JPS5824705B2 - absorption refrigerator - Google Patents

absorption refrigerator

Info

Publication number
JPS5824705B2
JPS5824705B2 JP8695778A JP8695778A JPS5824705B2 JP S5824705 B2 JPS5824705 B2 JP S5824705B2 JP 8695778 A JP8695778 A JP 8695778A JP 8695778 A JP8695778 A JP 8695778A JP S5824705 B2 JPS5824705 B2 JP S5824705B2
Authority
JP
Japan
Prior art keywords
generator
hot water
heat exchanger
refrigerant
water heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8695778A
Other languages
Japanese (ja)
Other versions
JPS5415552A (en
Inventor
高田秋一
中柴方通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP8695778A priority Critical patent/JPS5824705B2/en
Publication of JPS5415552A publication Critical patent/JPS5415552A/en
Publication of JPS5824705B2 publication Critical patent/JPS5824705B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明は、冷凍作業と温水製造とを同時に行なうことも
できる冷温水同時取出型の吸収冷凍機に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorption refrigerating machine capable of simultaneously taking out cold and hot water, which can perform refrigeration work and hot water production at the same time.

従来の吸収冷凍機においては例えば第1図に示す如く、
蒸発器9、吸収器11、第1発生器1、第2発生器5、
凝縮器7及び第1溶液熱交換器13、第2溶液熱交換器
14とから成る吸収冷凍機において第1発生器1の主サ
イクルの配管31からバイパス管32を介して温水熱交
換器4を設け、この温水熱交換器4から凝縮器7又は蒸
発器9或いは凝縮器7、蒸発器9に至る配管33゜34
を備えである。
In a conventional absorption refrigerator, for example, as shown in Figure 1,
Evaporator 9, absorber 11, first generator 1, second generator 5,
In an absorption refrigerator consisting of a condenser 7, a first solution heat exchanger 13, and a second solution heat exchanger 14, the hot water heat exchanger 4 is connected to the main cycle piping 31 of the first generator 1 via a bypass pipe 32. Pipes 33 and 34 are provided and lead from the hot water heat exchanger 4 to the condenser 7 or the evaporator 9, or the condenser 7 and the evaporator 9.
Be prepared.

そして蒸発器9のチューブ29に冷水出口温度を検出す
るサーモスタットなどの検知器17を設け、これを演算
器18を介して第2発生器5のチューブ25の冷媒蒸気
配管中のコントロール弁3及び吸収器11の吸収溶液配
管30中のバイパス弁19を制御し得るようにした冷水
出口温度制御機構として備え、且つ第1発生器1には圧
力又は温度を検出する検知器22と、これに連絡され制
御される燃料供給弁23とで圧力又は温度制御機構を構
成して第1発生器1に備えである。
A detector 17 such as a thermostat for detecting the chilled water outlet temperature is installed in the tube 29 of the evaporator 9, and the sensor 17 is connected to the control valve 3 in the refrigerant vapor piping of the tube 25 of the second generator 5 via the calculator 18 and the absorber. The first generator 1 is provided with a cold water outlet temperature control mechanism that can control the bypass valve 19 in the absorption solution piping 30 of the generator 11, and the first generator 1 is equipped with a detector 22 for detecting pressure or temperature, and a detector 22 connected thereto. A controlled fuel supply valve 23 constitutes a pressure or temperature control mechanism for the first generator 1 .

また前記温水熱交換器4に設けられる加熱チューブ24
の出口にはサーモスタット16を設け、これをバイパス
管32中のコントロール弁2を制御するように連絡しで
ある。
Further, a heating tube 24 provided in the hot water heat exchanger 4
A thermostat 16 is provided at the outlet of the bypass pipe 32 and is connected to control the control valve 2 in the bypass pipe 32.

なお配管33中にはドレーントラップ6を介在装備し、
且つ第2発生器5から凝縮器7に連絡する配管26にも
ドレーントラップ8を設けである。
In addition, a drain trap 6 is installed in the pipe 33,
A drain trap 8 is also provided in the pipe 26 connecting the second generator 5 to the condenser 7.

図中10は冷媒ポンプ、12は溶液ポンプ、15はスプ
レー管、20は水位検出器で蒸発器9に設けられ、溶液
配管28中のコントロール弁21を制御するようになっ
ている。
In the figure, 10 is a refrigerant pump, 12 is a solution pump, 15 is a spray pipe, and 20 is a water level detector, which is installed in the evaporator 9 and controls a control valve 21 in a solution pipe 28.

