JP2004309032A - Central air conditioning and heating equipment and its operation control method - Google Patents

Central air conditioning and heating equipment and its operation control method Download PDF

Info

Publication number
JP2004309032A
JP2004309032A JP2003104212A JP2003104212A JP2004309032A JP 2004309032 A JP2004309032 A JP 2004309032A JP 2003104212 A JP2003104212 A JP 2003104212A JP 2003104212 A JP2003104212 A JP 2003104212A JP 2004309032 A JP2004309032 A JP 2004309032A
Authority
JP
Japan
Prior art keywords
hot water
cold
water pump
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003104212A
Other languages
Japanese (ja)
Inventor
Hiroshi Ogawa
廣志 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003104212A priority Critical patent/JP2004309032A/en
Publication of JP2004309032A publication Critical patent/JP2004309032A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide central air conditioning and heating equipment and its operation control method attaining energy saving as the whole equipment by minutely controlling the operation of a cold/hot water pump and a cooling water pump to lower the operation rate of a cold/hot water generator. <P>SOLUTION: This central air conditioning and heating equipment having the cold/hot water generator 9, a heat source control panel 17, the cold/hot water pump 10, the cooling water pump 13 and a fan coil unit 1 and performing the start and stop of the cold/hot water generator 9 by a cold/hot water supply temperature or a cooling water supply temperature, is provided with a programmable logical control device for controlling the operation of the cold/hot water pump 10 or the cold/hot water pump 10 and cooling water pump 13 by inverters 15, 16 based on the total load heating value which is the sum total on all rooms of load heat obtained by leading in a difference signal between an indoor set temperature and an actual temperature measured by each indoor temperature sensor 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、冷温水発生機(熱源)を用いたセントラル冷暖房設備、及びその運転制御方法に関する。
【0002】
【従来の技術】
従来、大型多室の建物において、セントラル冷暖房設備が設けられているが、このセントラル冷暖房設備とは、建物全体の冷熱源装置を中央に設け、共通配管によって複数の空気調和機や端末ユニットが結ばれる方式であり、各種の方式の中でファンコイルユニット方式が広く採用されている。このファンコイルユニット方式においては、空気の冷却・加熱コイルと小型電動ファンとをケーシングにまとめたユニット(ファンコイルユニット)を多数台配置し、これに中央機械室の冷凍機やボイラから、冷房時には冷水、暖房時には温水を送る。ユニットだけでは換気が不十分なので、別に処理した新鮮外気をダクトで各室に送る。この方式は、病院などの多室建物では部屋ごとに温度調節ができる利点がある。
【0003】
図3は、従来の冷温水発生機(熱源)を用いたファンコイル方式のセントラル冷暖房設備の概略図である。
【0004】
31は冷温水発生機(熱源)、32は熱源制御盤、33は冷温水ポンプ、34は冷却水ポンプ、35は冷却塔、36は外気を取り込むための外調機、37はファンコイルユニット、38は冷温水往温度センサ、39は冷却水往温度センサ、40は室内温度センサである。冷温水ポンプ33、冷却水ポンプ34は、還路に設けられ、冷温水往温度センサ38、冷却水往温度センサ39は往路に設けられる。
【0005】
冷温水発生機31は、典型的にはボイラ及び冷凍機であり、暖房時は、ガス又は石油をボイラで燃焼させて加熱された水と熱交換された温水が供給される。冷房時は、冷凍機で冷却された冷却水が冷却水ポンプ34で冷却塔35に送られる。冷温水発生機31は、熱源制御盤32により、暖房時の運転許可中は、冷温水往温度センサ38の信号によりその発進停止(on−off)が行われる。すなわち、冷温水往温度が下限値より下がればボイラが着火し、上限値より上がれば燃焼が停止する。運転許可中は、冷温水ポンプ33が運転し続ける。
【0006】
また、冷温水発生機31は、熱源制御盤32により、冷房時の運転許可中は、冷却水往温度センサ39の信号に基づき、その発進停止が行われる。すなわち、冷却水往温度が上限値より上がれば冷凍を行い、下限値より下がれば冷凍を停止する。運転許可中は、冷温水ポンプ33が運転し続ける。冷却水ポンプ34も運転をし続け、冷却塔ファンは冷却水が上限値より上がれば動作し、下限値より下がれば停止する。
【0007】
ファンコイルユニット37、及び室内温度センサ40は、通常複数台設置されており、室内温度センサ40において、室内の実温度を測定すると同時に、室内を希望の温度に設定する機能を有する。そしてファンコイルユニット37のファンは、実温度と設定温度の差の信号により決められた負荷により発進停止、速度について運転が制御されている。
【0008】
【非特許文献1】
小原淳平編「100万人の空気調和」オーム社、平成14年12月10日、p.74−116
【0009】
【発明が解決しようとする課題】
前記のようなセントラル冷暖房設備は、快適な住環境としてなくてはならないものとなっているが、一般的に大きなエネルギ、直接的には電力、燃料を消費するものであり、また、化石燃料を使用することにより相当量のCOガスを排出している。一方、資源の節約や温暖化防止のためのCOガスの排出規制が地球規模の課題として注目され、その対策が求められているところであり、セントラル冷暖房設備に対してもそのような対策を具体的に実現することが望まれている。
【0010】
図3に示されるような従来のセントラル冷暖房設備においては、夏季の使用総エネルギ量Eは、各装置の単位時間あたりの消費出力をカッコで示すと、次式で表される。
【0011】
={(冷却水ポンプ)+(冷温水ポンプ)+(冷却塔)
+(冷温水発生機)}×24h×運転日数
また、春・秋・冬季の使用総エネルギ量Eは、
={(冷温水ポンプ)+(冷温水発生機)}×24h×運転日数
しかしながら、ファンコイルユニット37は、負荷により運転が制御されているとはいえ、冷温水ポンプ33は、大容量の装置であり、終始運転されており、また、冷却水ポンプも冷房時は終始運転されている。そして、ファンコイルユニット37の負荷は、季節によって変化するが、監視されていない。冷温水発生機31は、熱源制御盤32によりその発進停止が行われているものの、ファンコイルユニット37側が無負荷でも運転を続けている。事業所が入居している建物において、冷暖房についての年間を通じての消費エネルギは、他の、例えば照明の消費エネルギに比べて大きな割合を占めており、従来の技術は、省エネルギの点で改善の余地があるといえる。
【0012】
そこで本発明は、ファンコイルユニットの負荷に基づく総負荷熱量により、冷温水ポンプ又は前記冷温水ポンプ及び前記冷却水ポンプの運転をインバータで制御し、冷温水ポンプ又は冷却水ポンプの運転をきめ細かく制御し、その結果冷温水発生機の稼働率を下げ、設備全体として省エネルギを実現したセントラル冷暖房設備及びその運転方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
上述の課題を解決するため、本発明のセントラル冷暖房設備は、冷温水発生機、熱源制御盤、冷温水ポンプ、冷却水ポンプ、ファンコイルユニットを有し、冷温水往温度又は冷却水往温度により前記冷温水発生機の発進停止を行うセントラル冷暖房設備において、室内設定温度と室内温度センサで測定された実温度との差信号を導入して求められる負荷熱の全室についての総和を総負荷熱量とし、前記総負荷熱量により前記冷温水ポンプ又は前記冷温水ポンプ及び前記冷却水ポンプの運転をインバータで制御するプログラム可能論理制御装置を備えたことを特徴とする。
【0014】
また、本発明のセントラル冷暖房設備の運転方法は、冷温水発生機、熱源制御盤、冷温水ポンプ、冷却水ポンプ、ファンコイルユニットを有し、冷温水往温度又は冷却水往温度により前記冷温水発生機の発進停止を行うセントラル冷暖房設備の運転制御方法において、室内設定温度と室内温度センサで測定された実温度との差信号を導入して求められる負荷熱の全室についての総和を総負荷熱量とし、前記総負荷熱量により前記冷温水ポンプ又は前記冷温水ポンプ及び前記冷却水ポンプの運転をインバータで制御することを特徴とする。
【0015】
以上の構成によって、設備全体として省エネルギを実現することができる。
【0016】
【発明の実施の形態】
次に、本発明の実施の形態について図面を参照して説明する。
【0017】
図1は、本発明の実施の形態における冷温水発生機(熱源)を用いたファンコイル方式のセントラル冷暖房設備を示す図である。
【0018】
1はファンコイルユニット、2は室内温度センサ、3はファンコイル制御ユニット、4は外調機、5はモータバルブ、6は外調機送風温度センサ、7は外調機比例制御装置、8は排気ファン、9は冷温水発生機、10は冷温水ポンプ、11は冷温水往温度センサ、12は冷却塔、13は冷却ポンプ、14は冷却水往温度センサ、15,16はインバータ、17は熱源制御盤、18は冷温水往温度センサ、19はプログラム可能論理制御装置(Programmable Logic Controller、略称PLC)、20はCPUである。
【0019】
冷温水発生機9は、暖房時は、冷温水往温度センサ11の信号、また、冷房時は、冷却水往温度センサ14信号に基づき、熱源制御盤17によりその発進停止(on−off)が行われる点は、従来の技術と同様である。室内温度センサ2が、室内の実温度を測定する。本発明では、PLC19、インバータ15,16、CPU20を更に備えている。
【0020】
