JPH04110572A - Control device for absorption type freezer - Google Patents
Control device for absorption type freezerInfo
- Publication number
- JPH04110572A JPH04110572A JP22767190A JP22767190A JPH04110572A JP H04110572 A JPH04110572 A JP H04110572A JP 22767190 A JP22767190 A JP 22767190A JP 22767190 A JP22767190 A JP 22767190A JP H04110572 A JPH04110572 A JP H04110572A
- Authority
- JP
- Japan
- Prior art keywords
- water pump
- control valve
- load
- opening degree
- control device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 102
- 239000000446 fuel Substances 0.000 claims abstract description 58
- 239000000498 cooling water Substances 0.000 claims abstract description 50
- 239000006096 absorbing agent Substances 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 14
- 238000005057 refrigeration Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract 1
- 239000003507 refrigerant Substances 0.000 description 19
- 239000007788 liquid Substances 0.000 description 14
- 230000007423 decrease Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000002745 absorbent Effects 0.000 description 4
- 239000002250 absorbent Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009699 differential effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は吸収冷凍機に関し、特に冷却水ポンプなどの運
転を制御する吸収冷凍機の制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an absorption refrigerating machine, and more particularly to a control device for an absorption refrigerating machine that controls the operation of a cooling water pump and the like.
(ロ)従来の技術
例えば特開昭63−129263号公報には、吸収器及
び凝縮器の冷却水管にクーリングタワー及び冷却水ポン
プを設け、冷却水の温度に応じてクーリングタワーの送
風機の運転を制御する冷却水制御装置を備えた吸収冷凍
機の冷却水制御装置が開示されている。そして、制御装
置には外気温度が低いときに、送風機の運転開始温度と
停止温度との温度幅を小さくする機構が設けられている
。(b) Conventional technology For example, Japanese Patent Application Laid-Open No. 129263/1983 discloses that a cooling tower and a cooling water pump are provided in the cooling water pipes of the absorber and the condenser, and the operation of the blower of the cooling tower is controlled according to the temperature of the cooling water. A cooling water control device for an absorption refrigerator that includes a cooling water control device is disclosed. The control device is provided with a mechanism that reduces the temperature range between the operation start temperature and the stop temperature of the blower when the outside air temperature is low.
(ハ)発明が解決しようとする課題
上記従来の技術において、一般に吸収冷凍機の負荷を例
えば再生器の燃料制御弁に取り付けたカムスイッチによ
り読み取り、所定時間低負荷の状態(例えは50%以下
)が続いた場合、或いは所定時間高負荷の状態(例えば
75%以下)が続いた場合、タイマを用いたりレージ−
ケンスにより冷却水の流量を制御する。(c) Problems to be Solved by the Invention In the above-mentioned conventional technology, the load of the absorption refrigerator is generally read by a cam switch attached to the fuel control valve of the regenerator, and the load is kept low for a predetermined period of time (for example, 50% or less). ) continues, or if the high load continues for a certain period of time (e.g. 75% or less), use a timer or
The flow rate of cooling water is controlled by a can.
このように、カムスイッチと、リレーシーケンスのタイ
マを用いている場合、例えば燃料制御弁の開度が50%
以下の状態が10分分間−たときに低負荷を検知しよう
とするとさ、負荷が45%の状態が例えば9分間連続し
た場合でも、瞬時の外乱或いは燃料制御弁の例えばPI
D制御のうちの微分制御によって、−瞬でも制御弁開度
か50%を越えると、タイマがリセットきれ、その後、
制御弁開度が50%以下になり、負荷が平均的には50
%以下であるにもかかわらず、制御装置は低負荷を検知
しないので、冷却水ポンプの制御か行われないという問
題が発生する。In this way, when using a cam switch and a relay sequence timer, for example, if the opening of the fuel control valve is 50%
If you try to detect a low load when the following conditions have been present for 10 minutes, even if the load is 45% for 9 minutes in a row, an instantaneous disturbance or a PI of the fuel control valve, etc.
Due to the differential control of the D control, if the control valve opening exceeds 50% even at a - moment, the timer is reset, and after that,
The control valve opening is less than 50%, and the load is on average 50%.
% or less, the control device does not detect the low load, so a problem arises in that the cooling water pump is not controlled.
本発明は、負荷の短時間の変動に左右されることなく冷
却水などの流量を制御する吸収冷凍機の制御装置を提供
することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a control device for an absorption refrigerator that controls the flow rate of cooling water or the like without being influenced by short-term fluctuations in load.
(ニ)課題を解決するための手段
本発明は上記課題を解決するために、蒸発器(4)に冷
水ポンプ(24)によって冷水を循環し、吸収器(5〉
、及び凝縮器(3)に冷却水ポンプ(28)によって冷
却水を循環し、高温再生器(1)の燃料制御弁(31)
の開度を蒸発器(4)の冷水出口温度によって制御する
吸収冷凍機の制御装置において、燃料制御弁(31)の
開度を読み込み、この開度の所定時間の移動平均値を算
出し、この移動平均値に基ついて冷水ポンプ(24)或
いは冷却水ポンプ<25)の運転を制御する制御器(3
4)を備えた吸収冷凍機の制御装置を提供するものであ
る。(d) Means for Solving the Problems In order to solve the above problems, the present invention circulates cold water to the evaporator (4) using a cold water pump (24), and the absorber (5)
, and circulate cooling water to the condenser (3) by the cooling water pump (28), and the fuel control valve (31) of the high temperature regenerator (1).