25は発生器チューブ、27は凝縮器チューブ、29は
蒸発器チューブ、35はエコノマイザ、36は燃料供給
管、37.3B、39.40は配管、41は吸収器チュ
ーブである。
25 is a generator tube, 27 is a condenser tube, 29 is an evaporator tube, 35 is an economizer, 36 is a fuel supply pipe, 37.3B, 39.40 are piping, and 41 is an absorber tube.

しかして第1発生器1にて加熱、分離した水蒸気はコン
トロール弁2,3を経て、温水熱交換器4及び第2発生
器5に導かれる。
The steam heated and separated in the first generator 1 is guided to the hot water heat exchanger 4 and the second generator 5 via control valves 2 and 3.

温水熱交換器4に導かれた水蒸気は、温水を加熱し凝縮
水となって、ドレーントラップ6を経て凝縮器7に戻る
The steam led to the hot water heat exchanger 4 heats the hot water, becomes condensed water, and returns to the condenser 7 via the drain trap 6.

一方、第2発生器5に導かれた水蒸気は、中間濃度の溶
液を加熱し、溶液中よシ冷媒を蒸発分離し自身は凝縮し
、ドレーントラップ8を経由し温水熱交換器4からの凝
縮水と一諸になって凝縮器7に戻る。
On the other hand, the steam led to the second generator 5 heats the intermediate concentration solution, evaporates and separates the refrigerant from the solution, condenses itself, and passes through the drain trap 8 to condensate from the hot water heat exchanger 4. It returns to the condenser 7 together with water.

この凝縮器7に溜った凝縮水(冷媒)は減圧されて蒸発
器9に戻る。
The condensed water (refrigerant) accumulated in the condenser 7 is reduced in pressure and returned to the evaporator 9.

蒸発器9では、冷媒ポンプ10により、伝熱管上に散布
され、伝熱管内の冷水から熱をうばって蒸発する。
In the evaporator 9, the refrigerant pump 10 spreads the refrigerant onto the heat exchanger tubes, and evaporates the cooled water by taking heat from the cold water inside the heat exchanger tubes.

この蒸発した冷媒ガスは、吸収器11中にためられた濃
溶液に吸収され、溶液は希溶液となる。
This evaporated refrigerant gas is absorbed into the concentrated solution stored in the absorber 11, and the solution becomes a dilute solution.

希溶液は、溶液ポンプ12、第1溶液熱交換器13、第
2溶液熱交換器14を経て温度を上げて第1発生器1に
戻る。
The dilute solution passes through the solution pump 12, the first solution heat exchanger 13, and the second solution heat exchanger 14, increases its temperature, and returns to the first generator 1.

第1発生器1においては、中間濃度まで濃縮された溶液
は、第2発生器5において、第1発生器1からの加熱水
蒸気によシ加熱され所定の濃溶液まで濃縮され第1溶液
熱交換器13を経て吸収器11へ戻る。
In the first generator 1, the solution concentrated to an intermediate concentration is heated in the second generator 5 by the heated steam from the first generator 1 and concentrated to a predetermined concentrated solution, and then the solution is heated through the first solution heat exchange. It returns to the absorber 11 via the vessel 13.

このように、温水側負荷がかかつている時でも冷媒は常
に冷媒サイクル中に即ち第2発生器の加熱側から凝縮器
又は蒸発器或いはこれらいずれかに至る冷媒系路中に供
給され、冷凍効果を上げ得るようになっている。
In this way, even when the hot water side is loaded, the refrigerant is always supplied into the refrigerant cycle, that is, into the refrigerant line from the heating side of the second generator to the condenser and/or evaporator, and the refrigeration effect is maintained. It is now possible to increase the

更には制御系によシ、冷水、温水負荷が自由な割合で取
り出せる。
Furthermore, the control system can take out the cold water and hot water loads at any rate.

即ち、温水負荷が犬きくなシ、温水温度が低下する時は
、温水出口サーモスタット16の指令により、コントロ
ール弁2が開き所定の温度(即ち温水能力)を得る。
That is, when the hot water load increases and the hot water temperature decreases, the control valve 2 opens in response to a command from the hot water outlet thermostat 16 to obtain a predetermined temperature (that is, hot water capacity).

一方、冷水負荷の制御は、冷水の出口サーモスタット1
7の指令によシ、コントロール弁3を制御し第2発生器
5へ送る水蒸気量のコントロールによシ行なわれる。
On the other hand, the chilled water load is controlled by the chilled water outlet thermostat 1.
This is done by controlling the control valve 3 and controlling the amount of water vapor sent to the second generator 5 according to the command 7.

