JPH04169756A - Control device for absorption type freezer - Google Patents
Control device for absorption type freezerInfo
- Publication number
- JPH04169756A JPH04169756A JP2298514A JP29851490A JPH04169756A JP H04169756 A JPH04169756 A JP H04169756A JP 2298514 A JP2298514 A JP 2298514A JP 29851490 A JP29851490 A JP 29851490A JP H04169756 A JPH04169756 A JP H04169756A
- Authority
- JP
- Japan
- Prior art keywords
- generator
- absorption liquid
- amount
- absorption
- liquid pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 178
- 239000007788 liquid Substances 0.000 claims abstract description 233
- 238000010438 heat treatment Methods 0.000 claims abstract description 48
- 238000004364 calculation method Methods 0.000 claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000000498 cooling water Substances 0.000 claims description 26
- 239000006096 absorbing agent Substances 0.000 claims description 17
- 230000007423 decrease Effects 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 12
- 238000005057 refrigeration Methods 0.000 claims description 9
- 239000000446 fuel Substances 0.000 abstract description 27
- 238000007599 discharging Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 19
- 239000003507 refrigerant Substances 0.000 description 12
- 230000002745 absorbent Effects 0.000 description 11
- 239000002250 absorbent Substances 0.000 description 11
- 230000005484 gravity Effects 0.000 description 4
- 230000004043 responsiveness Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は吸収冷凍機に関し、特に吸収冷凍機の制御装置
に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an absorption refrigerator, and more particularly to a control device for an absorption refrigerator.
(ロ)従来の技術
例えば特開昭58−160778号公報には、冷水出口
温度を検出して発生器への加熱量を制御し、かつ、発生
器内の吸収液レベルを検出して吸収器から発生器へ流れ
る稀吸収液の量を制御すると共に、冷水入口温度を検出
してこの温度に対する発生器の加熱量、あるいは発生器
へ流れる稀吸収液の量のうちいずれか一方の最適値を求
め、この値により加熱量あるいは稀吸収液の量のいずれ
か一方を制御する吸収冷凍機の制御装置が開示きれてい
る。(b) Conventional technology For example, Japanese Patent Application Laid-open No. 58-160778 discloses that the amount of heating to the generator is controlled by detecting the cold water outlet temperature, and the absorption liquid level in the generator is detected to control the amount of heating to the generator. In addition to controlling the amount of dilute absorbent flowing from the inlet to the generator, the system also detects the cold water inlet temperature and determines the optimal value for either the amount of heating of the generator or the amount of dilute absorbent flowing to the generator for this temperature. A control device for an absorption refrigerator has been disclosed in which the amount of heat is calculated and either the amount of heating or the amount of dilute absorption liquid is controlled based on this value.
(/′I)発明が解決しようとする課題上記従来の技術
において、発生器内の吸収液レベルを検出して吸収器か
ら発生器へ流れる稀吸収液の量を制御を行う比例制御、
あるいはPID制御が一般的であった。(/'I) Problems to be Solved by the Invention In the above-mentioned conventional technology, proportional control detects the absorbent level in the generator and controls the amount of dilute absorbent flowing from the absorber to the generator;
Alternatively, PID control was common.
しかしながら、上記の制御では起動、停止、穏やかな負
荷変動、急激な負荷変動あるいは冷却水温度の変動に対
して応答性が悪いという問題点を有していた。However, the above-mentioned control has the problem of poor responsiveness to startup, shutdown, gentle load fluctuations, rapid load fluctuations, or cooling water temperature fluctuations.
本発明は、起動、停止、あるいは負荷変動などに対して
、応答性が良い吸収冷凍機の制御装置を提供することを
目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a control device for an absorption chiller that has good responsiveness to startup, shutdown, load fluctuations, and the like.
(二〉課題を解決するための手段
本発明は上記課題を解決するために、蒸発器(4〉、吸
収器(5)、発生器(1)、及び凝縮器(3)などを接
続して冷凍サイクルを形成し、発生器(1)の加熱量を
制御すると共に、吸収液の循環量を制御する吸収冷凍機
の制御装置において、加熱量制御弁の開度などの外的条
件及び内的条件を表す複数の変化量を検出する検出装置
と、ファジィ・ルール及びメンバー・シップ関数を記憶
する記憶装置(31)と、ファジィ論理演算によって吸
収器(5)より発生器(1)に吸収液を送る吸収液ポン
プ(16)の回転数を算出する演算装置(30)と、演
算装置(30)の出力を入力して吸収液ポンプ(16)
の回転数の増減を行う制御装置とを備え、吸収液の循環
量を制御するようにした吸収冷凍機の制御装置を提供す
るものである。(2) Means for Solving the Problems In order to solve the above problems, the present invention connects an evaporator (4), an absorber (5), a generator (1), a condenser (3), etc. In an absorption refrigerator control device that forms a refrigeration cycle and controls the heating amount of the generator (1) as well as the circulation amount of absorption liquid, external conditions such as the opening degree of the heating amount control valve and internal conditions A detection device that detects a plurality of changes representing conditions, a storage device (31) that stores fuzzy rules and membership functions, and a fuzzy logic operation that allows absorbing liquid to be transferred from the absorber (5) to the generator (1). A calculation device (30) that calculates the number of rotations of the absorption liquid pump (16) that sends the water, and a calculation device (30) that inputs the output of the calculation device (30) to calculate the rotation speed of the absorption liquid pump (16).
The present invention provides a control device for an absorption refrigerator, which is equipped with a control device for increasing and decreasing the number of revolutions of the absorption refrigerator, and is configured to control the circulation amount of absorption liquid.
又、吸収液の最適循環量を表す情報を検知する発生器(
1)の液位検出器(33)、加熱量制御弁(17)の開
度のフィードバック信号検出装置(28)と外的条件、
内的条件を表す情報に対する吸収液の循環量を求めるた
めの制御ルールを記憶する記憶装置(31)と、発生器
(1)の液位検出器(33)、加熱量制御弁(17)の
開度のフィードバック信号検出装置(28)によって検
出された情報と記憶装置(31)の制御ルールとに基づ
いてファジィ論理演算によって最適な吸収液のポンプ(
16)の操作量を算出するファジィ推論プロセッサ(3
0)と、ファジィ推論プロセッサ(30)の出力を入力
して吸収液ポンプ(16)に供給される電力の周波数の
増減を行う吸収液ポンプの制御装置(27〉とを備え、
吸収液の循環量を制御するようにした吸収冷凍機の制御
装置を提供するものである。In addition, a generator (
1) liquid level detector (33), feedback signal detection device (28) for the opening of the heating amount control valve (17), and external conditions;
A storage device (31) that stores control rules for determining the circulating amount of absorption liquid for information representing internal conditions, a liquid level detector (33) of the generator (1), and a heating amount control valve (17). The optimal absorption liquid pump (
Fuzzy inference processor (3) that calculates the operation amount of (16)
0), and an absorption liquid pump control device (27>) that inputs the output of the fuzzy inference processor (30) and increases or decreases the frequency of the power supplied to the absorption liquid pump (16),
The present invention provides a control device for an absorption refrigerator that controls the circulation amount of absorption liquid.
又、発生器(1)の吸収液の液位及び発生器(1)の加
熱量と吸収液の循環量との間のファジィ・ルール、及び
発生器(1)の吸収液の液位及び発生器(1)の加熱量
と吸収液の循環量との間のメンバー・シップ関数を記憶
する記憶装置(31)と、発生器(1)の吸収液の液位
と発生器(1)の加熱量と上記ファジィ・ルールと上記
メンバー・シップ関数とに基づいてファジィ論理演算を
行い、吸収液ポンプ(16)操作量を算出するファジィ
推論ブロセ・ンサク30)と、ファジィ推論プロセッサ
(30)の出力を入力して吸収液ポンプ(16)に供給
される電力の周波数を増減する制御装置(27)とを備
え、吸収液の循環量を制御するようにした吸収冷凍機の
制御装置を提供するものである。Further, the liquid level of the absorbing liquid in the generator (1), the fuzzy rule between the heating amount of the generator (1) and the circulation amount of the absorbing liquid, and the liquid level of the absorbing liquid in the generator (1) and the generation a storage device (31) for storing a membership function between the heating amount of the generator (1) and the circulation amount of the absorbing liquid; and the liquid level of the absorbing liquid in the generator (1) and the heating of the generator (1) output of a fuzzy inference processor (30) and a fuzzy inference processor (30) that performs fuzzy logic operations based on the quantity, the fuzzy rule, and the membership function to calculate the operation amount of the absorption liquid pump (16). and a control device (27) that inputs and increases/decreases the frequency of the electric power supplied to the absorption liquid pump (16), and provides a control device for an absorption refrigerator that controls the circulation amount of the absorption liquid. It is.
又、発生器の吸収液の液位、発生器の加熱量、及び発生
器(1)の温度とファジィ・ルールとメンバー・シップ
関数とに基づいてファジィ論理演算によって吸収液ポン
プ(16)の操作量を算出するファジィ推論プロセッサ
(30)と、ファジィ推論プロセッサ(30)の出力を
入力して吸収液ポンプ(16)に供給される電力の周波
数を増減する制御装置(27)とを備え、吸収液の循環
量を制御するようにした吸収冷凍機の制御装置を提供す
るものである。In addition, the absorption liquid pump (16) is operated by fuzzy logic operations based on the liquid level of the absorption liquid in the generator, the heating amount of the generator, the temperature of the generator (1), fuzzy rules, and membership functions. It is equipped with a fuzzy inference processor (30) that calculates the amount of absorption, and a control device (27) that inputs the output of the fuzzy inference processor (30) to increase or decrease the frequency of the power supplied to the absorption liquid pump (16). The present invention provides a control device for an absorption refrigerator that controls the amount of liquid circulated.
さらに、発生器(1)の吸収液の液位の設定値からの偏
差、発生器(1)の吸収液の液位の変化率、発生器(1
)の加熱量の変化率、発生器(1)の温度の変化率、冷
却水の入口温度の変化率と、ファジィ・ルール及びメン
バー・シップ関数とに基づいてファジィ論理演算によっ
て吸収液ポンプの操作iLを算出するファジィ推論プロ
セッサ(30)と、ファジィ推論プロセッサ(30)の
出力を入力して吸収液ポンプ(16)に供給される電力
の周波数を増減する制御装置(27)とを備え、吸収液
の循環量を制御するようにした吸収冷凍機の制御装置を
提供するものである。Furthermore, the deviation of the liquid level of the absorbing liquid in the generator (1) from the set value, the rate of change in the liquid level of the absorbing liquid in the generator (1), the
), the rate of change in the temperature of the generator (1), the rate of change in the cooling water inlet temperature, fuzzy logic operations based on fuzzy rules and membership functions to operate the absorption liquid pump. It is equipped with a fuzzy inference processor (30) that calculates iL, and a control device (27) that inputs the output of the fuzzy inference processor (30) to increase or decrease the frequency of the power supplied to the absorption liquid pump (16). The present invention provides a control device for an absorption refrigerator that controls the amount of liquid circulated.
(*)作用
冷凍負荷が変化して発生器(1)の加熱量制御弁(17
)の開度などが変化した場合、人間の経験に基づいてフ
ァジィ論理演算によって、吸収器(5)から発生器(1
)へ吸収液を送る吸収液ポンプ(16)の回転数が制御
され、発生器(1)の液位がほぼ一定に保たれ、発生器
(1)の吸収液の加熱効率を向上させることが可能にな
る。(*) When the operating refrigeration load changes, the heating amount control valve (17) of the generator (1)
) changes, the absorber (5) is changed to the generator (1) using fuzzy logic operations based on human experience.
The rotation speed of the absorption liquid pump (16) that sends the absorption liquid to ) is controlled, the liquid level in the generator (1) is kept almost constant, and the heating efficiency of the absorption liquid in the generator (1) can be improved. It becomes possible.
又、発生器(1)の吸収液の液位、発生器(1)の加熱
量、発生器(1)の温度、冷却水の入口温度、記憶装置
(31)に記憶されていたファジィ・ルール及びメンバ
ー・シップ関数に基づいてファジィ推論プロセッサ(3
0)でファジィ論理演算によって吸収液ポンプ(16)
の操作量が算出され、発生器(1)の吸収液の液位が変
化したとき、発生器(1)の加熱量が変化したときなど
に、入間の経験に基づいて吸収液ポンプ(16)に供給
される電力の周波数が変化し、起動、停止、冷凍負荷の
急激な変動、或いは穏やかな変動に対して応答性が良い
吸収液の循環量の制御を行うことが可能になる。In addition, the liquid level of the absorption liquid in the generator (1), the heating amount of the generator (1), the temperature of the generator (1), the inlet temperature of the cooling water, and the fuzzy rules stored in the storage device (31) and a fuzzy inference processor (3
Absorption liquid pump (16) by fuzzy logic operation at 0)
Based on Iruma's experience, when the liquid level of the absorbent in the generator (1) changes, the amount of heating in the generator (1) changes, etc. The frequency of the power supplied to the refrigeration system changes, making it possible to control the circulation amount of the absorption liquid with good responsiveness to startup, shutdown, rapid fluctuations in refrigeration load, or gentle fluctuations.
(へ)実施例
以下、本発明の第1の実施例を図面に基づいて詳細に説
明する。(F) Example Hereinafter, a first example of the present invention will be described in detail based on the drawings.
第1図は冷媒に水、吸収剤(溶液)に臭化リチウム(L
iBr)水溶液を使用した二重効用吸収冷凍機を示し、
(1)はバーナー(IB)を備えた高温発生器、(2)
は低温発生器、(3)は凝縮器、(4)は蒸発器、(5
)は吸収器、(6)は吸収液ポンプ、(7) 、 (8
)はそれぞれ低温熱交換器及び高温熱交換器、(10)
は稀吸収液配管、(11)は中間吸収液配管、(12)
は濃吸収液配管、(13)は冷媒配管、(14)は冷媒
液流下管、(15)は冷媒液循環管であり、それぞれは
第1図に示したように接続きれている。そして、冷媒液
循環管(15)の途中に冷媒ポンプ(15F>が設けら
れている。又、(16)はバーナー(IB)に接続され
た燃料供給管であり、この燃料供給管(16)の途中に
燃料制御弁(加熱量制御弁) (17)が設けられてい
る。又、(20)は冷水配管であり、この冷水配管(2
0)の途中に蒸発器熱交換器(21)が設けられている
。さらに(22)は冷却水配管であり、(6A)は吸収
液ポンプ(6)に電力を供給するインバータである。Figure 1 shows water as the refrigerant and lithium bromide (L) as the absorbent (solution).
iBr) shows a dual-effect absorption refrigerator using an aqueous solution,
(1) is a high temperature generator equipped with a burner (IB), (2)
is a low temperature generator, (3) is a condenser, (4) is an evaporator, (5
) is the absorber, (6) is the absorption liquid pump, (7), (8
) are a low-temperature heat exchanger and a high-temperature heat exchanger, respectively, (10)
is the dilute absorption liquid piping, (11) is the intermediate absorption liquid piping, (12)
1 is a concentrated absorption liquid pipe, (13) is a refrigerant pipe, (14) is a refrigerant liquid flow pipe, and (15) is a refrigerant liquid circulation pipe, each of which is connected as shown in FIG. A refrigerant pump (15F>) is provided in the middle of the refrigerant liquid circulation pipe (15). Also, (16) is a fuel supply pipe connected to the burner (IB), and this fuel supply pipe (16) A fuel control valve (heating amount control valve) (17) is provided in the middle of the pipe.Also, (20) is a cold water pipe, and this cold water pipe (2
0) is provided with an evaporator heat exchanger (21). Furthermore, (22) is a cooling water pipe, and (6A) is an inverter that supplies power to the absorption liquid pump (6).
(23)は制御盤、(24)は冷水配管(20)に設け
られた冷水出口温度検出器であり、この冷水出口温度検
出器(24)、及び燃料制御弁(17)が制御盤(23
)に接続されている。そして、制御盤(23〉にはマイ
クロプロセッサ(25)及び燃料制御弁(17)の制御
装置(26)、インバータの制御装置(27)、フィー
ドバック信号制御装置(28)、及び発生器液位検出装
置(29)が設けられ℃いる。そしてマイクロプロセッ
サ(25)はファジィ推論プロセッサ(演算装置) (
30)と制御ルールの記憶装置(31)とから構成され
ている。又、(32)は演算装置、(33)は高温発生
器(1)に設けられ吸収液の液位を検出する液位検出器
、(34)は吸収器(5)の入口側の冷却水配管(22
)に設けられた冷却水入口温度検出器である。演算装置
り32)は冷水出口温度検出器(24)から信号を入力
して冷水出口の設定値からの偏差を算出する。又、フィ
ードバック信号検出器(28〉は燃料制御弁(17)か
ら弁開度の信号を入力し、弁開度を演算装置(32)へ
出力する。又、発生器液位検出装置(29)は液位検出
器(33)から信号を入力して液位を演算装置(32)
へ出力する。(23) is a control panel, (24) is a chilled water outlet temperature detector installed in the chilled water pipe (20), and this chilled water outlet temperature detector (24) and fuel control valve (17) are connected to the control panel (23).
)It is connected to the. The control panel (23) includes a microprocessor (25), a control device (26) for the fuel control valve (17), an inverter control device (27), a feedback signal control device (28), and a generator liquid level detection device. A device (29) is provided, and a microprocessor (25) is a fuzzy inference processor (arithmetic unit) (
30) and a control rule storage device (31). Further, (32) is a calculation device, (33) is a liquid level detector installed in the high temperature generator (1) and detects the liquid level of the absorption liquid, and (34) is a cooling water on the inlet side of the absorber (5). Piping (22
) is a cooling water inlet temperature detector installed in the The arithmetic unit 32) receives a signal from the chilled water outlet temperature detector (24) and calculates the deviation from the set value of the chilled water outlet. In addition, the feedback signal detector (28> inputs the valve opening signal from the fuel control valve (17) and outputs the valve opening to the calculation device (32). Also, the generator liquid level detection device (29) is a device (32) that calculates the liquid level by inputting the signal from the liquid level detector (33).
Output to.
演算装置(32)は燃料制御弁(17)の開度を所定時
間(例えば1分)の変化率、高温発生器(1)の液位の
最適値からの偏差及び高温発生器(1)の液位の所定時
間の変化率を算出する。ファジィ推論プロセッサ(30
)は演算装置(32)から入力した燃料制御弁(17)
の開度の変化率、高温発生器(1)の液位の最適値から
の偏差及び高温発生器(1)の液位の所定時間の変化率
と、記憶装置(31)から入力したファジィ・ルール及
びメンバー・シップ関数とに基づいてファジィ論理演算
を行う。The arithmetic device (32) determines the opening degree of the fuel control valve (17) based on the rate of change over a predetermined period of time (for example, 1 minute), the deviation of the liquid level of the high temperature generator (1) from the optimum value, and the deviation of the liquid level of the high temperature generator (1) from the optimum value. Calculate the rate of change in the liquid level over a predetermined time. Fuzzy inference processor (30
) is the fuel control valve (17) input from the calculation device (32)
, the deviation of the liquid level of the high temperature generator (1) from the optimum value, the rate of change of the liquid level of the high temperature generator (1) over a predetermined time, and the fuzzy data input from the storage device (31). Fuzzy logic operations are performed based on rules and membership functions.
記憶装置(31)には、人間の経験に基づいて、ファジ
ィ論理演算に必要なファジィ・ルール、及びメンバー・
シップ関数が記憶きれている。そして、記憶装置(31
)に冷水出口温度の設定値からの偏差(eTo)に対す
る燃料制御弁(17)の操作量のファジィ・ルールが記
憶されている。又、記憶装置(31)に第2図に示した
高温発生器(1)の液位の最適値(設定値)からの偏差
(eLg)に対する吸収液ポンプ(6)の操作量(dI
n)のファジィ・ルール、第3図に示した高温発生器(
1)の液位の変化率(dLg)に対する吸収液ポンプ(
6)の操作量(dIn)のファジィ・ルール及び第4図
に示した燃料制御弁(17)の開度の変化率(dBk)
に対する吸収液ポンプ(6)の操作量(dIn)のファ
ジィ・ルールが記憶されている。ここで、第2図、第3
図及び第4図において、F B (Po5itive
Big )は正に大、P S (PositiveSm
all )は正に小、ZRはゼロ、N S (Nega
tiveSmall)は負に小、N B (Negat
ive Big)は負に大のことである。The storage device (31) stores fuzzy rules and member information necessary for fuzzy logical operations based on human experience.
I have memorized the ship function. And the storage device (31
) stores fuzzy rules for the operation amount of the fuel control valve (17) with respect to the deviation (eTo) of the chilled water outlet temperature from the set value. In addition, the operation amount (dI) of the absorption liquid pump (6) with respect to the deviation (eLg) of the liquid level of the high temperature generator (1) from the optimum value (set value) shown in FIG. 2 is stored in the storage device (31).
n) fuzzy rules, the high temperature generator (
1) The absorption liquid pump (
6) Fuzzy rule for the manipulated variable (dIn) and the rate of change (dBk) in the opening degree of the fuel control valve (17) shown in Figure 4
A fuzzy rule for the operation amount (dIn) of the absorption liquid pump (6) is stored. Here, Figures 2 and 3
In the figure and FIG. 4, F B (Po5itive
Big ) is truly big, P S (PositiveSm
all) is exactly small, ZR is zero, N S (Nega
tiveSmall) is negatively small, N B (Negat
ive Big) means negatively large.
又、記憶装置(31)には第5図、第6図及び第7図に
示した偏差(eLg)、変化率(dLg)及び変化率(
dBk)を定性的に評価するためのメンバー・シップ関
数、及び第8図に示した吸収液ポンプ(6)の操作量(
周波数) (dIn)のメンバー・シップ関数が記憶さ
れている。ここで、第8図のメンバー・シップ関数は定
性的に評価きれた吸収液ポンプ(6)の操作量を定量的
な値に変更するメンバー・シップ関数である。In addition, the storage device (31) stores the deviation (eLg), rate of change (dLg), and rate of change (
membership function for qualitatively evaluating the dBk) and the operation amount (
The membership function of frequency) (dIn) is stored. Here, the membership function shown in FIG. 8 is a membership function that changes the operation amount of the absorption liquid pump (6), which has been qualitatively evaluated, into a quantitative value.
そし工、上記各ファジィ・ルールと各メンバー・シップ
関数とによって、高温発生器(1)の液位及び燃料制御
弁(17)の開度に基づいてファジィ論理演算がファジ
ィ推論プロセッサ(30)にて行われ、吸収液ポンプ(
6)の操作量、即ち、吸収液ポンプ〈6)に供給される
電力の周波数の変化量が求められる。Then, by each of the above fuzzy rules and each membership function, fuzzy logic operations are performed in the fuzzy inference processor (30) based on the liquid level of the high temperature generator (1) and the opening degree of the fuel control valve (17). The absorption liquid pump (
The manipulated variable 6), that is, the amount of change in the frequency of the electric power supplied to the absorption liquid pump <6) is determined.
以下、吸収冷凍機の動作について説明する。吸収冷凍機
の運転時、高温発生器(1)に、燃料が供給され、バー
ナー(IB)が燃焼すると共に、吸収液ポンプ(6)及
び冷媒ポンプ(15P)が運転される。そして、従来の
吸収冷凍機と同様に吸収液及び冷媒が循環する。そして
、冷媒液が蒸発器(4)で蒸発器熱交換器(21)に散
布きれ、温度が低下した冷水が蒸発器(4)から負荷へ
供給される。又、冷却水配管(22)を流れる冷却水は
吸収器(5)及び凝縮器(3)で熱を奪い温度が上昇す
る。The operation of the absorption refrigerator will be explained below. During operation of the absorption refrigerator, fuel is supplied to the high temperature generator (1), the burner (IB) burns, and the absorption liquid pump (6) and refrigerant pump (15P) are operated. Then, the absorption liquid and refrigerant circulate in the same manner as in conventional absorption refrigerators. Then, the refrigerant liquid is completely sprayed into the evaporator heat exchanger (21) by the evaporator (4), and cold water whose temperature has been reduced is supplied from the evaporator (4) to the load. Further, the cooling water flowing through the cooling water pipe (22) absorbs heat in the absorber (5) and the condenser (3), and its temperature increases.
又、蒸発器(4)の冷水出口温度の設定値からの偏差と
、記憶装置(31)に記憶されたファジィ・ルール及び
メンバー・シップ関数とに基づいてファジィ推論プロセ
ッサ(30)にてファジィ論理演算が行われる。そして
、燃料制御弁(17)の操作量が算出きれ、弁の制御装
置(26)から開度信号が燃料制御弁(17)べ出力さ
れる。そして、燃料制御弁(17)の開度が冷水出口温
度によって制御きれ、高温発生器(1)の加熱量が変化
して、冷水出口温度が設定温度に保たれる。Further, the fuzzy logic is executed in the fuzzy inference processor (30) based on the deviation of the cold water outlet temperature of the evaporator (4) from the set value and the fuzzy rules and membership functions stored in the storage device (31). An operation is performed. Then, the operation amount of the fuel control valve (17) is calculated, and the valve control device (26) outputs an opening signal to the fuel control valve (17). Then, the opening degree of the fuel control valve (17) is controlled by the cold water outlet temperature, the heating amount of the high temperature generator (1) is changed, and the cold water outlet temperature is maintained at the set temperature.
又、フィードバック信号検出装置(28)が燃料制御弁
(17)からアナログ信号である開度信号を入力して、
ディジタル信号に変換して演算装置(32〉へ出力する
。演算装置(32)は燃料制御弁(17)の開度の変化
率を算出してファジィ推論プロセッサ(30)へ出力す
る。ファジィ推論プロセッサ(30)は、記憶装置(3
1)に記憶されているファジィ・ルール及びメンバー・
シップ関数に基づいてファジィ論理演算する。ここで、
冷水出口温度が上昇しており、燃料制御弁’(17)の
開度の変化率(aBk)が例えば3%/minの場合に
は、ファジィ推論プロセッサ(30)で第4図のファジ
ィ・ルール、第7図のメンバー・シップ関数及び変化率
(dBh)に基づいてファジィ推論プロセッサ(30)
が第9図に示したようにファジィ論理演算する。そして
、変化率(dBk〉に基づく吸収液ポンプ(6)の操作
量(dIn)のメンバー・シップ値(Ml)(第9図に
斜線で示したもの)が求められる。Further, the feedback signal detection device (28) inputs the opening signal, which is an analog signal, from the fuel control valve (17), and
It is converted into a digital signal and output to the arithmetic unit (32).The arithmetic unit (32) calculates the rate of change in the opening degree of the fuel control valve (17) and outputs it to the fuzzy inference processor (30).Fuzzy inference processor (30) is a storage device (3
1) Fuzzy rules and members stored in
Perform fuzzy logic operations based on ship functions. here,
If the cold water outlet temperature is rising and the rate of change (aBk) in the opening degree of the fuel control valve' (17) is, for example, 3%/min, the fuzzy inference processor (30) executes the fuzzy rule shown in FIG. , a fuzzy inference processor (30) based on the membership function and rate of change (dBh) in FIG.
performs fuzzy logic operations as shown in FIG. Then, the membership value (Ml) (indicated by diagonal lines in FIG. 9) of the operation amount (dIn) of the absorption liquid pump (6) based on the rate of change (dBk) is determined.
又、発生器液位検出装置(29)が液位検出器(33)
から吸収液の液位を入力し、ディジタル信号に変換して
演算装置(32)へ出力する。演算装置(32)は上記
液位の最適値からの偏差(eLg)と変化率(dLg)
とを算出し、ファジィ推論プロセッサ(3o)へ出力す
る。ファジィ推論プロセッサ(30)は記憶装置(31
)の第2図及び第3図に示したファジィ・ルールと、第
5図、第6図及び第8図に示したメンバー・シップ関数
に基づいてファジィ論理演算する。In addition, the generator liquid level detection device (29) is a liquid level detector (33).
The liquid level of the absorption liquid is inputted from the input terminal, converted into a digital signal, and outputted to the arithmetic unit (32). The calculation device (32) calculates the deviation (eLg) of the liquid level from the optimum value and the rate of change (dLg).
and is output to the fuzzy inference processor (3o). The fuzzy inference processor (30) has a storage device (31).
) Fuzzy logic operations are performed based on the fuzzy rules shown in FIGS. 2 and 3 and the membership functions shown in FIGS. 5, 6, and 8.
ここで、液位が設定値より例えば4mm低い場合、即ち
、偏差(eLg)が−4mmの場合には第10図に一点
鎖線で示したようにファジィ推論プロセッサ(30)は
ファジィ論理演算する。そして、前件部の偏差(eLg
)が−4mmから吸収液ポンプ(6)の操作量(dIn
)のメンバー・シップ値(M、>(第10図に斜線で示
したもの)が求められる。又、液位の変化率(dLg
)が例えば−3,5nn/lll1nの場合には第11
図に一点鎖線で示したようにファジィ推論プロセッサ(
30)はファジィ論理演算する。そして、前件部の変化
率(dLg)が−3、511ff/winから吸収液ホ
ンプ(6)の操作量(dIn)のメンバー・シッフ値(
M、)(第11図に斜線で示したもの)が求められる。Here, if the liquid level is, for example, 4 mm lower than the set value, that is, if the deviation (eLg) is -4 mm, the fuzzy inference processor (30) performs a fuzzy logic operation as shown by the dashed line in FIG. Then, the deviation of the antecedent part (eLg
) is -4 mm to the operation amount (dIn) of the absorption liquid pump (6)
) is determined. Membership value (M, > (shown with diagonal lines in Figure 10)
) is, for example, -3,5nn/llll1n, the 11th
As shown by the dashed line in the figure, the fuzzy inference processor (
30) performs a fuzzy logic operation. Then, since the rate of change (dLg) of the antecedent part is -3, 511ff/win, the Member-Schiff value (
M, ) (indicated by diagonal lines in FIG. 11) is obtained.
そして、ファジィ推論プロセッサ(30)は例えばMA
X重心演算法で第9図、第10図及び第11図に示した
メンバー・シップ値(M、 >、 (M、 )、 (M
、 )の論理和を求める。この論理和のメンバー・シッ
プ値は各メンバー・シップ値(M、 )、 (M、 )
、 (Ms )を重ねたときの輪郭である第12図の(
M4)である、そして、このメンバー・シップ値(M4
)の平均値、即ち重心(G、)から吸収液ポンプ(6)
の操作量を決定する。ファジィ推論プロセッサ(30)
は操作量をインバータ制御装置(27)へ出力する。イ
ンバータ制御装置t(27)は上記操作量を今まで出力
していた周波数に加えた周波数の信号をインバータ装置
(6ム)へ出力する。インバータ装置(6A)は入力し
た周波数の電力を吸収液ポンプ(6)へ供給し、吸収液
ポンプ〈6〉の回転数は増加する。そして、吸収液ポン
プ(6)の吸収液吐出量は増加する。The fuzzy inference processor (30) is, for example, an MA
The membership values (M, >, (M, ), (M
, ) is calculated. The membership value of this logical sum is each membership value (M, ), (M, )
, (Ms) in Figure 12, which is the outline when superimposed
M4), and this membership value (M4
), i.e. from the center of gravity (G, ) to the absorption liquid pump (6)
Determine the amount of operation. Fuzzy inference processor (30)
outputs the manipulated variable to the inverter control device (27). The inverter control device t (27) outputs a signal of a frequency obtained by adding the above-mentioned manipulated variable to the frequency that has been outputted up to now to the inverter device (6m). The inverter device (6A) supplies power at the input frequency to the absorption liquid pump (6), and the rotational speed of the absorption liquid pump <6> increases. Then, the amount of absorption liquid discharged from the absorption liquid pump (6) increases.
又、燃料制御弁(17)の開度の変化率(dBk)が例
えば、−4%/winであり、高温発生器(1)の液位
の最適値からの偏差(eLg)が例えば7mlであり、
高温発生器(1)の液位の変化率(dLg)が例えば−
2mn / winの場合にも、第2図、第3図及び第
4図に示したファジィ・ルール及び第5図、第6図、第
7図及び第8図に示したメンバー・シップ関数によって
ファジィ論理演算が行われる。そして、変化率(dBk
)が−4%/ my−nから第13図に示したように
ファジィ論理演算が行われ、吸収液ポンプ(6)の操作
量のメンバー・シップ値(M6)が求められる。又、偏
差(aLg)が71から第14図に示したようにファジ
ィ論理演算が行われ、吸収液ポンプ(6)の操作量のメ
ンバー・シップ値側、)が求められる。さらに、変化率
(dLg)が−2vn/minから第15図に示したよ
うにファジィ論理演算が行われ、吸収液ポンプ(6)の
操作量のメンバー・シップ値(M、)が求められる。そ
して、各メンバー・シップ値(M、 )、 (M、 )
、 (M、 )の論理和のメンバー・シップ値が、第1
6図のくM8〉である。そして、このメンバー・シップ
値(M、)の平均値、即ち重心(G、)から吸収液ポン
プ(6)の操作量が決定する。この操作量はファジィ推
論プロセッサ(30)からインバータの制御装置(27
)へ出力される。インバータ制御装置(27)は上記操
作量を今までの周波数から引いた周波数の信号をインバ
ータ装置(6A)へ出力する。このため、インバータ装
置(6A)から吸収液ポンプ(6)に供給諮れる電力の
周波数は低下し、吸収液ポンプ(6)の稀吸収液の吐出
量は減少し、高温発生器(1〉へ送られる稀吸収液の量
が減少する。Further, the rate of change (dBk) of the opening degree of the fuel control valve (17) is, for example, -4%/win, and the deviation (eLg) of the liquid level of the high temperature generator (1) from the optimum value is, for example, 7 ml. can be,
For example, if the rate of change (dLg) in the liquid level of the high temperature generator (1) is -
Even in the case of 2mn/win, the fuzzy rules shown in Figs. 2, 3, and 4 and the membership functions shown in Figs. 5, 6, 7, and 8 Logical operations are performed. Then, the rate of change (dBk
) is -4%/my-n, a fuzzy logical operation is performed as shown in FIG. 13, and the membership value (M6) of the operation amount of the absorption liquid pump (6) is determined. Further, from the deviation (aLg) of 71, a fuzzy logic operation is performed as shown in FIG. 14, and the membership value side of the operation amount of the absorption liquid pump (6) is determined. Furthermore, from a rate of change (dLg) of -2vn/min, a fuzzy logic operation is performed as shown in FIG. 15, and the membership value (M, ) of the operation amount of the absorption liquid pump (6) is determined. And each membership value (M, ), (M, )
, (M, ), the membership value of the logical sum is the first
It is M8 in Figure 6. Then, the operation amount of the absorption liquid pump (6) is determined from the average value of the membership values (M,), that is, the center of gravity (G,). This operation amount is transmitted from the fuzzy inference processor (30) to the inverter control device (27).
) is output to. The inverter control device (27) outputs a signal of a frequency obtained by subtracting the above operation amount from the previous frequency to the inverter device (6A). Therefore, the frequency of the power supplied from the inverter device (6A) to the absorption liquid pump (6) decreases, the amount of diluted absorption liquid discharged from the absorption liquid pump (6) decreases, and the amount of diluted absorption liquid is reduced to the high temperature generator (1>). The amount of dilute absorbent delivered is reduced.
上記実施例によれば、燃料制御弁(17〉の開度の変化
率(dBk)、高温発生器(1〉の液位の設定値からの
偏差(aLg)、及び液位の変化率(dLg)によって
、人間の経験に基づいてファジィ論理演算し、吸収液ポ
ンプ(6)の操作量を制御するので、高温発生器(1)
の加熱量及び液位の急激な変化及び穏やかな変化に応じ
て吸収液ポンプ(17)の稀吸収液の吐出量が変化し、
高温発生器(1)の液位を一定に保つことができ、この
結果、高温発生器(1)の吸収液の加熱効率を向上させ
ることができる。ここで、高温発生器(1)に例えばガ
スエンジン発IE機から高温高圧の蒸気が供給される吸
収冷凍機において、上記のように吸収液ポンプ(17)
をファジィ論理演算によって人間の経験に基づいて制御
することによって、液位の低下を防止して伝熱面積の減
少を防止でき、この結果、高温発生器での効率化を図る
ことができる。According to the above embodiment, the rate of change (dBk) in the opening degree of the fuel control valve (17), the deviation (aLg) of the liquid level of the high temperature generator (1>) from the set value, and the rate of change in the liquid level (dLg) ), the operation amount of the absorption liquid pump (6) is controlled by fuzzy logic operations based on human experience, so the high temperature generator (1)
The amount of diluted absorption liquid discharged from the absorption liquid pump (17) changes depending on the amount of heating and sudden or gentle changes in the liquid level.
The liquid level in the high temperature generator (1) can be kept constant, and as a result, the heating efficiency of the absorption liquid in the high temperature generator (1) can be improved. Here, in an absorption refrigerator in which high-temperature, high-pressure steam is supplied to the high-temperature generator (1) from, for example, a gas engine-generated IE machine, the absorption liquid pump (17) is used as described above.
By controlling this using fuzzy logic operations based on human experience, it is possible to prevent a drop in the liquid level and a reduction in the heat transfer area, and as a result, it is possible to improve the efficiency of the high temperature generator.
又、高温発生器(1)の液位の上昇による冷媒蒸気へ吸
収液の混入、及び液位の低下による空焚きを防止するこ
とができる。Further, it is possible to prevent absorption liquid from being mixed into the refrigerant vapor due to an increase in the liquid level of the high temperature generator (1), and to prevent dry firing due to a decrease in the liquid level.
以下、本発明の第2の実施例を説明する。尚、第2の実
施例において、特に記載されていない構成については第
1の実施例と同様の構成であり、その詳細な説明は省略
する。(34)は吸収器(22)の入口側の冷却水配管
(22)に設けられた冷却水入口温度検出器、(35)
は高温発生器(1)に設けられた温度検出器である。そ
して、各温度検出器(34) 。A second embodiment of the present invention will be described below. Note that in the second embodiment, configurations not specifically described are the same as those in the first embodiment, and detailed explanation thereof will be omitted. (34) is a cooling water inlet temperature detector installed in the cooling water pipe (22) on the inlet side of the absorber (22); (35)
is a temperature detector provided in the high temperature generator (1). and each temperature detector (34).
(35)は演算装置(32)へ温度信号を出力する。演
算装置(32)は冷却水入口温度の例えば1分毎の変化
率(dIci)、及び高温発生器温度の例えば1分毎の
変化率(dTg)を算出する。演算装置(32)は上記
第1の実施例と同様に燃料制御弁開度の変化率(dBk
)、高温発生器(1)の液位の偏差(eLg)、及び変
化率(dLg)を演算する。(35) outputs a temperature signal to the arithmetic unit (32). The calculation device (32) calculates the rate of change of the cooling water inlet temperature, for example, per minute (dIci), and the rate of change of the high temperature generator temperature, for example, per minute (dTg). The calculation device (32) calculates the rate of change (dBk) of the fuel control valve opening as in the first embodiment.
), the deviation (eLg) of the liquid level of the high temperature generator (1), and the rate of change (dLg) are calculated.
制御ルールの記憶装置(31)には、上記第1の実施例
の第2図、第3図及び第4図に示したファジィ・ルール
、第5図、第6図、第7図及び第8図に示したメンバー
・シップ関数と共に、第17図に示した冷却水入口温度
の変化率(dTci)のファジィ・ルーツ呟第18図に
示した高温発生器温度の変化率(dTg)のファジィ・
ルール、第19図に示した冷却水入口温度の変化率(d
Tci )のメンバー・シップ関数及び第20図に示し
た高温発生器温度の変化率(dig)のメンバー・シッ
プ関数が記憶されている。The control rule storage device (31) stores the fuzzy rules shown in FIGS. 2, 3, and 4 of the first embodiment, and the fuzzy rules shown in FIGS. 5, 6, 7, and 8. In addition to the membership functions shown in the figure, the fuzzy roots of the rate of change of the cooling water inlet temperature (dTci) shown in Figure 17 and the fuzzy roots of the rate of change of the high temperature generator temperature (dTg) shown in Figure 18 are used.
Rule, the rate of change of the cooling water inlet temperature shown in Figure 19 (d
The membership functions of Tci ) and the rate of change (dig) of the high temperature generator temperature shown in FIG. 20 are stored.
そして、吸収冷凍機の運転時、上記第1の実施例と同様
に燃料制御弁(17)の開度の変化率(dBk)が3%
/min、高温発生器(1)の液位の偏差(aLg)が
−4in、液位の変化率(dLg)が−3、5mn /
minの場合には、第9図、第10図及び第11図に
示したようにファジィ推論ブロセ・7す(30)はファ
ジィ論理演算し、各メンバー・シップ値を求める。この
とき、冷却水入口温度検出器(22)が検出した吸収器
(5)の入口側の冷却水の温度に基づいて演算装置(3
2)は冷却水入口温度の変化率(dIci)を算出する
。ここで、冷却水の温度が次第に低下しており、変化率
(dIci)が例えは−1,7°C/ minの場合に
はファジィ推論プロセッサ(30〉は第21図に一点鎖
線で示したようにファジィ論理演算する。そして、変化
率(dTci)が−1,7℃/ minから、吸収液ポ
ンプ(6)の操作量(dIn)のメンバー・シ・ノブ値
(M9)(第21図に斜線で示したもの)が求められる
。又、このとき、高温再生器温度の変化率(dTg)が
例えば−0,8°C/minの場合にはファジィ推論プ
ロセッサ(30)は第22図に一点鎖線で示したように
ファジィ論理演算する。そして、前件部の変化率(dT
g)が−0,8°C/minから、吸収液ポンプ(6)
の操作量(dIn)のメンバー・シ・ノブ値(M6)(
第22図に斜線で示したもの)が求められる。When the absorption refrigerator is in operation, the rate of change (dBk) in the opening degree of the fuel control valve (17) is 3% as in the first embodiment.
/min, the liquid level deviation (aLg) of the high temperature generator (1) is -4in, and the rate of change in liquid level (dLg) is -3.5mn/
In the case of min, as shown in FIGS. 9, 10, and 11, the fuzzy inference processor 7 (30) performs fuzzy logic operations to obtain each membership value. At this time, based on the temperature of the cooling water on the inlet side of the absorber (5) detected by the cooling water inlet temperature detector (22), the calculation device (3)
2) calculates the rate of change (dIci) of the cooling water inlet temperature. Here, if the temperature of the cooling water is gradually decreasing and the rate of change (dIci) is, for example, -1.7°C/min, the fuzzy inference processor (30) is Then, from the rate of change (dTci) of -1.7°C/min, the member si knob value (M9) of the operation amount (dIn) of the absorption liquid pump (6) is calculated (Fig. 21). At this time, if the rate of change (dTg) of the high temperature regenerator temperature is, for example, -0.8°C/min, the fuzzy inference processor (30) is calculated as shown in FIG. A fuzzy logic operation is performed as shown by the dashed line.Then, the rate of change of the antecedent (dT
g) from -0.8°C/min, the absorption liquid pump (6)
The member shift knob value (M6) of the manipulated variable (dIn) (
(indicated by diagonal lines in FIG. 22) is obtained.
そして、ファジィ推論プロセッサ(30〉は第9図、第
10図、第11図、第21図及び第22図に示したメン
バー・シップ値(M、 )、 (Mt >、 (M、
)、 (M、)及び(M、。)の論理和を求める。この
論理和のメンバー・シップ値は各メンバー・シップ値(
M、)。Then, the fuzzy inference processor (30〉) has membership values (M, ), (Mt >, (M,
), (M,) and (M,.). The membership value of this disjunction is the membership value of each membership value (
M.).
(M、 )、 (M、 )、 (M、 )及び(M、。(M, ), (M, ), (M, ) and (M,.
)を重ねたときの輪郭である第23図の(M、、)であ
る、そして、このメンバー・シップ値の最大値の平均値
を求める。この平均値(重心)(G、)から吸収液ポン
プ(6)の操作量が決定する。この操作量は、インバー
タの制御装置(27)へ出力される。インバータ制御装
置(27)は、上記操作量を今までの周波数に加えた周
波数の信号をインバータ装置(6A)へ出力する。この
ため、吸収液ポンプ(6)に供給される電力の周波数は
変化し、吸収液ポンプ(6)の稀吸収液の吐出量は変化
する。) in FIG. 23, which is the outline when superposed on each other, and the average value of the maximum membership value is determined. The operation amount of the absorption liquid pump (6) is determined from this average value (center of gravity) (G,). This manipulated variable is output to the inverter control device (27). The inverter control device (27) outputs a signal having a frequency obtained by adding the above operation amount to the previous frequency to the inverter device (6A). Therefore, the frequency of the electric power supplied to the absorption liquid pump (6) changes, and the discharge amount of the dilute absorption liquid from the absorption liquid pump (6) changes.
以後、同様に、燃料制御弁(17)の開度の変化率(d
Bh )、高温発生器(1)の液位の偏差(aLg)及
び液位の変化率(dLg)、冷却水入口温度の変化率(
dTci)及び高温発生器(1)の温度の変化率(dI
g)に基づいてファジィ推論プロセッサ(30)でファ
ジィ論理演算が行われ、吸収液ポンプ(6)に供給され
る電力の周波数が変化する。このため、吸収液ポンプ(
6)の稀吸収液の吐出量が変化し、高温発生器(1)へ
送られる稀吸収液の量が変化する。Thereafter, similarly, the rate of change (d) of the opening degree of the fuel control valve (17) is
Bh ), deviation in liquid level (aLg) and rate of change in liquid level (dLg) of high temperature generator (1), rate of change in cooling water inlet temperature (
dTci) and the rate of change of temperature of the high temperature generator (1) (dI
Based on g), a fuzzy logical operation is performed in the fuzzy inference processor (30), and the frequency of the power supplied to the absorption liquid pump (6) is changed. For this reason, the absorption liquid pump (
The discharge amount of the dilute absorption liquid in step 6) changes, and the amount of dilute absorption liquid sent to the high temperature generator (1) changes.
上記実施例によれば、燃料制御弁(17)の開度の変化
率(dBk)、高温発生器(1)の液位の偏差(eLg
)及び液位の変化率(dLg)、冷却水入口温度の変化
率(drci)、及び高温発生器(1)の温度の変化率
(dIg〉によって、人間の経験に基づいてファジィ論
理演算し、吸収液ポンプ(6)の操作量を制御するので
、高温発生器(1)の加熱量、高温発生器(1)の液位
、冷却水の入口温度、又は高温発生器(1)の温度が変
化したときには、人間の経験に基づいて高温発生器(1
)へ送られる稀吸収液の量が変化し、高温発生器(1)
の液位を一定に保つことができ、この結果、高温発生器
(1)の吸収液の加熱効率を向上きせることができる。According to the above embodiment, the rate of change (dBk) of the opening degree of the fuel control valve (17), the deviation (eLg) of the liquid level of the high temperature generator (1)
), the rate of change of the liquid level (dLg), the rate of change of the cooling water inlet temperature (drci), and the rate of change of the temperature of the high temperature generator (1) (dIg), based on human experience, perform fuzzy logic operations, Since the operation amount of the absorption liquid pump (6) is controlled, the heating amount of the high temperature generator (1), the liquid level of the high temperature generator (1), the inlet temperature of the cooling water, or the temperature of the high temperature generator (1) is controlled. When the change occurs, a high temperature generator (1
) changes the amount of dilute absorption liquid sent to the high temperature generator (1).
As a result, the heating efficiency of the absorption liquid in the high temperature generator (1) can be improved.
尚、上記第1の実施例、及び第2の実施例において、吸
収液ポンプ(6)の回転数をファジィ論理演算に基づい
て制御し、吸収器(5)から高温発生器(1)に流れる
吸収液の量を調節したが、例えば中間吸収液配管(11
)に制御弁を設け、この制御弁の開度をファジィ論理演
算に基づいて制御し、高温発生器(1)から吸収器(5
)へ流れる吸収液の量を調節した場合も上記各実施例と
同様の作用効果を得ることができる。In addition, in the first embodiment and the second embodiment, the rotation speed of the absorption liquid pump (6) is controlled based on fuzzy logic operations, and the liquid flows from the absorber (5) to the high temperature generator (1). Although the amount of absorption liquid was adjusted, for example, the intermediate absorption liquid piping (11
) is provided with a control valve, and the opening degree of this control valve is controlled based on fuzzy logic operation, and the high temperature generator (1) is connected to the absorber (5).
), the same effects as in each of the above embodiments can also be obtained by adjusting the amount of absorption liquid flowing into the above-mentioned embodiments.
(ト)発明の効果
本発明は以上のように構成された吸収冷凍機の制御装置
であり、外的条件あるいは内的条件を表す複数の変化量
を検知し、ファジィ論理演算によって吸収液ポンプの回
転数を制御するので、発生器の液位、或いは発生器の加
熱量が変化したとき、人間の経験に基づいて吸収液ポン
プの回転数が制御きれ、負荷が変化したときなどに吸収
液の循環量を最適に制御して、発生器での加熱効率を向
上させることができ、又、液位上昇による吸収液の冷媒
液への混入を防止することができ、笛らに、液面の大幅
な低下による空焚きを防止することができる。(g) Effects of the Invention The present invention is a control device for an absorption refrigerator configured as described above, which detects a plurality of changes representing external conditions or internal conditions, and controls the absorption liquid pump by fuzzy logic operations. Since the rotation speed is controlled, when the liquid level in the generator or the amount of heating in the generator changes, the rotation speed of the absorption liquid pump can be controlled based on human experience, and when the load changes, etc. By optimally controlling the circulation amount, it is possible to improve the heating efficiency in the generator, and it is also possible to prevent the absorption liquid from being mixed into the refrigerant liquid due to a rise in the liquid level. It is possible to prevent dry firing due to a significant drop.
又、発生器の温度又は液位などの情報を検出する検出装
置と、検出装置で得た情報に対する吸収液ポンプの操作
量を求めるためのファジィ・ルール及びメンバー・シッ
プ関数を記憶する記憶装置と、検出装置で得た情報と記
憶装置のファジィ・ルール及びメンバー・シップ関数と
に基づいてファジィ論理演算によって吸収液ポンプの操
作量を算出する演算装置と、この演算装置の出力を入力
して吸収液ポンプに供給される電力の周波数の増減を行
う吸収液ポンプの制御装置とを備えているので、発生器
の液位などが変化したときに、演算装置にてファジィ論
理演算が行われ、吸収液ポンプの制御装置で吸収液ポン
プに供給される電力の周波数が増減され、人間の経験に
基づいて吸収液の循環量が制御され、上記変化に対する
応答性を向上することができ、この結果、発生器の吸収
液の液位をほぼ一定に保つことができ、この結果、発生
器での加熱効率を向上させることができ、又、吸収液の
冷媒液への混入を回避でき、吸収冷凍機の運転を安定さ
せることができる。It also includes a detection device that detects information such as the temperature or liquid level of the generator, and a storage device that stores fuzzy rules and membership functions for determining the amount of operation of the absorption liquid pump based on the information obtained by the detection device. , an arithmetic device that calculates the operation amount of the absorption liquid pump by fuzzy logic operations based on the information obtained by the detection device and the fuzzy rules and membership functions of the storage device; It is equipped with an absorption liquid pump control device that increases or decreases the frequency of the electric power supplied to the liquid pump, so when the liquid level in the generator changes, the calculation device performs fuzzy logical operations to The frequency of the electric power supplied to the absorption liquid pump is increased or decreased by the liquid pump control device, and the circulation amount of the absorption liquid is controlled based on human experience, making it possible to improve the responsiveness to the above changes, and as a result, The liquid level of the absorption liquid in the generator can be kept almost constant, and as a result, the heating efficiency in the generator can be improved, and the mixing of the absorption liquid into the refrigerant liquid can be avoided, making it possible to improve the absorption chiller. The operation of the vehicle can be stabilized.
又、発生器の吸収液の液位、発生器の加熱量、或いは発
生器の温度と吸収液ポンプの操作量との間のファジィ・
ルール及びメンバー・シップ関数を記憶する記憶装置と
、発生器の吸収液の液位、発生器の加熱量、或いは発生
器の温度とファジィ争ルールとメンバー・シップ関数と
に基づいてファジィ論理演算によって吸収液ポンプの操
作量を算出する演算装置と、この演算装置の出力を入力
して吸収液ポンプに供給される電力の周波数を制御する
吸収液ポンプの制御装置とを備えているので、発生器の
吸収液の液位、発生器の加熱量、或いは発生器の温度が
変化したとき、ファジィ論理演算によって人間の経験に
基づいた吸収液ポンプに供給される電力の周波数を制御
して、吸収液の循環量を変化きせることかでき、この結
果、発生器の吸収液の液位、発生器の加熱量、或いは発
生器の温度の変化の大き芒にかかわらず、吸収液の液位
をほぼ一定に保つことができ、吸収冷凍機の運転を安定
することができる。In addition, the level of the absorption liquid in the generator, the amount of heating in the generator, or the fuzzy relationship between the temperature of the generator and the operation amount of the absorption liquid pump
A storage device that stores the rules and membership functions, and fuzzy logic operations based on the level of the absorption liquid in the generator, the amount of heating in the generator, or the temperature of the generator, the fuzzy conflict rules, and the membership functions. The generator is equipped with a calculation device that calculates the operation amount of the absorption liquid pump, and an absorption liquid pump control device that inputs the output of this calculation device and controls the frequency of the electric power supplied to the absorption liquid pump. When the liquid level of the absorption liquid, the heating amount of the generator, or the temperature of the generator changes, the frequency of the power supplied to the absorption liquid pump is controlled based on human experience by fuzzy logic operations, As a result, the level of the absorbent can be kept almost constant regardless of the level of the absorbent in the generator, the amount of heating in the generator, or the degree of change in the temperature of the generator. This makes it possible to maintain stable operation of the absorption chiller.
さらに、発生器の吸収液の液位の変化率、液位の偏差、
発生器の加熱量の変化率、発生器の温度の変化率、及び
冷却水の入口温度の変化率、ファジィ・ルール及びメン
バー・シップ関数に基づいてファジィ論理演算を行い吸
収液ポンプに供給される電力の周波数を制御することに
よって、発生器の液位などが変化したとき、人間の経験
に基づいた吸収液の循環量を変化させることができ、こ
の結果、発生器の液位の変化率、液位の偏差、加熱量の
変化率、温度の変化率、及び冷却水の入口温度の変化率
の大小にかかわらず、発生器の液位をほぼ一定に保つこ
とができ、吸収冷凍機の運転を安定することができる。Furthermore, the rate of change of the liquid level of the absorption liquid in the generator, the deviation of the liquid level,
A fuzzy logic operation is performed based on the rate of change in the amount of heating of the generator, the rate of change in the generator temperature, the rate of change in the inlet temperature of the cooling water, fuzzy rules and membership functions, and the absorption liquid is supplied to the pump. By controlling the frequency of the electric power, when the liquid level etc. of the generator changes, the circulation amount of the absorption liquid can be changed based on human experience, and as a result, the rate of change of the liquid level of the generator, Regardless of the deviation in liquid level, the rate of change in heating amount, the rate of change in temperature, and the rate of change in cooling water inlet temperature, the generator liquid level can be kept almost constant, and the absorption chiller can operate smoothly. can be stabilized.
図面は本発明の一実施例を示す吸収冷凍機の回路構成図
、第2図は吸収液の液位の最適値からの偏差(eLg)
と操作量(dIn)との間のファジィ・ルールを示す図
、第3図は吸収液の液位の変化率(dLg)と操作量(
dIn)との間のファジィ・ルールを示す図、第4図は
燃料制御弁の開度の変化率(dBk)と操作量(dIn
)との間のファジィ・ルールを示す図、第5図は偏差(
aLg)に対するファジィ変数のメンバー・シップ関数
を定義する図、第6図は変化率(dLg)に対するファ
ジィ変数のメンバー・シップ関数を定義する図、第7図
は変化率(dBk)に対するファジィ変数のメンバー・
シップ関1を定義する図、第8図は操作量(吸収液ポン
プの周波数) (dIn)に対するファジィ変数のメン
バー・シップ関数を定義する図、第9図は変化率(dB
k)が3%/minのときのファジィ論理演算の説明図
、第10図は偏差(eLg )が−4mのときのファジ
ィ論理演算の説明図、第11図は変化率(dLg)が−
3、5mn / minのときのファジィ論理演算の説
明図、第12図は変化率(dBk)が3%/min、偏
差(eLg)が−4=、変化率(dLg)が−3、5m
!l / winのときにMAX重心演算法で吸収液ポ
ンプの操作量を求める場合の説明図、第13図は変化率
(dBk)が−4%/minのときのファジィ論理演算
の説明図、第14図は偏差(eLg)が71のときのフ
ァジィ論理演算の説明図、第15図は変化率(dLg)
が−2aI/ minのときのファジィ論理演算の説明
図、第16図は変化率(dBk)が−4%/min、偏
差(eLg)が7mn、変化率(dLg)が−2mm
/ minのときに吸収液ポンプの操作量を求める場合
の説明図、第17図は発生器の温度の変化率(dTci
)と操作量との間のファジィ・ルールを示す図、第18
図は冷却水入口温度の変化率(dTg)と操作量との間
のファジィ・ルールを示す図、第19図は変化率(dT
ci)に対するファジィ変数のメンバー・シップ関数を
定義する図、第20図は変化率(dTg)に対するファ
ジィ変数のメンバー・シップ関数を定義する図、第21
図は変化率(dTci)が−1,7°C/minのとき
のファジィ論理演算の説明図、第22図は変化率(dT
g)が−0,8℃/ miHのときのファジィ論理演算
の説明図、第23図は変化率(dBk)が3%/min
、偏差(eLg)が−41m1、変化率(dLg)が−
3,5画/min、変化率(dTci )が−1,7°
C/min、変化率(dIg)が0.8°C/m1n(
7)ときに吸収液ポンプの操作量を求める場合の説明図
である。
(1)・・・高温発生器、 (2)・・・低温発生器、
(3)・・・凝縮器、 (4)・・・蒸発器、 (5
)・・・吸収器、(6〉・・・吸収液ポンプ、 (17
〉・・・燃料制御弁(加熱量制御弁)、 (30)・・
・ファジィ推論プロセッサ(演算装置)、 (31)・
・・記憶装置、 (33)・・・液位検出器、 (34
)・・・冷却水入口温度検出器、 (27)・・・イン
バータの制御装置、 (35)・・・高温発生器の温度
検出器。The drawing is a circuit diagram of an absorption refrigerator showing an embodiment of the present invention, and FIG. 2 shows the deviation (eLg) of the absorption liquid level from the optimum value.
Figure 3 is a diagram showing the fuzzy rule between and the manipulated variable (dIn).
Figure 4 shows the fuzzy rule between the fuel control valve opening degree change rate (dBk) and the manipulated variable (dIn).
), Figure 5 shows the fuzzy rules between the deviation (
Figure 6 is a diagram that defines the membership function of fuzzy variables for rate of change (dLg), Figure 7 is a diagram that defines the membership function of fuzzy variables for rate of change (dBk). member·
Figure 8 is a diagram that defines the membership function of fuzzy variables for the manipulated variable (absorbent pump frequency) (dIn), and Figure 9 is a diagram that defines the rate of change (dB).
Fig. 10 is an explanatory diagram of the fuzzy logic operation when the deviation (eLg) is -4m, and Fig. 11 is an illustration of the fuzzy logic operation when the deviation (eLg) is -4m.
Fig. 12 is an explanatory diagram of fuzzy logic operation when the rate of change (dBk) is 3%/min, the deviation (eLg) is -4=, and the rate of change (dLg) is -3,5m.
! Figure 13 is an explanatory diagram of calculating the operation amount of the absorbent pump using the MAX center of gravity calculation method when l / win. Figure 13 is an explanatory diagram of the fuzzy logic operation when the rate of change (dBk) is -4%/min. Figure 14 is an explanatory diagram of the fuzzy logic operation when the deviation (eLg) is 71, and Figure 15 is the rate of change (dLg).
Fig. 16 is an explanatory diagram of fuzzy logic operation when is -2aI/min, the rate of change (dBk) is -4%/min, the deviation (eLg) is 7mn, and the rate of change (dLg) is -2mm.
Figure 17 is an explanatory diagram for determining the operation amount of the absorption liquid pump when
) and the manipulated variable, 18th diagram showing the fuzzy rule between
The figure shows the fuzzy rule between the rate of change (dTg) of the cooling water inlet temperature and the manipulated variable.
Figure 20 is a diagram that defines the membership function of fuzzy variables for rate of change (dTg), Figure 21 is a diagram that defines the membership function of fuzzy variables for rate of change (dTg).
The figure is an explanatory diagram of the fuzzy logic operation when the rate of change (dTci) is -1.7°C/min, and Figure 22 is an illustration of the fuzzy logic operation when the rate of change (dTci) is
Fig. 23 is an explanatory diagram of fuzzy logic operation when g) is -0.8℃/miH, and the rate of change (dBk) is 3%/min.
, deviation (eLg) is -41m1, rate of change (dLg) is -
3.5 strokes/min, rate of change (dTci) -1.7°
C/min, rate of change (dIg) is 0.8°C/m1n (
7) is an explanatory diagram when calculating the operation amount of the absorption liquid pump. (1)...High temperature generator, (2)...Low temperature generator,
(3)... Condenser, (4)... Evaporator, (5
)...Absorber, (6>...Absorption liquid pump, (17)
〉...Fuel control valve (heating amount control valve), (30)...
・Fuzzy inference processor (arithmetic device), (31)・
...Storage device, (33) ...Liquid level detector, (34
)... Cooling water inlet temperature detector, (27)... Inverter control device, (35)... High temperature generator temperature detector.
Claims (1)
器などを接続して冷凍サイクルを形成し、発生器の加熱
量を外的条件或いは内的条件に基づいて制御する吸収冷
凍機の制御装置において、外的条件或いは内的条件を表
す複数の変化量を検出する検出装置と、上記変化量と吸
収液ポンプの回転数との間のファジィ・ルール及びメン
バー・シップ関数を記憶する記憶装置と、上記変化量と
ファジィ・ルールとメンバー・シップ関数とに基づいて
ファジィ論理演算を行い吸収液ポンプの回転数を算出す
る演算装置と、この演算装置の出力を入力して吸収液ポ
ンプの回転数を制御する制御装置とを備えたことを特徴
とする吸収冷凍機の制御装置。 2、蒸発器、吸収器、吸収液ポンプ、発生器及び凝縮器
などを接続して冷凍サイクルを形成し、発生器の加熱量
を外的条件あるいは内的条件に基づいて制御する吸収冷
凍機の制御装置において、外的条件あるいは内的条件を
表す情報を検出する検出装置と、上記情報に対する吸収
液ポンプの操作量を算出するためのファジィ・ルール及
びメンバー・シップ関数を記憶する記憶装置と、上記検
出装置によって検出された情報と上記記憶装置のファジ
ィ・ルール及びメンバー・シップ関数とに基づいてファ
ジィ論理演算を行い吸収液ポンプの操作量を算出する演
算装置と、この演算装置の出力を入力して吸収液ポンプ
に供給される電力の周波数の増減を行う吸収液ポンプの
制御装置とを備えたことを特徴とする吸収冷凍機の制御
装置。 3、蒸発器、吸収器、吸収液ポンプ、発生器及び凝縮器
などを接続して冷凍サイクルを形成し、発生器の加熱量
を外的条件あるいは内的条件に基づいて制御する吸収冷
凍機の制御装置において、発生器の吸収液の液位及び発
生器の加熱量と吸収液の循環量との間のファジィ・ルー
ル、及び発生器の吸収液の液位と発生器の加熱量と吸収
液の循環量との間のメンバー・シップ関数を記憶する記
憶装置と、発生器の吸収液の液位と発生器の加熱量と上
記ファジィ・ルールと上記メンバー・シップ関数とに基
づいてファジィ論理演算を行い吸収液ポンプの操作量を
算出する演算装置と、この演算装置の出力を入力して吸
収液ポンプに供給される電力の周波数の増減を行う吸収
液ポンプの制御装置とを備えたことを特徴とする吸収冷
凍機の制御装置。 4、蒸発器、吸収器、吸収液ポンプ、発生器及び凝縮器
などを接続して冷凍サイクルを形成し、発生器の加熱量
を内的条件あるいは外的条件に基づいて制御する吸収冷
凍機の制御装置において、発生器の吸収液の液位、発生
器の加熱量、及び発生器の温度と吸収液の循環量との間
のファジィ・ルール及び発生器の吸収液の液位、発生器
の加熱量及び発生器の温度と吸収液の循環量との間のメ
ンバー・シップ関数を記憶する記憶装置と、発生器の吸
収液の液位と発生器の加熱量と発生器の温度と、上記フ
ァジィ・ルールと上記メンバー・シップ関数とに基づい
てファジィ論理演算を行い吸収液ポンプの操作量を算出
する演算装置と、この演算装置の出力を入力して吸収液
ポンプに供給される電力の周波数の増減を行う吸収液ポ
ンプの制御装置とを備えたことを特徴とする吸収冷凍機
の制御装置。 5、蒸発器、吸収器、吸収液ポンプ、発生器、及び凝縮
器などを接続して冷凍サイクルを形成し、発生器の加熱
量を内的条件あるいは外的条件に基づいて制御する吸収
冷凍機の制御装置において、発生器の吸収液の液位の設
定値からの偏差、上記吸収液の液位の変化率、発生器の
加熱量の変化率、発生器の温度の変化率及び冷却水の入
口温度の変化率と吸収液の循環量との間のファジィ・ル
ール及びメンバー・シップ関数を記憶する記憶装置と、
発生器の吸収液の液位の設定値からの偏差上記吸収液の
液位の変化率、発生器の加熱量の変化率、発生器の温度
の変化率及び冷却水の入口温度の変化率とファジィ・ル
ール及びメンバー・シップ関数とに基づいてファジィ論
理演算を行い吸収液ポンプの操作量を算出する演算装置
と、この演算装置の出力を入力して吸収液ポンプに供給
される電力の周波数の増減を行う吸収液ポンプの制御装
置とを備えたことを特徴とする吸収冷凍機の制御装置。[Claims] 1. A refrigeration cycle is formed by connecting an evaporator, an absorber, a generator, an absorption liquid pump, a condenser, etc., and the heating amount of the generator is determined based on external or internal conditions. A control device for an absorption refrigerating machine that controls an absorption refrigerating machine includes a detection device that detects a plurality of amounts of change representing external conditions or internal conditions, and a fuzzy rule and member between the amount of change and the rotation speed of an absorption liquid pump.・A storage device that stores the ship function, a calculation device that performs fuzzy logic operations based on the above-mentioned change amount, fuzzy rules, and membership functions to calculate the rotation speed of the absorption liquid pump, and an output of this calculation device. 1. A control device for an absorption refrigerating machine, comprising: a control device that inputs input to control the rotation speed of an absorption liquid pump. 2. An absorption refrigerator that connects an evaporator, absorber, absorption liquid pump, generator, condenser, etc. to form a refrigeration cycle, and controls the heating amount of the generator based on external or internal conditions. In the control device, a detection device that detects information representing external conditions or internal conditions, and a storage device that stores fuzzy rules and membership functions for calculating the operation amount of the absorption liquid pump with respect to the information, A calculation device that calculates the operation amount of the absorption liquid pump by performing fuzzy logic operations based on the information detected by the detection device and the fuzzy rules and membership functions of the storage device, and inputs the output of this calculation device. 1. A control device for an absorption refrigerating machine, comprising: a control device for an absorption liquid pump that increases/decreases the frequency of electric power supplied to the absorption liquid pump. 3. An absorption refrigerator that connects an evaporator, absorber, absorption liquid pump, generator, condenser, etc. to form a refrigeration cycle, and controls the heating amount of the generator based on external or internal conditions. In the control device, a fuzzy rule is established between the level of the absorption liquid in the generator, the amount of heating in the generator, and the amount of circulation of the absorption liquid, and the liquid level of the absorption liquid in the generator, the amount of heating in the generator, and the absorption liquid. a storage device for storing membership functions between the circulation amount of the generator, the liquid level of the absorption liquid in the generator, the heating amount of the generator, and a fuzzy logic operation based on the above fuzzy rule and the above membership function. and an absorption liquid pump control device that inputs the output of this calculation device and increases or decreases the frequency of the electric power supplied to the absorption liquid pump. Features of absorption chiller control device. 4. An absorption refrigerator that connects an evaporator, absorber, absorption liquid pump, generator, condenser, etc. to form a refrigeration cycle, and controls the heating amount of the generator based on internal or external conditions. In the control device, the liquid level of the absorption liquid in the generator, the heating amount of the generator, the fuzzy rule between the temperature of the generator and the circulation amount of the absorption liquid, the liquid level of the absorption liquid in the generator, the amount of heating of the generator, a storage device for storing a membership function between the amount of heating and the temperature of the generator and the circulating amount of the absorption liquid; the liquid level of the absorption liquid in the generator; the amount of heating of the generator; and the temperature of the generator; An arithmetic device that performs fuzzy logic operations based on fuzzy rules and the above membership function to calculate the operation amount of the absorption liquid pump, and an input of the output of this arithmetic device to calculate the frequency of the power supplied to the absorption liquid pump. 1. A control device for an absorption refrigerating machine, comprising: a control device for an absorption liquid pump that increases and decreases the amount of water. 5. An absorption refrigerator that connects an evaporator, absorber, absorption liquid pump, generator, condenser, etc. to form a refrigeration cycle, and controls the heating amount of the generator based on internal or external conditions. In the control device, the deviation of the level of the absorption liquid in the generator from the set value, the rate of change in the level of the absorption liquid, the rate of change in the amount of heating of the generator, the rate of change in the temperature of the generator, and the rate of change in the cooling water are controlled. a storage device for storing fuzzy rules and membership functions between the rate of change of the inlet temperature and the circulation amount of the absorption liquid;
Deviation of the liquid level of the absorption liquid in the generator from the set value, the rate of change in the liquid level of the above-mentioned absorption liquid, the rate of change in the heating amount of the generator, the rate of change in the temperature of the generator, and the rate of change in the inlet temperature of the cooling water. An arithmetic device that performs fuzzy logic operations based on fuzzy rules and membership functions to calculate the operation amount of the absorption liquid pump; 1. A control device for an absorption refrigerating machine, comprising: a control device for an absorption liquid pump that increases and decreases the amount of liquid.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2298514A JP2725883B2 (en) | 1990-11-01 | 1990-11-01 | Control device for absorption refrigerator |
KR1019910017158A KR960012321B1 (en) | 1990-09-28 | 1991-09-28 | Control device for an absorption refrigeration machine |
US07/767,312 US5224352A (en) | 1990-09-28 | 1991-09-30 | Control device for an absorption refrigeration machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2298514A JP2725883B2 (en) | 1990-11-01 | 1990-11-01 | Control device for absorption refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04169756A true JPH04169756A (en) | 1992-06-17 |
JP2725883B2 JP2725883B2 (en) | 1998-03-11 |
Family
ID=17860708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2298514A Expired - Fee Related JP2725883B2 (en) | 1990-09-28 | 1990-11-01 | Control device for absorption refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2725883B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63131942A (en) * | 1986-11-21 | 1988-06-03 | Sharp Corp | Control system of air-conditioning machine |
JPH0198864A (en) * | 1987-10-09 | 1989-04-17 | Kawasaki Heavy Ind Ltd | Method of controlling quantity of absorbing solution circulated in absorption refrigerator |
JPH01107066A (en) * | 1987-10-20 | 1989-04-24 | Tokyo Gas Co Ltd | Method of controlling operation of absorption type refrigerator |
JPH02174593A (en) * | 1988-12-23 | 1990-07-05 | Mitsubishi Electric Corp | Cooling apparatus |
JPH02227572A (en) * | 1989-03-01 | 1990-09-10 | Mitsubishi Heavy Ind Ltd | Control device of heat pump |
-
1990
- 1990-11-01 JP JP2298514A patent/JP2725883B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63131942A (en) * | 1986-11-21 | 1988-06-03 | Sharp Corp | Control system of air-conditioning machine |
JPH0198864A (en) * | 1987-10-09 | 1989-04-17 | Kawasaki Heavy Ind Ltd | Method of controlling quantity of absorbing solution circulated in absorption refrigerator |
JPH01107066A (en) * | 1987-10-20 | 1989-04-24 | Tokyo Gas Co Ltd | Method of controlling operation of absorption type refrigerator |
JPH02174593A (en) * | 1988-12-23 | 1990-07-05 | Mitsubishi Electric Corp | Cooling apparatus |
JPH02227572A (en) * | 1989-03-01 | 1990-09-10 | Mitsubishi Heavy Ind Ltd | Control device of heat pump |
Also Published As
Publication number | Publication date |
---|---|
JP2725883B2 (en) | 1998-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5156013A (en) | Control device for absorption refrigerator | |
KR960012321B1 (en) | Control device for an absorption refrigeration machine | |
JPH04169756A (en) | Control device for absorption type freezer | |
JPH07225061A (en) | Controller for absorption type chilled and warm water machine | |
JP2517447B2 (en) | Absorption chiller control method and absorption chiller control device | |
JP2557722B2 (en) | Absorption refrigerator control method | |
JP2816007B2 (en) | Control device for absorption refrigerator | |
JP3630775B2 (en) | Heat input control method of absorption refrigerator | |
JP2517454B2 (en) | Absorption refrigerator control device | |
JP2517448B2 (en) | Absorption chiller control method and absorption chiller control device | |
JP2517446B2 (en) | Absorption chiller control method and absorption chiller control device | |
JP3138004B2 (en) | Absorption refrigerator control device | |
JP2517450B2 (en) | Absorption chiller control method and absorption chiller control device | |
JP2517455B2 (en) | Absorption refrigerator control device | |
JP2517444B2 (en) | Absorption chiller control method and absorption chiller control device | |
JP2815993B2 (en) | Absorption chiller control device | |
JP2994791B2 (en) | Unit control device for absorption chillers | |
JPH0384371A (en) | Double effective absorption refrigerator | |
JP2918648B2 (en) | Variable flow control device for cold / hot water / cooling water in absorption chiller / hot / cold water machine | |
JP2994792B2 (en) | Unit control device for absorption chillers | |
JPH04151470A (en) | Control device for absorption type cold-hot water heater | |
KR960012320B1 (en) | Control device for absorption refrigerator | |
JPH0670537B2 (en) | Heat source steam flow controller for absorption refrigerator | |
JPH08233392A (en) | Absorption type refrigerating machine | |
JP2919485B2 (en) | Absorption refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081205 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081205 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091205 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |