱手段7は外部より供給される蒸気が用いられる場
合でも、同様に機能さ−lることができる。もちろん、
いずれの吸収冷凍機においてもその作動や機能の類似す
る冷凍機の範囲であれば、適用できることも述べるまで
もない。
The above has been described using an example of an absorption refrigerator having a high-temperature regenerator 5, but as shown in FIG. , can function similarly. of course,
Needless to say, the present invention can be applied to any type of absorption refrigerator as long as it has similar operations and functions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の吸収冷凍機の一実施例における系統図
および制御系統図、第2図は本発明の制御を実現する構
成図、第3図は供給燃料量と吸収液循環量との関係を示
すグラフ、第4図は周波数変更量と吸収液循環量との関
係を示すグラフ、第5図は異なる実施例における系統図
および制御系統図、第6図は従来の制御思想が適用され
た吸収冷凍機の系統図および制御系統図である。 1・・蒸発器、2−吸収器、3−・凝縮器、4.5−再
生器、7−加熱手段、13.13A、14−・・吸収液
ポンプ、32−制御弁。
Fig. 1 is a system diagram and control system diagram of an embodiment of the absorption refrigerator of the present invention, Fig. 2 is a block diagram realizing the control of the present invention, and Fig. 3 is a diagram showing the relationship between the amount of supplied fuel and the amount of circulating absorption liquid. 4 is a graph showing the relationship between frequency change amount and absorption liquid circulation amount, FIG. 5 is a system diagram and control system diagram in different embodiments, and FIG. 6 is a graph showing the relationship between the frequency change amount and the absorption liquid circulation amount. FIG. 2 is a system diagram and a control system diagram of an absorption refrigerator. 1--Evaporator, 2--Absorber, 3--Condenser, 4.5--Regenerator, 7--Heating means, 13.13A, 14--Absorption liquid pump, 32--Control valve.

Claims (1)

【特許請求の範囲】[Claims] (1)吸収器、再生器、凝縮器および蒸発器を有し、吸
収液を送出する吸収液ポンプで吸収液を循環させるよう
になっている吸収冷凍機にあって、負荷信号を検出し、
その負荷信号をもとに加熱手段の制御弁の開度を調整し
、その開度信号を検出して、それをもとに上記吸収液ポ
ンプの回転数を制御するようにしたことを特徴とする吸
収冷凍機における吸収液循環量制御方法。
(1) In an absorption refrigerator that has an absorber, a regenerator, a condenser, and an evaporator, and is designed to circulate the absorption liquid with an absorption liquid pump that sends out the absorption liquid, detecting a load signal,
The opening degree of the control valve of the heating means is adjusted based on the load signal, the opening degree signal is detected, and the rotation speed of the absorption liquid pump is controlled based on it. A method for controlling the circulation amount of absorption liquid in an absorption refrigerator.
JP25565387A 1987-10-09 1987-10-09 Absorption liquid circulation amount control method in absorption refrigerator Expired - Lifetime JPH07104070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25565387A JPH07104070B2 (en) 1987-10-09 1987-10-09 Absorption liquid circulation amount control method in absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25565387A JPH07104070B2 (en) 1987-10-09 1987-10-09 Absorption liquid circulation amount control method in absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH0198864A true JPH0198864A (en) 1989-04-17
JPH07104070B2 JPH07104070B2 (en) 1995-11-13

Family

ID=17281742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25565387A Expired - Lifetime JPH07104070B2 (en) 1987-10-09 1987-10-09 Absorption liquid circulation amount control method in absorption refrigerator

Country Status (1)

Country Link
JP (1) JPH07104070B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136666A (en) * 1990-09-27 1992-05-11 Sanyo Electric Co Ltd Controller for absorbing freezer
JPH04169756A (en) * 1990-11-01 1992-06-17 Sanyo Electric Co Ltd Control device for absorption type freezer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136666A (en) * 1990-09-27 1992-05-11 Sanyo Electric Co Ltd Controller for absorbing freezer
JPH04169756A (en) * 1990-11-01 1992-06-17 Sanyo Electric Co Ltd Control device for absorption type freezer

Also Published As

Publication number Publication date
JPH07104070B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
US4471630A (en) Cooling system having combination of compression and absorption type units
US3651655A (en) Control system for multiple stage absorption refrigeration system
KR100612177B1 (en) Feedforward control for absorption chiller
US4691525A (en) Method of operating an absorption heat pump or refrigerator, and an absorption heat pump or refrigerator
US3990264A (en) Refrigeration heat recovery system
US4018583A (en) Refrigeration heat recovery system
JPH0198864A (en) Method of controlling quantity of absorbing solution circulated in absorption refrigerator
US3651654A (en) Control system for multiple stage absorption refrigeration system
JPH09318188A (en) Method of controlling absorption cold/hot water generator
JP3273131B2 (en) Absorption chiller / heater
JP2708809B2 (en) Control method of absorption refrigerator
JPH0868572A (en) Dual-effect absorption refrigerator
JP2664436B2 (en) Control method of absorption refrigerator
JP2003329329A (en) Triple effect absorption type refrigerating machine
KR0171307B1 (en) Proportional control apparatus of absorptive type airconditioner
JPH0359360A (en) Absorption type freezer
JP3138164B2 (en) Absorption refrigerator
KR800000364B1 (en) Refrigeration heat recovery system
JP2904451B2 (en) Double effect absorption refrigerator
JPH0198865A (en) Absorption refrigerator
JP2520974Y2 (en) Proportional control absorption chiller / heater
JP3218018B2 (en) Double effect absorption refrigerator
KR940005673B1 (en) Heat-pump
KR800000365B1 (en) Refrigeration heat recovery method
JPS5851577Y2 (en) Double effect absorption chiller