このような装置を冷暖房用として使用すると、例えば温
水製造によって得られる凝縮冷媒(冷凍。
When such a device is used for heating and cooling, it can be used, for example, to produce condensed refrigerant (refrigeration) obtained from hot water production.

能力)が冷水負荷に必要な量よシ多い場合、又は冷水負
荷が零に近くなシ温水負荷のみになった場合は、必要以
上又は不要の冷媒が冷媒サイクルに供給され冷媒が第2
発生器又は凝縮器若しくは凝縮器から蒸発器に至る糸路
を経て蒸発器に戻ると・とになシ、一方冷水負荷が相対
的に少ないので冷媒の蒸発、吸収が抑えられるために蒸
発器にたまることになシ、溶液は濃縮し結晶を起しやす
くなる。
If the amount of refrigerant (capacity) is greater than the amount required for the chilled water load, or if the chilled water load is close to zero and only the hot water load is present, more or unnecessary refrigerant is supplied to the refrigerant cycle and the refrigerant is
Returning to the evaporator via a line from the generator or condenser or condenser to the evaporator is not possible.On the other hand, since the chilled water load is relatively small, evaporation and absorption of the refrigerant can be suppressed, so the evaporator As it accumulates, the solution becomes concentrated and tends to form crystals.

そのために適宜冷媒を溶液側に戻す必要があったので、
第1図の装置では蒸発器9の水位が上昇すると水位検出
器20が作動し、コントロール弁21を開いて吸収器1
1へ戻すようにしていた。
For this purpose, it was necessary to return the refrigerant to the solution side as appropriate.
In the device shown in FIG. 1, when the water level in the evaporator 9 rises, the water level detector 20 is activated and the control valve 21 is opened to
I was trying to set it back to 1.

しかしながらこのようにすると暖房運転のみの時は不要
な冷房側の装置をも運転する必要があった。
However, in this case, it was necessary to also operate an unnecessary cooling device when only heating operation was performed.

本発明は、第1発生器から温水熱交換器に導かれた冷媒
を、第1発生器に戻す経路および第2発生器に導く経路
を設け、それぞれの経路に介在せしめた制御弁を温水負
荷および/または冷水負荷により制御することによって
、従来のものの前述の欠点を除き、冷凍負荷が小さくな
ったシ、あるいはなくなったり温水負荷に対してアンバ
ランスになったシなど変化する場合に不必要となって来
る冷媒を冷媒サイクルに導かず溶液の結晶化を防ぎ、ま
た不必要な冷房側の運転を自動化に制限、停止せしめ安
全かつ効率のよい吸収冷凍機を提供することを目的とす
るものである。
The present invention provides a path for returning the refrigerant led from the first generator to the hot water heat exchanger to the first generator and a path leading to the second generator, and controls the control valves interposed in each path to load the hot water. And/or by controlling by chilled water load, it eliminates the above-mentioned drawbacks of the conventional method and eliminates unnecessary The purpose is to provide a safe and efficient absorption refrigerator by preventing the crystallization of the solution by not introducing the refrigerant into the refrigerant cycle, and by automatically limiting or stopping unnecessary cooling operations. be.

本発明は蒸発器、吸収器、第1発生器、第2発生器、凝
縮器、温水熱交換器とを備えた二重効用吸収冷凍機にお
いて、第1発生器で発生する冷媒蒸気を温水熱交換器に
導入せしめる蒸気系路を備え、該温水熱交換器と第1発
生器とを制御弁を介在装備した経路により、該温水熱交
換器で凝縮した冷媒を第1発生器に戻すことができるよ
うに連絡し、また該温水熱交換器と第2発生器とを制御
弁を介在装備した経路によシ、第1発生器で発生した冷
媒を温水熱交換器を経た後第2発生器に導入できるよう
に連絡し、かつ、温水負荷および/または冷水負荷によ
って前記各制御弁を制御できるようにしたことを特徴と
する二重効用の吸収冷凍機である。
The present invention provides a dual-effect absorption refrigerator equipped with an evaporator, an absorber, a first generator, a second generator, a condenser, and a hot water heat exchanger. The refrigerant condensed in the hot water heat exchanger can be returned to the first generator by a path that includes a steam line that is introduced into the exchanger and is equipped with a control valve between the hot water heat exchanger and the first generator. The hot water heat exchanger and the second generator are connected to each other through a route equipped with a control valve, so that the refrigerant generated in the first generator passes through the hot water heat exchanger and then to the second generator. This is a dual-effect absorption refrigerating machine, characterized in that the control valves are connected so that they can be introduced into the refrigerator, and each of the control valves can be controlled according to a hot water load and/or a cold water load.

