JPH08233392A - Absorption type refrigerating machine - Google Patents

Absorption type refrigerating machine

Info

Publication number
JPH08233392A
JPH08233392A JP7037040A JP3704095A JPH08233392A JP H08233392 A JPH08233392 A JP H08233392A JP 7037040 A JP7037040 A JP 7037040A JP 3704095 A JP3704095 A JP 3704095A JP H08233392 A JPH08233392 A JP H08233392A
Authority
JP
Japan
Prior art keywords
temperature
regenerator
heating amount
control
proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7037040A
Other languages
Japanese (ja)
Inventor
Keiji Wada
圭司 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7037040A priority Critical patent/JPH08233392A/en
Publication of JPH08233392A publication Critical patent/JPH08233392A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE: To make stabilization of a cooling water outlet temperature compatible with shortening of a rise time by a method wherein when the cooling water outlet temperature of a vaporizer is higher than a set temperature, proportional, differential, and integral control of a quantity of heating of a regenerator are stopped, and a quantity of heating of the regenerator is increased to a value higher than a quantity of heating obtained through proportional, differential, and integral control. CONSTITUTION: When a cooling water outlet temperature exceeds a limit temperature, a control switch 34 is operated to change-over a change-over switch 37 to a forced controller 36 side and switch opening control of a control valve 29b to control based on an opening signal from an PID computer 35, i.e., from PID control to control executed based on an opening signal for a forced controller 36. This constitution controls a high temperature regenerator 1 to 100% of maximum heating and maximizes capacity of an absorption type refrigerating machine, whereby when a cold water outlet temperature during the starting of operation is high or a load is remarkably increased in a short time, a cold water outlet temperature is lowered in a very short time, and a rise time is eminently shortened, and stabilization of a cold water outlet temperature is compatible with shortening of a rise time during the starting of operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は吸収式冷凍機に関し、特
に、再生器の加熱量を冷水出口温度に応じて比例、微分
及び積分制御する制御装置を備えた吸収式冷凍機に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerating machine, and more particularly to an absorption refrigerating machine provided with a control device for controlling the amount of heat of a regenerator in proportion to the cold water outlet temperature.

【0002】[0002]

【従来の技術】例えば特開平2−199509号公報に
は、吸収式冷凍機の再生器(発生器)の加熱量を比例、
微分及び積分制御する制御装置において、吸収式冷凍機
の設置後の試運転時などに強制的に負荷を変化させ、比
例制御、微分制御及び積分制御のパラメータを人間の経
験に基づいてファジー推論によってオートチューニング
する制御装置が開示されている。
2. Description of the Related Art For example, in Japanese Unexamined Patent Publication No. 2-199509, the heating amount of a regenerator (generator) of an absorption refrigerator is proportional,
In a control device that performs differential and integral control, the load is forcibly changed at the time of test operation after installation of the absorption chiller, and the parameters of proportional control, differential control, and integral control are automatically determined by fuzzy inference based on human experience. A controller for tuning is disclosed.

【0003】[0003]

【発明が解決しようとする課題】上記従来の技術では、
吸収式冷凍機の運転開始時、蒸発器からの冷水出口温度
を短時間で設定温度まで下げ、立ち上がり時間を短縮す
るためには、一般に比例制御、微分制御及び積分制御
(以下PID制御という。)のパラメータを調節して早
い制御(例えば比例制御のパラメータを大きくする。)
にする必要がある。
SUMMARY OF THE INVENTION In the above conventional technique,
In order to reduce the cold water outlet temperature from the evaporator to the set temperature in a short time at the start of operation of the absorption chiller and shorten the rise time, generally, proportional control, derivative control and integral control (hereinafter referred to as PID control). Adjust the parameter of to control faster (eg, increase the parameter of proportional control).
Need to be

【0004】また、冷水出口温度を安定させてハンチン
グのない安定した制御を行うためには、一般にPID制
御のパラメータを調節して遅い制御(例えば比例制御の
パラメータを小さくする。)にする必要がある。
Further, in order to stabilize the cold water outlet temperature and perform stable control without hunting, it is generally necessary to adjust the parameters of the PID control to make the control slower (for example, to reduce the parameter of the proportional control). is there.

【0005】このように、従来のPID制御では冷水出
口温度の立ち上がり時間の短縮と冷水出口温度の安定と
は相反することになるため、どちらかをある程度犠牲に
せざる得ない。
As described above, in the conventional PID control, the shortening of the rise time of the cold water outlet temperature and the stability of the cold water outlet temperature are in conflict with each other, and either one must be sacrificed to some extent.

【0006】即ち、冷水出口温度の立ち上がり時間の短
縮に重きを置くと冷水出口温度の安定が悪くなり、冷水
出口温度の安定の重きを置くと冷水出口温度の立ち上が
り時間が長くなるという問題が発生する。
That is, if the emphasis is placed on shortening the rise time of the cold water outlet temperature, the stability of the cold water outlet temperature becomes poor, and if the importance of stabilizing the cold water outlet temperature is placed, the rise time of the cold water outlet temperature becomes long. To do.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するために、請求項1の発明は、 再生器、凝縮器、蒸
発器及び吸収器などを配管接続して冷媒及び吸収液の循
環路を形成し、蒸発器から冷水を供給する吸収式冷凍機
において、蒸発器からの冷水出口温度を検出する温度検
出器と、この温度検出器の検出温度と設定温度とを比較
して再生器の加熱量を比例、微分及び積分制御し、検出
温度が設定温度より所定値以上高い場合は再生器の加熱
量の比例、微分及び積分制御を停止し、再生器の加熱量
を前記比例、微分及び積分制御による加熱量より大きく
制御する制御装置を備えた吸収式冷凍機を提供するもの
である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention according to claim 1 circulates a refrigerant and an absorption liquid by connecting a regenerator, a condenser, an evaporator, an absorber and the like by piping. In an absorption refrigerator that forms a passage and supplies cold water from the evaporator, a regenerator that compares the temperature detector that detects the cold water outlet temperature from the evaporator with the temperature detected by this temperature detector and the set temperature. If the detected temperature is higher than the set temperature by a predetermined value or more, the proportional, derivative and integral control of the heating amount of the regenerator is stopped, and the heating amount of the regenerator is proportional, derivative and integral. And an absorption refrigerating machine provided with a control device for controlling the amount of heat to be larger than that by the integral control.

【0008】また、請求項2の発明は、再生器、凝縮
器、蒸発器及び吸収器などを配管接続して冷媒及び吸収
液の循環路を形成し、蒸発器から冷水を供給する吸収式
冷凍機において、蒸発器からの冷水出口温度を検出する
温度検出器と、この温度検出器の検出温度と設定温度と
を比較して再生器の加熱量を比例、微分及び積分制御
し、検出温度が設定温度より高く設定された上限温度以
上の場合は再生器の加熱量の比例、微分及び積分制御を
停止し、再生器の加熱量を前記比例、微分及び積分制御
による加熱量より大きく制御し、かつ再生器の加熱量を
大きく制御しているとき検出温度が上限温度より低くな
った場合は再生器の加熱量を比例、微分及び積分制御す
る制御装置を備えたことを特徴とする吸収式冷凍機を提
供するものである。。
Further, the invention of claim 2 is an absorption refrigeration system in which a regenerator, a condenser, an evaporator, an absorber, etc. are connected by piping to form a circulation path for a refrigerant and an absorption liquid, and cold water is supplied from the evaporator. In the machine, the temperature detector that detects the cold water outlet temperature from the evaporator is compared with the temperature detected by this temperature detector and the set temperature to perform proportional, differential and integral control of the heating amount of the regenerator. When the temperature is higher than the upper limit temperature set higher than the set temperature, the proportional, differential and integral control of the heating amount of the regenerator is stopped, and the heating amount of the regenerator is controlled to be larger than the heating amount by the proportional, differential and integral control. In addition, if the detected temperature becomes lower than the upper limit temperature while the heating amount of the regenerator is controlled to a large extent, the absorption refrigeration system is equipped with a control device that controls the heating amount of the regenerator in a proportional, differential and integral manner. Machine. .

【0009】また、請求項3の発明は、再生器加熱量の
比例、微分及び積分制御停止後には、再生器の加熱量を
100%に制御することを特徴とする請求項1あるいは
請求項2記載の吸収式冷凍機を提供するものである。。
The invention according to claim 3 is characterized in that the heating amount of the regenerator is controlled to 100% after the proportional, differential and integral control of the regenerator heating amount is stopped. The above-mentioned absorption refrigerator is provided. .

【0010】また、請求項4の発明は、再生器、凝縮
器、蒸発器及び吸収器などを配管接続して冷媒及び吸収
液の循環路を形成し、蒸発器から冷水を供給する吸収式
冷凍機において、蒸発器からの冷水出口温度を検出する
温度検出器と、この温度検出器の検出温度と設定温度と
を比較して再生器の加熱量を比例、微分及び積分制御
し、検出温度が設定温度より所定値以上高い場合は再生
器の加熱量の比例、微分及び積分制御を停止し、再生器
の加熱量を比例、微分及び積分制御の停止前より大きく
制御し、かつ比例制御の比例帯に比例して所定値を変化
させる制御装置を備えたことを特徴とする吸収式冷凍機
を提供するものである。。
Further, the invention of claim 4 is an absorption refrigeration system in which a regenerator, a condenser, an evaporator, an absorber and the like are connected by piping to form a circulation path for a refrigerant and an absorption liquid, and cold water is supplied from the evaporator. In the machine, the temperature detector that detects the cold water outlet temperature from the evaporator is compared with the temperature detected by this temperature detector and the set temperature to perform proportional, differential and integral control of the heating amount of the regenerator. When the temperature is higher than the set temperature by a specified value or more, the proportional, derivative and integral control of the regenerator heating amount is stopped, the regenerator heating amount is controlled to be larger than before the proportional, derivative and integral control was stopped, and the proportional control is proportional. The present invention provides an absorption refrigerator, which is equipped with a control device that changes a predetermined value in proportion to the band. .

【0011】また、請求項5の発明は、再生器、凝縮
器、蒸発器及び吸収器などを配管接続して冷媒及び吸収
液の循環路を形成し、蒸発器から冷水を供給する吸収式
冷凍機において、蒸発器からの冷水出口温度を検出する
温度検出器と、この温度検出器の検出温度と設定温度と
を比較して再生器の加熱量を比例、微分及び積分制御
し、検出温度が設定温度より所定値以上低い場合は再生
器の加熱量の比例、微分及び積分制御を停止し、再生器
の加熱量を前記比例、微分及び積分制御による加熱量よ
り小さく制御する制御装置を備えたことを特徴とする吸
収冷凍機を提供するものである。。
Further, the invention of claim 5 is an absorption refrigeration system in which a regenerator, a condenser, an evaporator, an absorber and the like are connected by piping to form a circulation path for a refrigerant and an absorption liquid, and cold water is supplied from the evaporator. In the machine, the temperature detector that detects the cold water outlet temperature from the evaporator is compared with the temperature detected by this temperature detector and the set temperature to perform proportional, differential and integral control of the heating amount of the regenerator. When the temperature is lower than the set temperature by a predetermined value or more, the control device for stopping the proportional, differential and integral control of the regenerator heating amount and controlling the regenerator heating amount to be smaller than the proportional, differential and integral control heating amount is provided. The present invention provides an absorption refrigerating machine. .