PLC19は、可変冷媒流量(Variable Refrigerant Volume、略称VRV)制御システムを行うための制御装置である。インバータ15,16は、それぞれ冷温水ポンプ10、冷却水ポンプ13の流量を制御するためのものである。CPU20は、データの管理、室内の設定温度の変更を行うためのものであり、具体的にはパソコンである。室内の設定温度の変更は、従来の技術と同様に各室内で行うようにしてもよい。そして、各室内でファンコイルユニット1のファンは、実温度と設定温度の差の信号により決められた負荷に基づきファンコイル制御ユニット3により発進停止、速度について運転が制御されていることも従来の技術と同様である。
【0021】
PLC19に入力されるのは、室内温度センサ2において測定された実温度の信号、CPU20又は室内で設定された室内の設定温度信号、冷温水往温度センサ18の信号である。なお、冷温水往温度センサ18は、既存の冷温水往温度センサ11と共通でもよい。
【0022】
PLC19において、総負荷熱量が演算される。総負荷熱量は次のようにして求められる。まず、各室内の設定温度と実温度との差(ファンコイルユニット負荷)を導入し、各室のファンコイルの容量、空気容積、吸収熱量、放出熱量から算出し、負荷熱量とする。負荷熱量は熱負荷とも呼ばれ、空調の技術分野の文献(例えば、上記非特許文献1参照)で解説されており、ここでは詳しい説明を省略する。負荷熱量について各室の総計を総負荷熱量とする。この総負荷熱量の値をPLC19に入力し、PLC19はインバータ15により、冷温水ポンプ10の流量、具体的にはポンプの回転数を制御している。冷房時には冷却水ポンプ13の流量もインバータ16により制御する。
【0023】
ここで、インバータとは、トランジスタやサイリスタのスイッチ作用を利用して、直流から交流を得るようにしたものである。家庭用エアコンの電源等において既に用いられているものであり、商用電源の交流から整流回路により一旦直流にして、インバータにより交流にし、その周波数によりモータの回転数を制御するもので、きめ細かく出力を制御し消費電力を低減し、室内の温度変動を少なくすることができる。
【0024】
本発明のセントラル冷暖房設備においては、インバータ制御による省エネ率Rは、冷温水ポンプ、冷却水ポンプの単位時間あたりの消費出力をカッコで示すと、次式で表される。
【0025】
R={(冷却水ポンプ)+(冷温水ポンプ)}×{1−(制御負荷率/100)
また、VRV制御による省エネルギ値Eは、次式で表される。
【0026】
={(冷却水ポンプ)+(冷温水ポンプ)}×R×(稼働率)
本発明において、冷温水往温度又は冷却水往温度により、冷温水発生機の発進停止を行い、総負荷熱量により、また冷温水ポンプ又は冷温水ポンプ及び冷却水ポンプの運転をインバータで制御している、制御の具体的態様は、装置の仕様等を考慮して設計される。以下に示す運転状態はその一例である。
【0027】
図2は、本発明のセントラル冷暖房設備における暖房の場合の冷温水発生機と冷温水ポンプの運転状態の一例を示す図である。
【0028】
(1)の時点で、冷温水往温度が下限よりも下降し始めたら冷温水発生機9を運転させる。
【0029】
(1)の時点で同時に、冷温水ポンプ10を運転させる。
【0030】
(2)の時点で、冷温水往温度が上限よりも上昇し始めたら冷温水発生機9を停止させる。
【0031】
(3)の時点で、冷温水ポンプ10の希釈時間(熱源の冷却時間)を考慮して希釈時間が終了し、冷温水ポンプ10が停止する。
【0032】
(1)〜(3)の期間で、冷温水ポンプ10の流量は総負荷熱量の値によりインバータ15で連続的に制御される。(1)〜(3)の期間の前半では大流量であり、後半では小流量となる。冷温水ポンプ10を具体的にどのような流量(ポンプ回転数)で制御するかは、例えば現時点の総負荷熱量の値と同時に冷温水往温度センサ11からの冷温水往温度信号と流量を考慮し、総負荷熱量の増減傾向(微分値)を予測し、最も少ない流量、つまり総負荷熱量が一制御単位時間に指定範囲内に入るぎりぎり(最低の)流量とする。
【0033】
冷房の場合は、既に述べたとおり冷却水往温度により、冷温水発生機9の発進停止が行われる。冷温水ポンプ10は、冷温水発生機9発進と同時に運転し、希釈時間が終了すると停止する。流量は、冷房時の総負荷熱量の値により制御される。また、冷温水ポンプ10と同時に冷却水ポンプ13も制御される。すなわち、冷却水ポンプ13は、冷温水発生機9発進と同時に運転し、希釈時間が終了すると停止する。流量は、冷房時の総負荷熱量の値により制御されるが、冷却水往温度や外気温度も考慮して、演算しても良い。
【0034】
このように本発明においては、冷温水ポンプ又は冷却水ポンプの運転をきめ細かく制御し、両ポンプの消費電力を著しく削減することができ。また、余熱を十分に利用し、その結果、冷温水発生機の休止時間が長くなり、稼働率を下げることができる。
【0035】
なお、冷温水ポンプ10が停止している間は、ファンコイルユニット1の運転を停止している。
【0036】
ところで、従来の技術においても室内の換気を目的として外調機と排気ファンは備えられており、これらは制御せずに運転し続けるのが普通であった。本発明においては、外調機と排気ファンについて従来通りに運転してもよいが、省エネルギの観点から運転を制御してもよい。
【0037】
すなわち、あらかじめ指定された換気回数は保つものの、外調機4が消費する熱量が大きい場合は、外気が一定温度以下で、冷温水ポンプ10が停止している間は、外調機4のファン及び排気ファン8の運転を停止してもよい。すなわち、外調機送風温度センサ6で測定した外気温度により、外調機4のファン及び排気ファン8の発進停止を制御している。
【0038】
【発明の効果】
以上説明したように、本発明は、ファンコイルユニットの負荷に基づく総負荷熱量により、冷温水ポンプ又は冷温水ポンプ及び冷却水ポンプの運転をインバータで制御し、冷温水ポンプ又は冷却水ポンプの運転をきめ細かく制御し、冷温水発生機の発進停止を行い、その結果冷温水発生機の稼働率を下げ、設備全体として省エネルギを実現したセントラル冷暖房設備及びその運転制御方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態における冷温水発生機(熱源)を用いたファンコイル方式のセントラル冷暖房設備を示す図
【図2】同じくセントラル冷暖房設備における、暖房の場合の冷温水発生機と冷温水ポンプの運転状態の一例を示す図
【図3】従来の冷温水発生機(熱源)を用いたファンコイル方式のセントラル冷暖房設備の概略図
【符号の説明】
1 ファンコイルユニット
2 室内温度センサ
4 外調機
6 外調機送風温度センサ
8 排気ファン
9 冷温水発生機(熱源)
10 冷温水ポンプ
13 冷却水ポンプ
15,16 インバータ
17 熱源制御盤
18 冷温水往温度センサ
19 プログラム可能論理制御装置(PLC)
20 CPU
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a central heating / cooling facility using a hot / cold water generator (heat source) and an operation control method thereof.
[0002]
[Prior art]
Conventionally, in a large multi-room building, central cooling and heating equipment is provided.This central cooling and heating equipment is provided with a cooling and heat source device for the entire building at the center, and a plurality of air conditioners and terminal units are connected by a common pipe. The fan coil unit method is widely used among various methods. In this fan coil unit system, a large number of units (fan coil units) in which an air cooling / heating coil and a small electric fan are combined in a casing are arranged, and a cooling machine or a boiler in the central machine room is provided with the fan coil unit. Sends cold water and hot water for heating. Since the unit alone does not provide sufficient ventilation, freshly treated fresh air is sent to each room via ducts. This method has an advantage that the temperature can be adjusted for each room in a multi-room building such as a hospital.
[0003]
FIG. 3 is a schematic diagram of a fan coil type central cooling and heating facility using a conventional cold and hot water generator (heat source).
[0004]
31 is a cold / hot water generator (heat source), 32 is a heat source control panel, 33 is a cold / hot water pump, 34 is a cooling water pump, 35 is a cooling tower, 36 is an external controller for taking in outside air, 37 is a fan coil unit, 38 is a cold / hot water temperature sensor, 39 is a cooling water temperature sensor, and 40 is an indoor temperature sensor. The cold / hot water pump 33 and the cooling water pump 34 are provided on the return path, and the cold / hot water forward temperature sensor 38 and the cooling water forward temperature sensor 39 are provided on the forward path.
[0005]
The cold / hot water generator 31 is typically a boiler and a refrigerator. During heating, hot water is supplied by burning gas or oil in the boiler and exchanging heat with heated water. During cooling, the cooling water cooled by the refrigerator is sent to the cooling tower 35 by the cooling water pump 34. The start of the chilled / hot water generator 31 is stopped (on-off) by the signal of the chilled / hot water outgoing temperature sensor 38 by the heat source control panel 32 while the operation at the time of heating is permitted. That is, the boiler is ignited when the cold / hot water outgoing temperature falls below the lower limit value, and the combustion stops when it goes above the upper limit value. While the operation is permitted, the cold / hot water pump 33 continues to operate.
[0006]
Further, the cooling / heating water generator 31 is stopped by the heat source control panel 32 based on the signal of the cooling water upstream temperature sensor 39 while the cooling operation is permitted. That is, if the upstream temperature of the cooling water rises above the upper limit, freezing is performed, and if the temperature falls below the lower limit, freezing is stopped. While the operation is permitted, the cold / hot water pump 33 continues to operate. The cooling water pump 34 continues to operate, and the cooling tower fan operates when the cooling water rises above the upper limit, and stops when the cooling water falls below the lower limit.
[0007]
Usually, a plurality of fan coil units 37 and indoor temperature sensors 40 are installed, and the indoor temperature sensor 40 has a function of measuring the actual indoor temperature and setting the indoor temperature to a desired temperature. The start and stop of the fan of the fan coil unit 37 are controlled by the load determined by the signal indicating the difference between the actual temperature and the set temperature, and the operation of the fan is controlled.
[0008]
[Non-patent document 1]
Junhei Ohara, "Air Conditioning for One Million People," Ohmsha, December 10, 2002, p. 74-116
[0009]
[Problems to be solved by the invention]
Such central heating and cooling equipment is indispensable as a comfortable living environment, but generally consumes large amounts of energy, directly electricity and fuel, and also uses fossil fuels. The use emits a considerable amount of CO 2 gas. On the other hand, emission control of CO 2 gas to save resources and prevent global warming is attracting attention as a global issue, and measures are being sought. It is hoped that this will be realized in a targeted manner.
[0010]
In the conventional central air conditioning and heating, as shown in FIG. 3, the total energy amount E 1 used in summer, indicating consumption power per unit time of each device in parentheses, expressed by the following equation.
[0011]
E 1 = {(cooling water pump) + (cooling / heating water pump) + (cooling tower)
+ (Cold and hot water generator)} × 24h × operation dates Also, spring and autumn and winter of using the total amount of energy E 2 is,
E 2 = {(cold / hot water pump) + (cold / hot water generator)} × 24h × number of operating days However, although the operation of the fan coil unit 37 is controlled by the load, the chill / hot water pump 33 has a large capacity. The apparatus is operated all the time, and the cooling water pump is also operated all the time during cooling. The load on the fan coil unit 37 varies depending on the season, but is not monitored. Although the starting and stopping of the cold / hot water generator 31 is performed by the heat source control panel 32, the operation continues even when the fan coil unit 37 side is not loaded. In the building where the office is occupied, the energy consumption for cooling and heating throughout the year accounts for a large proportion of the energy consumption of other, for example, lighting, and the conventional technology has been improved in terms of energy saving. It can be said that there is room.
[0012]
Therefore, the present invention controls the operation of the chilled / hot water pump or the chilled / hot water pump and the chilled water pump with an inverter based on the total load heat amount based on the load of the fan coil unit, and finely controls the operation of the chilled / hot water pump or the cooling water pump. As a result, it is an object of the present invention to provide a central cooling and heating facility and a method for operating the same, which reduce the operation rate of the hot and cold water generator and realize energy saving as a whole facility.
[0013]
[Means for Solving the Problems]
In order to solve the above-described problems, the central cooling and heating equipment of the present invention has a cold / hot water generator, a heat source control panel, a cold / hot water pump, a cooling water pump, a fan coil unit, and has a cold / hot water outgoing temperature or a cooling water outgoing temperature. In the central cooling and heating equipment for stopping the start of the chilled / hot water generator, the sum of the load heat obtained by introducing the difference signal between the indoor set temperature and the actual temperature measured by the indoor temperature sensor for all the rooms is referred to as the total load calorie. And a programmable logic controller for controlling the operation of the cold / hot water pump or the cold / hot water pump and the cooling water pump by an inverter based on the total load calorific value.
[0014]
Further, the operating method of the central cooling / heating equipment of the present invention includes a cold / hot water generator, a heat source control panel, a cold / hot water pump, a cooling water pump, a fan coil unit, In the operation control method of the central air-conditioning system that stops the start and stop of the generator, the total load of all rooms obtained by introducing the difference signal between the indoor set temperature and the actual temperature measured by the indoor temperature sensor is calculated as the total load. The operation of the cold / hot water pump or the cold / hot water pump and the cooling water pump is controlled by an inverter based on the total load heat.