In a control device for an absorption chiller that controls the opening of the fuel control valve (31) according to the cold water outlet temperature of the evaporator (4), the opening of the fuel control valve (31) is read, and a moving average value of this opening over a predetermined time is calculated, A controller (3) controls the operation of the cold water pump (24) or the cooling water pump <25) based on this moving average value.
4) A control device for an absorption refrigerator is provided.
又、燃料制御弁(31)の開度をPID制御する吸収冷
凍機の制御装置において、燃料制御弁(31)の開度を
読み込み、開度の所定時間の移動平均値から負荷の大き
さを検知して冷水ポンプ(24)或いは冷却水ポンプ(
28)の運転を制御する吸収冷凍機の制御装置を提供す
るものである。In addition, in an absorption chiller control device that performs PID control on the opening degree of the fuel control valve (31), the opening degree of the fuel control valve (31) is read and the magnitude of the load is calculated from the moving average value of the opening degree over a predetermined time. It is detected and the cold water pump (24) or the cooling water pump (
The present invention provides a control device for an absorption refrigerator that controls the operation of item 28).
さらに、蒸発器(4)に温水ポンプ(24)によって温
水を循環し、高温再生器(1)の燃料制御弁(31〉の
開度を蒸発器(4)の温水出口温度によって制御する吸
収冷凍機の制御装置において、燃料制御弁(31)の開
度を読み込み、この開度の所定時間の移動平均値を算出
し、この移動平均値に基づい℃温水ポンプ(24)の運
転を制御する制御器を備えた吸収冷凍機の制御装置を提
供するものである。Furthermore, absorption refrigeration involves circulating hot water to the evaporator (4) by a hot water pump (24), and controlling the opening degree of the fuel control valve (31) of the high temperature regenerator (1) according to the hot water outlet temperature of the evaporator (4). The control device of the machine reads the opening degree of the fuel control valve (31), calculates a moving average value of this opening degree over a predetermined time, and controls the operation of the °C hot water pump (24) based on this moving average value. The present invention provides a control device for an absorption refrigerator equipped with a device.
(*)作用
吸収冷凍機の運転時、制御器<34)は例えばPID制
御される燃料制御弁(31)の開度の移動平均値を算出
し、この移動平均値から負荷の大きさを検知して冷水ポ
ンプ(24)或いは冷却水ポンプ(28)の運転を制御
し、制御器(34)は短時間の負荷の変化を吸収するの
で、平均的な負荷を検知して、冷水ポンプ(24)、或
いは冷却水ポンプ(28)の運転を制御することが可能
になる。(*) During operation of the action absorption refrigerator, the controller <34) calculates a moving average value of the opening degree of the fuel control valve (31), which is controlled by PID, for example, and detects the magnitude of the load from this moving average value. The controller (34) absorbs short-term load changes, so it detects the average load and controls the operation of the cold water pump (24) or the cooling water pump (28). ), or the operation of the cooling water pump (28) can be controlled.
又、蒸発器(4)から温水ポンプ(24〉によって温水
を供給する場合にも、制御器は温水の負荷に応じて変化
する燃料制御弁(31)の開度を読み込み、この開度の
移動平均値を算出し、短時間の負荷の変化があった場合
にも移動平均値から温水負荷の大きさを検知して温水ポ
ンプ(24)の運転を制御することが可能になる。Also, when hot water is supplied from the evaporator (4) by the hot water pump (24), the controller reads the opening degree of the fuel control valve (31), which changes depending on the load of hot water, and changes the opening degree. By calculating the average value, even if there is a short-term load change, it is possible to detect the magnitude of the hot water load from the moving average value and control the operation of the hot water pump (24).
(へ)実施例
以下、本発明の一実施例を図面に基づいて詳細に説明す
。(F) Example Hereinafter, an example of the present invention will be described in detail based on the drawings.
第1図に示したものは二重効用吸収冷温水機であり、冷
媒に水(H,0)、吸収剤(吸収液)に臭化ノチウム(
LiBr)水溶液を使用したものである。The one shown in Figure 1 is a dual-effect absorption chiller/heater, with water (H, 0) as the refrigerant and notium bromide (absorbent) as the absorbent (absorbing liquid).
LiBr) aqueous solution was used.
第1図において、(1)はガスバーナ(IB)を備えた
高温再生器、(2)は低温再生器、(3)は凝縮器、(
4〉は蒸発器、〈5)は吸収器、(6〉は低温熱交換器
、(7)は高温熱交換器、(8) 、 (9) 、 (
9A) 、 (10)。In Figure 1, (1) is a high temperature regenerator equipped with a gas burner (IB), (2) is a low temperature regenerator, (3) is a condenser, (
4> is an evaporator, <5) is an absorber, (6> is a low temperature heat exchanger, (7) is a high temperature heat exchanger, (8), (9), (
9A), (10).
<11) 、 (12>は吸収液配管、(9a)は第1
開閉弁、く15)は吸収液ポンプ、(16> 、 (1
6A) 、 (17) 、 <18)は冷媒配管、(1
6a )は第2開閉弁、(19)は冷媒ポンプ、(22
)は冷水配管、<22A)は蒸発器熱交換器、(23)
は冷媒ブロー管、(23a)は第3開閉弁であり、それ
ぞれは第1図に示したように配管接続されている。又、
(24)は、冷水配管(22)に設けられた冷水ポンプ
である。〈25)は冷却水配管であり、この冷却水配管
(25)の途中には吸収器熱交換器(26)、及び凝縮
器熱交換器(27)、冷却水ポンプ(28)が設けられ
ている。<11), (12> are absorption liquid piping, (9a) is the first
The on-off valve, (15) is the absorption liquid pump, (16>, (1
6A), (17), <18) are refrigerant piping, (1
6a) is the second on-off valve, (19) is the refrigerant pump, (22)
) is cold water piping, <22A) is evaporator heat exchanger, (23)
(23a) is a refrigerant blow pipe, and (23a) is a third on-off valve, each of which is connected to the piping as shown in FIG. or,
(24) is a cold water pump provided in the cold water pipe (22). <25) is a cooling water pipe, and an absorber heat exchanger (26), a condenser heat exchanger (27), and a cooling water pump (28) are installed in the middle of this cooling water pipe (25). There is.
(30)は蒸発器(4)の出口側の冷水配管(22)に
取付けられた冷水出口温度検出器、<31)は高温再生
器(1)の燃料供給管(IA)に設けられた燃料制御弁
(加熱量制御弁)、(32)は吸収冷温水機の制御盤で
あり、この制御盤(32)には負荷に応して燃料制御弁
(31)の開度を制御する第1制御器(33)と、冷水
ポンプ(24)、及び冷却水ポンブク28)の運転を制
御する第2制御器(34)とを備えている。第1制御器
(33)はマイクロコンビコータから構成され、冷水出
口温度検出器から温度信号を入力して、負荷に応じて燃
料制御弁(31)へ信号を出力する。又、第1制御器(
33)は燃料制御弁(31)に設けられた例えばポテン
ショメータ(図示せず)から開度信号を入力して冷水出
口温度に応じて開度を例えばPID制御する。又、第2
制御器(34)はマイクロコンピュータから構成され、
第1制御器(33)から例えば1分毎に燃料制御弁開度
の信号を入力し、例えば5分間の燃料制御弁開度の移動
平均値を算出する。ここで、燃料制御弁開度の移動平均
値は負荷の移動平均値と等しい。さらに、第2制御器(
34)は、移動平均値が例えば50%以下の状態が所定
時間(例えば10分)続いた場合に冷水ポンプ(24)
、及び冷却水ポンプ(28)へ信号を出力し、それぞれ
のポンプの能力は例えば極数変換によって例えば100
%から50%に低下する。又、第2制御器(34)は冷
水ポンプ(24)、及び冷却水ポンプ〈28)の能力が
50%であるとき、移動平均値が例えは75%以上の状
態が所定時間(例えば10分)続いた場合には、冷水ポ
ンプ(24)、及ヒ冷却水ポンプ(28)への信号を停
止する。そして、各ポンプ(24) 、 (28)の運
転能力は50%から100%に向上する。(30) is a cold water outlet temperature detector attached to the cold water pipe (22) on the outlet side of the evaporator (4), and <31) is a fuel temperature detector attached to the fuel supply pipe (IA) of the high temperature regenerator (1). The control valve (heating amount control valve) (32) is a control panel of the absorption chiller/heater, and this control panel (32) has a first valve that controls the opening degree of the fuel control valve (31) according to the load. It includes a controller (33) and a second controller (34) that controls the operation of the cold water pump (24) and the cooling water pump 28). The first controller (33) is composed of a micro combi coater, receives a temperature signal from the cold water outlet temperature detector, and outputs a signal to the fuel control valve (31) according to the load. Also, the first controller (
33) inputs an opening degree signal from, for example, a potentiometer (not shown) provided in the fuel control valve (31), and performs, for example, PID control of the opening degree according to the cold water outlet temperature. Also, the second
The controller (34) is composed of a microcomputer,
A signal of the fuel control valve opening is inputted from the first controller (33), for example, every minute, and a moving average value of the fuel control valve opening for, for example, 5 minutes is calculated. Here, the moving average value of the fuel control valve opening is equal to the moving average value of the load. Furthermore, the second controller (
34) is a cold water pump (24) when the moving average value remains below 50% for a predetermined period of time (for example, 10 minutes).
, and the cooling water pump (28), and the capacity of each pump can be increased to, for example, 100 by changing the number of poles.
% to 50%. Further, when the capacity of the chilled water pump (24) and the cooling water pump (28) is 50%, the second controller (34) determines whether the moving average value is 75% or more for a predetermined period of time (for example, 10 minutes). ) If this continues, stop the signals to the cold water pump (24) and the second cooling water pump (28). The operating capacity of each pump (24) and (28) is improved from 50% to 100%.
上記吸収冷温水機の冷水供給の運転時、従来の吸収冷温
水機と同様に第1、第2、第3開閉弁(9a) 、 (
16a) 、 (23a)は閉じており、高温再生器(
1)で蒸発した冷媒は低温再生器(2)を経て凝縮器(
3)へ流れ、凝縮器熱交換器(27)を流れる水と熱交
換して凝縮液化した後冷媒配管(17)を介して蒸発器
(4)へ流れる。そして、冷媒が冷水配管(22)内の
水と熱交換して蒸発し、気化熱によって冷水配管(22
)内の水が冷却される。そして、冷水が負荷に循環して
冷房運転が行われる。また、蒸発器(4)で蒸発した冷
媒は吸収器(5)で吸収液に吸収される。そして、冷媒
を吸収して濃度が薄くなった吸収液が吸収液ポンプ(1
5)の運転により低温熱交換器(6)、及び高温熱交換
器(7)を経て高温再生器(1)へ送られる。高温再生
器(1)に入った吸収液はバーナ(IB)によって加熱
され、冷媒が蒸発し、中濃度の吸収液が高温熱交換器(
7)を経て低温再生器<2)へ入る。そして、吸収液は
高温再生器り1)から冷媒配管(16)を流れて来た冷
媒蒸気によって加熱され、さらに冷媒が蒸発分離され濃
度が高くなる。高濃度になった吸収液(以下濃液という
)は低温熱交換器(6)を経℃温度低下して吸収器(5
〉へ送られ、散布される。When the absorption chiller/heater is in operation for supplying cold water, the first, second, and third on-off valves (9a), (
16a) and (23a) are closed, and the high temperature regenerator (
The refrigerant evaporated in step 1) passes through the low-temperature regenerator (2) and the condenser (
After being condensed and liquefied by exchanging heat with the water flowing through the condenser heat exchanger (27), it flows to the evaporator (4) via the refrigerant pipe (17). Then, the refrigerant exchanges heat with the water in the cold water pipe (22) and evaporates, and the heat of vaporization causes the refrigerant to exchange heat with the water in the cold water pipe (22).