【0012】また、請求項6の発明は、再生器、凝縮
器、蒸発器及び吸収器などを配管接続して冷媒及び吸収
液の循環路を形成し、蒸発器から冷水を供給する吸収式
冷凍機において、蒸発器からの冷水出口温度を検出する
温度検出器と、この温度検出器の検出温度と設定温度と
を比較して再生器の加熱量を比例、微分及び積分制御
し、検出温度が設定温度より低く設定された下限温度以
下の場合は再生器の加熱量の比例、微分及び積分制御を
停止し、再生器の加熱量を前記比例、微分及び積分制御
による加熱量より小さく制御し、かつ再生器の加熱量を
小さく制御しているとき検出温度が下限温度より高くな
った場合は再生器の加熱量を比例、微分及び積分制御す
る制御装置を備えたことを特徴とする吸収式冷凍機を提
供するものである。。
Further, the invention of claim 6 is an absorption refrigeration system in which a regenerator, a condenser, an evaporator, an absorber and the like are connected by piping to form a circulation path for a refrigerant and an absorption liquid, and cold water is supplied from the evaporator. In the machine, the temperature detector that detects the cold water outlet temperature from the evaporator is compared with the temperature detected by this temperature detector and the set temperature to perform proportional, differential and integral control of the heating amount of the regenerator. When the temperature is lower than the lower limit temperature set lower than the set temperature, the proportional, derivative and integral control of the heating amount of the regenerator is stopped, and the heating amount of the regenerator is controlled to be smaller than the heating amount by the proportional, derivative and integral control. In addition, when the detected temperature becomes higher than the lower limit temperature when the heating amount of the regenerator is controlled to be small, the absorption refrigeration is equipped with a control device that controls the heating amount of the regenerator in a proportional, differential and integral manner. Machine. .

【0013】また、請求項7の発明は、再生器加熱量の
比例、微分及び積分制御停止後には、再生器の加熱量を
予め設定された最小加熱量に制御することを特徴とする
請求項5あるいは請求項6記載の吸収式冷凍機を提供す
るものである。。
The invention according to claim 7 is characterized in that the heating amount of the regenerator is controlled to a preset minimum heating amount after the proportional, differential and integral control of the heating amount of the regenerator is stopped. An absorption refrigerator according to claim 5 or claim 6 is provided. .

【0014】さらに、請求項8の発明は、再生器、凝縮
器、蒸発器及び吸収器などを配管接続して冷媒及び吸収
液の循環路を形成し、蒸発器から冷水を供給する吸収式
冷凍機において、蒸発器からの冷水出口温度を検出する
温度検出器と、この温度検出器の検出温度と設定温度と
を比較して再生器の加熱量を比例、微分及び積分制御
し、検出温度が設定温度より所定値以上低い場合は再生
器の加熱量の比例、微分及び積分制御を停止し、再生器
の加熱量を前記比例、微分及び積分制御による加熱量よ
り小さく制御し、かつ比例制御の比例帯に比例して所定
値を変化させる制御装置を備えたことを特徴とする吸収
式冷凍機を提供するものである。。
Further, the invention of claim 8 is an absorption refrigeration system in which a regenerator, a condenser, an evaporator, an absorber and the like are connected by piping to form a circulation path for a refrigerant and an absorption liquid, and cold water is supplied from the evaporator. In the machine, the temperature detector that detects the cold water outlet temperature from the evaporator is compared with the temperature detected by this temperature detector and the set temperature to perform proportional, differential and integral control of the heating amount of the regenerator. When the temperature is lower than the preset temperature by a predetermined value or more, the proportional, derivative and integral control of the regenerator heating amount is stopped, the regenerator heating amount is controlled to be smaller than the proportional, derivative and integral control heating amount, and the proportional control The present invention provides an absorption refrigerator, which is equipped with a control device that changes a predetermined value in proportion to a proportional band. .

【0015】[0015]

【作用】請求項1の発明によれば、吸収式冷凍機の運転
開始時(立ち上がり時)、あるいは負荷が短時間に大幅
に増加したときに、冷水出口温度が設定温度より所定値
以上高い場合には、温度検出器から信号を入力した制御
装置が動作して再生器の加熱量のPID制御を停止し、
加熱量をPID制御による加熱量より大きく制御し、吸
収式冷凍機の能力がさらに増加する。このため、運転開
始時の冷水出口温度が高いときあるいは負荷が短時間で
大幅に増加したときなどにも短い時間で冷水出口温度が
低下し、立ち上がり時間あるいは温度低下に要する時間
を短縮することができ、この結果、相反していた冷水出
口温度の安定と、運転開始時の立ち上がり時間の短縮及
び負荷急増時の短時間での対応とを両立させることが可
能になる。
According to the invention of claim 1, when the chilled water outlet temperature is higher than the set temperature by a predetermined value or more at the start of operation of the absorption chiller (at start-up) or when the load is significantly increased in a short time. , A control device that receives a signal from the temperature detector operates to stop the PID control of the heating amount of the regenerator,
The heating amount is controlled to be larger than that by the PID control, and the capacity of the absorption refrigerator is further increased. Therefore, even when the cold water outlet temperature at the start of operation is high or when the load increases significantly in a short time, the cold water outlet temperature can be reduced in a short time, and the rise time or the time required for the temperature reduction can be shortened. As a result, it is possible to achieve both the contradictory stabilization of the cold water outlet temperature, the shortening of the start-up time at the start of operation, and the quick response to a sudden increase in load.

【0016】また、請求項2の発明によれば、負荷の短
時間での大幅な増加などのために冷水出口温度が設定温
度より高く設定された上限温度以上になり、PID制御
が停止して再生器の加熱量がさらに大きく制御され、吸
収式冷凍機の能力が増大し、その後、冷水出口温度が急
激に低下して上限温度より低くなったときには、制御装
置が動作してPID制御による再生器の加熱量制御に切
り換わり、冷水出口温度の設定温度付近でのハンチング
を防止し、再生器の加熱量が増大した後も冷水出口温度
を安定することが可能になる。
Further, according to the invention of claim 2, the chilled water outlet temperature becomes higher than the set upper limit temperature higher than the set temperature due to a large increase of the load in a short time, and the PID control is stopped. When the heating amount of the regenerator is further controlled, the capacity of the absorption chiller increases, and then the chilled water outlet temperature drops sharply and becomes lower than the upper limit temperature, the control device operates and regeneration by PID control is performed. Switching to the heating amount control of the regenerator, hunting near the set temperature of the cold water outlet temperature can be prevented, and the cold water outlet temperature can be stabilized even after the heating amount of the regenerator increases.

【0017】請求項3の発明によれば、吸収式冷凍機の
運転開始時(立ち上がり時)、あるいは負荷が短時間に
大幅に増加したときに、冷水出口温度が設定温度より所
定値以上高い場合には、温度検出器から信号を入力した
制御装置が動作して再生器の加熱量をPID制御から最
大加熱量の100%に制御し、吸収式冷凍機の能力が最
大になる。このため、運転開始時の冷水出口温度が高い
ときあるいは負荷が短時間で大幅に増加したときなどに
も極短時間で冷水出口温度が低下し、立ち上がり時間あ
るいは温度低下に要する時間を大幅に短縮することがで
き、この結果、相反していた冷水出口温度の安定と、運
転開始時の立ち上がり時間の短縮及び負荷急増時の短時
間での対応とを両立させることが可能になる。
According to the third aspect of the present invention, when the chilled water outlet temperature is higher than the set temperature by a predetermined value or more when the absorption refrigerating machine is started (at the start-up) or when the load is significantly increased in a short time. In order to maximize the capacity of the absorption chiller, the controller that receives a signal from the temperature detector operates to control the heating amount of the regenerator from PID control to 100% of the maximum heating amount. Therefore, even when the cold water outlet temperature at the start of operation is high or when the load increases significantly in a short time, the cold water outlet temperature will drop in an extremely short time, and the start-up time or the time required for temperature drop will be greatly shortened. As a result, it is possible to achieve both the contradictory stabilization of the cold water outlet temperature, the shortening of the rising time at the start of operation, and the quick response to a sudden increase in load.

【0018】また、請求項4の発明によれば、温度検出
器が検出した冷水出口温度と設定温度とを比較して再生
器の加熱量をPID制御し、冷水出口温度が設定温度よ
り所定値以上高い場合はPID制御を停止し、再生器の
加熱量をPID制御による加熱量より大きく制御し、か
つPID制御のうち比例制御の比例帯に比例して所定値
を変化させるので、吸収式冷凍機の機器毎の特性などに
基づいて比例帯を大きく設定したときには、それに応じ
て所定値も大きく設定され上限温度が高くなり、PID
制御の範囲が比例帯の設定を無視した上限温度以下の狭
い範囲に限定されること、即ち、比例帯の設定を無視し
た再生器の加熱量制御を回避でき、比例帯の設定を考慮
し、一層安定した吸収式冷凍機の運転制御を行うことが
可能になる。
Further, according to the invention of claim 4, the chilled water outlet temperature detected by the temperature detector is compared with the set temperature to perform PID control of the heating amount of the regenerator, and the chilled water outlet temperature is a predetermined value from the set temperature. If it is higher than the above, the PID control is stopped, the heating amount of the regenerator is controlled to be larger than the heating amount by the PID control, and the predetermined value is changed in proportion to the proportional band of the proportional control of the PID control. When the proportional band is set to a large value based on the characteristics of each machine, the predetermined value is also set to a large value and the upper limit temperature becomes high.
The range of control is limited to a narrow range below the upper limit temperature that ignores the setting of the proportional band, that is, the heating amount control of the regenerator that ignores the setting of the proportional band can be avoided, and the setting of the proportional band is considered. It becomes possible to perform more stable operation control of the absorption refrigerator.

【0019】また、請求項5の発明によれば、吸収式冷
凍機の負荷が短時間に大幅に減少したときなどで、冷水
出口温度が設定温度より所定値以上低い場合には、温度
検出器から信号を入力した制御装置が動作して再生器の
加熱量のPID制御を停止し、加熱量をPID制御によ
る加熱量より小さく制御し、吸収式冷凍機の能力がさら
に低下するので、負荷が短い時間で大幅に減少したとき
などにも短時間で冷水出口温度の低下を止め、上昇させ
ることができ、この結果、相反していた冷水出口温度の
安定と、負荷急減時の短時間での対応とを両立させるこ
とが可能になる。
Further, according to the invention of claim 5, when the load of the absorption refrigerator is significantly reduced in a short time and the chilled water outlet temperature is lower than the set temperature by a predetermined value or more, the temperature detector The control device that receives a signal from the device operates to stop the PID control of the heating amount of the regenerator, and controls the heating amount to be smaller than the heating amount by the PID control. Even when the temperature significantly decreases in a short time, the cold water outlet temperature can be stopped and raised in a short time.As a result, the conflicting cold water outlet temperature can be stabilized and the cold water outlet temperature can be reduced in a short time when the load suddenly decreases. It is possible to achieve compatibility with both.

