JPS6273054A - Absorption refrigerator - Google Patents

Absorption refrigerator

Info

Publication number
JPS6273054A
JPS6273054A JP21311385A JP21311385A JPS6273054A JP S6273054 A JPS6273054 A JP S6273054A JP 21311385 A JP21311385 A JP 21311385A JP 21311385 A JP21311385 A JP 21311385A JP S6273054 A JPS6273054 A JP S6273054A
Authority
JP
Japan
Prior art keywords
temperature
absorption
load
amount
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21311385A
Other languages
Japanese (ja)
Other versions
JPH0627590B2 (en
Inventor
宮城 龍雄
本田 久夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP21311385A priority Critical patent/JPH0627590B2/en
Publication of JPS6273054A publication Critical patent/JPS6273054A/en
Publication of JPH0627590B2 publication Critical patent/JPH0627590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は溶液流量調節装置と加熱量調節装置とな備えた
吸収冷凍機(以下、この種の吸収冷凍機という)の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to an improvement of an absorption refrigerator (hereinafter referred to as this type of absorption refrigerator) equipped with a solution flow rate adjustment device and a heating amount adjustment device.

(ロ)従来の技術 この種の吸収冷凍機の従来の技術として1例えば特公昭
58−34730号公報や特公昭59−52348号公
報などにみられるように、蒸発器の冷水出口温度な感知
する温度検出器の信号により温度調節器(およびポテン
ショメータ)を介して稀溶液流量調節弁と発生器の加熱
量調節弁とな比例制御するもの(以下、前者という)が
知られている。また、この種の吸収冷凍機の別の従来の
技術として、加熱量調節弁な蒸発器の冷水出口視度に応
じて制御する一方で稀溶液流量調節弁な蒸発器の冷水出
口温度に応じて開開−「るもの〔例えば、特公昭54−
35342号公報〕(以下、後者という)が知られてい
る。
(B) Conventional technology The conventional technology for this type of absorption refrigerator is as follows: 1. As seen in Japanese Patent Publication No. 58-34730 and Japanese Patent Publication No. 59-52348, there is a method for sensing the cold water outlet temperature of the evaporator. There is a known method that proportionally controls a dilute solution flow rate control valve and a generator heating amount control valve (hereinafter referred to as the former) via a temperature controller (and potentiometer) based on a signal from a temperature sensor. In addition, as another conventional technology for this type of absorption refrigerator, a heating amount control valve is controlled according to the cold water outlet diopter of the evaporator, while a dilute solution flow rate control valve is controlled according to the cold water outlet temperature of the evaporator. Kaikai - ``rumono [for example, special public service in 1972-
No. 35342] (hereinafter referred to as the latter) is known.

9→ 発明が解決しようとする問題点 上記した従来のこの種の吸収冷凍機においては、前者お
よび後者ともに、冷凍出力に直接の影響な受ける冷水入
口温度疋芯じて加熱量調節弁を比例制御するため負荷に
見合う冷凍出力が発揮されるよう加熱量制御できる利点
を有するものの、加熱量制御の動作は比例動作〔P動作
〕であって冷水出口温度の比例帯があるためこの温度が
負荷の変化によって変動する欠点なもっている。このた
め、従来のこの種の吸収冷凍機は、クリーンルームや化
学プロセス用設備などのように一定温度の冷水な2妥と
する設備に用いる冷凍機として、不向きという問題点ケ
もっている。また、前者″・ま発生器の加熱量に見合う
よう発生器への稀液供給量の調節ができる利点?有し、
後者′・まこの利点て加えて燃料使用率I!1′−より
一層低くなる利点?有するものの、これらは1両者とも
に1発生器への稀液供給量な調節するものであって冷凍
出力に直接の影響な及ぼす吸収器への濃液供給量な調節
するものでないため、負荷の急変(例えば、クリーンル
ームの稼動数な激減または激増させたような場合)に対
して制御の追従性が悪く、所定温度の冷水な安定的に負
荷側へ供給することが難しいという問題点な有している
。なおill液流路に流量制御弁を設けてこの間度?制
仰することにより、吸収器への濃液供給量を調節するも
の〔例えば特開昭59−44557号公報〕が提案され
ているけれども。
9→ Problems to be Solved by the Invention In both the former and latter type of conventional absorption refrigerators described above, the heating amount control valve is proportionally controlled based on the cold water inlet temperature, which has a direct influence on the refrigeration output. Therefore, it has the advantage of being able to control the amount of heating so that the refrigeration output matches the load. However, the operation of controlling the amount of heating is a proportional operation [P operation], and there is a proportional band of the chilled water outlet temperature, so this temperature depends on the load. It has the disadvantage of fluctuating with changes. For this reason, this type of conventional absorption refrigerator has the problem that it is not suitable as a refrigerator for use in facilities that require cold water at a constant temperature, such as clean rooms and chemical process facilities. In addition, the former has the advantage of being able to adjust the amount of diluted liquid supplied to the generator to match the heating amount of the generator.
In addition to the latter'Mako's advantage, fuel usage rate I! Advantage of being lower than 1'-? However, these both adjust the amount of dilute liquid supplied to the generator, and do not adjust the amount of concentrated liquid supplied to the absorber, which has a direct effect on the refrigeration output, so sudden changes in load may occur. (For example, when the number of clean room operations is drastically reduced or increased), the control has poor follow-up ability, and it is difficult to stably supply cold water at a predetermined temperature to the load side. There is. In addition, a flow control valve was installed in the ill liquid flow path. It has been proposed, for example, in Japanese Patent Laid-Open No. 59-44557, to adjust the amount of concentrated liquid supplied to the absorber by controlling the amount of concentrated liquid supplied to the absorber.