) is cooled. Then, the cold water is circulated to the load to perform cooling operation. Further, the refrigerant evaporated in the evaporator (4) is absorbed into an absorption liquid in the absorber (5). Then, the absorption liquid whose concentration has become diluted by absorbing the refrigerant is pumped to the absorption liquid pump (1
5), the heat is sent to the high-temperature regenerator (1) via the low-temperature heat exchanger (6) and the high-temperature heat exchanger (7). The absorption liquid entering the high temperature regenerator (1) is heated by the burner (IB), the refrigerant is evaporated, and the medium concentration absorption liquid is transferred to the high temperature heat exchanger (1).
7) and enters the low temperature regenerator <2). Then, the absorption liquid is heated by the refrigerant vapor flowing through the refrigerant pipe (16) from the high-temperature regenerator 1), and the refrigerant is further evaporated and separated, increasing its concentration. The highly concentrated absorption liquid (hereinafter referred to as concentrated liquid) is passed through a low-temperature heat exchanger (6) to reduce the temperature through an absorber (5).
〉 and distributed.
上記のように吸収冷凍機が運転しているとき、第1制御
器(33)は冷水出口温度検出器(30)から温度信号
を入力する。そして、第1制御器(33〉は冷水出口温
度、即ち負荷に応じて燃料制御弁(31)へ信号を出力
し、燃料制御弁(31)の開度は変化して高温再生器(
1)の加熱量は変化する。又、第2制御器(34)は第
1制御器り33)から所定時間毎に燃料制御弁(31)
の開度を読み込む。そして、第2図の時刻(1,)では
第2制御器(34)は5分間、即ち1分毎の計5回の燃
料制御弁開度の移動平価を算出する。また、時刻(T、
〉から1分後の時刻(T、)で第2制御器(34)は5
分間の燃料制御弁開度の移動平均値を算出する。その後
、同様に1分毎に第2制御器(34)は燃料制御弁開度
の移動平均値を算出する。When the absorption refrigerator is operating as described above, the first controller (33) receives a temperature signal from the chilled water outlet temperature detector (30). Then, the first controller (33) outputs a signal to the fuel control valve (31) according to the cold water outlet temperature, that is, the load, and the opening degree of the fuel control valve (31) changes to change the high temperature regenerator (
The amount of heating in 1) varies. The second controller (34) also controls the fuel control valve (31) from the first controller (33) at predetermined time intervals.
Read the opening degree. Then, at time (1,) in FIG. 2, the second controller (34) calculates the moving average of the fuel control valve opening for five minutes, that is, for a total of five times every minute. Also, time (T,
The second controller (34) is set to 5 at time (T, ) 1 minute after
Calculate the moving average value of the fuel control valve opening per minute. Thereafter, the second controller (34) similarly calculates the moving average value of the fuel control valve opening every minute.
その後、負荷が減少して燃料制御弁(31)の開度が5
0%以下になり、時刻(T、)にて、燃料制御弁開度の
移動平均値が50%以下になり、この状態、即ち低負荷
の状態が時刻(T4)まで10分間継続した場合には第
2制御器(34)は動作して制御信号を冷水ポンプ(2
4)及び冷却水ポンプ(28)へ出力する。ここで、時
刻(T、)から時刻(T4)までの間の時刻(t、)で
燃料制御弁り31)の開度が50%を短い時間越えた場
合も移動平均値は変化しない。このため、冷水ポンプ(
24)、及び冷却水ポンプ(28)の極致変換により、
各ポンプの能力は100%から50%に減少し、冷水及
び冷却水の流量が100%から50%になる。After that, the load decreases and the opening degree of the fuel control valve (31) decreases to 5.
0% or less, the moving average value of the fuel control valve opening becomes 50% or less at time (T,), and this state, that is, the low load state continues for 10 minutes until time (T4). The second controller (34) operates and sends the control signal to the cold water pump (2).
4) and the cooling water pump (28). Here, even if the opening degree of the fuel control valve 31) exceeds 50% for a short time at time (t,) between time (T,) and time (T4), the moving average value does not change. For this reason, the cold water pump (
24) and the ultimate conversion of the cooling water pump (28),
The capacity of each pump is reduced from 100% to 50%, and the chilled water and cooling water flow rates are reduced from 100% to 50%.
その後、負荷が増加して燃料制御弁(31)の開度が5
0%より大きくなり、時刻(T6)にて燃料制御弁開度
の移動平均値が例えば75%より高くなり、この状態、
即ち負荷が増加した状態が10分間継続した場合には第
2制御器り34)は制御信号を停止する。このため、冷
水ポンプ(24)、及び冷却水ポンプ(28)の極数変
換により、各ポンプの能力は50%から100%に増加
し、冷水及び冷却水の流量が50%から100%に増加
する。After that, the load increases and the opening degree of the fuel control valve (31) decreases to 5.
becomes larger than 0%, and at time (T6), the moving average value of the fuel control valve opening becomes higher than, for example, 75%, and in this state,
That is, if the increased load continues for 10 minutes, the second controller 34) stops sending the control signal. Therefore, by changing the number of poles of the cold water pump (24) and the cooling water pump (28), the capacity of each pump increases from 50% to 100%, and the flow rate of cold water and cooling water increases from 50% to 100%. do.