【0020】また、請求項6の発明によれば、再生器が
PID制御による加熱量より小さく制御され、吸収式冷
凍機の能力が低下し、冷水出口温度が急激に上昇して下
限温度より高くなったときには、制御装置が動作してP
ID制御による再生器の加熱量制御に切り換わり、冷水
出口温度の設定温度付近でのハンチングを防止し、再生
器の最小加熱運転後の冷水出口温度を安定することが可
能になる。
Further, according to the invention of claim 6, the regenerator is controlled to be smaller than the heating amount by PID control, the capacity of the absorption refrigerator is lowered, and the chilled water outlet temperature rises sharply to become higher than the lower limit temperature. When it becomes, the control device operates and P
The control switches to the heating amount control of the regenerator by the ID control, hunting near the set temperature of the cold water outlet temperature can be prevented, and the cold water outlet temperature after the minimum heating operation of the regenerator can be stabilized.

【0021】また、請求項7の発明によれば、吸収式冷
凍機の負荷が短時間に大幅に減少したときなどで、冷水
出口温度が設定温度より所定値以上低い場合には、温度
検出器から信号を入力した制御装置が動作して再生器の
加熱量をPID制御から最小加熱量に切り換えて制御
し、吸収式冷凍機の能力が最低になるので、負荷が短時
間で大幅に減少したときなどにも極短時間で冷水出口温
度の低下を止め、冷水出口温度を極めて短時間で上昇さ
せることができ、この結果、相反していた冷水出口温度
の安定と、負荷急減時の短時間での対応とを両立させる
ことが可能になる。
Further, according to the invention of claim 7, when the load of the absorption refrigerator is greatly reduced in a short time, and the chilled water outlet temperature is lower than the set temperature by a predetermined value or more, the temperature detector The control device that received the signal from the controller operates to switch the heating amount of the regenerator from the PID control to the minimum heating amount, and the capacity of the absorption chiller becomes the minimum, so the load is greatly reduced in a short time. In such cases, it is possible to stop the cold water outlet temperature in an extremely short time and raise the cold water outlet temperature in an extremely short time.As a result, the contradictory stable cold water outlet temperature and the short time when the load suddenly decreases It is possible to achieve both compatibility with.

【0022】また、請求項8の発明によれば、温度検出
器が検出した冷水出口温度と設定温度とを比較して再生
器の加熱量をPID制御し、冷水出口温度が設定温度よ
り所定値以上低い場合はPID制御を停止し、再生器の
加熱量をPID制御による加熱量より小さく制御し、か
つPID制御のうち比例制御の比例帯に比例して所定値
を変化させる。このため、吸収式冷凍機の機器毎の特性
などに基づいて比例帯を大きく設定したときには、それ
に応じて所定値も大きく設定され下限温度が低くなり、
PID制御の範囲が比例帯の設定を無視した下限温度以
上の狭い範囲に限定されること、即ち、比例帯の設定を
無視した再生器の加熱量制御を回避でき、比例帯の設定
を考慮し、一層安定した吸収式冷凍機の運転制御を行う
ことが可能になる。
Further, according to the invention of claim 8, the chilled water outlet temperature detected by the temperature detector is compared with the set temperature to perform PID control of the heating amount of the regenerator, and the chilled water outlet temperature is a predetermined value from the set temperature. If it is lower than the above, the PID control is stopped, the heating amount of the regenerator is controlled to be smaller than the heating amount by the PID control, and the predetermined value is changed in proportion to the proportional band of the proportional control of the PID control. Therefore, when the proportional band is set to a large value based on the characteristics of each device of the absorption chiller, the predetermined value is also set to a large value and the lower limit temperature becomes low,
The range of PID control is limited to a narrow range above the lower limit temperature that ignores the setting of the proportional band, that is, it is possible to avoid the heating amount control of the regenerator that ignores the setting of the proportional band, and consider the setting of the proportional band. Therefore, it becomes possible to perform more stable operation control of the absorption refrigerator.

【0023】[0023]

【実施例】以下、本発明の請求項1、請求項2、請求項
3、請求項5、請求項6及び請求項7の発明に関する第
1の実施例を図面に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment relating to the inventions of claim 1, claim 2, claim 3, claim 5, claim 6 and claim 7 of the present invention will be described below in detail with reference to the drawings.

【0024】図1に示したAは二重効用吸収式冷凍機
(以下吸収式冷凍機という。)であり、冷媒に例えば水
(H2 O)、吸収液(溶液)に臭化リチウム(LiB
r)溶液を使用したものである。
Reference numeral A shown in FIG. 1 denotes a double-effect absorption refrigerator (hereinafter referred to as an absorption refrigerator), which has, for example, water (H 2 O) as a refrigerant and lithium bromide (LiB) as an absorption liquid (solution).
r) The solution was used.

【0025】図1において、1は燃料が例えばガスであ
るバーナBを熱源とする高温再生器、2は低温再生器、
3は凝縮器、4は蒸発器、5は吸収器、6は凝縮器熱交
換器、7は蒸発器熱交換器、8は吸収器熱交換器、9は
低温再生器2及び凝縮器3を収納した上胴、10は蒸発
器4及び吸収器5を収納した下胴である。
In FIG. 1, 1 is a high temperature regenerator using a burner B whose fuel is gas, for example, as a heat source, 2 is a low temperature regenerator,
3 is a condenser, 4 is an evaporator, 5 is an absorber, 6 is a condenser heat exchanger, 7 is an evaporator heat exchanger, 8 is an absorber heat exchanger, 9 is a low temperature regenerator 2 and a condenser 3. The stored upper body 10 is a lower body containing the evaporator 4 and the absorber 5.

【0026】そして、各機器は吸収液配管11乃至15
及び冷媒配管16乃至18によって配管接続されてい
る。また、11aは低温熱交換器、11bは高温熱交換
器、20は吸収液ポンプ、21は冷媒液循環配管、22
は冷媒循環ポンプである。23は吸収液配管12の途中
と吸収器5とを結び開閉弁24を有した吸収液バイパス
配管、25は冷媒配管16の途中と吸収器5とを結び開
閉弁26を有した冷媒バイパス配管である。
The respective equipments are provided with absorbing liquid pipes 11 to 15
And refrigerant pipes 16 to 18 for pipe connection. Further, 11a is a low temperature heat exchanger, 11b is a high temperature heat exchanger, 20 is an absorption liquid pump, 21 is a refrigerant liquid circulation pipe, 22
Is a refrigerant circulation pump. Reference numeral 23 denotes an absorbent bypass pipe connecting the absorber 5 to the absorber 5 and an opening / closing valve 24, and 25 denotes a refrigerant bypass pipe connecting the absorber pipe 16 to the absorber 5 and an opening / closing valve 26. is there.

【0027】27は冷却水配管であり、途中に吸収器熱
交換器8及び凝縮器熱交換器6が設けられている。28
は冷温水配管であり、途中に蒸発器熱交換器7が設けら
れている。
Reference numeral 27 is a cooling water pipe, in which an absorber heat exchanger 8 and a condenser heat exchanger 6 are provided. 28
Is a hot and cold water pipe, and an evaporator heat exchanger 7 is provided on the way.

【0028】また、29はバーナBに接続された燃料供
給配管、29bは燃料供給配管29の途中に設けられた
燃料制御弁である。
Further, 29 is a fuel supply pipe connected to the burner B, and 29b is a fuel control valve provided in the middle of the fuel supply pipe 29.

【0029】また、30は冷温水配管28の蒸発器出口
側に設けられた冷温水出口温度(以下、冷温水温度とい
う。)検出器(以下、温度検出器という。)である。3
1は温度検出器30から信号を入力し、冷温水温度に応
じて燃料制御弁29bへ開度信号を出力する制御装置で
ある。この制御装置31は冷温水出口設定器32、PI
D定数設定器33、制御切換器34、PID演算器35
及び強制制御器36を備え、且つ制御切換器34からの
信号によって接片が切り換わる切換スイッチ37を備え
ている。
Reference numeral 30 denotes a cold / hot water outlet temperature (hereinafter referred to as cold / warm water temperature) detector (hereinafter referred to as temperature detector) provided on the evaporator outlet side of the cold / hot water pipe 28. Three
Reference numeral 1 is a control device that inputs a signal from the temperature detector 30 and outputs an opening signal to the fuel control valve 29b in accordance with the temperature of the cold water. The control device 31 includes a hot / cold water outlet setting device 32 and a PI.
D constant setter 33, control switch 34, PID calculator 35
And a compulsory controller 36, and a changeover switch 37 for switching the contact piece according to a signal from the control changer 34.

【0030】冷温水出口温度設定器32によって冷水出
口温度が例えば7℃に設定され、温水出口温度が例えば
42℃に設定される。また、PID定数設定器33によ
ってPID制御の各定数即ちパラメータが例えば制御の
早さと安定とのバランスをとって予め設定される。
The cold / hot water outlet temperature setter 32 sets the cold water outlet temperature to, for example, 7 ° C. and the hot water outlet temperature to, for example, 42 ° C. Further, the PID constant setter 33 presets each constant or parameter of the PID control, for example, by balancing the speed and stability of the control.

【0031】制御切換器34は温度検出器30の検出温
度が冷温水出口温度設定器32で設定された冷水設定温
度に所定値1(例えば1℃)を加えた上限温度8℃以上
かあるいは冷水設定温度から所定値2(例えば1℃)を
引いた下限温度6℃以下か否かを判定し、検出温度が上
限温度以上の場合及び下限温度以下の場合に切換スイッ
チ37の接片を強制制御器36側へ切り換え、検出温度
が上限温度より低く下限温度より高いときには切換スイ
ッチ37の接片をPID演算器35側へ切り換える。
The control switch 34 has a temperature detected by the temperature detector 30 which is equal to or higher than the upper limit temperature 8 ° C. obtained by adding a predetermined value 1 (for example, 1 ° C.) to the cold water preset temperature set by the cold / hot water outlet temperature setter 32, or the cold water. It is determined whether a lower limit temperature of 6 ° C or less is obtained by subtracting a predetermined value 2 (for example, 1 ° C) from the set temperature, and the contact piece of the changeover switch 37 is forcibly controlled when the detected temperature is equal to or higher than the upper limit temperature or equal to or lower than the lower limit temperature. When the detected temperature is lower than the upper limit temperature and higher than the lower limit temperature, the contact piece of the changeover switch 37 is switched to the PID calculator 35 side.