このものにおいては、発生器側と吸収器側の圧力差6”
−あまり変わらない場合、吸収器への濃液供給量な急増
させることが困難であるため5負荷の急増に対する制御
の追従性に劣るという問題点があるっ 本宛明X家、これらの問題点に鑑み、負荷に対する冷凍
出力制御の追従性に秀れ、また、はぼ所定温度の冷水の
負荷への供給の可能なこの種の吸収冷凍機の提供な目的
としたものである。
In this case, the pressure difference between the generator side and the absorber side is 6"
- If the amount of concentrated liquid supplied to the absorber does not change much, it is difficult to rapidly increase the amount of concentrated liquid supplied to the absorber, so there is a problem that the control ability to follow a sudden increase in load is poor. In view of this, it is an object of the present invention to provide an absorption refrigerating machine of this type which is excellent in followability of refrigerating output control to the load and is capable of supplying chilled water at a predetermined temperature to the load.

(−1問題点な解決するだめの手段 本発明は、上記の問題点な解決する手段として、この種
の吸収冷fi機の溶液流量の調節を蒸発器の冷水入口温
度の検出器の信号による濃液用ポンプの吐出量制御で行
なうように構成し、かつ1発生器の加熱量の調節を蒸発
器の冷水出口温度の検出器の信号による加熱量のPI制
御〔比例動作+積分動作による制御〕やPID制御〔比
例動作+積分効作十微分4jjJ咋てよる制御〕などで
行なうように構成したものである。
(-1 Means to Solve the Problem) The present invention, as a means to solve the above problems, adjusts the solution flow rate of this type of absorption cooling fi machine by the signal from the detector of the cold water inlet temperature of the evaporator. It is configured to control the discharge amount of the concentrated liquid pump, and the heating amount of one generator is adjusted by PI control of the heating amount based on the signal from the detector of the cold water outlet temperature of the evaporator [control by proportional action + integral action] ] or PID control (control based on proportional action + integral effect and sufficient differential).

(4) 作用 本発明によるこの踵の吸収冷凍機°・ま、冷凍出力に直
接の影#を及ぼす吸収器への濃液供給量ケ濃液用ポンプ
の吐出量制圓テより調節する機能(作用)つ;あるので
、冷凍出力制御の追従たに秀れる。
(4) Function This heel absorption refrigerator according to the present invention has a function to adjust the amount of concentrated liquid supplied to the absorber and the discharge rate of the pump for concentrated liquid, which directly affects the refrigerating output. Since there are two functions, it is excellent at following refrigeration output control.

かつまた、濃液用ポンプの吐出量制御す負荷の変化に直
接影響される冷水(または冷風)人口温度に応じて行な
う機能りζあろので、はぼ負荷に見合う冷凍出力に調節
することも可能となる。がっ。
In addition, there is a function that controls the discharge amount of the concentrated liquid pump according to the population temperature of chilled water (or cold air), which is directly affected by changes in load, so it is possible to adjust the refrigeration output to match the load. becomes. Gah.

冷水出口温度の決定夜回となる蒸発器および吸収器内の
温度、飽和蒸気圧に影響な及ぼす吸収液濃度〔すなわち
吸収液の濃縮度合〕を左右する加熱量制菌つ−冷水出口
温度の検出器の信号によりPI調節器やPIDa14節
器などを介して行なわれるので、冷水出口温度を目標値
に保つ機能心tこの種の吸収冷凍機にもたらされる。
Determination of chilled water outlet temperature; Temperature inside the evaporator and absorber during the night; amount of heating that affects absorption liquid concentration [i.e. concentration level of absorption liquid], which affects saturated vapor pressure; Detection of chilled water outlet temperature; This type of absorption refrigerating machine has a function of maintaining the chilled water outlet temperature at a target value, since this is carried out in response to a signal from the refrigerator via a PI regulator or a PIDa 14-section regulator.

(へ)実施例 嘉1図は本発明によるこの種の吸収冷凍機の一実施例?
示しだ概略構成説明図である。第1図において、(1)
I・家高@発生器、(2)は低@発生器(3)および凝
縮器(4)より成る発生凝縮器、(5)は蒸発器(6)
および吸収器(力より成る蒸発吸収J(81、(9)ハ
それぞれ低温、高温浴液熱交換器、(101は吸収器(
7)の稀酸溜め、旧)はf4i夜溜めaO)への溢流ロ
avr:有する濃液溜め、03)は溶液散布器、(14
)’・ま蒸発器(6)の冷媒液溜め、U鄭i冷媒液散布
器、 (PL、)は稀酸用ポンプ、(P、□)は濃液用
ポンプ、(P7)は冷媒液用ポンプで、これらは冷媒の
流れる管(16)、(17)、冷媒液の流下する’d+
廁、冷媒液の還流する管u9、側、稀液の送られる管(
2υ、器、Cシ、(2(イ)、中間液の流下する管器、
四、濃液の流下する管■、CL濃液の送られる管I2t
、■により接続されて冷媒〔水〕および吸収液〔臭rヒ
リチウム水溶液〕の循環路が構成されている。
(f) Example Is Figure 1 an example of this type of absorption refrigerator according to the present invention?
FIG. 2 is a diagram schematically illustrating the configuration. In Figure 1, (1)
I. High @ generator, (2) is low @ generator condenser consisting of generator (3) and condenser (4), (5) is evaporator (6)
and an absorber (evaporative absorption J (81, (9)) are low-temperature and high-temperature bath liquid heat exchangers, respectively (101 is an absorber (
7) dilute acid reservoir, old) is f4i night reservoir aO) overflow avr: concentrated liquid reservoir with, 03) is solution sprayer, (14
)'・Ma evaporator (6) refrigerant liquid reservoir, U Zheng i refrigerant liquid sprayer, (PL, ) is pump for dilute acid, (P, □) is pump for concentrated liquid, (P7) is for refrigerant liquid In the pump, these are the pipes (16), (17) through which the refrigerant flows, the 'd+ through which the refrigerant liquid flows
廀、Refrigerant liquid reflux pipe u9、Side、Dilute liquid sent pipe (
2υ, vessel, Cshi, (2(a), pipe vessel through which the intermediate liquid flows,
4. Concentrated liquid flowing down pipe ■, CL concentrated liquid flowing pipe I2t
, (2) are connected to form a circulation path for the refrigerant (water) and the absorption liquid (odor-rich hylithium aqueous solution).

01)は高温定生器(1)の燃焼加熱室、C]つ、G2
・・・は燃焼ガスの流れる管、(至)は低@発生器(3
)の加PA器、(ロ)は凝縮器(4)の冷却器、(至)
は蒸発器(6)の熱交換器。
01) is the combustion heating chamber of the high temperature constant generator (1), G2
... is the pipe through which combustion gas flows, (to) is the low @ generator (3
) is the PA adder, (b) is the condenser (4) cooler, (to)
is the heat exchanger of the evaporator (6).

06)は吸収器(7)の冷却器である。また、C37)
、(至)は負荷側熱交換ユニット〔図示せず〕と熱交換
益田と?結んだ管路、G!J 、 (4G 、 (41
)は冷却器□□□、(ロ)?直列に結んだ管路、(4か
・ま送It機口とバーナー(卸な結んだ空気供給路、(
43ハバーナーの)と燃料タンク〔図示せず〕とな結ん
だ燃料供給路である。そして、空気供給路(4z、燃料
供給路(ハ)にはそれぞれダンパー(Dl、燃料制御弁
(■2)が備えである。
06) is a cooler for the absorber (7). Also, C37)
, (to) is the load side heat exchange unit [not shown] and the heat exchange Masuda? The tied conduit, G! J, (4G, (41
) is the cooler □□□, (b)? Air supply line connected in series,
This is a fuel supply line that connects the fuel tank (not shown) to the fuel tank (not shown). The air supply path (4z) and the fuel supply path (c) are each equipped with a damper (Dl) and a fuel control valve (2).

なお、(Vl)、CV、) 、 (V3)は、それぞれ
、管a■と蒸発吸収器(5)とを結んだ管(44)、曹
四と管(21)とな結んだ管(ハ)、冷媒液溜め■と管
のと?結んだ管(掴に備えだ冷温切換弁であり、これら
は冷凍運転の際に閉止されている。これら冷温切換弁な
開いて運転し、熱交換器65)から温水(あるいは温風
)ケ得る際には、管C3’J、(4G 、 (41)へ
の冷却水(あるいは冷却用空気)の流通を断ち冷媒液用
ポンプ(八)および濃液用ポンプ(Pl、、)の作動な
止めるようになっている。なおまtこ、 (47)は冷
媒液ブロー用の管で、この管にt未開閉弁(Vl)6−
備えてあろう(S eXW )は熱交換益田かも流出す
る冷水〔冷風〕あろい’=−1温水〔温風〕の凋度(以
下、冷水出口温度という)?感知する検出器で、この噴
出器の信号によりPIもしくはPID調節器(CvI)
)を介してダンパー1D)および燃料!!11呻弁(V
、)の開Y(うt制御されるようになっている。調節5
 (Cvo)にPI調節器な用いた場合、この調節器の
制御動作は下記(81式で示される。
In addition, (Vl), CV, ), and (V3) are the pipe (44) connecting the pipe a and the evaporator (5), and the pipe (ha) connecting the pipe a and the pipe (21), respectively. ), refrigerant reservoir ■ and pipe? These cold/hot switching valves are closed during refrigeration operation. When these cold/hot switching valves are opened and operated, hot water (or hot air) can be obtained from the heat exchanger 65. In such a case, cut off the flow of cooling water (or cooling air) to pipes C3'J, (4G, (41)) and stop the operation of the refrigerant liquid pump (8) and concentrated liquid pump (Pl, , ). (47) is a pipe for blowing refrigerant liquid, and a non-open/close valve (Vl) 6- is attached to this pipe.
(S eXW ) is the heat exchanger (S eXW ) that flows out of the cold water [cold air] = -1 The temperature of the hot water [warm air] (hereinafter referred to as the cold water outlet temperature)? A detector that senses the PI or PID regulator (CvI) based on the signal from this ejector.
) through damper 1D) and fuel! ! 11 Moaning valve (V
, ) is controlled by the opening Y(ut).Adjustment 5
When a PI regulator is used for (Cvo), the control operation of this regulator is shown by the following (Equation 81).

M=100/P(e+1/T1・fedt)・・・・・
・・・・・・・(a)なお、(a+式において、M−ま
操作量〔ダンパーCD)および!2綾制薗弁(v2)の
開度IP’=ま比例動作の強さ?表わす定数〔比例帯と
も称されろっ〕100/P“・ま比例ゲイン、eは偏差
〔制御偏差や制御動作信号とも称される。この実施例で
1・ま冷水出口温度Xとその目標温度Vとの差な意味す
る。〕、T、は積分の強さを表わす定数〔積分時間とも
称される。〕である。
M=100/P(e+1/T1・fedt)...
・・・・・・・・・(a) In addition, (in the a+ formula, M-ma operation amount [damper CD) and! Opening degree IP' of 2-way control valve (v2) = strength of proportional action? The constant representing [also referred to as the proportional band] 100/P'' is the proportional gain, and e is the deviation [also referred to as the control deviation or control operation signal. It means the difference from V.], T is a constant (also called integration time) that represents the strength of integration.

また、調節器(CYD)にPID調節器な用いた場合、
この調節器の制御動作は下記tb)式で示されろ。
Also, if a PID regulator is used as the regulator (CYD),
The control operation of this regulator is expressed by the following equation tb).