その後、負荷が減少し、燃料制御弁(31)の開度が5
0%以下になり、第2制御器(34)にて算出された燃
料制御弁開度の移動平均値が50%以下になり、この状
態が所定時間継続した場合には第2制御器(34)から
冷水ポンプ(24)及び冷却水ポンプ(28)へ信号が
出力され、上記と同様に冷水及び冷却水の流量は100
%から50%に減少する。After that, the load decreases and the opening degree of the fuel control valve (31) decreases to 5.
0% or less, the moving average value of the fuel control valve opening calculated by the second controller (34) becomes 50% or less, and if this state continues for a predetermined period of time, the second controller (34) ) outputs a signal to the cold water pump (24) and the cooling water pump (28), and the flow rate of the cold water and cooling water is 100% in the same way as above.
% to 50%.
以後、同様に負荷の変化に伴い燃料制御弁(31)の開
度が変化し、この開度の移動平均値が75%以上の状態
が所定時間継続した場合には冷水ポンプ(24)及び冷
却水ポンプ(28)の能力は100%になり、冷水、及
び冷却水の流量は増加する。又、燃料制御弁開度の移動
平均値が50%以下の状態が所定時間継続した場合には
第2制御器(34)が動作して冷水ポンプ〈24)、及
び冷却水ポンプ(28)の能力は減少する。Thereafter, the opening degree of the fuel control valve (31) similarly changes with the change in load, and if the moving average value of this opening degree continues to be 75% or more for a predetermined period of time, the cold water pump (24) and the cooling The capacity of the water pump (28) becomes 100%, and the flow rate of cold water and cooling water increases. In addition, if the moving average value of the fuel control valve opening continues to be 50% or less for a predetermined period of time, the second controller (34) operates to control the cold water pump (24) and the cooling water pump (28). Capacity decreases.
又、上記吸収冷温水機の温水供給運転時には、第1、第
2、第3開閉弁(9a) 、 (IEia) 、 (2
3a)は例えば手動により開かれる。又、冷水ポンプ(
24)は温水ボ〉・ブとして運転され、冷却水ポンプ(
28)の運転は停止している。このため、高温再生器<
1)で蒸発した冷媒は冷媒配管(16A)から吸収器(
5)へ流れ、吸収器(5)から蒸発器(4)へ流れる。Also, during hot water supply operation of the absorption chiller/heater, the first, second, and third on-off valves (9a), (IEia), (2
3a) is opened manually, for example. Also, cold water pump (
24) is operated as a hot water pump, and the cooling water pump (
28) has stopped operating. For this reason, the high temperature regenerator <
The refrigerant evaporated in step 1) is transferred from the refrigerant pipe (16A) to the absorber (
5) and from the absorber (5) to the evaporator (4).
そして、蒸気は蒸発器熱交換器(22A)を流れる温水
と熱交換し、凝縮した冷媒液は蒸発器(4)から冷媒ブ
ロー管(23)を経て吸収器(5)へ流れる。又、高温
再生器〈1)で冷媒が分離して濃度が高くなった吸収液
が吸収液配管(9A)を経て吸収器(5)へ流れる。Then, the steam exchanges heat with the hot water flowing through the evaporator heat exchanger (22A), and the condensed refrigerant liquid flows from the evaporator (4) through the refrigerant blow pipe (23) to the absorber (5). Further, the absorbent liquid, which has a high concentration after the refrigerant is separated in the high temperature regenerator (1), flows to the absorber (5) via the absorbent liquid pipe (9A).
上記のように吸収冷温水機から温水が供給されていると
き、上記の冷水供給時と同様に、第1制御器(33)は
温水出口温度に応じて燃料制御弁(31)へ信号を出力
し、開度は変化する。又、第1制御器(33)は燃料制
御弁(31〉に設けられたポテンショメータから開度信
号を入力して温水比口温度に応じて開度を制御する。又
、第2制御器(34)は冷水供給時と同様に第1制御器
(33)から燃料制御弁開度の信号を入力し、燃料制御
弁開度の移動平均値を算出する。そして、例えば温水の
負荷が低下して移動平均値が50%以下の状態が10分
間継続した場合には、第2制御器(34)は制御信号を
冷水ポンプ(24)へ出力する。このため、ポンプ(2
4)の能力は100%から50%に減少して温水の流量
が減少する。その後、温水の負荷が増加して移動平均値
が75%以上の状態が10分間継続した場合には、第2
制御器(34)は制御信号の出力を停止して冷水ポンプ
(24)の能力は50%から100%に増力口する。When hot water is being supplied from the absorption chiller/heater as described above, the first controller (33) outputs a signal to the fuel control valve (31) in accordance with the hot water outlet temperature, similarly to when cold water is supplied above. However, the opening degree changes. The first controller (33) inputs an opening signal from a potentiometer provided in the fuel control valve (31) and controls the opening according to the hot water specific temperature. ) inputs the fuel control valve opening signal from the first controller (33) in the same way as when cold water is supplied, and calculates the moving average value of the fuel control valve opening. If the moving average value remains below 50% for 10 minutes, the second controller (34) outputs a control signal to the cold water pump (24).