[0015]
With the above configuration, energy saving can be realized for the entire equipment.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
[0017]
FIG. 1 is a diagram illustrating a fan coil type central cooling and heating facility using a cold and hot water generator (heat source) according to an embodiment of the present invention.
[0018]
1 is a fan coil unit, 2 is an indoor temperature sensor, 3 is a fan coil control unit, 4 is an external controller, 5 is a motor valve, 6 is an external controller air temperature sensor, 7 is an external controller proportional controller, 8 is Exhaust fan, 9 is a cold / hot water generator, 10 is a cold / hot water pump, 11 is a cold / hot water upstream temperature sensor, 12 is a cooling tower, 13 is a cooling pump, 14 is a cooling water upstream temperature sensor, 15 and 16 are inverters, 17 is A heat source control board, 18 is a cold / hot water temperature sensor, 19 is a programmable logic controller (abbreviated PLC), and 20 is a CPU.
[0019]
The chilled / hot water generator 9 is turned off (on-off) by the heat source control panel 17 based on the signal of the chilled / hot water temperature sensor 11 during heating and based on the signal of the chilled water temperature sensor 14 during cooling. What is performed is the same as in the prior art. The indoor temperature sensor 2 measures the actual indoor temperature. The present invention further includes a PLC 19, inverters 15 and 16, and a CPU 20.
[0020]
The PLC 19 is a control device for performing a variable refrigerant flow rate (Variable Referent Volume, abbreviated to VRV) control system. The inverters 15 and 16 are for controlling the flow rates of the cold / hot water pump 10 and the cooling water pump 13, respectively. The CPU 20 manages data and changes the set temperature in the room, and is specifically a personal computer. The change of the set temperature in the room may be performed in each room similarly to the conventional technology. Also, the operation of the fan of the fan coil unit 1 in each room is controlled by the fan coil control unit 3 based on the load determined by the signal of the difference between the actual temperature and the set temperature. Same as technology.
[0021]
The signals input to the PLC 19 are the actual temperature signal measured by the indoor temperature sensor 2, the indoor set temperature signal set by the CPU 20 or the indoor, and the signal from the cold / hot water temperature sensor 18. Note that the cold / hot water outgoing temperature sensor 18 may be common to the existing cold / hot water outgoing temperature sensor 11.
[0022]
In the PLC 19, the total load calorie is calculated. The total load calorie is determined as follows. First, the difference between the set temperature in each room and the actual temperature (fan coil unit load) is introduced, and the load heat amount is calculated from the capacity of the fan coil in each room, the air volume, the absorbed heat amount, and the released heat amount. The heat load is also referred to as a heat load, and is described in a document in the technical field of air conditioning (for example, see Non-Patent Document 1), and a detailed description thereof will be omitted. Regarding the load calorific value, the total of each room is defined as the total load calorie. The value of the total heat load is input to the PLC 19, and the PLC 19 controls the flow rate of the chilled / hot water pump 10, specifically, the rotation speed of the pump, by the inverter 15. During cooling, the flow rate of the cooling water pump 13 is also controlled by the inverter 16.
[0023]
Here, the inverter is configured to obtain an alternating current from a direct current using a switching action of a transistor or a thyristor. It is already used in the power supply of home air conditioners, etc., and is converted from AC of commercial power to DC once by a rectifier circuit, converted to AC by an inverter, and the frequency of the motor is controlled, and the output is finely controlled. By controlling, power consumption can be reduced and indoor temperature fluctuation can be reduced.
[0024]
In the central cooling and heating equipment of the present invention, the energy saving rate R by the inverter control is expressed by the following equation when the consumption output per unit time of the cooling / heating water pump and the cooling water pump is shown in parentheses.
[0025]
R = {(cooling water pump) + (cold / hot water pump)} × {1- (control load factor / 100) 3 }
Moreover, energy saving value E R by VRV control is expressed by the following equation.
[0026]
E R = {(cooling water pump) + (cold / hot water pump)} × R × (operating rate)
In the present invention, the starting and stopping of the chilled / hot water generator is performed according to the chilled / hot water outgoing temperature or the chilled water outgoing temperature, and the operation of the chilled / hot water pump or the chilled / hot water pump and the cooling water pump is controlled by an inverter according to the total load heat quantity. The specific mode of the control is designed in consideration of the specifications of the apparatus. The following operating conditions are examples.
[0027]