M=100/P(e+1/TI−fedt+TD−de
/dt)・・・(b)なお、fbj弐において、T、i
ま微分の強さり表わオ定数で微分時間と称される。その
他の記号<1 (81式と同じである。これら(a)、
(b1式で示されるように、ダンパー(D+および燃料
制御弁(V、)の開度M〔操作量〕髪1冷水出口目標己
度Vに対する冷水出口温度Xの差e〔制御偏差〕と時間
tと?変数にした関数になる。
M=100/P(e+1/TI-fedt+TD-de
/dt)...(b) In addition, in fbj2, T, i
The strength of the differential is expressed by the constant, which is called the differential time. Other symbols <1 (same as formula 81. These (a),
(As shown in equation b1, the opening degree M [operated amount] of the damper (D+ and fuel control valve (V)), the difference e [control deviation] of the chilled water outlet temperature X with respect to the target temperature V of the cold water outlet, and the time It becomes a function with t and ? variables.

(Senw) +−z負荷側熱交換ユニット〔図示せず
〕から熱交換益田に流入する冷水〔冷風〕の温度(以下
、冷水入口温度という)を感知する検出器であり、この
検出器の信号により調節6(C□、)な介して濃液用ポ
ンプ(P、A)の吐出量が比例制御されるようになって
いる。
(Senw) +-z A detector that senses the temperature of cold water (cold air) flowing into the heat exchanger Masuda from the load side heat exchange unit (not shown) (hereinafter referred to as cold water inlet temperature), and the signal of this detector The discharge amount of the concentrated liquid pumps (P, A) is proportionally controlled through the adjustment 6 (C□,).

(SaA)−家高温発生器(1)の吸収液温度な感知す
る検出器であり、この検出器の信号により調節器(C,
L□)な介して稀酸用ポンプ(PL、)の吐出量が比例
制御されるようになっている。なお、(I、)。
(SaA) - This is a detector that senses the temperature of the absorption liquid of the home high temperature generator (1), and the signal from this detector is used to control the regulators (C,
The discharge amount of the dilute acid pump (PL, ) is proportionally controlled through the pump L□). Furthermore, (I,).

(工、)はインバータであろっ 次に、このように構成された吸収冷凍機(以下。(Engineering) is an inverter. Next, an absorption chiller (hereinafter referred to as "absorption refrigerator") configured in this way will be described.

本機という)の動作例を′@磯の制御動作との関連にお
いて説明するっ なお、この動作例〈おいて、冷水出口の目標温1V17
°Cとし、調節器(C,、)ニ’、i比例帯p b: 
s℃ないし20’C1積分時間T、  6″−5分ない
し10分、微分時間T。つ11分ないし15分にセット
可能なPIDID調節器動用まだ、調節器(C工□)に
は冷水出口温度が12℃となった時に濃液用ポンプ(P
、、)の吐出量す最大〔100%〕にセットする一方7
°Cとなった時に零〔O%〕にセントスるもつを用い、
かつまた、調節器(C,い)に1・家高ユ発生器(1)
の吸収1g、温度が150℃となった時に稀酸用ポンプ
(PL、)の吐出量な最大〔100%〕にセットする一
方140℃となった時に最大吐出量の1151m20%
〕でセクトするもの?用いた場合について説明する。そ
して、この場合ておいては、冷水入口温度が冷水出口の
目標温度である7℃でなった時に負荷が零〔0%〕であ
り、冷水入口温度が12°Cになった時に負荷が100
%であるものとしている。
An example of the operation of this machine (referred to as this machine) will be explained in relation to the control operation of '@Iso.
°C, regulator (C, ,) d', i proportional band p b:
s℃ to 20'C1 Integral time T, 6'' - 5 minutes to 10 minutes, Differential time T. PID ID controller that can be set to 11 minutes to 15 minutes. When the temperature reaches 12℃, the concentrated liquid pump (P
, , ), while setting the discharge amount to the maximum [100%]
When it reaches °C, use Centosu Motsu for zero [O%],
In addition, the regulator (C, I) has 1 and the house price generator (1).
When the temperature reaches 150℃, the discharge rate of the dilute acid pump (PL) is set to the maximum [100%], and when the temperature reaches 140℃, the maximum discharge rate is 1151m20%.
] What to sect? A case in which it is used will be explained. In this case, the load is zero (0%) when the chilled water inlet temperature reaches 7°C, which is the target temperature of the chilled water outlet, and the load becomes 100% when the chilled water inlet temperature reaches 12°C.
%.

今、本機の運転中に1例えば負荷が100%から50%
に急減したとき、本機の冷凍能力(冷凍出力)〜ま急に
変らないため熱交換器C35+からほぼ7℃の冷水う;
負荷側へ供給される。一方、負荷は半減しているため、
負荷側から熱交換器(至)に流入する冷水の温度〔冷水
入口温度〕が降下し始める。
Now, while the machine is operating, 1 For example, the load changes from 100% to 50%.
When the refrigerating capacity (refrigerating output) of this machine suddenly decreases, the cold water of approximately 7°C flows from the heat exchanger C35+ because it does not change suddenly.
Supplied to the load side. On the other hand, since the load has been halved,
The temperature of the cold water flowing from the load side into the heat exchanger (chilled water inlet temperature) begins to drop.

その結果、検出5(S、nW)  の信号により比例制
御用の調節1(CvD)k介して濃液用ポンプ(P、□
)の吐出tが第2図に示すように減らされて行く。なお
、第2図は冷水入口温度Y〔冷水負荷RE(横軸に表示
されている。)と濃液用ポンプ(P、、)の吐出tM工
A(縦軸に表示されている。)との関係な示した線図で
ある。第2図に示すようにMP、I。
As a result, the concentration pump (P, □
) is gradually reduced as shown in FIG. In addition, Fig. 2 shows the relationship between the chilled water inlet temperature Y [chilled water load RE (displayed on the horizontal axis) and the discharge tM of the concentrated liquid pump (P, .) (displayed on the vertical axis). FIG. MP, I as shown in FIG.

がその最大値の100%から50%へ向って比例制御さ
れることにより、吸収器(7)の冷却器(至)に散布さ
れる濃液流量が比例して減り、吸収器(力での冷媒吸収
量が次第に減少する。すなわち、負荷に見合う冷凍出力
となるように吸収器(7)の吸収能力が調整されて行く
ことになる。
is proportionally controlled from 100% to 50% of its maximum value, the flow rate of concentrated liquid distributed to the cooler (to) of the absorber (7) is proportionally reduced, and the The amount of refrigerant absorbed gradually decreases. That is, the absorption capacity of the absorber (7) is adjusted so that the refrigerating output matches the load.

ところで、負荷の急減に対して冷水入口温度Yの降下−
1、秒単位のレベルでみると、ゆるやか〔負荷側熱交換
ユニットの熱容量(冷水の容t)すを大きい程Yの降下
は緩慢となる。〕であり、これに伴ない吸収器(7)の
吸収能力の調整も緩慢になるから、濃液用ポンプ(P+
!A)の吐出量MPIIAが調節され始めても急減した
負荷に対して過大な冷凍出力の状態がしばらくの間〔特
にMPIIAが50%に固定されるまでの間〕読<こと
になる。このため。
By the way, the drop in chilled water inlet temperature Y due to a sudden decrease in load -
1. When viewed on a second-by-second level, the drop in Y becomes more gradual. ], and as a result, the absorption capacity of the absorber (7) also becomes slower to adjust, so the concentrated liquid pump (P+
! Even if the discharge amount MPIIA in A) starts to be adjusted, the state of excessive refrigerating output will continue for a while (particularly until MPIIA is fixed at 50%) in response to the rapidly reduced load. For this reason.

熱交換器田内の今人b′−過度に冷却されることとなり
、これから流出する冷水の震度〔冷水出口温度X〕も降
下し始める。その結果、噴出器(S−xw)の1ゴ号に
よりPID制御@用の調節B(CvD)=に介してダン
パーID)および燃料制御弁(v7)の開度が制御され
、高温発生器(1)の加熱量b′−調節される。なお、
ダンパーf、D)および燃料制御弁(■2)の開度〔前
述の弐(a)で求め得る〕゛・家、制御偏差eすなわち
冷水出口の目標温度(7°C)と冷水出口温度Xとの差
がしばらくの間刻々変比するので、この間一定だならな
い。
Heat exchanger Tauchi's heat exchanger b' - will be excessively cooled, and the seismic intensity of the cold water flowing out (chilled water outlet temperature X) will also begin to drop. As a result, the opening degrees of the damper ID) and fuel control valve (v7) are controlled by No. 1 of the injector (S-xw) through the adjustment B (CvD) for PID control @, and the opening of the high temperature generator ( 1) The heating amount b'- is adjusted. In addition,
The opening degrees of the dampers f, D) and the fuel control valve (■2) [can be obtained from the above 2(a)], control deviation e, that is, the target temperature of the chilled water outlet (7°C) and the chilled water outlet temperature X Since the difference between the two values changes from moment to moment for a while, it must remain constant during this time.

このように、負荷の急減直後に濃液用ポンプ(P11□
)の吐出量M□、の比例制御が開始されると共にこの制
御よりや〜遅れて〔1〜2秒程度の遅れで人間にはほぼ
同時に感じる程度の遅れである。〕ダンパーfD)、燃
料制御弁(v2)の開度のPID制御が開始され、負荷
に見合う冷凍出力となるように本機の加熱入力も調整さ
れて行き、本機の熱収支のバランスウを維持されること
になる。
In this way, immediately after the load suddenly decreases, the concentrated liquid pump (P11 □
), the proportional control of the discharge amount M□, is started, and there is a slight delay from this control [about 1 to 2 seconds delay, which is such a delay that a human being can feel it almost at the same time. ] PID control of the opening of damper fD) and fuel control valve (v2) is started, and the heating input of the machine is adjusted so that the refrigeration output matches the load, and the heat balance of the machine is balanced. It will be maintained.

そして、′@3図に示すように冷水出口視度Xが目標温
度にほぼ保たれ、さらに冷水人口温度Yも95℃〔萬2
図参照〕に達すると、M□、ウ−50%て固定されると
共九上記開度もほぼ固定され、制御が終了する。なお、
第3図はPID制御における冷水負荷Rの変fヒに対す
る冷水出口温度Xの刻々の変fヒ〔制御経過〕を表わし
た線図である。第3図において、横軸には時間t、縦軸
にす外乱としての負荷Rの変化および偏差としての冷水
出口温度Xの変化が示されている。
And, as shown in Figure '@3, the cold water outlet diopter X is almost maintained at the target temperature, and the cold water population temperature Y is also 95 degrees Celsius.
(see figure), when M□ and U are fixed at 50%, the above opening degrees are also almost fixed, and the control ends. In addition,
FIG. 3 is a diagram showing momentary changes in the chilled water outlet temperature X with respect to changes in the chilled water load R (control progress) in PID control. In FIG. 3, the horizontal axis shows time t, and the vertical axis shows changes in the load R as a disturbance and changes in the cold water outlet temperature X as a deviation.

また1本機ておいては、急減した負荷に見合う様に加熱
人カウー減じられることによって高@発生器(1)内の
吸収液の温度、飽和蒸気圧が降下し始め、これに伴ない
高@発生器(1)から低@発生器(3)側への吸収液の
流出量が減り始めるため、検出器(S、、)の信号によ
り比例制御用の調節器(Cvt、)&介して補液用ポン
プ(PL、)の吐出量す1第4図に示すように減らされ
て行く。なお、第4図は高@発生5m内の吸収液益度Z
と補液用ポンプ(PL、)の吐出量MpL、との関係?
示した線図であろう唾液用ポンプ(PLA)の吐出’f
AMp 1.Aが減らされることによって、高温発生器
fl+における吸収液の出入量?バランスさせろことが
可能となると共に吸収液の昇温のための顕7鴨消費量な
節約することも可能となるユモして、負荷つ;急増した
場合に一家、負荷の急減時の劃−と逆の動作が行なわれ
ることになる。
In addition, in one machine, the temperature and saturated vapor pressure of the absorbing liquid in the generator (1) begin to drop as the heating capacity is reduced to match the suddenly reduced load, and as a result, the Since the amount of absorption liquid flowing from the @generator (1) to the low @generator (3) side begins to decrease, the signal from the detector (S, , ) causes the controller (Cvt,) for proportional control to The discharge amount of the fluid replacement pump (PL) is gradually reduced as shown in FIG. In addition, Figure 4 shows the absorption liquid gain Z within 5 m of high @ occurrence.
What is the relationship between and the discharge amount MpL of the replacement fluid pump (PL, )?
The diagram shown is the discharge of the saliva pump (PLA).
AMp1. By reducing A, the amount of absorption liquid in and out of the high temperature generator fl+? This makes it possible to balance the temperature of the absorbing liquid, and also to save on significant consumption due to the temperature increase of the absorbent. The opposite action will take place.

このように、本機に2いては、負荷の変化に牛なってr
(ヒする令水入ロ温度Yヶ検出しつつ濃液用ポンプ(P
□、)の吐出K M p II Ak制御することによ
り吸収器(7)への濃液散布量な調節して吸収器(7)
の吸収能力?調整しているため、高温発生器(1)の加
熱量を負荷に応じて制御することにより間接的に吸収器
(力への濃液の散布量と濃度と?調節して吸収器(7)
の吸収能力?調整する従来のものに(らべ。
In this way, when the machine is in use, it becomes difficult to respond to changes in load.
(The pump for concentrated liquid (P
By controlling the discharge K M p II Ak of □, ), the amount of concentrated liquid sprayed to the absorber (7) is adjusted.
absorption capacity? By controlling the heating amount of the high-temperature generator (1) according to the load, the amount and concentration of concentrated liquid applied to the absorber (power) can be adjusted indirectly to the absorber (7).
absorption capacity? Compared to the conventional one to be adjusted.

冷凍出力の負荷の変化に対する応答速度な早くすること
ができるっまた、上記の従来のものはその運転?続けて
いる限りにおいて高@発生器(1)、発生凝縮器(2)
、蒸発吸収器(5)間に圧力差?もつので吸収器(7)
への濃液の散布を断ち得す、吸収器(7)の能力調整に
限度なもつ。これに対し、本機は、濃液用ポンプ(P、
、)Y停止させることによって吸収器(7)の能力?は
ぼ失なわせ得るので、冷凍出力の制御範囲を従来のもの
よりも拡大できる。なお、低@箆生器(3)から吸収”
l’1(1)の溶液散布5(13)へ至る濃液流路に弁
な設けてこれな全閉することにより吸収器(7)への濃
液の散布な断つ手段も考えられるが、この手段の場合、
負荷の急増時に弁を全開にすると同時に高@発生器(1
)の加熱量を最大にしても、高温発生器ti)、発生凝
縮器(2)、蒸発吸収器(5)間の圧力差は直ちに変ら
ないため、吸収器(7)への濃液の散布量を急増させる
ことはできない。したり一って、この手段゛Cま負荷の
急増時における冷凍出力の追従性に劣る欠点なもつ。こ
れに対し1本機において−1、m液用ポンプ(P、、)
の吐出量MPI1.を急増させることによって、急増し
た負荷に見合う迅速な冷凍出力側倒が可能である。なお
、本機においてtま、7:a液溜めuDの容量を十分大
きく採ることにより濃液用ポンプ(P、、)の吐出量M
、3.な急増させた際に−1そのキャビテーションな防
止できろこと゛・1勿論であり、また、M□Aな急減さ
せた際には溢流口α2より濃液溜めCILIから稀酸溜
めqO)へ濃液な排出できるのでs MpI!1に制御
することによって吸収1夜の流れに支11!ケ来すよう
なことはない。
Is the response speed of the refrigeration output to load changes faster? As long as it continues, high @ generator (1), generation condenser (2)
, the pressure difference between the evaporator and absorber (5)? Motsunoso absorber (7)
There is a limit to the ability adjustment of the absorber (7) to cut off the spraying of concentrated liquid to the absorber (7). On the other hand, this machine has a concentrated liquid pump (P,
,) the capacity of the absorber (7) by stopping Y? Since the refrigeration output can be completely lost, the control range of the refrigeration output can be expanded compared to the conventional method. In addition, absorption from low @ 箆生器(3)
It is also possible to cut off the spraying of the concentrated liquid to the absorber (7) by providing a valve in the concentrated liquid flow path leading to the solution spraying 5 (13) of l'1 (1) and completely closing it. In this case,
When the load suddenly increases, the valve is fully opened and at the same time the high @ generator (1
) Even if the heating amount of It is not possible to increase the amount rapidly. However, this method (C) also has the disadvantage of poor followability of the refrigerating output when the load suddenly increases. On the other hand, in one machine -1, m liquid pump (P,,)
Discharge amount MPI1. By rapidly increasing the refrigeration output, it is possible to quickly overturn the refrigeration output to match the rapidly increased load. In addition, in this machine, by making the capacity of the liquid reservoir uD sufficiently large, the discharge amount M of the concentrated liquid pump (P, ) can be increased.
, 3. Of course, cavitation can be prevented in the event of a rapid increase in M□A.Also, in the event of a sudden decrease in M□A, the flow from the concentrated liquid reservoir CILI to the dilute acid reservoir qO s MpI because it can discharge concentrated liquid! By controlling it to 1, it absorbs 1 night flow and supports 11! There's nothing like it happening.

更にまた、本[幾ておいて’4、冷水出口互変X?検出
しつつ空気供給路(42のダンパー(Dlおよび燃料制
御弁(V、)のPID動作による高温発生器(1)の加
熱量?調節して吸収液の濃縮の度合な調整しているので
、吸収器(7)の冷却器価)に散布される濃液の飽和蒸
気圧、飽和温度なほぼ所定の範囲内に保つことが可能で
あると共に冷水出口温度なほぼ目標凋度V(7°C″]
VCliつことも可能であり、かつ、′m液用ポンプ(
P、□)の吐出量M、□、の制御による冷凍出力の増減
変fヒに対応させて本機の加熱入力な増減しつつ本機の
熱収支ケバランスさせることも可能である。なお5本機
において1ま、ダンノ: −+rnおよび燃料制御弁(
V、)のPI動作による加熱量調節4行なうようにして
も良い。PI動作による調節の場合にlI家、PID動
作による調節の場合にくらべ、冷水負荷Rの急変の際に
冷水出口温度Xのハンチングが過渡的にや〜大きくなる
ものの。
Furthermore, this book [How many times is it '4, cold water outlet compatibility X? While detecting the amount of heating of the high temperature generator (1) by the PID operation of the damper (Dl of the air supply path (42) and the fuel control valve (V), the degree of concentration of the absorption liquid is adjusted. It is possible to maintain the saturated vapor pressure and saturation temperature of the concentrated liquid sprayed in the cooler of the absorber (7) within a predetermined range, and also to maintain the chilled water outlet temperature approximately at the target temperature V (7°C). ″】
It is also possible to use a VCli, and a liquid pump (
It is also possible to balance the heat balance of the machine by increasing or decreasing the heating input of the machine in response to the increase/decrease in the refrigerating output by controlling the discharge amount M, □ of P, □). 5 In this machine, 1, Danno: -+rn and fuel control valve (
The amount of heating may be adjusted four times by the PI operation of V, ). In the case of adjustment by PI operation, compared to the case of adjustment by PID operation, hunting in the chilled water outlet temperature X becomes transiently somewhat larger when the chilled water load R suddenly changes.

この程度のハンチングは無視し得る〔特に容量の大きな
吸収冷凍機の加熱量調節においては、ハンチングの程度
に大差がない。〕。
This degree of hunting can be ignored [particularly when adjusting the heating amount of a large-capacity absorption refrigerator, there is no significant difference in the degree of hunting. ].

また5本機においては、高温発生器(1)の吸収液温度
Zを検出しつつ稀酸用ポンプ(PL、)の吐出量MPL
え?制御するので5高@発生器(1)ておける吸収液の
出入のバランス?保って吸収液の循環?良好に維持し得
ると共に高巡発生5(11の熱効率も高水準に維持し得
る。なおm MPLA制myi熱交換器田から温水な得
る運転においても可能である。
In addition, in this machine, the discharge amount MPL of the dilute acid pump (PL) is detected while detecting the absorption liquid temperature Z of the high temperature generator (1).
picture? Since it is controlled, is the balance of the absorption liquid in and out of the 5-high @ generator (1)? Keep the absorption liquid circulating? It is possible to maintain good thermal efficiency and maintain a high level of thermal efficiency.It is also possible to operate with hot water from the MPLA system heat exchanger field.

なおまた、本機において、検出器(SenW)、(Se
xw)、(SGA)%’!、それぞれ管路G7)、(至
)、高@比生器(1)の壁@な感知するように構成して
も良い。
Furthermore, in this machine, the detector (SenW), (Se
xw), (SGA)%'! , the conduit G7), (to), and the wall of the specific generator (1) may be sensed.

(ト)  発明の効果 以上のとおり5本発明によれば、負荷の急変に対する今
凍出力制間の追従性?向上できると共にその制御範囲も
拡大でき、かつまた、吸ff16.蒸発器内の飽和温度
?はぼ所定の範囲に保って冷水出口温度ケ一定にできる
等、従来のこの種の吸収冷凍機でへま発揮することの困
難な優れた効果なこの種の吸収冷凍機にもたらし得るっ なお、木情明ター重効用吸収冷凍機て適用しても同様の
効果をもたらし得ろことは勿論である。
(G) Effects of the Invention As described above, according to the present invention, the ability of the current freezing output control to follow sudden changes in load? The control range can be expanded as well as the suction ff16. Saturation temperature inside the evaporator? This type of absorption refrigerator can bring excellent effects that are difficult to achieve with conventional absorption refrigerators, such as being able to keep the cold water outlet temperature constant within a predetermined range. It goes without saying that the same effect can be achieved even if a heavy-effect absorption refrigerating machine is applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1スルま本発明によるこの種の吸収今凍衆n−実施例
?示した概略構成説明図、第2図“・ま冷水入口温度Y
および冷水負荷RとWλ液用ポンプの吐出量M、IIA
との関係な示した線図、第3図はT’ID制闘における
冷水負荷Rのステップ変化に対する冷水出口温度Xの変
化の推移な示した線図、第4図は吸収液温度Zと稀酸用
ポンプの吐出量Mp Lえとの関係な示した線図である
。 (1)・・高温発生器、(2)・・・発生凝縮器、 (
3)・・・低温発生器、 (4)・・・凝縮器、 (5
)・・・蒸発吸収器、(6)・・・蒸発器、(7)・・
・吸収器、(8)、(9)・・・低温、高温@腹熱交換
器、  (10)・・・稀酸溜め、ul)・・・濃液溜
め、  (121+・・・隘流口、03)・・・溶液散
布器、 CD、器、器、C241,田、06J 、 @
、(2)、田、GO)・・・管、 C3+)・・・燃焼
加熱室、 ■・・・加熱器、 (ロ)・・・冷却器、 
田・・・熱交換器、 ■・・・冷却器、 (3η、(至
)・・・・・・管、(4)・・・空気供給路、(4J・
・・燃貨供給路、  < pL、 )−1゜補液用ポン
プ、  (P、、 )・・・濃液用ポンプ、(Senv
)・・・検出器、  (C□、)・・・調節器。 (Sc、)・・・検出器、  (CV、)・・・調節器
、(D)・・・ダンパー、  (V、)・・・燃料制御
弁っ出願人 三洋成機株式会社 外1名 代理人 弁理士  佐 野 静 矢 符2図 7   g   4  10 11 12’ζ4、に入
ロシシ成(イ) 第3図
Is this kind of absorption according to the present invention the first example? The schematic configuration explanatory diagram shown in Figure 2 “・Cooled water inlet temperature Y
and cold water load R and Wλ liquid pump discharge amount M, IIA
Figure 3 is a graph showing the change in chilled water outlet temperature It is a diagram showing the relationship between the discharge amount Mp and L of the acid pump. (1)...High temperature generator, (2)...Generation condenser, (
3)...low temperature generator, (4)...condenser, (5
)...Evaporator absorber, (6)...Evaporator, (7)...
・Absorber, (8), (9)...Low temperature, high temperature @ belly heat exchanger, (10)...Dilute acid reservoir, UL)...Concentrated liquid reservoir, (121+...Offflow port , 03)...Solution sprayer, CD, container, container, C241, field, 06J, @
, (2), GO)...pipe, C3+)...combustion heating chamber, ■...heater, (b)...cooler,
Field...Heat exchanger, ■...Cooler, (3η, (to)...Pipe, (4)...Air supply path, (4J・
・・Fuel supply path, < pL, )−1° fluid replacement pump, (P,, )・・concentrated liquid pump, (Senv
)...Detector, (C□,)...Adjuster. (Sc,)...Detector, (CV,)...Adjuster, (D)...Damper, (V,)...Fuel control valve Applicant Sanyo Seiki Co., Ltd. and one other representative Person Patent Attorney Shizuka Sano Arrow 2 Figure 7 g 4 10 11 12'ζ4, enter Roshishi Sei (A) Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)濃溶液の流路に吐出量可変ポンプが備えられ、か
つ、このポンプの吐出量を蒸発器の冷水入口温度により
制御する濃溶液流量調節装置と発生器の加熱量を蒸発器
の冷水出口温度により制御する加熱量調節装置とが備え
られていることを特徴とした吸収冷凍機。
(1) A variable discharge volume pump is provided in the flow path of the concentrated solution, and a concentrated solution flow rate adjustment device that controls the discharge volume of this pump by the temperature of the cold water inlet of the evaporator and the amount of heat generated by the generator are controlled by the cold water of the evaporator. An absorption refrigerating machine characterized by being equipped with a heating amount adjusting device that controls the outlet temperature.
(2)前記濃溶液流量調節装置の制御動作が比例動作で
ある特許請求の範囲第1項に記載の吸収冷凍機。
(2) The absorption refrigerator according to claim 1, wherein the control operation of the concentrated solution flow rate adjustment device is a proportional operation.
(3)前記加熱量調節装置の制御動作がPID動作であ
る特許請求の範囲第1項または第2項に記載の吸収冷凍
機。
(3) The absorption refrigerator according to claim 1 or 2, wherein the control operation of the heating amount adjusting device is a PID operation.
(4)前記加熱量調節装置の制御動作がPI動作である
特許請求の範囲第1項または第2項に記載の吸収冷凍機
(4) The absorption refrigerator according to claim 1 or 2, wherein the control operation of the heating amount adjusting device is a PI operation.
JP21311385A 1985-09-26 1985-09-26 Absorption refrigerator Expired - Lifetime JPH0627590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21311385A JPH0627590B2 (en) 1985-09-26 1985-09-26 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21311385A JPH0627590B2 (en) 1985-09-26 1985-09-26 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS6273054A true JPS6273054A (en) 1987-04-03
JPH0627590B2 JPH0627590B2 (en) 1994-04-13

Family

ID=16633794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21311385A Expired - Lifetime JPH0627590B2 (en) 1985-09-26 1985-09-26 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JPH0627590B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395364A (en) * 1989-09-08 1991-04-19 Hitachi Ltd Capacitor controller for absorption refrigerating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395364A (en) * 1989-09-08 1991-04-19 Hitachi Ltd Capacitor controller for absorption refrigerating machine

Also Published As

Publication number Publication date
JPH0627590B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
JP4248099B2 (en) Control method of refrigerator or hot and cold water machine
JPH0473064B2 (en)
JP4287113B2 (en) Refrigerator control method and refrigeration apparatus
JPS6273054A (en) Absorption refrigerator
JP2858922B2 (en) Absorption chiller / heater controller
JPS6277567A (en) Absorption refrigerator
JPH04110572A (en) Control device for absorption type freezer
JPS602584B2 (en) Absorption chiller safety device
JP2006046839A (en) Cold and hot water carrying system
JPH0478903B2 (en)
JP2654009B2 (en) Absorption refrigerator
JP3434279B2 (en) Absorption refrigerator and how to start it
JP2567662B2 (en) Air-cooled double-effect absorption refrigerator
JP2567663B2 (en) Air-cooled double-effect absorption refrigerator
JPH0868572A (en) Dual-effect absorption refrigerator
JPH02140564A (en) Controlling method for absorption refrigerator
JPH0293259A (en) Control method for absorption refrigerating machine
JP6438717B2 (en) Cooling system
JPH0480567A (en) Method and device for controlling of changing amount of flow of cold water and cooling water in absorption refrigerating machine and water cooler
JPS62196570A (en) Absorption refrigerator
JPH04161766A (en) Control device for absorption type freezer
JPH03294758A (en) Cycle controlling method for absorption refrigerator, cold/hot water apparatus
JPH04151469A (en) Control device for absorption type freezer
JPH0788988B2 (en) Absorption refrigerator
JPH0411779B2 (en)