The capacity of 4) is reduced from 100% to 50% and the flow rate of hot water is reduced. After that, if the hot water load increases and the moving average value continues to be 75% or more for 10 minutes, the second
The controller (34) stops outputting the control signal and increases the capacity of the cold water pump (24) from 50% to 100%.
その後、同様に第2制御器<34)は燃料制御弁(31
)の開度の移動平均値を算出し、冷水ポンプ(24)の
運転を制御する。Thereafter, the second controller <34) similarly controls the fuel control valve (31
) is calculated, and the operation of the cold water pump (24) is controlled.
上記実施例によれば、第2制御器(34)は所定時間毎
に燃料制御弁(31)の開度を読み込み、所定時間の燃
料制御弁開度の移動平均値を算出し、この移動平均値が
50%以下の状態が10分間継続した場合に信号を出力
し、冷水ポンプ(24〉、及び冷封水ポンプ(28)の
能力を低下させるので、負荷か一度50%以Fになった
後例えは短時間負荷が増加し、燃料制御弁開度が50%
を越えた場合にも、この短時間の負荷の変化を吸収して
平均的な負荷を検知することができ、この結果、負荷が
低下したことを確実に検知して各ポンプ(24) 、
(28)の運転を制御することができる。According to the above embodiment, the second controller (34) reads the opening degree of the fuel control valve (31) at predetermined time intervals, calculates the moving average value of the fuel control valve opening degree for the predetermined time, and calculates the moving average value of the fuel control valve opening degree for the predetermined time period. If the value remains below 50% for 10 minutes, a signal will be output and the capacity of the cold water pump (24) and cold seal water pump (28) will be reduced, so if the load once reaches 50% or above. In the second example, the load increases for a short time and the fuel control valve opening is 50%.
Even if the load exceeds 100%, it is possible to absorb this short-term load change and detect the average load.As a result, it is possible to reliably detect that the load has decreased, and each pump (24)
The operation of (28) can be controlled.
又、第2制御器(34〉は所定時間の燃料制御弁開度の
移動平均値を算出し、低負荷の状態から高負荷の状態に
移り、移動平均値が75%以上の状態が10分間続いた
場合には冷水ポンプ〈24)及び冷却水ポンプ(28)
への信号の出力を停止するので、高負荷に移った後に例
えはPID制御での微分効果などによって短時間低負荷
になった場合にも、この短時間の負荷の変化を吸収して
平均的な負荷を検知することができ、この結果、低負荷
から高負荷に移ったときにも確実に負荷の変化を検知し
て冷水ポンプ(24)、及び冷却水ポンプ(28〉の運
転を制御することができる。In addition, the second controller (34) calculates the moving average value of the fuel control valve opening degree for a predetermined period of time, moves from a low load state to a high load state, and maintains a state where the moving average value is 75% or more for 10 minutes. If it continues, turn on the cold water pump (24) and the cooling water pump (28).
Since the output of the signal to the load is stopped, even if the load changes to a high load and then becomes low for a short time due to the differential effect in PID control, this short-term load change is absorbed and the average As a result, even when the load changes from low to high, the change in load can be reliably detected and the operation of the cold water pump (24) and the cooling water pump (28) can be controlled. be able to.
さらに、吸収冷温水機から温水を供給する場合にも、第
2制御器(34)は所定時間の燃料制御弁の移動平均値
を算出し、低負荷、或いは高負荷の状態か継続したとき
には、短時間の負荷の大きな変化か発生した場合にも、
この変化を吸収して平均的な負荷を検知することかてき
、この結果、確実に負荷の変化を検知して冷水ポンプ(
24)の運転を制御することができる。Furthermore, when hot water is supplied from an absorption chiller/heater, the second controller (34) calculates the moving average value of the fuel control valve for a predetermined period of time, and when a low load or high load state continues, Even if a large change in load occurs in a short period of time,
It is possible to absorb this change and detect the average load.As a result, changes in load can be reliably detected and the chilled water pump (
24) can be controlled.
尚、上記実施例において、高温再生器(1)にボイラー
を備えた吸収冷温水機について説明したが、高温再生器
(1)の駆動熱源が高温高圧の蒸気であり、加熱量制御
弁によって高温再生器の蒸気の流量を制御する吸収冷凍
機においても、加熱量制御弁の開度の移動平均値を算出
して冷水ポンプ(24)、或いは冷却水ポンプ(28〉
の運転を制御することにより同様の作用効果を得ること
ができる。In the above embodiment, an absorption chiller/heater in which the high temperature regenerator (1) is equipped with a boiler has been described. However, the driving heat source of the high temperature regenerator (1) is high temperature and high pressure steam, and the high temperature In an absorption refrigerator that controls the flow rate of steam in the regenerator, the moving average value of the opening degree of the heating amount control valve is calculated and the chilled water pump (24) or the cooling water pump (28)
Similar effects can be obtained by controlling the operation of the .
又、燃料制御弁開度を冷水出口温度、或いは温水出口温
度などに基づいてPID制御以外の例えはファジィ制御
などによって制御する吸収冷凍機においても、上記実施
例と同様に燃料制御弁開度の移動平均値に基づいて冷水
ポンプ(24)、或いは冷却水ポンプ(28)の運転を
制御することによって同様の作用効果を得ることができ
る。Also, in an absorption refrigerator in which the fuel control valve opening degree is controlled by fuzzy control or the like other than PID control based on the cold water outlet temperature or hot water outlet temperature, the fuel control valve opening degree can be controlled in the same way as in the above embodiment. Similar effects can be obtained by controlling the operation of the cold water pump (24) or the cooling water pump (28) based on the moving average value.