FIG. 2 is a diagram showing an example of the operating state of the cold / hot water generator and the cold / hot water pump in the case of heating in the central cooling / heating facility of the present invention.
[0028]
At the time of (1), when the cold / hot water forward temperature starts to fall below the lower limit, the cold / hot water generator 9 is operated.
[0029]
At the same time as (1), the cold / hot water pump 10 is operated.
[0030]
At the time of (2), if the cold / hot water forward temperature starts to rise above the upper limit, the cold / hot water generator 9 is stopped.
[0031]
At the time point (3), the dilution time is finished in consideration of the dilution time of the cold / hot water pump 10 (cooling time of the heat source), and the cold / hot water pump 10 stops.
[0032]
In the periods (1) to (3), the flow rate of the cold / hot water pump 10 is continuously controlled by the inverter 15 according to the value of the total load calorific value. In the first half of the period (1) to (3), the flow rate is large, and in the second half, the flow rate is small. The specific flow rate (pump rotation speed) of the chilled / hot water pump 10 is controlled by, for example, considering the value of the current total load calorific value and the chilled / hot water incoming temperature signal from the chilled / hot water incoming temperature sensor 11 and the flow rate. Then, the increase / decrease tendency (differential value) of the total load calorie is predicted, and the smallest flow rate, that is, the flow rate (minimum) just before the total load calorie falls within the specified range in one control unit time is set.
[0033]
In the case of cooling, the start of the cold / hot water generator 9 is stopped according to the temperature of the cooling water as described above. The cold / hot water pump 10 operates at the same time as the cold / hot water generator 9 starts, and stops when the dilution time is over. The flow rate is controlled by the value of the total load calorific value during cooling. In addition, the cooling water pump 13 is controlled simultaneously with the cooling and heating water pump 10. That is, the cooling water pump 13 is operated simultaneously with the start of the cold / hot water generator 9, and stops when the dilution time is over. The flow rate is controlled by the value of the total load calorific value during cooling, but may be calculated in consideration of the outgoing water temperature and the outside air temperature.
[0034]
As described above, in the present invention, the operation of the cold / hot water pump or the cooling water pump can be finely controlled, and the power consumption of both pumps can be significantly reduced. In addition, the residual heat is sufficiently used, and as a result, the downtime of the cold / hot water generator becomes longer, and the operating rate can be reduced.
[0035]
The operation of the fan coil unit 1 is stopped while the cold / hot water pump 10 is stopped.
[0036]
By the way, also in the prior art, an external air conditioner and an exhaust fan are provided for the purpose of indoor ventilation, and these are usually operated without being controlled. In the present invention, the external controller and the exhaust fan may be operated as usual, but the operation may be controlled from the viewpoint of energy saving.
[0037]
That is, if the amount of heat consumed by the air conditioner 4 is large, although the ventilation frequency specified in advance is maintained, the fan of the air conditioner 4 is operated while the temperature of the outside air is equal to or lower than a certain temperature and the cold / hot water pump 10 is stopped. The operation of the exhaust fan 8 may be stopped. That is, the start and stop of the fan of the air conditioner 4 and the exhaust fan 8 are controlled based on the outside air temperature measured by the air temperature sensor 6 for the air conditioner.
[0038]
【The invention's effect】
As described above, according to the present invention, the operation of the cold / hot water pump or the cold / hot water pump and the cooling water pump is controlled by the inverter based on the total heat load based on the load of the fan coil unit, and the operation of the cold / hot water pump or the cooling water pump is operated. , The start and stop of the chilled / hot water generator is performed, and as a result, the operation rate of the chilled / hot water generator is reduced, and a central cooling / heating facility and an operation control method for the energy saving as a whole facility can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing a fan coil type central cooling and heating system using a cold and hot water generator (heat source) according to an embodiment of the present invention. FIG. FIG. 3 shows an example of an operation state of a chilled / hot water pump. FIG. 3 is a schematic diagram of a fan coil type central cooling / heating facility using a conventional chilled / hot water generator (heat source).
DESCRIPTION OF SYMBOLS 1 Fan coil unit 2 Room temperature sensor 4 Outside air conditioner 6 Outside air temperature sensor 8 Exhaust fan 9 Cold / hot water generator (heat source)
Reference Signs List 10 cold / hot water pump 13 cooling water pump 15, 16 inverter 17 heat source control panel 18 cold / hot water upstream temperature sensor 19 programmable logic controller (PLC)
20 CPU

Claims (4)

冷温水発生機、熱源制御盤、冷温水ポンプ、冷却水ポンプ、ファンコイルユニットを有し、冷温水往温度又は冷却水往温度により前記冷温水発生機の発進停止を行うセントラル冷暖房設備において、室内設定温度と室内温度センサで測定された実温度との差信号を導入して求められる負荷熱の全室についての総和を総負荷熱量とし、前記総負荷熱量により前記冷温水ポンプ又は前記冷温水ポンプ及び前記冷却水ポンプの運転をインバータで制御するプログラム可能論理制御装置を備えたことを特徴とするセントラル冷暖房設備。In a central cooling / heating facility having a cold / hot water generator, a heat source control panel, a cold / hot water pump, a cooling water pump, a fan coil unit, and stopping the start of the cold / hot water generator according to a cold / hot water outgoing temperature or a cooling water outgoing temperature, The sum of the load heat obtained by introducing the difference signal between the set temperature and the actual temperature measured by the indoor temperature sensor for all the rooms is defined as the total load heat, and the cold / hot water pump or the cold / hot water pump is used according to the total load heat. And a programmable logic controller for controlling the operation of the cooling water pump by an inverter. 前記プログラム可能論理制御装置は、さらに外調機の送風温度センサで測定された温度により外調機のファンと排気ファンの発進停止を行うことを特徴とする請求項1に記載のセントラル冷暖房設備。The central cooling and heating system according to claim 1, wherein the programmable logic controller further stops the start of the fan and the exhaust fan of the external controller based on the temperature measured by the air temperature sensor of the external controller. 前記プログラム可能論理制御装置に、データ管理及び設定温度の変更を行うCPUを接続したことを特徴とする請求項1又は2に記載のセントラル冷暖房設備。The central heating and cooling equipment according to claim 1 or 2, wherein a CPU for performing data management and changing a set temperature is connected to the programmable logic controller. 冷温水発生機、熱源制御盤、冷温水ポンプ、冷却水ポンプ、ファンコイルユニットを有し、冷温水往温度及び冷却水往温度により前記冷温水発生機の発進停止を行うセントラル冷暖房設備の運転制御方法において、室内設定温度と室内温度センサで測定された実温度との差信号を導入して求められる負荷熱の全室についての総和を総負荷熱量とし、前記総負荷熱量により前記冷温水ポンプ又は前記冷温水ポンプ及び前記冷却水ポンプの運転をインバータで制御することを特徴とするセントラル冷暖房設備の運転制御方法。Operation control of central cooling and heating equipment that has a chilled / hot water generator, a heat source control panel, a chilled / hot water pump, a chilled water pump, and a fan coil unit, and that starts and stops the chilled / hot water generator based on the cold / hot water outgoing temperature and the cooling water outgoing temperature In the method, the total load calorie of the load heat obtained by introducing a difference signal between the indoor set temperature and the actual temperature measured by the indoor temperature sensor is taken as the total load calorie, and the cold / hot water pump or An operation control method for a central cooling / heating facility, wherein the operation of the cold / hot water pump and the cooling water pump is controlled by an inverter.
JP2003104212A 2003-04-08 2003-04-08 Central air conditioning and heating equipment and its operation control method Pending JP2004309032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003104212A JP2004309032A (en) 2003-04-08 2003-04-08 Central air conditioning and heating equipment and its operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104212A JP2004309032A (en) 2003-04-08 2003-04-08 Central air conditioning and heating equipment and its operation control method

Publications (1)

Publication Number Publication Date
JP2004309032A true JP2004309032A (en) 2004-11-04

Family

ID=33467104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104212A Pending JP2004309032A (en) 2003-04-08 2003-04-08 Central air conditioning and heating equipment and its operation control method

Country Status (1)

Country Link
JP (1) JP2004309032A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300515C (en) * 2004-12-07 2007-02-14 宁波华普工业控制技术有限公司 Central air conditioning variable frequency energy saving control method
WO2007138734A1 (en) * 2006-05-29 2007-12-06 Hasegawa Electric Industry Co., Ltd Operation control method of cold and hot water pump in air conditioning facility
CN100445655C (en) * 2007-01-23 2008-12-24 贵州汇通华城楼宇科技有限公司 Heating ventilating and air conditioning hydraulic dynamic regulation method and device based on energy distribution equilibrium
JP2010029153A (en) * 2008-07-31 2010-02-12 Konai Denki Kogyosho:Kk Heater for protected horticulture
JP2010084951A (en) * 2008-09-29 2010-04-15 Mitsubishi Electric Corp Air conditioning device
CN102022799A (en) * 2009-09-19 2011-04-20 袁恒杰 Energy-saving control method for central air conditioner system
CN102418965A (en) * 2011-09-16 2012-04-18 浙江大学 Multifunctional frequency conversion central air-conditioning experimental platform
CN102538152A (en) * 2010-12-08 2012-07-04 无锡华润上华科技有限公司 Water system for air conditioner
CN102721156A (en) * 2012-06-30 2012-10-10 李钢 Central air-conditioning self-optimization intelligent fuzzy control device and control method thereof
CN103047714A (en) * 2013-01-07 2013-04-17 无锡永信能源科技有限公司 Bi-directional flow matching system and bi-directional flow matching method for end and host of central air-conditioner
CN103149039A (en) * 2012-12-21 2013-06-12 党亚峰 Energy-saving assessment system of central air-conditioning system
CN103322653A (en) * 2013-07-11 2013-09-25 武汉光谷节能技术有限公司 Central air-conditioner energy-saving automatic control system and method
CN105004002A (en) * 2015-07-06 2015-10-28 西安建筑科技大学 Energy saving control system and energy saving control method used for central air conditioner cooling water system
CN105371443A (en) * 2015-12-07 2016-03-02 北京建筑大学 Control device for air-conditioning cooling water system and data processing method of main control module of control device
CN107741080A (en) * 2017-10-12 2018-02-27 广东美的暖通设备有限公司 Central air-conditioning starting-up method, device and central air-conditioning
CN108036482A (en) * 2017-12-11 2018-05-15 珠海格力电器股份有限公司 A kind of Heating,Ventilating and Air Conditioning control method and control system
CN111503837A (en) * 2019-01-30 2020-08-07 新奥数能科技有限公司 Method and device for regulating and controlling variable air volume central air-conditioning system
CN111594990A (en) * 2020-04-30 2020-08-28 江苏省同远节能科技有限公司 Efficient energy-saving control system for central air conditioner
CN113865014A (en) * 2021-09-14 2021-12-31 浙江中控技术股份有限公司 Energy consumption coordination optimization method, device and equipment for large-scale cold water air-conditioning system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110572A (en) * 1990-08-28 1992-04-13 Sanyo Electric Co Ltd Control device for absorption type freezer
JPH05264116A (en) * 1992-03-16 1993-10-12 Hitachi Ltd Absorption type cold-hot water device
JPH08114347A (en) * 1994-10-18 1996-05-07 Yamatake Honeywell Co Ltd Free cooling control device
JPH08178396A (en) * 1994-12-28 1996-07-12 Daikin Ind Ltd Air conditioning equipment
JPH09243141A (en) * 1996-03-07 1997-09-16 Kajima Corp Air blowing temperature control device for outdoor air conditioner
JPH10170179A (en) * 1996-12-04 1998-06-26 Sanyo Electric Co Ltd Air conditioning apparatus
JPH11287528A (en) * 1992-09-18 1999-10-19 Hitachi Ltd Multitype absorption air-conditioning system
JP2000121130A (en) * 1998-10-15 2000-04-28 Fujita Corp Outer air cooling system
JP2001027438A (en) * 1999-07-15 2001-01-30 Aakutoron Kk Control device for indoor electric appliance
JP2002286260A (en) * 2001-03-23 2002-10-03 Mitsubishi Electric Corp Ventilator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110572A (en) * 1990-08-28 1992-04-13 Sanyo Electric Co Ltd Control device for absorption type freezer
JPH05264116A (en) * 1992-03-16 1993-10-12 Hitachi Ltd Absorption type cold-hot water device
JPH11287528A (en) * 1992-09-18 1999-10-19 Hitachi Ltd Multitype absorption air-conditioning system
JPH08114347A (en) * 1994-10-18 1996-05-07 Yamatake Honeywell Co Ltd Free cooling control device
JPH08178396A (en) * 1994-12-28 1996-07-12 Daikin Ind Ltd Air conditioning equipment
JPH09243141A (en) * 1996-03-07 1997-09-16 Kajima Corp Air blowing temperature control device for outdoor air conditioner
JPH10170179A (en) * 1996-12-04 1998-06-26 Sanyo Electric Co Ltd Air conditioning apparatus
JP2000121130A (en) * 1998-10-15 2000-04-28 Fujita Corp Outer air cooling system
JP2001027438A (en) * 1999-07-15 2001-01-30 Aakutoron Kk Control device for indoor electric appliance
JP2002286260A (en) * 2001-03-23 2002-10-03 Mitsubishi Electric Corp Ventilator

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300515C (en) * 2004-12-07 2007-02-14 宁波华普工业控制技术有限公司 Central air conditioning variable frequency energy saving control method
US8019480B2 (en) 2006-05-29 2011-09-13 Hasegawa Electric Industry Co., Ltd. Method for controlling cooled or heated water pump of air conditioning installation
WO2007138734A1 (en) * 2006-05-29 2007-12-06 Hasegawa Electric Industry Co., Ltd Operation control method of cold and hot water pump in air conditioning facility
JP2007315717A (en) * 2006-05-29 2007-12-06 Hasegawa Electric Industry Co Operation control method for cold/hot water pump in air conditioning facility
JP4699285B2 (en) * 2006-05-29 2011-06-08 株式会社 長谷川電気工業所 Operation control method of cold / hot water pump in air conditioning equipment
CN100445655C (en) * 2007-01-23 2008-12-24 贵州汇通华城楼宇科技有限公司 Heating ventilating and air conditioning hydraulic dynamic regulation method and device based on energy distribution equilibrium
JP2010029153A (en) * 2008-07-31 2010-02-12 Konai Denki Kogyosho:Kk Heater for protected horticulture
JP2010084951A (en) * 2008-09-29 2010-04-15 Mitsubishi Electric Corp Air conditioning device
CN102022799A (en) * 2009-09-19 2011-04-20 袁恒杰 Energy-saving control method for central air conditioner system
CN102538152A (en) * 2010-12-08 2012-07-04 无锡华润上华科技有限公司 Water system for air conditioner
CN102418965A (en) * 2011-09-16 2012-04-18 浙江大学 Multifunctional frequency conversion central air-conditioning experimental platform
CN102721156A (en) * 2012-06-30 2012-10-10 李钢 Central air-conditioning self-optimization intelligent fuzzy control device and control method thereof
CN102721156B (en) * 2012-06-30 2014-05-07 李钢 Central air-conditioning self-optimization intelligent fuzzy control device and control method thereof
CN103149039A (en) * 2012-12-21 2013-06-12 党亚峰 Energy-saving assessment system of central air-conditioning system
CN103047714A (en) * 2013-01-07 2013-04-17 无锡永信能源科技有限公司 Bi-directional flow matching system and bi-directional flow matching method for end and host of central air-conditioner
CN103047714B (en) * 2013-01-07 2015-09-30 无锡永信能源科技有限公司 Tail end of central air conditioner and main frame bidirectional traffics matching system and matching process thereof
CN103322653A (en) * 2013-07-11 2013-09-25 武汉光谷节能技术有限公司 Central air-conditioner energy-saving automatic control system and method
CN105004002A (en) * 2015-07-06 2015-10-28 西安建筑科技大学 Energy saving control system and energy saving control method used for central air conditioner cooling water system
CN105371443A (en) * 2015-12-07 2016-03-02 北京建筑大学 Control device for air-conditioning cooling water system and data processing method of main control module of control device
CN105371443B (en) * 2015-12-07 2018-10-30 北京建筑大学 The control device of air conditioning cooling water system and its data processing method of main control module
CN107741080A (en) * 2017-10-12 2018-02-27 广东美的暖通设备有限公司 Central air-conditioning starting-up method, device and central air-conditioning
CN108036482A (en) * 2017-12-11 2018-05-15 珠海格力电器股份有限公司 A kind of Heating,Ventilating and Air Conditioning control method and control system
CN111503837A (en) * 2019-01-30 2020-08-07 新奥数能科技有限公司 Method and device for regulating and controlling variable air volume central air-conditioning system
CN111594990A (en) * 2020-04-30 2020-08-28 江苏省同远节能科技有限公司 Efficient energy-saving control system for central air conditioner
CN113865014A (en) * 2021-09-14 2021-12-31 浙江中控技术股份有限公司 Energy consumption coordination optimization method, device and equipment for large-scale cold water air-conditioning system
CN113865014B (en) * 2021-09-14 2023-03-24 浙江中控技术股份有限公司 Energy consumption coordination optimization method, device and equipment for large-scale cold water air-conditioning system

Similar Documents

Publication Publication Date Title
JP2004309032A (en) Central air conditioning and heating equipment and its operation control method
Johnson CoolingLogic™: Mosaic Christian Church A Case Study
CN101135512B (en) Air-conditioning and electric power generating system and control method for the same
CN101070989B (en) Air conditioner control system
JP6244791B2 (en) Air conditioning system
WO2014050227A1 (en) Controller for ventilation device
CN103388856A (en) Multi-split air conditioner system and quick-starting heat generation method
CN101769576B (en) Total energy-saving environmental base station air-conditioning
CN102889650A (en) Integral combination type computer room air conditioning unit and control method thereof
KR20210123080A (en) Controlling method for Air conditioner system
JP2000088316A (en) Equipment for determining set temperature, air conditioning equipment and program recording medium
JP5082585B2 (en) Air conditioning system
CN105352145A (en) Energy-saving control method of central air-conditioner
JP3770223B2 (en) Heating system and housing with heating system
KR101562641B1 (en) Air conditioning system
JP2004293886A (en) Operation control method and device for air conditioner
JP2013015242A (en) Air conditioning operation control system
CN114923269A (en) Floor heating multi-split machine hydraulic module control system and control method thereof
CN201615559U (en) Integral energy-saving and environment-friendly air conditioner for base station
CN201439973U (en) Double-cooling and heating source air handling device
Papakostas et al. Heat recovery in an air-conditioning system with air-to-air heat exchanger
JP5062555B2 (en) Energy saving air conditioning control system
JP3087998B2 (en) Control system for absorption type cold / hot water generator
JP3153713U (en) Cold air supply device using eco water heater
JP2005140367A (en) Method and device for controlling heat source supply water temperature

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20060215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930