【0032】PID演算器35はPID定数設定器33
で設定された定数に基づいて検出温度に応じてPID演
算を行い開度信号を出力する。強制制御器36は検出温
度に応じて全開信号(100%)あるいは予め設定され
た最小開度(例えば30%)の信号を出力する。そし
て、制御切換器34の切換スイッチ37の切り換えによ
って、図2に示したように、温度検出器30の検出温
度、即ち冷水出口温度が下限温度(冷水設定温度―所定
値2)以下のときに制御弁29bの開度が最小開度に制
御されて高温再生器1が最小加熱になる。また、冷水出
口温度が上限温度(冷水設定温度+所定値1)以上のと
きに制御弁29bの開度が100%に制御されて高温再
生器1が100%の加熱になる。さらに、検出温度が下
限温度より高く上限温度より低いときには制御弁29b
の開度はPID演算器35によって算出された開度に制
御される。
The PID calculator 35 is a PID constant setter 33.
The PID calculation is performed according to the detected temperature based on the constant set in, and the opening signal is output. The forced controller 36 outputs a fully open signal (100%) or a preset minimum opening (for example, 30%) signal according to the detected temperature. Then, as shown in FIG. 2, when the temperature detected by the temperature detector 30, that is, the chilled water outlet temperature is lower than or equal to the lower limit temperature (chilled water set temperature-predetermined value 2), as shown in FIG. The opening degree of the control valve 29b is controlled to the minimum opening degree, and the high temperature regenerator 1 is heated to the minimum. Further, when the cold water outlet temperature is equal to or higher than the upper limit temperature (cold water set temperature + predetermined value 1), the opening degree of the control valve 29b is controlled to 100% and the high temperature regenerator 1 is heated to 100%. Further, when the detected temperature is higher than the lower limit temperature and lower than the upper limit temperature, the control valve 29b
The opening degree of is controlled to the opening degree calculated by the PID calculator 35.

【0033】上記のように構成されたに吸収式冷凍機A
の冷水供給の運転時、開閉弁24、26が閉じており、
また、制御装置31が温度検出器30の検出温度に応じ
て制御弁29bへ開度信号を出力し、バーナBは燃焼す
る。 バーナBの燃焼によって高温再生器1内の濃度が
薄い吸収液(以下稀吸収液という。)が加熱され、稀吸
収液から冷媒蒸気が分離し、中間濃度の吸収液(以下中
間吸収液という。)が高温熱交換器11bを介して低温
再生器2へ流れる。低温再生器2では中間吸収液が高温
再生器1からの冷媒蒸気によって加熱され、中間吸収液
からさらに冷媒が分離して冷媒蒸気が凝縮器3へ流れ
る。冷媒が分離してさらに濃度が高くなった吸収液(以
下濃吸収液という。)は低温熱交換器11aを介して吸
収器5へ流れ散布される。
Absorption refrigerator A constructed as described above
During operation of the cold water supply, the on-off valves 24 and 26 are closed,
Further, the control device 31 outputs an opening signal to the control valve 29b according to the temperature detected by the temperature detector 30, and the burner B burns. Due to the combustion of the burner B, the absorbent having a low concentration (hereinafter referred to as the rare absorbent) in the high temperature regenerator 1 is heated, the refrigerant vapor is separated from the rare absorbent, and the intermediate concentration of the absorbent (hereinafter referred to as the intermediate absorbent). ) Flows to the low temperature regenerator 2 via the high temperature heat exchanger 11b. In the low temperature regenerator 2, the intermediate absorbing liquid is heated by the refrigerant vapor from the high temperature regenerator 1, the refrigerant is further separated from the intermediate absorbing liquid, and the refrigerant vapor flows to the condenser 3. The absorption liquid (hereinafter, referred to as a concentrated absorption liquid) having a higher concentration due to the separation of the refrigerant flows to the absorber 5 through the low temperature heat exchanger 11a and is scattered.

【0034】低温再生器2で凝縮して凝縮器3へ流れた
冷媒及び低温再生器2で凝縮した冷媒は冷媒配管18を
介して蒸発器4へ流れる。蒸発器4では冷媒循環ポンプ
22の運転によって冷媒液が蒸発器熱交換器7に散布さ
れ、蒸発する際に蒸発器熱交換器7内を流れる冷水から
熱を奪う。そして、温度低下した冷水が負荷へ供給され
る。また、蒸発した冷媒は吸収器5へ流れて散布された
濃吸収液に吸収される。冷媒を吸収して薄くなった稀吸
収液は吸収液ポンプ20の運転によって低温熱交換器1
1a及び高温熱交換器11bを介して高温再生器1へ送
られる。
The refrigerant condensed in the low temperature regenerator 2 and flown to the condenser 3 and the refrigerant condensed in the low temperature regenerator 2 flow to the evaporator 4 via the refrigerant pipe 18. In the evaporator 4, the refrigerant liquid is sprayed to the evaporator heat exchanger 7 by the operation of the refrigerant circulation pump 22, and heat is taken from the cold water flowing in the evaporator heat exchanger 7 when it is evaporated. Then, the cold water whose temperature has dropped is supplied to the load. In addition, the evaporated refrigerant flows into the absorber 5 and is absorbed by the concentrated absorbent that has been sprayed. The rare absorption liquid that has become thin due to the absorption of the refrigerant is driven by the absorption liquid pump 20 to operate the low temperature heat exchanger 1.
It is sent to the high temperature regenerator 1 via 1a and the high temperature heat exchanger 11b.

【0035】また、上記のような吸収式冷凍機の運転
時、制御装置31は温度検出器30から信号を入力す
る。そして、PID演算器34は温度検出器30が検出
した冷水出口温度を入力し、PID演算を行い開度信号
を出力する。そして、冷水出口温度が下限温度より高く
上限温度より低い場合には制御切換器34からの信号に
よって切換スイッチ37はPID演算器35側に切り換
わっている。このため、PID演算器34が出力した開
度信号がそのまま制御弁29bへ送られ、制御弁29b
の開度はPID演算器35によって求められた開度に制
御され、加熱量のPID制御が行われる。
During operation of the absorption refrigerator as described above, the controller 31 inputs a signal from the temperature detector 30. Then, the PID calculator 34 inputs the cold water outlet temperature detected by the temperature detector 30, performs PID calculation, and outputs an opening signal. When the chilled water outlet temperature is higher than the lower limit temperature and lower than the upper limit temperature, the changeover switch 37 is switched to the PID calculator 35 side by a signal from the control changer 34. Therefore, the opening signal output from the PID calculator 34 is directly sent to the control valve 29b, and the control valve 29b
Is controlled to the opening determined by the PID calculator 35, and the PID control of the heating amount is performed.

【0036】吸収式冷凍機の運転開始時、即ち立ち上が
り時には、吸収式冷凍機の各機器の温度及び圧力などが
上昇してなく、冷凍能力が小さいため、冷水出口温度は
上限温度より高い。このため、制御切換器34は切換ス
イッチ37を強制制御器36側へ切り換える。このた
め、PID演算器35の算出による制御弁29b開度の
制御、即ち、高温再生器1の加熱量のPID制御が停止
する。また、強制制御器36は温度検出器30が検出し
た冷水出口温度を入力し、PID制御停止前にPID演
算器35で算出された開度より大きい最大開度である1
00%の開度信号を出力し、この開度信号が切換スイッ
チ37を介して制御弁29bへ送られる。開度信号を入
力した制御弁29bは全開し、バーナBは100%燃焼
になり、高温再生器1の加熱量はPID演算器35の制
御による加熱量より大きく最大になる。
At the time of starting the operation of the absorption refrigerator, that is, at the time of start-up, the temperature and pressure of each device of the absorption refrigerator do not rise and the refrigerating capacity is small, so the cold water outlet temperature is higher than the upper limit temperature. Therefore, the control switch 34 switches the changeover switch 37 to the forced controller 36 side. Therefore, the control of the opening degree of the control valve 29b by the calculation of the PID calculator 35, that is, the PID control of the heating amount of the high temperature regenerator 1 is stopped. Further, the forced controller 36 inputs the cold water outlet temperature detected by the temperature detector 30 and has a maximum opening larger than the opening calculated by the PID calculator 35 before the PID control is stopped.
A 00% opening signal is output, and this opening signal is sent to the control valve 29b via the changeover switch 37. The control valve 29b to which the opening signal is input is fully opened, the burner B is combusted 100%, and the heating amount of the high temperature regenerator 1 becomes larger than the heating amount under the control of the PID calculator 35 and becomes maximum.

【0037】また、冷水出口温度が下限温度と上限温度
との間にあり、冷水出口温度に基づいてPID演算器3
5が動作して出力した開度信号によって制御弁29bの
開度が制御されているとき、負荷が急激に増加して冷水
出口温度が上限温度以上になったときにも、上記運転開
始時の制御と同様に制御切換器34は切換スイッチ37
を強制制御器36側へ切り換え、PID制御は停止す
る。また、強制制御器36も冷水出口温度を入力し、1
00%の開度信号を出力し、この開度信号が切換スイッ
チ37を介して制御弁29bへ送られる。開度信号を入
力した制御弁29bは全開し、バーナBは100%燃焼
になり、高温再生器1の加熱量は最大になる。
The chilled water outlet temperature is between the lower limit temperature and the upper limit temperature, and the PID calculator 3 is based on the chilled water outlet temperature.
When the opening degree signal of the control valve 29b is controlled by the opening degree signal output by the operation of No. 5, even when the load rapidly increases and the chilled water outlet temperature becomes equal to or higher than the upper limit temperature, Similar to the control, the control switch 34 is provided with a changeover switch 37.
To the forced controller 36 side, and the PID control is stopped. The forced controller 36 also inputs the cold water outlet temperature,
A 00% opening signal is output, and this opening signal is sent to the control valve 29b via the changeover switch 37. The control valve 29b to which the opening signal is input is fully opened, the burner B is combusted 100%, and the heating amount of the high temperature regenerator 1 is maximized.

【0038】従って、高温再生器1の冷媒発生能力及び
吸収式冷凍機の冷凍能力は最大に制御され、冷水出口温
度は速やかに低下する。そして、冷水出口温度が上限温
度より低くなると、制御切換器34が動作して切換信号
を出力し、切換スイッチ37は強制制御器36側からP
ID演算器35側へ切り換わる。このため、PID演算
器35が出力した開度信号が切換スイッチ37を介して
制御弁29bへ送られる。PID演算器35は冷水出口
温度、冷水設定温度及びPID定数に基づいて制御弁2
9bの開度を算出し、開度信号を出力する。そして、制
御弁29bの開度はPID演算器35にて算出された開
度に制御され、冷水出口温度がほぼ冷水設定温度に制御
される。
Therefore, the refrigerant generating capacity of the high temperature regenerator 1 and the refrigerating capacity of the absorption refrigerator are controlled to the maximum, and the chilled water outlet temperature is rapidly lowered. Then, when the chilled water outlet temperature becomes lower than the upper limit temperature, the control switching device 34 operates to output a switching signal, and the switching switch 37 is operated from the compulsory controller 36 side to P
It switches to the ID calculator 35 side. Therefore, the opening signal output from the PID calculator 35 is sent to the control valve 29b via the changeover switch 37. The PID calculator 35 controls the control valve 2 based on the cold water outlet temperature, the cold water set temperature, and the PID constant.
The opening of 9b is calculated and an opening signal is output. Then, the opening degree of the control valve 29b is controlled to the opening degree calculated by the PID calculator 35, and the chilled water outlet temperature is controlled to almost the chilled water set temperature.

【0039】上記のように制御弁29bの開度がPID
演算器35の算出した開度に制御されているとき、吸収
式冷凍機から冷水が供給されて冷房運転が行われている
例えば事務所の終業時刻になり、負荷が急激に減少する
と、冷水出口温度は急激に低下する。そして、PID演
算器35からの開度信号により制御弁29bの開度は減
少し、高温再生器1の能力は低下する。しかしながら、
負荷の急激な低下によって冷水出口温度がさらに低下し
て下限温度の6℃以下になると、制御切換器34が動作
して切換信号を出力し、切換スイッチ37はPID演算
器35側から強制制御器36側へ切り換わり、PID制
御が停止する。また、強制制御器36は冷水出口温度が
下限温度以下のときにPID制御停止時の開度より小さ
い最小開度の信号を出力し、この開度信号が制御弁29
bへ送られる。
As described above, the opening degree of the control valve 29b is PID.
When the opening degree calculated by the computing unit 35 is controlled, the cold water is supplied from the absorption refrigerator and the cooling operation is performed, for example, when the office is closed and the load is sharply reduced. The temperature drops sharply. Then, the opening signal of the PID calculator 35 reduces the opening of the control valve 29b, and the capacity of the high temperature regenerator 1 is decreased. However,
When the chilled water outlet temperature further decreases due to the sudden decrease in load to reach the lower limit temperature of 6 ° C. or less, the control switching device 34 operates and outputs a switching signal, and the switching switch 37 causes the PID calculator 35 side to forcibly control the controller 37. It switches to the 36 side and PID control stops. Further, the compulsory controller 36 outputs a signal of the minimum opening smaller than the opening when the PID control is stopped when the chilled water outlet temperature is equal to or lower than the lower limit temperature, and the opening signal is the control valve 29.
sent to b.

【0040】このため、制御弁29bは最小開度の30
%に制御され、バーナBはPID制御停止時の燃焼量よ
り小さい最小燃焼になり、高温再生器1の加熱量は強制
的に最小に制御される。そして、高温再生器1での冷媒
蒸気発生量は急激に減少して吸収式冷凍機の冷凍能力も
急激に低下し、最低に制御される。
Therefore, the control valve 29b has a minimum opening degree of 30.
%, The burner B attains the minimum combustion smaller than the combustion amount when the PID control is stopped, and the heating amount of the high temperature regenerator 1 is forcibly controlled to the minimum. Then, the refrigerant vapor generation amount in the high temperature regenerator 1 sharply decreases, and the refrigerating capacity of the absorption chiller also sharply decreases and is controlled to the minimum.

【0041】冷凍能力が最低になると、冷水出口温度の
低下は止まり冷房負荷に応じて冷水出口温度は速やかに
上昇する。そして、冷水出口温度が下限温度より高くな
ると、制御切換器34が動作して切換信号を出力し、切
換スイッチ37は強制制御器36側からPID演算器3
5側へ切り換わる。このため、PID演算器35が出力
した開度信号が切換スイッチ37を介して制御弁29b
へ送られる。そして、制御弁29bの開度はPID演算
器35にて算出された開度に制御され、冷水出口温度が
ほぼ冷水設定温度に制御される。
When the refrigerating capacity becomes the minimum, the cold water outlet temperature stops decreasing and the cold water outlet temperature rapidly rises according to the cooling load. Then, when the chilled water outlet temperature becomes higher than the lower limit temperature, the control switching device 34 operates to output a switching signal, and the switching switch 37 is operated from the side of the compulsory controller 36 to the PID calculator 3.
Switch to 5 side. Therefore, the opening signal output from the PID calculator 35 is transmitted via the changeover switch 37 to the control valve 29b.
Sent to. Then, the opening degree of the control valve 29b is controlled to the opening degree calculated by the PID calculator 35, and the chilled water outlet temperature is controlled to almost the chilled water set temperature.

【0042】以後、温度検出器30が検出した冷水出口
温度に基づいて制御装置31が動作し、上記説明と同様
に冷水出口温度が上限温度以上のときには、制御切換器
34が動作し、強制制御器36からの開度信号に基づい
て高温再生器1が最大加熱の100%に制御され、吸収
式冷凍機の能力が最大に制御される。また、冷水出口温
度が下限温度以下のときには、制御切換器34が動作
し、強制制御器36からの開度信号に基づいて高温再生
器1が最小加熱に制御され、吸収式冷凍機の能力が最小
に制御される。
Thereafter, the control device 31 operates based on the cold water outlet temperature detected by the temperature detector 30, and when the cold water outlet temperature is equal to or higher than the upper limit temperature, the control switch 34 operates to perform the forced control, as in the above description. The high temperature regenerator 1 is controlled to 100% of the maximum heating based on the opening signal from the cooler 36, and the capacity of the absorption refrigerator is controlled to the maximum. When the chilled water outlet temperature is lower than or equal to the lower limit temperature, the control switch 34 operates, the high temperature regenerator 1 is controlled to the minimum heating based on the opening signal from the compulsory controller 36, and the capacity of the absorption refrigerator is reduced. Controlled to a minimum.

【0043】また、冷水出口温度が上限温度と下限温度
との間の場合には、制御切換器34は切換スイッチ37
をPID演算器35側へ切り換える。このため、制御弁
29bの開度がPID演算器35からの開度信号に応じ
て制御され、高温再生器1の加熱量のPID制御が行わ
れる。
Further, when the chilled water outlet temperature is between the upper limit temperature and the lower limit temperature, the control changeover device 34 changes the changeover switch 37.
To the PID calculator 35 side. Therefore, the opening degree of the control valve 29b is controlled according to the opening degree signal from the PID calculator 35, and the PID control of the heating amount of the high temperature regenerator 1 is performed.

【0044】上記第1の実施例によれば、吸収式冷凍機
の運転開始時、あるいは負荷が短時間に大幅に増加した
ときなどで、冷水出口温度が上限温度以上の場合には、
制御切換器34が動作して、切換スイッチ37を強制制
御器36側に切り換え、制御弁29bの開度制御がPI
D演算器35からの開度信号に基づく制御、即ちPID
制御から強制制御器36の開度信号に基づく制御に直ち
に切り換わり、高温再生器1が最大加熱の100%に制
御され、吸収式冷凍機の能力が最大になるので、運転開
始時の冷水出口温度が高いときあるいは負荷が短時間で
大幅に増加したときなどにも極短時間で冷水出口温度を
低下させ、立ち上がり時間を大幅に短縮することがで
き、この結果、相反していた冷水出口温度の安定と、運
転開始時の立ち上がり時間の短縮及び負荷急増時の短時
間での対応とを両立させることができる。
According to the first embodiment, when the chilled water outlet temperature is equal to or higher than the upper limit temperature at the time of starting the operation of the absorption chiller or when the load is significantly increased in a short time,
The control switch 34 operates to switch the changeover switch 37 to the side of the forced controller 36, and the opening degree control of the control valve 29b becomes PI.
Control based on the opening signal from the D calculator 35, that is, PID
The control immediately switches to the control based on the opening signal of the forced controller 36, the high temperature regenerator 1 is controlled to 100% of the maximum heating, and the capacity of the absorption chiller is maximized. Even when the temperature is high or the load increases significantly in a short time, the cold water outlet temperature can be lowered in a very short time, and the rise time can be greatly shortened. As a result, the contradictory cold water outlet temperature can be reduced. It is possible to achieve both the stability of the above and the shortening of the start-up time at the start of operation and the quick response to the sudden increase of the load.

【0045】さらに、高温再生器1が最大加熱の100
%に制御され、吸収式冷凍機の能力が最大になり、冷水
出口温度が急激に低下して上限温度より低くなったとき
には、強制制御器36からの開度信号による制御からP
ID演算器35からの開度信号による制御弁29bの制
御に切り換わり、冷水出口温度の冷水設定温度付近での
ハンチングを防止し、高温再生器1の100%加熱運転
後の冷水出口温度を安定することができる。
In addition, the high temperature regenerator 1 has a maximum heating of 100.
%, The capacity of the absorption chiller becomes maximum, and the chilled water outlet temperature sharply drops and becomes lower than the upper limit temperature, the control based on the opening signal from the forced controller 36 causes P
Switching to control of the control valve 29b by the opening signal from the ID calculator 35, preventing hunting near the cold water set temperature of the cold water outlet temperature, and stabilizing the cold water outlet temperature after 100% heating operation of the high temperature regenerator 1. can do.

【0046】また、負荷が急激かつ大幅に減少したとき
などで、冷水出口温度が下限温度以下になったときに
は、制御切換器34が動作して、切換スイッチ37を強
制制御器36側に切り換え、制御弁29bの開度制御が
PID演算器35からの開度信号に基づく制御から強制
制御器36からの開度信号に基づく制御に直ちに切り換
わり、高温再生器1が最小加熱に制御され、吸収式冷凍
機の能力が最小になるので、短時間で冷水出口温度を上
昇させ、冷水出口温度の上昇に要する時間を大幅に短縮
することができ、この結果、相反していた冷水出口温度
の安定と、負荷急減時の短時間での対応とを両立させる
ことができる。
When the chilled water outlet temperature becomes lower than or equal to the lower limit temperature, for example, when the load suddenly and significantly decreases, the control changeover device 34 operates to change over the changeover switch 37 to the compulsory control device 36 side. The opening degree control of the control valve 29b is immediately switched from the control based on the opening degree signal from the PID calculator 35 to the control based on the opening degree signal from the compulsory controller 36, and the high temperature regenerator 1 is controlled to minimum heating and absorption. Since the capacity of the refrigerator is minimized, the cold water outlet temperature can be raised in a short time, and the time required to raise the cold water outlet temperature can be greatly shortened. In addition, it is possible to achieve both a quick response to a sudden load decrease.

【0047】さらに、吸収式冷凍機の運転開始時あるい
は負荷が大幅に変化したときには、制御器切換器34が
動作して高温再生器1の100%加熱の制御あるいは最
小加熱の制御が行われるため、PID制御のPID設定
においては、運転開始時あるいは負荷が大幅に変化した
ときのことを考慮した設定値にする必要が無く、「冷水
設定温度―所定値2」〜「冷水設定値+所定値1」の範
囲、即ち6℃から8℃の範囲の負荷変動を考慮すればよ
いので、PID設定を容易に行うことができ、冷水出口
温度を一層安定することができる。
Further, at the start of operation of the absorption chiller or when the load changes significantly, the controller switching unit 34 operates to control 100% heating or minimum heating of the high temperature regenerator 1. , PID setting for PID control does not need to be a set value that takes into consideration the start of operation or when the load changes significantly. “Cold water set temperature-predetermined value 2” to “cold water set value + predetermined value” Since it suffices to consider the load fluctuation in the range of "1", that is, the range of 6 ° C to 8 ° C, the PID setting can be easily performed, and the cold water outlet temperature can be further stabilized.