本発明を実施例につき図面を用いて説明すると、第2図
にて蒸発器9、吸収器11、第1発生器1、第2発生器
5、凝縮器7及び第1溶液熱交換器13、第2溶液熱交
換器14とからなる吸収冷凍機において、第1発生器1
で発生する高温の冷媒蒸気の全量を配管49によって温
水熱交換器42に導入し、該温水熱交換器42で凝縮し
た冷媒の一部を制御弁43を介在装備した配管45によ
って第1発生器1に戻すとともに、残シの冷媒を制御弁
44を介在装備した配管46によって第2発生器5に導
入せしめ、第2発生器5の中間溶液を加熱した後凝縮器
7に戻るよう構成されている。
The present invention will be described with reference to the drawings in accordance with embodiments. FIG. 2 shows an evaporator 9, an absorber 11, a first generator 1, a second generator 5, a condenser 7, a first solution heat exchanger 13, In an absorption refrigerator consisting of a second solution heat exchanger 14, a first generator 1
The entire amount of high-temperature refrigerant vapor generated in the hot water heat exchanger 42 is introduced into the hot water heat exchanger 42 through a pipe 49, and a portion of the refrigerant condensed in the hot water heat exchanger 42 is transferred to the first generator through a pipe 45 equipped with a control valve 43. 1, the remaining refrigerant is introduced into the second generator 5 through a pipe 46 equipped with a control valve 44, and after heating the intermediate solution in the second generator 5, it is returned to the condenser 7. There is.

そして蒸発器9のチューブ29に冷水出口温度を検出す
るサーモスタット17などの検知器を設け、これを演算
器1Bを介して、温水熱交換器42と第1発生器1とを
連絡する配管45に介在装備された制御弁43または温
水熱交換器42と第2発生器5とを連絡する配管46に
介在装備された制御弁44の両方を制御しうるようにし
た冷水出口温度制御機構を備えている。
A detector such as a thermostat 17 for detecting the cold water outlet temperature is installed in the tube 29 of the evaporator 9, and this is connected to the piping 45 connecting the hot water heat exchanger 42 and the first generator 1 via the calculator 1B. Equipped with a cold water outlet temperature control mechanism capable of controlling both the interposed control valve 43 or the interposed control valve 44 disposed in the piping 46 connecting the hot water heat exchanger 42 and the second generator 5. There is.

また冷水負荷の変動を検知するのに代えて温水負荷の変
動を検出することによってこれらの制御弁を制御しても
よいし、冷水負荷、温水負荷の両方で制御してもよい。
Furthermore, these control valves may be controlled by detecting changes in hot water load instead of detecting changes in cold water load, or may be controlled based on both cold water load and hot water load.

また第1発生器1には圧力又は温度を検出する検知器2
2と、これに連絡され制御される燃料供給弁23とで圧
力又は温度制御機構を構成している。
The first generator 1 also has a detector 2 for detecting pressure or temperature.
2 and a fuel supply valve 23 that is connected and controlled by this, constitute a pressure or temperature control mechanism.

そして、第1発生器1にて加熱、分離した冷媒は全量が
配管49を通シ温水熱交換器42に導かれる。
The entire amount of the refrigerant heated and separated by the first generator 1 is guided to the hot water heat exchanger 42 through a pipe 49.

温水熱交換器42に導かれた冷媒蒸気は温水を加熱し凝
縮冷媒となる。
The refrigerant vapor guided to the hot water heat exchanger 42 heats the hot water and becomes a condensed refrigerant.

温水熱交換器42の底部には冷媒溜47と冷媒抜き口4
8が設けてあシ、冷媒溜47にたまった冷媒液は制御弁
43を介在装備した配管45によって第1発生器1に戻
され、そして冷媒抜き口48から凝縮冷媒及び蒸気冷媒
が制御弁44を介在装備した配管46によって第2発生
器5に導かれる。
A refrigerant reservoir 47 and a refrigerant outlet 4 are provided at the bottom of the hot water heat exchanger 42.
The refrigerant liquid accumulated in the refrigerant reservoir 47 is returned to the first generator 1 through a pipe 45 equipped with a control valve 43, and the condensed refrigerant and vapor refrigerant are discharged from the refrigerant outlet 48 to the control valve 44. It is guided to the second generator 5 by a pipe 46 equipped with an intervening pipe.

この第2発生器5、に導かれた冷媒は中間濃度の溶液を
加熱し、溶液中よシ冷媒を蒸発分離し配管26を経由し
凝縮器7に戻る。
The refrigerant introduced into the second generator 5 heats the intermediate concentration solution, evaporates and separates the refrigerant from the solution, and returns to the condenser 7 via the pipe 26.

この凝縮器7に溜った凝縮冷媒は減圧されて蒸発器9に
戻る。
The condensed refrigerant accumulated in the condenser 7 is reduced in pressure and returned to the evaporator 9.

蒸発器9では冷媒ポンプ10によシ、伝熱管上;に散布
され、伝熱管内の冷水から熱をうばって蒸発する。
In the evaporator 9, the refrigerant pump 10 spreads the refrigerant over the heat transfer tubes, and evaporates the cooled water by taking away heat from the cold water inside the heat transfer tubes.

この蒸発した冷媒ガスは、吸収器11にためられた濃溶
液に吸収され、溶液は希溶液となる。
This evaporated refrigerant gas is absorbed into the concentrated solution stored in the absorber 11, and the solution becomes a dilute solution.

希溶液は、溶液ポンプ12、第1溶液熱交換器13、第
2溶液熱交換器14を経て温度を上げて第1発生器1に
戻る。
The dilute solution passes through the solution pump 12, the first solution heat exchanger 13, and the second solution heat exchanger 14, increases its temperature, and returns to the first generator 1.

冷水負荷の制御は冷水の出口サーモスタット17の指令
によシ制御弁44を制御し第2発生器5へ送る冷媒の量
のコントロールによシ行なわれくる。
The chilled water load is controlled by controlling the control valve 44 in response to a command from the chilled water outlet thermostat 17 to control the amount of refrigerant sent to the second generator 5.

この場合、制御弁43を配管45に介在装備させて出口
サーモスタット17の指令によって制御させてもよいし
、両方を同時に制御させてもよい。
In this case, the control valve 43 may be interposed in the pipe 45 and controlled by a command from the outlet thermostat 17, or both may be controlled simultaneously.

冷水負荷が減少し、零となった場合は制御弁44を閉じ
て第1発生器1と温水熱交換器42とで温水専用回路を
構成することができ不要な機器の運転をする必要がない
だけでなく結晶の必要のない安全な運転ができる。
When the cold water load decreases to zero, the control valve 44 can be closed and the first generator 1 and the hot water heat exchanger 42 can form a dedicated hot water circuit, eliminating the need to operate unnecessary equipment. Not only that, but you can drive safely without the need for crystals.

冷水、温水の同時取出を行っている時の温水負荷の制御
は温水出口温度検出器50によって温度を検出し温水熱
交換器42の温水配管中に設けられた三方弁51の制御
弁を制御することによって温水の制御を行い、同時取出
の際に温水負荷の変動が冷水サイクルの外因にならない
ようにする。
To control the hot water load when cold water and hot water are being taken out simultaneously, the temperature is detected by the hot water outlet temperature detector 50 and the control valve of the three-way valve 51 provided in the hot water piping of the hot water heat exchanger 42 is controlled. This controls the hot water and prevents fluctuations in the hot water load from becoming an external factor in the cold water cycle during simultaneous extraction.

冷水負荷が零になシ温水専用回路を構成する際には冷水
負荷が零になったことを検出してパルプ52.53,4
4を閉じ温水専用回路を構成する。
When the chilled water load becomes zero, when configuring a hot water dedicated circuit, it is detected that the chilled water load becomes zero and the pulp 52, 53, 4 is activated.
4 to configure a hot water dedicated circuit.

そして温水の制御は三方弁制御から第1発生器1の加熱
源の制御に切換えられる。
Control of the hot water is then switched from three-way valve control to control of the heating source of the first generator 1.

即ち温水出口温度を検出して加熱ガス量を制御弁として
の燃料供給弁23で制御する。
That is, the hot water outlet temperature is detected and the amount of heated gas is controlled by the fuel supply valve 23 serving as a control valve.

更に第1発生器1をでた高温の蒸気はすべて必ず温水熱
交換器42に入シ過熟度を減じてから第2発生器5には
いシ溶液の加熱を行う。
Furthermore, all high-temperature steam leaving the first generator 1 must be input into the hot water heat exchanger 42 to reduce the degree of supermaturity, and then the steam solution is heated in the second generator 5.

溶液はLiBrなどを含んでいるため材料の腐食を促し
がちで、溶液の温度が高い程腐食しやすくなるが、本実
施例では蒸気は必ず温水熱交換器42を経由して過熱度
を減じてくるので温度が余シ高<ならず腐食のトラブル
が少なくてすむ。
Since the solution contains LiBr etc., it tends to promote corrosion of the material, and the higher the temperature of the solution, the more likely it is to corrode. However, in this embodiment, the steam always passes through the hot water heat exchanger 42 to reduce the degree of superheating. Since the temperature does not get too high, there are fewer problems with corrosion.

この腐食のおそれが少い条件下又は温水熱交換器を経て
冷媒サイクルに戻す冷媒を第2発生器の加熱側に戻さず
に凝縮器などに戻す場合などでは配管49と第2発生器
5とを直接つなぎ、制御弁を介在したバイパス管を備え
、暖房負荷がある時は一定の蒸気を第2発生器に導き、
また暖房負荷がない時これを検出し制御弁を開き冷媒蒸
気を直接全量第2発生器5に導くようにすることもでき
る。
Under conditions where there is little risk of corrosion, or when the refrigerant returned to the refrigerant cycle via the hot water heat exchanger is returned to the condenser etc. without returning to the heating side of the second generator, the piping 49 and the second generator 5 A bypass pipe with a control valve is provided, and when there is a heating load, a constant amount of steam is guided to the second generator.
It is also possible to detect when there is no heating load and open the control valve to directly guide the entire amount of refrigerant vapor to the second generator 5.

第3図は温水熱交換器42の別なる実施例の構造で、温
水熱交換器42から第2発生器5に送シこむ冷媒の流れ
を液の糸路の配管54とガスの流れとに分けたものであ
る。
FIG. 3 shows the structure of another embodiment of the hot water heat exchanger 42, in which the flow of the refrigerant sent from the hot water heat exchanger 42 to the second generator 5 is connected to the piping 54 of the liquid thread path and the flow of gas. It is divided.

第2発生器に送シとまれる熱量のうち液が占めるのは2
〜3%であるので液配管54は設けないでガス配管55
のみで温水熱交換器から第2発生器に冷媒を導入せしめ
てもよい。
The liquid accounts for 2 of the heat transferred to the second generator.
~3%, so the liquid pipe 54 is not provided and the gas pipe 55 is
Alternatively, the refrigerant may be introduced into the second generator from the hot water heat exchanger.

57.56は制御弁で冷水負荷又は温水負荷で制御され
る。
57 and 56 are control valves that are controlled by cold water load or hot water load.

望ましい制御としては、冷水コントロールが主の場合は
、冷水負荷を検出してそれに応じて温水熱交換器から冷
媒サイクル例えば第2発生器への送りを優先的に制御し
、温水熱交換器から第1発生器への送りは温水負荷又は
冷水負荷によって副次的に制御する。
In the case where chilled water control is the main control, a desirable control is to detect the chilled water load and, accordingly, preferentially control the sending of the refrigerant from the hot water heat exchanger to the refrigerant cycle, for example, the second generator, and to 1 The feed to the generator is sub-controlled by the hot water load or the cold water load.

第3図において、58は温水熱交換器内の上部に設けら
れた邪魔板で第1発生器から温水熱交換器に流入した冷
媒が熱交換器と十分接触しないまま第2発生器に流出し
彦いようにしたものである。
In Fig. 3, 58 is a baffle plate installed at the top of the hot water heat exchanger, which prevents the refrigerant that has flowed into the hot water heat exchanger from the first generator from flowing out into the second generator without making sufficient contact with the heat exchanger. It was designed to make you laugh.

第4図は別の実施例で邪魔板58と同様な効果を得るた
めに温水熱交換器42の内部伝熱管群60を隔てて、配
管49と配管55を設けたものである。
FIG. 4 shows another embodiment in which a pipe 49 and a pipe 55 are provided to separate the internal heat transfer tube group 60 of the hot water heat exchanger 42 in order to obtain the same effect as the baffle plate 58.

本発明は蒸発器、吸収器、第1発生器、第2発生器、凝
縮器、温水熱交換器とを備えた二重効用吸収冷凍機にお
いて、第1発生器で発生する冷媒蒸気を温水熱交換器に
導入せしめる蒸気系路を備え、該温水熱交換器と第1発
生器とを制御弁を介在装備した経路によシ、該温水熱交
換器で凝縮した冷媒を第1発生器に戻すことができるよ
うに連絡し、また各温水熱交換器と第2発生器とを制御
弁を介在装備した経路によシ、第1発生器で発生した冷
媒を温水熱交換器を経た後第2発生器に導入できるよう
に連絡し、かつ、温水負荷および/または冷水負荷によ
って前記各制御弁を制御できるようにしたことにより、
冷媒負荷が減少したり、・なくなったり温水負荷に対し
アンバランスになったシするなどの変化に対し不必要に
なって来る冷媒を冷媒サイクルに入れず溶液サイクルに
入れて溶液の結晶化を防ぎ、また、不必要な冷房側の運
転を自動的に制限、停止せしめ、また高温蒸気は温水熱
交換器を経由して過熱度を減じて来るので腐食を起とす
おそれが少く、また従来は冷暖房運転の際に暖房用に使
用された温水熱交換器で凝縮した冷媒がそのまま第1発
生器に全量戻されていたため温水加熱用の熱量が冷房用
に使用されず、無駄になっていたものが、冷房に必要々
熱源として用いることができることとなって熱効率が大
巾に向上でき、しかも制御性もよく安全で効率のよ・い
吸収冷凍機を提供することができ、実用上、安全上極め
て犬なる効果を有するものである。
The present invention provides a dual-effect absorption refrigerator equipped with an evaporator, an absorber, a first generator, a second generator, a condenser, and a hot water heat exchanger. The refrigerant condensed in the hot water heat exchanger is returned to the first generator by a path having a steam line introduced into the exchanger and having a control valve interposed between the hot water heat exchanger and the first generator. In addition, each hot water heat exchanger and the second generator are connected to each other by a route equipped with a control valve, so that the refrigerant generated in the first generator passes through the hot water heat exchanger and then to the second generator. By communicating so as to be able to be introduced into the generator and controlling each of the control valves by the hot water load and/or the cold water load,
When the refrigerant load decreases or disappears or becomes unbalanced with respect to the hot water load, the refrigerant that is no longer needed is put into the solution cycle instead of the refrigerant cycle to prevent crystallization of the solution. In addition, unnecessary cooling side operation is automatically restricted and stopped, and the high temperature steam reduces the degree of superheating via a hot water heat exchanger, so there is less risk of corrosion, and conventional During air conditioning operation, the entire amount of refrigerant condensed in the hot water heat exchanger used for heating was returned to the first generator, so the amount of heat used to heat the hot water was not used for cooling and was wasted. However, since it can be used as a necessary heat source for air conditioning, thermal efficiency can be greatly improved, and it is possible to provide a safe and efficient absorption refrigerator with good controllability, which has a practical and safety point of view. It has a very canine effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の吸収冷凍機の一例の系統図、第2図は本
発明の実施例の系統図、第3図および第4図は本発明の
それぞれ異々る実施例の温水熱交換器附近の系統図であ
る。 1・・・第1発生器、2,3・・・コントロール弁、4
・・・温水熱交換器、5・・・第2発生器、6・・・ド
レーントラップ、7・・・凝縮器、8・・・ドレーント
ラップ、9・・・蒸発器、10・・・冷媒ポンプ、11
・・・吸収器、12・・・溶液ポンプ、13・・・第1
溶液熱交換器、14・・・第2溶液熱交換器、16.1
7・・・サーモスタット、18・・・演算器、19・・
・バイバス弁、20・・・水位検出器、21・・・コン
トロール弁、22・・・検知器、23・・・燃料供給弁
、31・・・配管、32・・・バイパス管、33.34
・・・配管、35・・・エコノマイザ、36・・・燃料
供給管、42・・・温水熱交換器、43.44・・・制
御弁、47・・・冷媒溜、48・・・冷媒抜き口、51
・・・三方弁、56.57・・・制御弁。
Figure 1 is a system diagram of an example of a conventional absorption refrigerator, Figure 2 is a system diagram of an embodiment of the present invention, and Figures 3 and 4 are hot water heat exchangers of different embodiments of the present invention. This is a diagram of the nearby area. 1... First generator, 2, 3... Control valve, 4
...Hot water heat exchanger, 5...Second generator, 6...Drain trap, 7...Condenser, 8...Drain trap, 9...Evaporator, 10...Refrigerant pump, 11
...Absorber, 12...Solution pump, 13...First
Solution heat exchanger, 14...Second solution heat exchanger, 16.1
7... Thermostat, 18... Arithmetic unit, 19...
- Bypass valve, 20... Water level detector, 21... Control valve, 22... Detector, 23... Fuel supply valve, 31... Piping, 32... Bypass pipe, 33.34
...Piping, 35...Economizer, 36...Fuel supply pipe, 42...Hot water heat exchanger, 43.44...Control valve, 47...Refrigerant reservoir, 48...Refrigerant extraction mouth, 51
...Three-way valve, 56.57...Control valve.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸発器、吸収器、第1発生器、第2発生器、凝縮器
、温水熱交換器とを備えた二重効用吸収冷凍機において
、第1発生器で発生する冷媒蒸気の全量を温水熱交換器
に導入せしめる蒸気系路を備え、該温水熱交換器と第1
発生器とを制御弁を介在装備した経路によシ該温水熱交
換器で凝縮した冷媒を第1発生器に戻すことができるよ
うに連絡し、また該温水熱交換器と第2発生器とを制御
弁を介在装備した経路によシ、第1発生器で発生した冷
媒を温水熱交換器を経た後第2発生器に導入できるよう
に連絡し、かつ、温水負荷および/または冷水負荷によ
って前記各制御弁を制御できるようにしたことを特徴と
する二重効用の吸収冷凍も
1. In a dual-effect absorption refrigerator equipped with an evaporator, an absorber, a first generator, a second generator, a condenser, and a hot water heat exchanger, the entire amount of refrigerant vapor generated in the first generator is converted into hot water heat. A steam line is provided to introduce the steam into the exchanger, and the hot water heat exchanger and the first
The hot water heat exchanger and the second generator are connected to each other through a path equipped with an intervening control valve so that the refrigerant condensed in the hot water heat exchanger can be returned to the first generator. The refrigerant generated in the first generator can be introduced into the second generator after passing through the hot water heat exchanger through a path equipped with a control valve, and the refrigerant can be connected to the second generator by a hot water load and/or a cold water load. There is also a dual-effect absorption refrigeration system characterized by being able to control each of the control valves.
JP8695778A 1978-07-17 1978-07-17 absorption refrigerator Expired JPS5824705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8695778A JPS5824705B2 (en) 1978-07-17 1978-07-17 absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8695778A JPS5824705B2 (en) 1978-07-17 1978-07-17 absorption refrigerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4720475A Division JPS51121847A (en) 1975-04-18 1975-04-18 An absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS5415552A JPS5415552A (en) 1979-02-05
JPS5824705B2 true JPS5824705B2 (en) 1983-05-23

Family

ID=13901345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8695778A Expired JPS5824705B2 (en) 1978-07-17 1978-07-17 absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS5824705B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356093B2 (en) * 1983-09-22 1988-11-07 Furukawa Seisakusho Kk

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119162A (en) * 1982-12-27 1984-07-10 三洋電機株式会社 Controller for absorption cold and hot water machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356093B2 (en) * 1983-09-22 1988-11-07 Furukawa Seisakusho Kk

Also Published As

Publication number Publication date
JPS5415552A (en) 1979-02-05

Similar Documents

Publication Publication Date Title
JPS5824705B2 (en) absorption refrigerator
JPS6311571Y2 (en)
JPH0443264A (en) Absorption type heat source device
JPH0445363A (en) Absorption refrigerating and heating hot water supply machine
JPH03105171A (en) Absorption type water cooling and heating machine
JPH05312429A (en) Absorption water cooling/heating apparatus
JPS6115340B2 (en)
JPS6222056B2 (en)
JPS6215736Y2 (en)
JPH0353544B2 (en)
JPS627979Y2 (en)
JPH03271663A (en) Absorption cold and hot water tank
JPH0317474A (en) Absorption refrigerator
JP3218018B2 (en) Double effect absorption refrigerator
JPS5936174B2 (en) Absorption heating and cooling equipment
JPS6113888Y2 (en)
JPS6134058B2 (en)
JPS5817390B2 (en) Heat recovery type absorption chiller/heater
JP2001317836A (en) Method for controlling absorption refrigerator
JPH0615939B2 (en) Absorption heat pump device
JPS5921957A (en) Absorption cold and hot water machine
JPH01314869A (en) Absorption freezer
JPH046857B2 (en)
JPH0357392B2 (en)
JPH0621734B2 (en) Absorption refrigerator