さらに、蒸発器(4)から冷水のみを供給する吸収冷凍
機においても上記実施例と同様に燃料制御弁開度の移動
平均値に基ついて冷水ポンプなどを制御することによっ
て同様の作用効果を得ることができる。Furthermore, in an absorption chiller that supplies only cold water from the evaporator (4), similar effects can be obtained by controlling the cold water pump etc. based on the moving average value of the fuel control valve opening as in the above embodiment. be able to.
又、複数の冷水ポンプ及び冷却水ポンプを備えた吸収冷
凍機において、燃料制御弁開度の移動平均値に基づいて
低負荷、又は高負荷を検知して冷水ポンプ及び冷却水ポ
ンプの運転台数を制御した場合にも同様の作用効果を得
ることができる。In addition, in an absorption chiller equipped with multiple chilled water pumps and cooling water pumps, low load or high load is detected based on the moving average value of the fuel control valve opening, and the number of operating chilled water pumps and cooling water pumps is determined. Similar effects can be obtained when controlling.
又、冷水ポンプ及び冷却水ポンプをインバータによって
回転数制御する吸収冷凍機の制御装置においても、上記
移動平均値に基づいて各ポンプの運転を制御することに
よって同様の作用効果を得ることができる。Further, in a control device for an absorption refrigerator in which the rotational speed of the cold water pump and the cooling water pump is controlled by an inverter, similar effects can be obtained by controlling the operation of each pump based on the moving average value.
(ト)発明の効果
本発明は以上のように構成された吸収冷凍機の制御装置
であり、再生器の燃料制御弁などの加熱量制御弁の開度
を読み込み、この開度の所定時間の移動平均1直を算出
し、この移動平均値に基ついて冷、水ポンプ、冷却水ポ
ンプ、或いは温水ポンプの運転を制御する制御器を備え
ているので、高負荷、或いは低負荷を短時間の加熱量制
御弁の開度変化に関係なく確実に検知することができ、
この結果、冷水ポンプ、冷却水ポンプ、或いは温水ポン
プを高負荷、又は低負荷に対応して変流量制御すること
ができる。(G) Effects of the Invention The present invention is a control device for an absorption refrigerating machine configured as described above, which reads the opening degree of a heating amount control valve such as a fuel control valve of a regenerator, and maintains this opening degree for a predetermined period of time. It is equipped with a controller that calculates the moving average of one shift and controls the operation of the cold water pump, cooling water pump, or hot water pump based on this moving average value. It can be detected reliably regardless of the opening degree change of the heating amount control valve.
As a result, the variable flow rate of the cold water pump, cooling water pump, or hot water pump can be controlled in response to high load or low load.
又、加熱量制御弁の開度をマイコンに読み込み、開度の
所定時間の移動平均値から負荷の大きさを検知して冷水
ポンプ或いは冷却水ポンプの運転を制御するので、吸収
冷凍機の高負荷、或いは低負荷の状態が続いたとき、短
時間の加熱量制御弁の開度の変化を吸収して、上記高負
荷、或いは低負荷を確実に検知することができ、この結
果、加熱量制御弁の開度の短時間の変化に関係なく、冷
水ポンプ或いは、冷却水ポンプを高負荷、又は低負荷に
対応して変流量制御することができる。In addition, the opening degree of the heating amount control valve is read into the microcomputer, the load size is detected from the moving average value of the opening degree over a predetermined time, and the operation of the chilled water pump or cooling water pump is controlled. When the load or low load continues, short-term changes in the opening of the heating amount control valve can be absorbed, and the high or low load can be reliably detected, and as a result, the heating amount Regardless of short-term changes in the opening degree of the control valve, the chilled water pump or the cooling water pump can be controlled to vary the flow rate in response to high load or low load.
第1図は本発明の一実施例を示す吸収冷温水機の回路構
成図、第2図は制御弁開度、移動平均値の算出タイミン
グ、移動平均値、第2制御器の信号出力の状況を示すタ
イミングチャートである。
(1)・・・高温再生器、 (2)・・・低温再生器、
(3)・・・凝縮器、 (4)・・・蒸発器、 (5
)・・・吸収器、 (24)・・・冷水ポンプ(温水ポ
ンプ)、 (28)・・・冷却水ポンプ、 (31〉・
・・加熱量制御弁(燃料制御弁)、(34)・・・第2
制御器。Fig. 1 is a circuit configuration diagram of an absorption chiller/heater showing an embodiment of the present invention, and Fig. 2 shows the control valve opening, the calculation timing of the moving average value, the moving average value, and the status of the signal output of the second controller. FIG. (1)...High temperature regenerator, (2)...Low temperature regenerator,
(3)... Condenser, (4)... Evaporator, (5
)...Absorber, (24)...Cold water pump (hot water pump), (28)...Cooling water pump, (31>・
...Heating amount control valve (fuel control valve), (34)...Second
controller.