【0048】なお、上記実施例において、冷水出口温度
が上限温度以上のときには、PID演算器35の算出に
基づく加熱量のPID制御が停止し、強制制御器36か
らの開度信号に基づいて、高温再生器1の加熱量が最大
の100%に制御されたが、PID制御の停止時、PI
D制御による制御弁開度より大きい例えばPID制御に
基づく開度に所定開度(例えば20%)を加算した開度
(最大開度100%が上限)があるいは予め設定された
大きい所定開度(例えば100%に近い95%)に制御
した場合にも、上記実施例にて説明したように制御弁2
9bの開度を100%に制御したときの作用効果よりは
僅かに劣るがほぼ同様の作用効果を得ることができる。
In the above embodiment, when the chilled water outlet temperature is equal to or higher than the upper limit temperature, the PID control of the heating amount based on the calculation of the PID calculator 35 is stopped, and based on the opening signal from the compulsory controller 36, The heating amount of the high temperature regenerator 1 was controlled to 100% of the maximum, but when the PID control was stopped, PI
An opening that is larger than the control valve opening by D control, for example, an opening based on PID control, plus a predetermined opening (for example, 20%) (maximum opening 100% is the upper limit), or a preset large predetermined opening ( For example, when controlling to 95% which is close to 100%), the control valve 2 is controlled as described in the above embodiment.
Although it is slightly inferior to the action and effect when the opening degree of 9b is controlled to 100%, almost the same action and effect can be obtained.

【0049】また、上記実施例において、冷水出口温度
が下限温度以下のときには、PID演算器35の算出に
基づく加熱量のPID制御が停止し、強制制御器36か
らの開度信号に基づいて、高温再生器1の加熱量が最小
の30%に制御したが、PID制御の停止時、PID制
御による制御弁開度より小さい例えばPID制御に基づ
く開度から所定開度(例えば20%)を減算した開度
(最小開度30%が下限)あるいは予め設定された小さ
い所定開度(例えば30%に近い35%)に制御した場
合にも、上記実施例にて説明したように制御弁29bの
開度を最小開度の30%に制御したときの作用効果より
は僅かに劣るがほぼ同様の作用効果を得ることができ
る。
In the above embodiment, when the chilled water outlet temperature is below the lower limit temperature, the PID control of the heating amount based on the calculation by the PID calculator 35 is stopped, and based on the opening signal from the forced controller 36, Although the heating amount of the high temperature regenerator 1 was controlled to the minimum of 30%, when the PID control is stopped, it is smaller than the control valve opening by the PID control, for example, a predetermined opening (for example, 20%) is subtracted from the opening based on the PID control. Even when the control valve is controlled to a predetermined opening (minimum opening 30% is the lower limit) or a small preset opening (35% close to 30%, for example), the control valve 29b is operated as described in the above embodiment. Although it is slightly inferior to the operation and effect when the opening is controlled to 30% of the minimum opening, almost the same operation and effect can be obtained.

【0050】以下、本発明の請求項4及び請求項8の発
明に関する第2の実施例ついて説明する。
The second embodiment of the inventions of claims 4 and 8 will be described below.

【0051】なお、第2の実施例においても制御切換器
34の動作以外は総て上記第1の実施例と同様であり、
その詳細な説明は省略し、図1及び図2に基づいて上記
第1の実施例と同様に説明する。
The second embodiment is the same as the first embodiment except for the operation of the control switch 34.
Detailed description thereof will be omitted, and description will be made in the same manner as in the first embodiment based on FIGS. 1 and 2.

【0052】制御切換器34はPID演算器35から微
分制御による比例項である比例帯(P)の値に基づいて
冷水設定温度から高い方の許容値である所定値1及び冷
水設定温度から低い方の許容値である所定値2の値を調
節する。
The control switch 34 is based on the value of the proportional band (P), which is the proportional term by the differential control from the PID calculator 35, and the predetermined value 1 which is the allowable value higher than the set cold water temperature and the value lower than the set cold water temperature. The predetermined value of 2, which is the allowable value, is adjusted.

【0053】即ち、所定値1は比例帯(P)の値に比例
して変化し、例えば、所定値1=P/2に決まる。
That is, the predetermined value 1 changes in proportion to the value of the proportional band (P), and for example, the predetermined value 1 = P / 2 is determined.

【0054】このとき、P=2のときには、上記第1の
実施例と同様に所定値1=1となる。そして、冷水設定
温度が7℃に設定されている場合には、制御切換器34
は冷水出口温度が8℃より低いときに、切換スイッチ3
7をPID演算器35側に切り換え、冷水出口温度が8
℃以上の時に、切換スイッチ37を強制制御器36側に
切り換える。
At this time, when P = 2, the predetermined value 1 = 1 as in the first embodiment. If the cold water set temperature is set to 7 ° C., the control switch 34
Switches 3 when the cold water outlet temperature is lower than 8 ° C.
7 is switched to the PID calculator 35 side, and the cold water outlet temperature is 8
When the temperature is equal to or higher than ° C, the changeover switch 37 is changed over to the compulsory controller 36 side.

【0055】また、所定値2も比例帯(P)の値に比例
して変化し、例えば、所定値2=P/2に決まる。
The predetermined value 2 also changes in proportion to the value of the proportional band (P), and for example, the predetermined value 2 = P / 2 is determined.

【0056】このとき、P=2のときには、上記第1の
実施例と同様に所定値2=1となる。そして、冷水設定
温度が7℃に設定されている場合には、制御切換器34
は冷水出口温度が6℃より高いときに、切換スイッチ3
7をPID演算器35側に切り換え、冷水出口温度が6
℃以下のときに、切換スイッチ37を強制制御器36側
に切り換える。
At this time, when P = 2, the predetermined value 2 = 1 as in the first embodiment. If the cold water set temperature is set to 7 ° C., the control switch 34
Switch 3 when the cold water outlet temperature is higher than 6 ° C.
7 is switched to the PID calculator 35 side, and the chilled water outlet temperature is 6
When the temperature is equal to or lower than ° C, the changeover switch 37 is changed over to the forced controller 36 side.

【0057】上記比例帯(P)の変化に応じて所定値1
及び所定値2は変化し、比例帯(P)が大きくなればそ
れに伴い大きくなり、比例帯(P)が小さくなればそれ
に伴い小さくなる。
A predetermined value 1 according to the change of the proportional band (P)
And the predetermined value 2 changes, and becomes larger as the proportional band (P) becomes larger, and becomes smaller as the proportional band (P) becomes smaller.

【0058】一般にPID制御は比例帯(P)が大きい
ときは遅い制御になり、小さいときは早い制御になる。
Generally, the PID control is a slow control when the proportional band (P) is large, and a fast control when the proportional band (P) is small.

【0059】吸収式冷凍機の機器毎の特性に基づいて比
例帯(P)を大きく設定したにも係わらず、所定値1及
び所定値2を小さく設定し、上限温度及び下限温度を冷
水設定温度付近に固定すると、比例帯(P)が上限温度
以上の範囲及び下限温度以下の範囲で無視される。この
ため、PID制御の範囲が上限温度と下限温度との間の
狭い範囲に限定され、比例帯(P)を大きく設定した意
味がなくなる。
Although the proportional band (P) is set to a large value based on the characteristics of each device of the absorption refrigerator, the predetermined value 1 and the predetermined value 2 are set small and the upper limit temperature and the lower limit temperature are set to the cold water set temperature. When fixed in the vicinity, the proportional band (P) is ignored in the range above the upper limit temperature and below the lower limit temperature. Therefore, the range of PID control is limited to a narrow range between the upper limit temperature and the lower limit temperature, and there is no point in setting the proportional band (P) large.

【0060】従って、上記第2の実施例によれば、比例
帯(P)に応じて所定値1及び所定値2を決定すること
によって上記のように、比例帯(P)の設定を無視した
高温再生器1の加熱量制御を回避でき、比例帯(P)の
設定を考慮し、一層安定した吸収式冷凍機の運転制御を
行うことができる。
Therefore, according to the second embodiment, the setting of the proportional band (P) is ignored as described above by determining the predetermined value 1 and the predetermined value 2 according to the proportional band (P). The heating amount control of the high temperature regenerator 1 can be avoided, and more stable operation control of the absorption chiller can be performed in consideration of the setting of the proportional band (P).

【0061】尚、本願発明は、上記実施例に限定される
ものではなく、本願発明の主旨を逸脱しない範囲にて種
々の実施が可能である。
The invention of the present application is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the invention of the present application.

【0062】例えば上記実施例においては、図1におい
て、二重効用吸収式冷凍機について説明したが、一重効
用吸収式冷凍機に本願発明を実施した場合にも、上記各
実施例と同様の作用効果を得ることができる。
For example, in the above embodiment, the double-effect absorption refrigerator was explained in FIG. 1. However, even when the present invention is applied to the single-effect absorption refrigerator, the same operation as in each of the above embodiments is performed. The effect can be obtained.

【0063】[0063]

【発明の効果】本発明は上記のように構成された吸収式
冷凍機であり、請求項1の発明によれば、吸収式冷凍機
の運転開始時、あるいは負荷が短時間に大幅に増加した
ときなどで、冷水出口温度が設定温度より所定値以上高
い場合には、温度検出器から信号を入力した制御装置が
動作して再生器の加熱量のPID制御を停止し、再生器
の加熱量をPID制御による加熱量より大きく制御し、
吸収式冷凍機の能力がさらに増大するので、運転開始時
の冷水出口温度が高いときあるいは負荷が短時間で大幅
に増加したときなどにも短時間で冷水出口温度を低下さ
せ、立ち上がり時間を短縮することができ、この結果、
相反していた冷水出口温度の安定と、運転開始時の立ち
上がり時間の短縮及び負荷急増時の短時間での対応とを
両立させることができる。
The present invention is an absorption chiller configured as described above. According to the invention of claim 1, when the absorption chiller is started to operate or the load is greatly increased in a short time. When the chilled water outlet temperature is higher than the set temperature by a predetermined value or more, the control device that inputs a signal from the temperature detector operates to stop the PID control of the heating amount of the regenerator, and the heating amount of the regenerator is stopped. Is controlled to be larger than the heating amount by PID control,
Since the capacity of the absorption chiller further increases, the chilled water outlet temperature is reduced in a short time and the startup time is shortened even when the chilled water outlet temperature at the start of operation is high or the load increases significantly in a short time. As a result of this,
It is possible to achieve both the contradictory stabilization of the cold water outlet temperature, the shortening of the start-up time at the start of operation, and the quick response to a sudden load increase.

【0064】また、請求項2の発明によれば、冷水出口
温度が設定温度より高く設定された上限温度以上にな
り、再生器の加熱量がPID制御時より大きく制御さ
れ、吸収式冷凍機の能力が一層増大し、その後、冷水出
口温度が急激に低下して上限温度より低くなったときに
は、制御装置が動作してPID制御による再生器の加熱
量制御に切り換わり、冷水出口温度の設定温度付近での
ハンチングを防止し、再生器の100%加熱運転後の冷
水出口温度を安定することができる。
According to the second aspect of the invention, the chilled water outlet temperature is higher than the set temperature and is equal to or higher than the set upper limit temperature, and the heating amount of the regenerator is controlled to be larger than that during the PID control. When the capacity further increases and then the chilled water outlet temperature drops sharply and becomes lower than the upper limit temperature, the control device operates and switches to the heating amount control of the regenerator by the PID control to set the chilled water outlet temperature set temperature. It is possible to prevent hunting in the vicinity and stabilize the cold water outlet temperature after 100% heating operation of the regenerator.

【0065】また、請求項3の発明によれば、吸収式冷
凍機の運転開始時、あるいは負荷が短時間に大幅に増加
したときなどで、冷水出口温度が設定温度より所定値以
上高い場合には、温度検出器から信号を入力した制御装
置が動作して再生器の加熱量を最大加熱量の100%に
制御し、吸収式冷凍機の能力が最大になるので、運転開
始時の冷水出口温度が高いときあるいは負荷が短時間で
大幅に増加したときなどにも極短時間で冷水出口温度を
低下させ、立ち上がり時間を大幅に短縮することがで
き、この結果、相反していた冷水出口温度の安定と、運
転開始時の立ち上がり時間の短縮及び負荷急増時の短時
間での対応とを両立させることができる。
According to the third aspect of the present invention, when the chilled water outlet temperature is higher than the set temperature by a predetermined value or more, for example, at the start of operation of the absorption chiller or when the load is significantly increased in a short time. Is operated by a controller that receives a signal from the temperature detector to control the heating amount of the regenerator to 100% of the maximum heating amount, and the capacity of the absorption chiller becomes maximum, so the cold water outlet at the start of operation Even when the temperature is high or the load increases significantly in a short time, the cold water outlet temperature can be lowered in a very short time, and the rise time can be greatly shortened. As a result, the contradictory cold water outlet temperature can be reduced. It is possible to achieve both the stability of the above and the shortening of the start-up time at the start of operation and the quick response to the sudden increase of the load.

【0066】また、請求項4の発明によれば、温度検出
器が検出した冷水出口温度と設定温度とを比較して再生
器の加熱量をPID制御し、冷水出口温度が設定温度よ
り所定値以上高い場合はPID制御を停止し、再生器の
加熱量をPID制御による加熱量より高く制御し、かつ
PID制御のうち比例制御の比例帯に比例して所定値を
変化させるので、吸収式冷凍機の機器毎の特性に基づい
て比例帯を大きく設定したときには、それに応じて所定
値も大きく設定され上限温度が高くなり、PID制御の
範囲が比例帯の設定を無視した上限温度以下の狭い範囲
に限定されること、即ち、比例帯の設定を無視した再生
器の加熱量制御を回避でき、比例帯の設定を考慮し、一
層安定した吸収式冷凍機の運転制御を行うことができ
る。
According to the invention of claim 4, the cold water outlet temperature detected by the temperature detector is compared with the set temperature to perform PID control of the heating amount of the regenerator, and the cold water outlet temperature is set to a predetermined value from the set temperature. If it is higher than the above, the PID control is stopped, the heating amount of the regenerator is controlled to be higher than the heating amount by the PID control, and the predetermined value is changed in proportion to the proportional band of the proportional control of the PID control. When the proportional band is set to a large value based on the characteristics of each device of the machine, the predetermined value is set to a large value accordingly and the upper limit temperature becomes high, and the PID control range is narrower than the upper limit temperature ignoring the setting of the proportional band. That is, the heating amount control of the regenerator ignoring the setting of the proportional band can be avoided, and more stable operation control of the absorption chiller can be performed in consideration of the setting of the proportional band.

【0067】また、請求項5の発明によれば、吸収式冷
凍機の負荷が短時間に大幅に減少したときなどで、冷水
出口温度が設定温度より所定値以上低い場合には、温度
検出器から信号を入力した制御装置が動作して再生器の
加熱量のPID制御を停止し、再生器の加熱量をPID
制御による加熱量より小さく制御するので、負荷が短時
間で大幅に減少したときなどにも短時間で冷水出口温度
の低下を止め、上昇させることができ、この結果、相反
していた冷水出口温度の安定と、負荷急減時の短時間で
の対応とを両立させることができる。
According to the fifth aspect of the present invention, when the load of the absorption refrigerator is significantly reduced in a short time and the chilled water outlet temperature is lower than the set temperature by a predetermined value or more, the temperature detector The control device that received the signal from the device operates to stop the PID control of the heating amount of the regenerator,
Since it is controlled to be smaller than the heating amount by control, it is possible to stop and raise the chilled water outlet temperature in a short time even when the load is greatly reduced in a short time, and as a result, the contradictory chilled water outlet temperature can be increased. It is possible to achieve both the stability and the quick response to a sudden load decrease.

【0068】また、請求項6の発明によれば、再生器が
PID制御による加熱量より小さい加熱量に制御され、
吸収式冷凍機の能力がさらに減少し、冷水出口温度が急
激に上昇して下限温度より低くなったときには、制御装
置が動作してPID制御による再生器の加熱量制御に切
り換わり、冷水出口温度の設定温度付近でのハンチング
を防止し、再生器の100%加熱運転後の冷水出口温度
を安定することができる。
According to the invention of claim 6, the regenerator is controlled to a heating amount smaller than the heating amount by the PID control,
When the capacity of the absorption chiller further decreases and the chilled water outlet temperature rises sharply and becomes lower than the lower limit temperature, the control device operates to switch to the heating amount control of the regenerator by PID control, and the chilled water outlet temperature It is possible to prevent hunting near the set temperature and to stabilize the cold water outlet temperature after 100% heating operation of the regenerator.

【0069】また、請求項7の発明によれば、吸収式冷
凍機の負荷が短時間に大幅に減少したときなどで、冷水
出口温度が設定温度より所定値以上低い場合には、温度
検出器から信号を入力した制御装置が動作して再生器の
加熱量をPID制御から最小加熱量に制御し、吸収式冷
凍機の能力が最小になるので、負荷が短時間で大幅に減
少したときなどにも極短時間で冷水出口温度の低下を止
め、冷水出口温度を短時間で上昇させることができ、こ
の結果、相反していた冷水出口温度の安定と、負荷急減
時の短時間での対応とを両立させることができる。
Further, according to the invention of claim 7, when the load of the absorption refrigerator is greatly reduced in a short time and the chilled water outlet temperature is lower than the set temperature by a predetermined value or more, the temperature detector The control device that receives the signal from the controller operates to control the heating amount of the regenerator from PID control to the minimum heating amount, and the capacity of the absorption refrigerator is minimized. In addition, the cold water outlet temperature can be stopped in a very short time and the cold water outlet temperature can be raised in a short time. As a result, the conflicting cold water outlet temperature can be stabilized and the load can be reduced in a short time. Can be compatible with both.

【0070】また、請求項8の発明によれば、温度検出
器が検出した冷水出口温度と設定温度とを比較して再生
器の加熱量をPID制御し、冷水出口温度が設定温度よ
り所定値以上低い場合はPID制御を停止し、再生器の
加熱量をPID制御による加熱量より小さく制御し、か
つPID制御のうち比例制御の比例帯に比例して所定値
を変化させるので、吸収式冷凍機の機器毎の特性に基づ
いて比例帯を大きく設定したときには、それに応じて所
定値も大きく設定され下限温度が低くなり、PID制御
の範囲が比例帯の設定を無視した下限温度以上の狭い範
囲に限定されること、即ち、比例帯の設定を無視した再
生器の加熱量制御を回避でき、比例帯の設定を考慮し、
一層安定した吸収式冷凍機の運転制御を行うことができ
る。
According to the invention of claim 8, the chilled water outlet temperature detected by the temperature detector is compared with the set temperature to perform PID control of the heating amount of the regenerator, and the chilled water outlet temperature is set to a predetermined value from the set temperature. If it is lower than the above, the PID control is stopped, the heating amount of the regenerator is controlled to be smaller than the heating amount by the PID control, and the predetermined value is changed in proportion to the proportional band of the proportional control of the PID control. When the proportional band is set to a large value based on the characteristics of each machine, the predetermined value is also set to a large value and the lower limit temperature is lowered, and the PID control range is a narrow range above the lower limit temperature ignoring the setting of the proportional band. That is, the heating amount control of the regenerator which ignores the setting of the proportional band can be avoided, and the setting of the proportional band is considered.
More stable operation control of the absorption refrigerator can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の請求項1の実施例を示す吸収式冷凍
機の回路構成図である。
FIG. 1 is a circuit configuration diagram of an absorption refrigerator according to an embodiment of claim 1 of the present invention.

【図2】冷水出口温度と再生器の加熱量制御との関係を
示す説明図である。
FIG. 2 is an explanatory diagram showing a relationship between a chilled water outlet temperature and heating amount control of a regenerator.

【符号の説明】[Explanation of symbols]

A 吸収式冷凍機 1 高温再生器 2 低温再生器 3 凝縮器 4 蒸発器 5 吸収器 B バーナ 29b 制御弁 30 温度検出器 31 制御装置 A absorption refrigerator 1 high temperature regenerator 2 low temperature regenerator 3 condenser 4 evaporator 5 absorber B burner 29b control valve 30 temperature detector 31 controller

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 再生器、凝縮器、蒸発器及び吸収器など
を配管接続して冷媒及び吸収液の循環路を形成し、蒸発
器から冷水を供給する吸収式冷凍機において、蒸発器か
らの冷水出口温度を検出する温度検出器と、この温度検
出器の検出温度と設定温度とを比較して再生器の加熱量
を比例、微分及び積分制御し、検出温度が設定温度より
所定値以上高い場合は再生器の加熱量の比例、微分及び
積分制御を停止し、再生器の加熱量を前記比例、微分及
び積分制御による加熱量より大きく制御する制御装置を
備えたことを特徴とする吸収式冷凍機。
1. An absorption refrigerator in which a regenerator, a condenser, an evaporator, an absorber, etc. are connected by piping to form a circulation path for a refrigerant and an absorption liquid, and cold water is supplied from the evaporator. A temperature detector that detects the cold water outlet temperature is compared with the detected temperature of this temperature detector and the set temperature to proportionally, differentially and integral control the heating amount of the regenerator, and the detected temperature is higher than the set temperature by a predetermined value or more. In this case, the absorption formula is characterized by including a control device for stopping the proportional, differential and integral control of the heating amount of the regenerator and controlling the heating amount of the regenerator to be larger than the heating amount by the proportional, differential and integral control. refrigerator.
【請求項2】 再生器、凝縮器、蒸発器及び吸収器など
を配管接続して冷媒及び吸収液の循環路を形成し、蒸発
器から冷水を供給する吸収式冷凍機において、蒸発器か
らの冷水出口温度を検出する温度検出器と、この温度検
出器の検出温度と設定温度とを比較して再生器の加熱量
を比例、微分及び積分制御し、検出温度が設定温度より
高く設定された上限温度以上の場合は再生器の加熱量の
比例、微分及び積分制御を停止し、再生器の加熱量を前
記比例、微分及び積分制御による加熱量より大きく制御
し、かつ再生器の加熱量を大きく制御しているとき検出
温度が上限温度より低くなった場合は再生器の加熱量を
比例、微分及び積分制御する制御装置を備えたことを特
徴とする吸収式冷凍機。
2. An absorption refrigerating machine for supplying cold water from an evaporator by connecting a regenerator, a condenser, an evaporator, an absorber and the like by piping to form a circulation path for a refrigerant and an absorbing liquid, A temperature detector that detects the chilled water outlet temperature is compared with the detected temperature of this temperature detector and the set temperature to control the heating amount of the regenerator proportionally, differentially and integrally, and the detected temperature is set higher than the set temperature. When the temperature is higher than the upper limit temperature, the proportional, differential and integral control of the heating amount of the regenerator is stopped, the heating amount of the regenerator is controlled to be larger than the heating amount by the proportional, differential and integral control, and the heating amount of the regenerator is changed. An absorption chiller comprising a control device for proportional, differential and integral control of the heating amount of the regenerator when the detected temperature becomes lower than the upper limit temperature during large control.
【請求項3】 再生器加熱量の比例、微分及び積分制御
停止後には、再生器の加熱量を100%に制御すること
を特徴とする請求項1あるいは請求項2記載の吸収式冷
凍機。
3. The absorption refrigerator according to claim 1, wherein the heating amount of the regenerator is controlled to 100% after the proportional, differential and integral control of the heating amount of the regenerator is stopped.
【請求項4】 再生器、凝縮器、蒸発器及び吸収器など
を配管接続して冷媒及び吸収液の循環路を形成し、蒸発
器から冷水を供給する吸収式冷凍機において、蒸発器か
らの冷水出口温度を検出する温度検出器と、この温度検
出器の検出温度と設定温度とを比較して再生器の加熱量
を比例、微分及び積分制御し、検出温度が設定温度より
所定値以上高い場合は再生器の加熱量の比例、微分及び
積分制御を停止し、再生器の加熱量を前記比例、微分及
び積分制御による加熱量より大きく制御し、かつ比例制
御の比例帯に比例して所定値を変化させる制御装置を備
えたことを特徴とする吸収式冷凍機。
4. An absorption refrigerating machine for supplying chilled water from an evaporator by connecting a regenerator, a condenser, an evaporator, an absorber and the like by piping to form a circulation path for a refrigerant and an absorbing liquid. A temperature detector that detects the cold water outlet temperature is compared with the detected temperature of this temperature detector and the set temperature to proportionally, differentially and integral control the heating amount of the regenerator, and the detected temperature is higher than the set temperature by a predetermined value or more. In this case, the proportional, derivative, and integral control of the regenerator heating amount is stopped, the regenerator heating amount is controlled to be larger than the heating amount by the proportional, derivative, and integral control, and the proportional amount is proportional to the proportional band of the proportional control. An absorption refrigerator comprising a control device for changing a value.
【請求項5】 再生器、凝縮器、蒸発器及び吸収器など
を配管接続して冷媒及び吸収液の循環路を形成し、蒸発
器から冷水を供給する吸収式冷凍機において、蒸発器か
らの冷水出口温度を検出する温度検出器と、この温度検
出器の検出温度と設定温度とを比較して再生器の加熱量
を比例、微分及び積分制御し、検出温度が設定温度より
所定値以上低い場合は再生器の加熱量の比例、微分及び
積分制御を停止し、再生器の加熱量を前記比例、微分及
び積分制御による加熱量より小さく制御する制御装置を
備えたことを特徴とする吸収冷凍機。
5. An absorption refrigerating machine for supplying chilled water from an evaporator by connecting a regenerator, a condenser, an evaporator, an absorber and the like by piping to form a circulation path for a refrigerant and an absorbing liquid. A temperature detector that detects the chilled water outlet temperature is compared with the detected temperature of this temperature detector and the set temperature to proportionally, differentially and integral control the heating amount of the regenerator, and the detected temperature is lower than the set temperature by a specified value or more. In the case of absorption refrigeration, the controller controls the proportional, differential and integral control of the heating amount of the regenerator and controls the heating amount of the regenerator to be smaller than the heating amount by the proportional, differential and integral control. Machine.
【請求項6】 再生器、凝縮器、蒸発器及び吸収器など
を配管接続して冷媒及び吸収液の循環路を形成し、蒸発
器から冷水を供給する吸収式冷凍機において、蒸発器か
らの冷水出口温度を検出する温度検出器と、この温度検
出器の検出温度と設定温度とを比較して再生器の加熱量
を比例、微分及び積分制御し、検出温度が設定温度より
低く設定された下限温度以下の場合は再生器の加熱量の
比例、微分及び積分制御を停止し、再生器の加熱量を前
記比例、微分及び積分制御による加熱量より小さく制御
し、かつ再生器の加熱量を小さく制御しているとき検出
温度が下限温度より高くなった場合は再生器の加熱量を
比例、微分及び積分制御する制御装置を備えたことを特
徴とする吸収式冷凍機。
6. In an absorption refrigerating machine for supplying cold water from the evaporator by connecting a regenerator, a condenser, an evaporator, an absorber and the like by piping to form a circulation path for a refrigerant and an absorbing liquid, A temperature detector that detects the chilled water outlet temperature is compared with the detected temperature of this temperature detector and the set temperature to proportionally, differentially and integral control the heating amount of the regenerator, and the detected temperature is set lower than the set temperature. When the temperature is lower than the lower limit temperature, the proportional, differential and integral control of the heating amount of the regenerator is stopped, the heating amount of the regenerator is controlled to be smaller than the heating amount by the proportional, differential and integral control, and the heating amount of the regenerator is reduced. An absorption chiller comprising a control device for proportional, differential and integral control of the heating amount of the regenerator when the detected temperature becomes higher than the lower limit temperature when controlled to be small.
【請求項7】 再生器加熱量の比例、微分及び積分制御
停止後には、再生器の加熱量を予め設定された最小加熱
量に制御することを特徴とする請求項5あるいは請求項
6記載の吸収式冷凍機。
7. The heating amount of the regenerator is controlled to a preset minimum heating amount after the proportional, differential and integral control of the heating amount of the regenerator is stopped. Absorption refrigerator.
【請求項8】 再生器、凝縮器、蒸発器及び吸収器など
を配管接続して冷媒及び吸収液の循環路を形成し、蒸発
器から冷水を供給する吸収式冷凍機において、蒸発器か
らの冷水出口温度を検出する温度検出器と、この温度検
出器の検出温度と設定温度とを比較して再生器の加熱量
を比例、微分及び積分制御し、検出温度が設定温度より
所定値以上低い場合は再生器の加熱量の比例、微分及び
積分制御を停止し、再生器の加熱量を前記比例、微分及
び積分制御による加熱量より小さく制御し、かつ比例制
御の比例帯に比例して所定値を変化させる制御装置を備
えたことを特徴とする吸収式冷凍機。
8. An absorption refrigerating machine for supplying chilled water from an evaporator by connecting a regenerator, a condenser, an evaporator, an absorber and the like by piping to form a circulation path for a refrigerant and an absorbing liquid. A temperature detector that detects the chilled water outlet temperature is compared with the detected temperature of this temperature detector and the set temperature to proportionally, differentially and integral control the heating amount of the regenerator, and the detected temperature is lower than the set temperature by a specified value or more. In this case, the proportional, derivative, and integral control of the heating amount of the regenerator is stopped, the heating amount of the regenerator is controlled to be smaller than the heating amount by the proportional, differential, and integral control, and the proportional amount is proportional to the proportional band of the proportional control. An absorption refrigerator comprising a control device for changing a value.
JP7037040A 1995-02-24 1995-02-24 Absorption type refrigerating machine Pending JPH08233392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7037040A JPH08233392A (en) 1995-02-24 1995-02-24 Absorption type refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7037040A JPH08233392A (en) 1995-02-24 1995-02-24 Absorption type refrigerating machine

Publications (1)

Publication Number Publication Date
JPH08233392A true JPH08233392A (en) 1996-09-13

Family

ID=12486503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7037040A Pending JPH08233392A (en) 1995-02-24 1995-02-24 Absorption type refrigerating machine

Country Status (1)

Country Link
JP (1) JPH08233392A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263462A (en) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd Absorption refrigerating machine
JP2008188541A (en) * 2007-02-06 2008-08-21 Miura Co Ltd Operation method of membrane filter system
JP2009052819A (en) * 2007-08-28 2009-03-12 Yazaki Corp Absorption chiller and heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263462A (en) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd Absorption refrigerating machine
JP2008188541A (en) * 2007-02-06 2008-08-21 Miura Co Ltd Operation method of membrane filter system
JP2009052819A (en) * 2007-08-28 2009-03-12 Yazaki Corp Absorption chiller and heater

Similar Documents

Publication Publication Date Title
JP2006343042A (en) Operating method for single/double effect absorption refrigerating machine
JPH08233392A (en) Absorption type refrigerating machine
US5697225A (en) Absorption type refrigerating apparatus
KR100399163B1 (en) Absorption Chiller
JP3075944B2 (en) Absorption chiller / heater
JP3081490B2 (en) Absorption refrigerator
JP2816012B2 (en) Control device for absorption refrigerator
JPH0586543B2 (en)
JP3157349B2 (en) Absorption refrigerator control device
JP3086594B2 (en) Single double effect absorption refrigerator
JPH0379630B2 (en)
JP2777470B2 (en) Control device for absorption refrigerator
JP2895974B2 (en) Absorption refrigerator
JP2885637B2 (en) Absorption refrigeration apparatus and control method thereof
JP2900609B2 (en) Absorption refrigerator
JPH04151470A (en) Control device for absorption type cold-hot water heater
JP2645824B2 (en) Double effect absorption refrigerator
JP2918665B2 (en) Operation stop method and stop control device for absorption chiller / chiller / heater
JP2523044B2 (en) Absorption chiller / heater controller
JPH03137461A (en) Control device for regenerator
JP3326240B2 (en) Control method of absorption refrigerator
JPH11211265A (en) Absorption type refrigerating machine
JPH0627591B2 (en) Absorption refrigerator
JPH0480567A (en) Method and device for controlling of changing amount of flow of cold water and cooling water in absorption refrigerating machine and water cooler
JPH04161767A (en) Control device for absorption type freezer