Claims (1)
て冷凍サイクルを形成すると共に、蒸発器に冷水ポンプ
によって冷水を循環し、かつ、吸収器及び凝縮器に冷却
水ポンプによって冷却水を循環し、再生器の加熱量制御
弁の開度を蒸発器の冷水温度によって制御する吸収冷凍
機の制御装置において、加熱量制御弁の開度を読み込み
、この開度の所定時間の移動平均値を算出し、この移動
平均値に基づいて上記冷水ポンプ、或いは冷却水ポンプ
の運転を制御する制御器を備えたことを特徴とする吸収
冷凍機の制御装置。 2、蒸発器の冷水出口温度により再生器の燃料制御弁を
PID制御する吸収冷凍機の制御装置において、燃料制
御弁の開度をマイコンに読み込み、上記開度の所定時間
の移動平均値から負荷の大きさを検知して冷水ポンプ或
いは冷却水ポンプの運転を制御することを特徴とする吸
収冷凍機の制御装置。 3、蒸発器、吸収器、再生器、及び凝縮器を配管接続し
て冷凍サイクルを形成すると共に、蒸発器にポンプによ
って温水を循環し、再生器の加熱量制御弁の開度を蒸発
器の温水温度によって制御する吸収冷凍機の制御装置に
おいて、加熱量制御弁の開度を読み込み、この開度の所
定時間の移動平均値を算出し、この移動平均値に基づい
て上記温水ポンプの運転を制御する制御器を備えたこと
を特徴とする吸収冷凍機の制御装置。[Claims] 1. An evaporator, an absorber, a regenerator, and a condenser are connected via piping to form a refrigeration cycle, and cold water is circulated to the evaporator by a cold water pump, and the absorber and condenser are In an absorption chiller control device that circulates cooling water using a cooling water pump and controls the opening degree of the heating amount control valve of the regenerator according to the cold water temperature of the evaporator, the opening degree of the heating amount control valve is read and the opening degree of the heating amount control valve is controlled. 1. A control device for an absorption refrigerating machine, comprising: a controller that calculates a moving average value of temperature over a predetermined time and controls the operation of the chilled water pump or the cooling water pump based on this moving average value. 2. In an absorption chiller control device that performs PID control of the fuel control valve of the regenerator based on the cold water outlet temperature of the evaporator, the opening degree of the fuel control valve is read into the microcomputer, and the load is calculated based on the moving average value of the opening degree over a predetermined time. 1. A control device for an absorption refrigerating machine, which controls the operation of a chilled water pump or a cooling water pump by detecting the size of the chilled water pump. 3. Connect the evaporator, absorber, regenerator, and condenser with piping to form a refrigeration cycle, circulate hot water to the evaporator with a pump, and adjust the opening of the heating amount control valve of the regenerator to the evaporator. In a control device for an absorption chiller that is controlled by hot water temperature, the opening degree of the heating amount control valve is read, a moving average value of this opening degree over a predetermined time is calculated, and the operation of the hot water pump is performed based on this moving average value. 1. A control device for an absorption chiller, comprising a controller for controlling the absorption chiller.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2227671A JP2532982B2 (en) | 1990-08-28 | 1990-08-28 | Absorption refrigerator control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2227671A JP2532982B2 (en) | 1990-08-28 | 1990-08-28 | Absorption refrigerator control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04110572A true JPH04110572A (en) | 1992-04-13 |
JP2532982B2 JP2532982B2 (en) | 1996-09-11 |
Family
ID=16864507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2227671A Expired - Fee Related JP2532982B2 (en) | 1990-08-28 | 1990-08-28 | Absorption refrigerator control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2532982B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004309032A (en) * | 2003-04-08 | 2004-11-04 | Hiroshi Ogawa | Central air conditioning and heating equipment and its operation control method |
JP2017172896A (en) * | 2016-03-24 | 2017-09-28 | 東京瓦斯株式会社 | Absorption refrigerator |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102074912B1 (en) * | 2019-04-16 | 2020-03-17 | (주)월드에너지 | Refrigerator for controlling pump inverter depending on loading amount |
-
1990
- 1990-08-28 JP JP2227671A patent/JP2532982B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004309032A (en) * | 2003-04-08 | 2004-11-04 | Hiroshi Ogawa | Central air conditioning and heating equipment and its operation control method |
JP2017172896A (en) * | 2016-03-24 | 2017-09-28 | 東京瓦斯株式会社 | Absorption refrigerator |
Also Published As
Publication number | Publication date |
---|---|
JP2532982B2 (en) | 1996-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4248099B2 (en) | Control method of refrigerator or hot and cold water machine | |
JP2560550B2 (en) | Absorption cooling / heating device and control method thereof | |
JP2532982B2 (en) | Absorption refrigerator control device | |
JPH0552441A (en) | Method and device for controlling absorption type heater cooler | |
JP2985513B2 (en) | Absorption cooling and heating system and its control method | |
JP2001099474A (en) | Air conditioner | |
JP2708809B2 (en) | Control method of absorption refrigerator | |
JPS602584B2 (en) | Absorption chiller safety device | |
JP2858922B2 (en) | Absorption chiller / heater controller | |
JPS602580B2 (en) | Absorption type water chiller/heater control device | |
JPH05312429A (en) | Absorption water cooling/heating apparatus | |
JP2883372B2 (en) | Absorption chiller / heater | |
JP3831425B2 (en) | Control method of absorption chiller / heater | |
JP3831427B2 (en) | Heat input control method of absorption refrigerator | |
JPS6117319Y2 (en) | ||
JPH0868572A (en) | Dual-effect absorption refrigerator | |
JP2918665B2 (en) | Operation stop method and stop control device for absorption chiller / chiller / heater | |
JP3326240B2 (en) | Control method of absorption refrigerator | |
JP2002005538A (en) | Absorptive freezer and cooling water flow rate control method | |
JP2885637B2 (en) | Absorption refrigeration apparatus and control method thereof | |
JPS6277567A (en) | Absorption refrigerator | |
JP3157668B2 (en) | Absorption chiller / heater | |
JPH04161766A (en) | Control device for absorption type freezer | |
JPS6273054A (en) | Absorption refrigerator | |
JPH04126960A (en) | Control device for absorption type cold water or hot water machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |