JPH04126960A - Control device for absorption type cold water or hot water machine - Google Patents

Control device for absorption type cold water or hot water machine

Info

Publication number
JPH04126960A
JPH04126960A JP24948990A JP24948990A JPH04126960A JP H04126960 A JPH04126960 A JP H04126960A JP 24948990 A JP24948990 A JP 24948990A JP 24948990 A JP24948990 A JP 24948990A JP H04126960 A JPH04126960 A JP H04126960A
Authority
JP
Japan
Prior art keywords
hot water
water pump
cold water
cold
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24948990A
Other languages
Japanese (ja)
Other versions
JP2777471B2 (en
Inventor
Nobuhiro Idei
伸浩 出射
Yoshiki Iwatani
岩谷 孝樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2249489A priority Critical patent/JP2777471B2/en
Publication of JPH04126960A publication Critical patent/JPH04126960A/en
Application granted granted Critical
Publication of JP2777471B2 publication Critical patent/JP2777471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/006Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the sorption type system

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To reduce a power consumption of a hot water pump and a cold water pump by a method wherein the number of revolutions of a hot water pump is controlled in response to a degree of opening of a hot water drain control valve during an operation of a cold water main controlling operation, the number of revolutions of a cold water pump is controlled in response to a heating amount of a high temperature generator, the number of revolutions of the cold water pump is controlled in response to a degree of opening of a refrigerant drain control valve and the number of revolutions of the hot water is controlled in response to a heating amount of a high temperature generating device. CONSTITUTION:The number of revolutions of a hot water pump 38P is controlled in response to a degree of opening of a hot water drain control valve 37 during an operation of a cold water main control of an absorption type cold water or hot water machine and the number of revolutions of a cold water pump 22P is controlled in response to a heating amount of a high temperature generator 1. During an operation of a hot water main control, the number of revolutions of the hot water pump 38P is controlled in response to a heating amount of a high temperature generator 1 and the number of revolutions of the cold water pump 22P is controlled in response to a degree of opening of a refrigerant drain control valve 30. Control of the hot water pump and control of the cold water pump when the cold water main control and the hot water main control are properly carried out, power consumption of the hot water pump and cold water pump are substantially reduced and an operating cost of the absorption type cold or hot water machine is reduced.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は冷水と温水とを同時に供給する吸収冷温水機の
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a control device for an absorption chiller/heater that simultaneously supplies cold water and hot water.

(ロ)従来の技術 例えば特開昭63−38868号公報には、二重効用吸
収冷温水機の制御装置が開示されている。そして、蒸発
器の冷水出口温度が下限設定値以下であって温水器の温
水出口温度が上限設定値以下である場合には、温水出口
温度により高温発生器の加熱量を調節すると共に冷水出
口温度により高温発生器から凝縮器に至る冷媒の流路に
設けられた制御弁の開度を調節する温水主制御の運転が
行われる。又、冷水出口温度及び温水出口温度が上記の
場合以外のときには、冷水出口温度により高温発生器の
加熱量を調節すると共に、温水出0温度により温水器か
ら高温発生器へ至る冷媒ドレンの流路に設けられた制御
弁の開度を調節する冷水主制御の運転が行われる。
(b) Prior art For example, Japanese Patent Application Laid-Open No. 63-38868 discloses a control device for a dual-effect absorption chiller/heater. When the cold water outlet temperature of the evaporator is below the lower limit set value and the hot water outlet temperature of the water heater is below the upper limit set value, the heating amount of the high temperature generator is adjusted according to the hot water outlet temperature, and the cold water outlet temperature is As a result, a hot water main control operation is performed that adjusts the opening degree of a control valve provided in a refrigerant flow path from a high temperature generator to a condenser. In addition, when the cold water outlet temperature and the hot water outlet temperature are other than those mentioned above, the heating amount of the high temperature generator is adjusted by the cold water outlet temperature, and the flow path of the refrigerant drain from the water heater to the high temperature generator is adjusted by the hot water outlet temperature to 0. The chilled water main control operation is performed to adjust the opening degree of the control valve provided in the

くハ)発明が解決しようとする課題 上記従来の技術において、高温発生器の加熱量から負荷
の大きさを読み取り、燃料消費量が少ない場合、即ち負
荷が少ない場合に、冷水ポンプ又は温水ポンプの台数制
御、或いは極数変換などによって冷水循環量或いは温水
循環量を変化させる。ここで、冷水ポンプ、及び温水ポ
ンプの容量は一般に大きく、それぞれのポンプの能力を
制御することにより消費電力を低減することができる。
C) Problems to be Solved by the Invention In the above conventional technology, the magnitude of the load is read from the heating amount of the high temperature generator, and when the fuel consumption is low, that is, when the load is low, the cold water pump or the hot water pump is The amount of cold water circulation or hot water circulation is changed by controlling the number of units or changing the number of poles. Here, the capacity of the cold water pump and the hot water pump is generally large, and power consumption can be reduced by controlling the capacity of each pump.

しかしながら、冷水温水同時供給型の吸収冷温水機の場
合、冷水負荷と温水負荷との比率が一定でなく、燃料消
費量、即ち高温発生器の加熱量から上記比率はわからな
い。このため、燃料消費量、即ち燃料制御弁の開度で冷
水ポンプ及び温水ポンプの例えば回転数を制御した場合
、低負荷側、即ち冷水主制御の場合は温水ポンプ、温水
主制御の場合は冷水ポンプの制御を適切に行うことがで
きないという問題が発生ずる。
However, in the case of an absorption chiller/heater that simultaneously supplies cold and hot water, the ratio between the cold water load and the hot water load is not constant, and the ratio cannot be determined from the amount of fuel consumed, that is, the amount of heating by the high temperature generator. For this reason, if the fuel consumption, that is, the opening degree of the fuel control valve, is used to control the rotation speed of the cold water pump and hot water pump, the low load side, that is, the hot water pump in the case of cold water main control, and the cold water pump in the case of hot water main control. A problem arises in that the pump cannot be properly controlled.

本発明は、冷水主制御、温水主制御のときの温水ポンプ
の制御及び冷水ポンプの制御を適切に行い、冷水ポンプ
、及び温水ポンプの運転コストを低減することを目的と
する。
An object of the present invention is to appropriately perform hot water pump control and cold water pump control during cold water main control and hot water main control, and to reduce operating costs of the cold water pump and the hot water pump.

(ニ)課題を解決するための手段 本発明は上記課題を解決するために、吸収冷温水機の冷
水主制御の運転時に温水ドレン制御弁(37)の開度に
基づいて温水ポンプ(38P)の回転数を制御すると共
に、高温発生器(1)の加熱量に基づいて冷水ポンプ(
22P)の回転数を制御し、かつ、温水主制御の運転時
に、高温発生器(1)の加熱量に基づいて温水ポンプ(
38P)の回転数を制御すると共に、冷媒ドレン制御弁
(30)の開度に基づいて冷水ポンプ(22P)の回転
数を制御する機構を備えた吸収冷温水機の制御装置を提
供するものである。
(d) Means for Solving the Problems In order to solve the above problems, the present invention provides a hot water pump (38P) based on the opening degree of the hot water drain control valve (37) during operation of the cold water main control of the absorption chiller/heater. The rotation speed of the cold water pump (1) is controlled based on the heating amount of the high temperature generator (1).
22P), and during hot water main control operation, the hot water pump (22P) is controlled based on the heating amount of the high temperature generator (1).
The present invention provides a control device for an absorption chiller/heater equipped with a mechanism for controlling the rotation speed of a cold water pump (22P) based on the opening degree of a refrigerant drain control valve (30). be.

又、冷水主制御の運転時に温水負荷に応じて温水ポンプ
(38P)の能力を制御し、かつ温水主制御の運転時に
冷水負荷に応じて冷水ポンプ(22P)の能力を制御す
る機構を備えた吸収冷温水機の制御装置を提供するもの
である。
In addition, a mechanism is provided to control the capacity of the hot water pump (38P) according to the hot water load during operation of the cold water main control, and to control the capacity of the cold water pump (22P) according to the cold water load during the operation of the hot water main control. The present invention provides a control device for an absorption chiller/heater.

さらに、冷水主制御の運転時に温水ドレン制御弁(37
)の開度に基づいて温水ポンプ(38P)の回転数を制
御し、温水主制御の運転時に冷媒ドレン制御弁(30)
の開度に基づいて冷水ポンプ(22P)の回転数を制御
する機構を備えた吸収冷温水機の制御装置を提供するも
のである。
Furthermore, when operating the cold water main control, the hot water drain control valve (37
) The rotation speed of the hot water pump (38P) is controlled based on the opening degree of the refrigerant drain control valve (30) during hot water main control operation.
The present invention provides a control device for an absorption chiller/heater, which is equipped with a mechanism for controlling the rotational speed of a chilled water pump (22P) based on the opening degree of the chiller pump (22P).

(ホ〉作用 冷水主制御の運転時に温水負荷が小さくなり温水出口温
度が上昇して温水ドレン制御弁(37)の開度が小さく
なったときには、それに伴い温水ポンプ(38P)の回
転数が大幅に小さくなり、温水ポンプ(38P)の消費
電力を大幅に低減することができ、かつ、冷水負荷が小
さくなり、冷水出口温度が低下して高温発生器(1)の
加熱量が小さくなったときにはそれに伴い冷水ポンプ(
22P)の回転数が小さくなり、冷水ポンプ(22P)
の消費電力を低減することができ、又、温水主制御の運
転時に冷水負荷が小さくなり冷水用1コ温度が低下して
冷媒ドレン制御弁(30)の開度が小さくなったとぎに
は、それに伴い冷水ポンプ(22P>の回転数が大幅に
小さくなり、冷水ポンプ(22P)の消費電力を大幅に
低減することができ、かつ、温水負荷が小さくなり温水
出口温度が上昇して高温発生器(1)の加熱量が小さく
なったときにはそれに伴い温水ポンプ(38P)の回転
数が小さくなり、温水ポンプ(38P〉の消費電力を低
減することができ、吸収冷温水機の運転コストの低減を
図ることが可能になる。
(E) When the hot water load decreases during operation of the cold water main control, the hot water outlet temperature rises, and the opening degree of the hot water drain control valve (37) decreases, the rotation speed of the hot water pump (38P) increases accordingly. , the power consumption of the hot water pump (38P) can be significantly reduced, and when the chilled water load becomes smaller, the chilled water outlet temperature decreases, and the heating amount of the high temperature generator (1) becomes smaller. Along with this, the cold water pump (
The rotation speed of the cold water pump (22P) becomes smaller.
The power consumption of the refrigerant drain control valve (30) can be reduced, and when the chilled water load becomes small during hot water main control operation, the temperature of the chilled water unit decreases, and the opening degree of the refrigerant drain control valve (30) becomes small. As a result, the rotation speed of the cold water pump (22P>) is significantly reduced, and the power consumption of the cold water pump (22P) can be significantly reduced.The hot water load is also reduced, and the hot water outlet temperature increases, resulting in a high temperature generator. When the amount of heating in (1) decreases, the rotation speed of the hot water pump (38P) decreases accordingly, making it possible to reduce the power consumption of the hot water pump (38P) and reducing the operating cost of the absorption chiller/heater. It becomes possible to achieve this goal.

又、冷水主制御の運転時に温水負荷が定格値より大幅に
小さいとき(温水ドレン制御弁の開度が小さいとき)、
それに伴い温水ポンプ(38F)の能力(回転数)も大
幅に低下し、温水ポンプ(38P)の消費電力を大幅に
低減することが可能になり、又、温水主制御の運転時、
冷水負荷が定格値より大幅に小さいとき(冷媒ドレン制
御弁の開度が小さいとき)、それに伴い冷水ポンプ(2
2P)の能力(回転数)も大幅に低下し、冷水ポンプ(
22P)の消費電力を大幅に低減することが可能になる
Also, when the hot water load is significantly smaller than the rated value during cold water main control operation (when the opening degree of the hot water drain control valve is small),
Along with this, the capacity (rotation speed) of the hot water pump (38F) is also significantly reduced, making it possible to significantly reduce the power consumption of the hot water pump (38P).
When the chilled water load is significantly smaller than the rated value (when the opening degree of the refrigerant drain control valve is small), the chilled water pump (2
The capacity (rotation speed) of the cold water pump (2P) also decreased significantly, and the cold water pump (
22P) can be significantly reduced.

(へ〉実施例 以下、本発明の一実施例を図面に基づいて詳細に説明す
る。
(F) Example Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図に示したものは吸収冷温水機であり、冷媒に水(
H2O)、吸収剤(吸収液)に臭化リチウム(LiBr
)水溶液を使用したものである。
The one shown in Figure 1 is an absorption chiller/heater, and the refrigerant is water (
H2O), lithium bromide (LiBr
) using an aqueous solution.

第1図において(1)はバーナ(IB〉を備えた高温発
生器、(2)は低温発生器、(3〉は凝縮器、(3A〉
は冷媒液溜め、(4〉は蒸発器、(5〉は吸収器、(6
)は低温熱交換器、(7)は高温熱交換器、(8)ない
しく14)は吸収液管、(15)は吸収液ポンプ、(1
6)及び(17)は冷媒管、(18)は冷媒液流下管、
(19)は冷媒液循環管、(19P)は冷媒ポンプ、(
2A)はオーバーフロー管、(20)はバーナ(IB)
に接続された燃料供給管、(21)は加熱量制御弁、(
22)は冷水配管、(22P)は冷水ポンプ、(23)
は蒸発器熱交換器であり、それぞれは第1図に示したよ
うに配管接続されている。又、(A)は上胴、(B)は
下胴である。さらに、(25)は冷却水配管であり、こ
の冷却水配管(25〉の途中には吸収器熱交換器(26
〉及び凝縮器熱交換器(27)が設けられている。又、
(30)は冷媒管(17)に設けられた冷媒ドレン制御
弁である。
In Figure 1, (1) is a high temperature generator equipped with a burner (IB>), (2) is a low temperature generator, (3> is a condenser, (3A>)
is the refrigerant reservoir, (4> is the evaporator, (5> is the absorber, (6
) is a low temperature heat exchanger, (7) is a high temperature heat exchanger, (8) or 14) is an absorption liquid pipe, (15) is an absorption liquid pump, (1
6) and (17) are refrigerant pipes, (18) is a refrigerant liquid flow down pipe,
(19) is a refrigerant liquid circulation pipe, (19P) is a refrigerant pump, (
2A) is the overflow pipe, (20) is the burner (IB)
(21) is a heating amount control valve, (21) is a fuel supply pipe connected to
22) is the cold water pipe, (22P) is the cold water pump, (23)
are evaporator heat exchangers, each of which is connected by piping as shown in FIG. Also, (A) is the upper body, and (B) is the lower body. Furthermore, (25) is a cooling water pipe, and an absorber heat exchanger (26) is located in the middle of this cooling water pipe (25).
) and a condenser heat exchanger (27). or,
(30) is a refrigerant drain control valve provided in the refrigerant pipe (17).

(35)は高温発生器(1)に付設された温水器、(3
6〉は温水器(35)の下部と高温発生器(1)との間
に接続された温水ドレン管であり、この温水ドレン管(
36)の途中に温水ドレン制御弁(37)が設けられて
いる。又、(38)は温水配管であり、この温水配管(
38)の途中に温水ポンプ(38P)温水器熱交換器(
40)が設けられている。さらに、(39)は温水器(
35〉の気相部と凝縮器(3)の気相部とを接続した均
圧管であり、(39a)は開閉弁である。
(35) is a water heater attached to the high temperature generator (1), (3
6> is a hot water drain pipe connected between the lower part of the water heater (35) and the high temperature generator (1);
A hot water drain control valve (37) is provided in the middle of the pipe (36). In addition, (38) is a hot water pipe, and this hot water pipe (
38) In the middle of the hot water pump (38P) water heater heat exchanger (
40) is provided. Furthermore, (39) is a water heater (
35> is a pressure equalizing pipe connecting the gas phase part of the condenser (3), and (39a) is an on-off valve.

(41)は吸収冷温水機のマイコン制御盤(制御装置)
、(42)は制御盤(41)に設けられた冷主温主切換
装置である。又、(43〉及び(44)はそれぞれ蒸発
器(4)の入口側及び出口側に設けられた冷水入口温度
検出器及び冷水出口温度検出器であり、各温度検出器(
43) 、 <44)はマイコン制御盤り41)に接続
されている。さらに(45)及び(46)はそれぞれ温
水器(35)の入口側及び出口側に設けられた温水入口
温度検出器及び温水出口温度検出器であり、各温度検出
器(45) 、 (46)はマイコン制御盤(41)に
接続されている。又、加熱量制御弁(21)、冷媒ドレ
ン制御弁(30)及び温水ドレン制御弁(37〉がマイ
コン制御盤(41)に接続されている。又、(47) 
、 (48)はそれぞれ冷水ポンプインバータ装置及び
温水ポンプインバータ装置であり、マイコン制御盤(4
1)に接続され、又、マイコン制御盤(41)からの信
男に基づいて冷水ポンプ(22P)、及び濡水ポンプ(
38P)へ電力を供給する。
(41) is the microcomputer control panel (control device) of the absorption chiller/heater
, (42) is a cold main/warm main switching device provided in the control panel (41). Further, (43> and (44) are a cold water inlet temperature detector and a cold water outlet temperature detector provided respectively on the inlet side and the outlet side of the evaporator (4), and each temperature detector (
43) and <44) are connected to the microcomputer control panel 41). Furthermore, (45) and (46) are a hot water inlet temperature detector and a hot water outlet temperature detector provided at the inlet and outlet sides of the water heater (35), respectively, and each temperature detector (45), (46) is connected to the microcomputer control panel (41). Further, a heating amount control valve (21), a refrigerant drain control valve (30), and a hot water drain control valve (37>) are connected to a microcomputer control panel (41).
, (48) are a cold water pump inverter device and a hot water pump inverter device, respectively, and the microcomputer control panel (48) is a cold water pump inverter device and a hot water pump inverter device, respectively.
1), and based on Nobuo from the microcomputer control panel (41), the cold water pump (22P) and wet water pump (
38P).

又、冷主濡主の切換装置(42〉は冷水入口温度と温水
入口温度とに応じて動作し、第2図に示(7たように、
各入口温度に応じた冷水主制御の領域と温水主制御の領
域とが制御盤(41〉で計算される。
In addition, the cold main/wet main switching device (42) operates according to the cold water inlet temperature and the hot water inlet temperature, as shown in Fig. 2 (7).
The cold water main control area and hot water main control area according to each inlet temperature are calculated by the control panel (41>).

ここで、冷水主制御と温水主制御との領域の境界ライン
(50)上は冷水主制御である。
Here, the area on the boundary line (50) between the areas of cold water main control and hot water main control is cold water main control.

以下、上記のように構成された吸収冷温水機の動作につ
いて説明する。吸収冷温水機の運転時、冷水入口温度及
び温水入口温度がそれぞれ10゜0°C及び570°C
で第2図の冷水主制御の領域にあるときには、冷主温主
切換装置(42〉は冷主側に切換っている。このため、
従来の吸収冷温水機と同様に吸収液ポンプ(15〉及び
冷媒ポンプ(19P)が運転され、吸収液及び冷媒が循
環するとともに冷水出口温度により加熱量制御弁(21
)の開度(操作量)が例えばPID制御される。ここで
、冷媒ドレン制御弁(30)は全開している。又、温水
入口温度と温水出口温度との差、即ち温水負荷に応じて
温水ドレン制御弁(37〉の開度が調節される。そして
、高温発生器<1)の冷媒蒸気の発生量及び温水器<3
5)の温水(冷媒液)の液面が変化して、蒸発器(4)
及び温水器(35)での熱交換量が変化して冷水出口温
度及び温水出口温度はほぼ設定温度に保たれる。又、マ
イコン制御盤(41)は冷水入口温度と冷水出口温度と
の差、即ち冷水負荷に応じて冷水ポンプインバータ装置
(47〉へ周波数信号を出力し、冷水負荷の減少に伴い
冷水ポンプインバータ装置(47)から冷水ポンプ(2
2P)へ供給される電力の周波数は減少して冷水ポンプ
(22P)の回転数は少なくなる。又、冷水負荷の増加
に伴い冷水ポンプ(22P)の回転数は大きくなる。さ
らにマイコン制御盤(41〉は温水負荷に応じて温水ポ
ンプインパーク装置(48〉へ周波数信号を出力し、温
水負荷の減少に伴い温水ポンプインバータ装置(48)
から温水ポンプ(38P)へ供給される電力の周波数は
減少して温水ポンプ(38P)の回転数は少なくなる。
The operation of the absorption chiller/heater configured as described above will be described below. When the absorption chiller/heater is operating, the cold water inlet temperature and hot water inlet temperature are 10°0°C and 570°C, respectively.
When in the cold water main control region shown in Fig. 2, the cold main/heat main switching device (42>) is switched to the cold main side.For this reason,
The absorption liquid pump (15) and refrigerant pump (19P) are operated in the same way as a conventional absorption chiller/heater, and the absorption liquid and refrigerant are circulated, and the heating amount control valve (21) is operated depending on the chilled water outlet temperature.
) is subjected to PID control, for example. Here, the refrigerant drain control valve (30) is fully open. Further, the opening degree of the hot water drain control valve (37) is adjusted according to the difference between the hot water inlet temperature and the hot water outlet temperature, that is, the hot water load.Then, the amount of refrigerant vapor generated by the high temperature generator <1) and the hot water vessel <3
5) The liquid level of the hot water (refrigerant liquid) changes and the evaporator (4)
The amount of heat exchanged in the water heater (35) changes, and the cold water outlet temperature and the hot water outlet temperature are maintained at approximately the set temperature. In addition, the microcomputer control panel (41) outputs a frequency signal to the chilled water pump inverter device (47) according to the difference between the chilled water inlet temperature and the chilled water outlet temperature, that is, the chilled water load, and as the chilled water load decreases, the chilled water pump inverter device (47) outputs a frequency signal. (47) to the cold water pump (2
The frequency of the electric power supplied to the cold water pump (22P) decreases, and the rotational speed of the cold water pump (22P) decreases. Further, as the cold water load increases, the rotation speed of the cold water pump (22P) increases. Furthermore, the microcomputer control panel (41) outputs a frequency signal to the hot water pump impark device (48) according to the hot water load, and as the hot water load decreases, the hot water pump inverter device (48)
The frequency of the power supplied from the hot water pump (38P) to the hot water pump (38P) decreases, and the rotation speed of the hot water pump (38P) decreases.

又、温水負荷の増加に伴い温水ポンプ(38P)の回転
数は大きくなる。
Further, as the hot water load increases, the rotation speed of the hot water pump (38P) increases.

その後、温水入口温度が低下し、冷水入口温度及び温水
入口温度がそれぞれ10,0°C及び55°Cで、第2
図の温水主制御の領域にあるときには、冷主温主切換装
置(42)は温主側に切換っている。このため、冷水負
荷に応じて冷媒ドレン制御弁(30)の開度が調節され
、温水負荷に応じて加熱量制御弁(21)の開度が調節
される。ここで、温水ドレン制御弁(37)は全開して
いる。そして、高温発生器(1)から凝縮器<3)への
冷媒の流量及び高温発生器(1〉の冷媒蒸気の発生量が
変化して蒸発器<4)及び温水器(35)での熱交換量
が変化して冷水出1」温度及び温水出口温度はほぼ設定
温度に保たれる。又、マイコン制御盤(41)は冷水負
荷に応じて冷水ポンプインパーク装置(47)へ周波数
信号を出力し、冷水負荷の減少に伴い冷水ポンプインバ
ータ装置(47)から冷水ポンプ(22P)へ供給され
る電力の周波数は減少して冷水ポンプ(22P)の回転
数は少なくなる。又、冷水負荷の増加に伴い冷水ポンプ
(22P)の回転数は大きくなる。さらにマイコン制御
盤(41)は温水負荷に応じて温水ポンプインバータ装
置(48)へ周波数信号を出力し、温水負荷の減少に伴
い温水ポンプインバータ装置(48)から温水ポンプ(
38P)へ供給される電力の周波数は減少して温水ポン
プ(38F>の回転数は少なくなる。又、温水負荷の増
加に伴い温水ポンプ(38P)の回転数は大きくなる。
After that, the hot water inlet temperature decreases, and the cold water inlet temperature and hot water inlet temperature are 10,0 °C and 55 °C, respectively, and the second
When in the hot water main control region shown in the figure, the cold main/heat main switching device (42) is switched to the hot main side. Therefore, the opening degree of the refrigerant drain control valve (30) is adjusted according to the cold water load, and the opening degree of the heating amount control valve (21) is adjusted according to the hot water load. Here, the hot water drain control valve (37) is fully open. Then, the flow rate of refrigerant from the high temperature generator (1) to the condenser <3) and the amount of refrigerant vapor generated in the high temperature generator (1>) change, resulting in heat generation in the evaporator <4) and water heater (35). By changing the amount of exchange, the cold water outlet temperature and the hot water outlet temperature are maintained at approximately the set temperature. In addition, the microcomputer control panel (41) outputs a frequency signal to the chilled water pump impark device (47) according to the chilled water load, and as the chilled water load decreases, the frequency signal is supplied from the chilled water pump inverter device (47) to the chilled water pump (22P). The frequency of the electric power generated decreases, and the rotation speed of the cold water pump (22P) decreases. Further, as the cold water load increases, the rotation speed of the cold water pump (22P) increases. Furthermore, the microcomputer control panel (41) outputs a frequency signal to the hot water pump inverter device (48) according to the hot water load, and as the hot water load decreases, the hot water pump inverter device (48) outputs a frequency signal to the hot water pump inverter device (48).
The frequency of the power supplied to the hot water pump (38P) decreases, and the rotational speed of the hot water pump (38F>) decreases.Also, as the hot water load increases, the rotational speed of the hot water pump (38P) increases.

以後、冷水主制御時、或いは温水主制御時に、上記と同
様に冷水の負荷に応じて冷水ポンプ(22P)の回転数
を制御するとともに温水の負荷に応じて温水ポンプ(3
8P)の回転数を制御する。
Thereafter, during cold water main control or hot water main control, the rotation speed of the cold water pump (22P) is controlled according to the load of cold water in the same way as described above, and the rotation speed of the hot water pump (22P) is controlled according to the load of hot water.
8P).

上記実施例によれば、例えば夏期で冷水負荷より温水の
負荷が小さい(50%以下になることが多い)冷水主制
御の運転時に、温水負荷に応じて温水ポンプ(38P)
の回転数を制御し、温水負荷の減少に伴い温水ポンプ(
38P)の回転数を小さくするので、容量が大きい温水
ポンプ(38P)の消費電力を大幅に低減することがで
きる。又、冷水負荷に応じて容量が大きい冷水ポンプ(
22P)の回転数を制御するので、冷水ポンプ(22P
)の消費電力を低減することができる。
According to the above embodiment, for example, during the operation of cold water main control in which the hot water load is smaller than the cold water load (often 50% or less) in summer, the hot water pump (38P) is activated according to the hot water load.
As the hot water load decreases, the hot water pump (
Since the rotation speed of the hot water pump (38P) is reduced, the power consumption of the large capacity hot water pump (38P) can be significantly reduced. In addition, depending on the chilled water load, a large capacity chilled water pump (
Since it controls the rotation speed of the cold water pump (22P)
) can reduce power consumption.

さらに、例えば冬期で冷水負荷より温水負荷が大きい温
水主制御の運転時、冷水の負荷(50%以下になること
が多い)に応じて冷水ポンプ(22P)の回転数を制御
し、冷水負荷の減少に伴い冷水ポンプ(22P)の回転
数を小さくするので、冷水ポンプ(22P)の消費電力
を大幅に低減することができる。又、温水負荷に応じて
温水ポンプ(38P)の回転数を制御するので、温水ポ
ンプの消費電力を低減することができる。
Furthermore, during hot water main control operation in winter when the hot water load is larger than the cold water load, for example, the rotation speed of the cold water pump (22P) is controlled according to the cold water load (often less than 50%) to reduce the cold water load. Since the number of rotations of the cold water pump (22P) is decreased as the number of rotations decreases, the power consumption of the cold water pump (22P) can be significantly reduced. Moreover, since the rotation speed of the hot water pump (38P) is controlled according to the hot water load, the power consumption of the hot water pump can be reduced.

尚、」上記実施例において、冷水負荷に応じて冷水ポン
プ(22P )の回転数を制御するとともに、温水負荷
に応じて温水ポンプ(38P)の回転数を制御したが、
加熱量制御弁(21〉、温水ドレン制御弁(37)、及
び冷媒ドレン制御弁(30)の開度を例えば力ムスイッ
チを用いて読取り、冷水主制御時に、冷水負荷に応じて
変化する加熱量制御弁(21)の開度に基づいて冷水ポ
ンプ(22P)の回転数を制御し、温水負荷に応じて変
化する温水ドレン制御弁(37)の開度に基づいて温水
ポンプ(38P)の回転数を制御することにより、上記
実施例と同様の作用効果を得ることができる。又、温水
主制御時に、温水負荷に応じて変化する加熱量制御弁(
21)の開度に基づいて温水ポンプ(38P)の回転数
を制御し、冷水負荷に応じて変化する冷媒ドレン制御弁
(30)の開度に基づいて冷水ポンプ(22P)の回転
数を制御することにより、上記実施例と同様の作用効果
を得ることができる。
In addition, in the above embodiment, the rotation speed of the cold water pump (22P) was controlled according to the cold water load, and the rotation speed of the hot water pump (38P) was controlled according to the hot water load.
The opening degrees of the heating amount control valve (21), the hot water drain control valve (37), and the refrigerant drain control valve (30) are read using, for example, a force switch, and the amount of heating that changes depending on the chilled water load is determined during main control of chilled water. The rotation speed of the cold water pump (22P) is controlled based on the opening degree of the control valve (21), and the rotation speed of the hot water pump (38P) is controlled based on the opening degree of the hot water drain control valve (37), which changes depending on the hot water load. By controlling the number of heating amount control valves (
The rotation speed of the hot water pump (38P) is controlled based on the opening degree of 21), and the rotation speed of the cold water pump (22P) is controlled based on the opening degree of the refrigerant drain control valve (30), which changes according to the chilled water load. By doing so, the same effects as in the above embodiment can be obtained.

さらに、冷水主制御時に冷水ポンプ(22P)の回転数
は制御せずに温水ポンプ(38P)の回転数を温水負荷
、或いは温水ドレン制御弁(37)の開度に基づいて制
御し、温水主制御時に、温水ポンプ(38P〉の回転数
は制御せずに冷水ポンプ(22P)の回転数を冷水負荷
或いは冷媒ドレン制御弁(30)の開度に基づいて制御
することにより、例えば夏期の冷水生制御時で温水負荷
が小さいときの温水ポンプ(38P)の消費電力を大幅
に低減することができ、かつ、例えは冬期の温水主制御
時で冷水負荷が小さいときの冷水ポンプ(22P)の消
費電力を大幅に低減することができる。
Furthermore, during cold water main control, the rotation speed of the hot water pump (38P) is controlled based on the hot water load or the opening degree of the hot water drain control valve (37) without controlling the rotation speed of the cold water pump (22P). During control, the rotation speed of the cold water pump (22P) is controlled based on the chilled water load or the opening degree of the refrigerant drain control valve (30) without controlling the rotation speed of the hot water pump (38P>). It is possible to significantly reduce the power consumption of the hot water pump (38P) when the hot water load is small during raw control, and for example to reduce the power consumption of the cold water pump (22P) when the cold water load is small during hot water main control in winter. Power consumption can be significantly reduced.

又、上記実施例において冷水ポンプ(22P)及び温水
ポンプ(38P)の回転数を制御して冷水、及び温水の
変流量制御を行ったが、冷水ポンプ(22P)、及び温
水ポンプ(38P)の極数変換によって変流量制御を行
った場合にも、同様の作用効果を得ることができる。又
、冷水ポンプ(22P)、或いは温水ポンプ(38P)
が複数台数設けられている場合には、台数制御によって
変流量制御を行い同様の作用効果を得ることができる。
In addition, in the above embodiment, variable flow rates of cold water and hot water were controlled by controlling the rotational speed of the cold water pump (22P) and the hot water pump (38P). Similar effects can be obtained when variable flow rate control is performed by changing the number of poles. Also, cold water pump (22P) or hot water pump (38P)
When a plurality of units are provided, variable flow rate control can be performed by controlling the number of units, and similar effects can be obtained.

クト)発明の効果 本発明は以上のように構成された吸収冷温水機の制御装
置であり、冷水主制御と温水主制御とを切換える吸収冷
温水機の制御装置において、冷水主制御の運転時に、温
水ドレン制御弁の開度に基づいて温水ポンプの回転数を
制御すると共に、高温発生器の加熱量に基づいて冷水ポ
ンプの回転数を制御し、かつ温水主制御の運転時に、冷
媒ドレン制御弁の開度に基づいて冷水ポンプの回転数を
制御すると共に、高温発生器の加熱量に基づいて温水ポ
ンプの回転数を制御するので、冷水主制御時及び温水主
制御時に温水ポンプ及び冷水ポンプの消費電力を大幅に
低減することができ、この結果、吸収冷温水機の運転コ
ストの低減を図ることができる。
Effects of the Invention The present invention is a control device for an absorption chiller/heater configured as described above, and in the control device for an absorption chiller/heater that switches between chilled water main control and hot water main control, when operating the chilled water main control, , controls the rotation speed of the hot water pump based on the opening degree of the hot water drain control valve, controls the rotation speed of the cold water pump based on the heating amount of the high temperature generator, and controls the refrigerant drain during hot water main control operation. The rotation speed of the cold water pump is controlled based on the opening degree of the valve, and the rotation speed of the hot water pump is also controlled based on the heating amount of the high temperature generator. The power consumption of the absorption chiller/heater can be significantly reduced, and as a result, the operating cost of the absorption chiller/heater can be reduced.

又、冷水主制御の運転時に温水負荷に応じて温水ポンプ
の能力を制御し、温水主制御の運転時に冷水負荷に応じ
て冷水ポンプの能力を制御することにより、冷水主制御
時には温水ポンプの又、温水主制御時には冷水ポンプの
消費電力を大幅に低減することができる。
In addition, by controlling the capacity of the hot water pump according to the hot water load during operation of cold water main control, and controlling the capacity of the cold water pump according to the chilled water load during operation of hot water main control, the capacity of the hot water pump is controlled during operation of main control of cold water. , the power consumption of the cold water pump can be significantly reduced during hot water main control.

さらに冷水主制御の運転時に温水ド1〜ン制御弁の開度
に基づいて温水ポンプの回転数を制御し、温水主制御の
運転時冷媒ドレン制御弁の開度に基づいて冷水ポンプの
回転数を制御することにより、冷水主制御時の温水ポン
プの消費電力を大幅に低減することができると共に、温
水主制御時の冷水ポンプの消費電力を大幅に低減するこ
とができる。
Furthermore, when operating the cold water main control, the rotation speed of the hot water pump is controlled based on the opening degree of the hot water drain control valve, and when operating the hot water main control, the rotation speed of the cold water pump is controlled based on the opening degree of the refrigerant drain control valve. By controlling the above, it is possible to significantly reduce the power consumption of the hot water pump during cold water main control, and it is also possible to significantly reduce the power consumption of the cold water pump during hot water main control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す吸収冷温水機の回路構
成図、第2図は温水入口温度と冷水入口温度とに基づく
冷水主制御の領域と温水主制御の領域との説明図である
。 (1〉・・・高温発生器、 (2)・・・低温発生器、
 (3)・・・凝縮器、 (4)・・・蒸発器、 (5
)・・・吸収器、 (21)・・・加熱量制御弁、 (
22)・・・冷水配管、 (22P)・・・冷水ポンプ
、 (30)・・・冷媒ドレン制御弁、 (35)・・
・温水器、 <37)・・・温水ドレン制御弁、 (3
8)・・・温水配管、 (38P)・・・温水ポンプ、
 (41)・・・マイコン制御盤。
Fig. 1 is a circuit configuration diagram of an absorption chiller/heater showing an embodiment of the present invention, and Fig. 2 is an explanatory diagram of a cold water main control area and a hot water main control area based on hot water inlet temperature and cold water inlet temperature. It is. (1>... high temperature generator, (2)... low temperature generator,
(3)... Condenser, (4)... Evaporator, (5
)...Absorber, (21)...Heating amount control valve, (
22)...Cold water piping, (22P)...Cold water pump, (30)...Refrigerant drain control valve, (35)...
・Water heater, <37)...Hot water drain control valve, (3
8)...Hot water piping, (38P)...Hot water pump,
(41)...Microcomputer control panel.

Claims (1)

【特許請求の範囲】 1、高温発生器、この高温発生器に付設された温水器、
低温発生器、凝縮器、蒸発器、及び吸収器をそれぞれ配
管接続して冷凍サイクルを形成するとともに、温水器か
ら高温発生器へ至る温水ドレン管に設けられた温水ドレ
ン制御弁と、高温発生器から凝縮器へ至る冷媒管に設け
られた冷媒ドレン制御弁と、蒸発器に接続されて冷水ポ
ンプを有した冷水循環回路と、温水器に接続されて温水
ポンプを有した温水循環回路とを備え、冷水主制御の運
転時に、蒸発器の冷水出口温度によって高温発生器の加
熱量を制御すると共に温水器の温水出口温度によって温
水ドレン制御弁の開度を調節し、温水主制御の運転時に
、上記温水出口温度によって高温発生器の加熱量を制御
すると共に、上記冷水出口温度によって冷媒ドレン制御
弁の開度を調節する吸収冷温水機の制御装置において、
冷水主制御の運転時に温水ドレン制御弁の開度に基づい
て温水ポンプの回転数を制御すると共に、高温発生器の
加熱量に基づいて冷水ポンプの回転数を制御し、かつ温
水主制御の運転時に高温発生器の加熱量に基づいて温水
ポンプの回転数を制御すると共に、冷媒ドレン制御弁の
開度に基づいて冷水ポンプの回転数を制御する機構を備
えたことを特徴とする吸収冷温水機の制御装置。 2、高温発生器、この高温発生器に付設された温水器、
低温発生器、凝縮器、蒸発器、及び吸収器をそれぞれ配
管接続して冷凍サイクルを形成すると共に、蒸発器に接
続されて冷水ポンプを有した冷水循環回路と、温水器に
接続されて温水ポンプを有した温水循環回路とを備え、
冷水主制御の運転時に蒸発器の冷水出口温度によって高
温発生器の加熱量を制御し、温水主制御の運転時に温水
器の温水出口温度によって高温発生器の加熱量を制御す
る吸収冷温水機の制御装置において、冷水主制御の運転
時に上記温水負荷に応じて温水ポンプの能力を制御し、
かつ、温水主制御の運転時に冷水負荷に応じて冷水ポン
プの能力を制御する機構を備えたことを特徴とする吸収
冷温水機の制御装置。 3、高温発生器、この高温発生器に付設された温水器、
低温発生器、凝縮器、蒸発器、及び吸収器をそれぞれ配
管接続して冷凍サイクルを形成するとともに、温水器か
ら高温発生器へ至る温水ドレン管に設けられた温水ドレ
ン制御弁と、高温発生器から凝縮器へ至る冷媒管に設け
られた冷媒ドレン制御弁と、蒸発器に接続されて冷水ポ
ンプを有した冷水循環回路と、温水器に接続されて温水
ポンプを有した温水循環回路とを備え、冷水主制御の運
転時に蒸発器の冷水出口温度によって高温発生器の加熱
量を制御するとともに、温水器の温水出口温度によって
温水ドレン制御弁の開度を制御し、温水主制御の運転時
に上記温水出口温度によって発生器の加熱量を制御する
とともに、上記冷水出口温度によって冷水ドレン制御弁
の開度を制御する吸収冷温水機の制御装置において、冷
水主制御の運転時に温水ドレン制御弁の開度に基づいて
温水ポンプの回転数を制御し、温水主制御の運転時に冷
水ドレン制御弁の開度に基づいて冷水ポンプの回転数を
制御することを特徴とする吸収冷温水機の制御装置。
[Claims] 1. A high-temperature generator, a water heater attached to the high-temperature generator,
A refrigeration cycle is formed by connecting the low temperature generator, condenser, evaporator, and absorber with piping, and a hot water drain control valve installed in the hot water drain pipe leading from the water heater to the high temperature generator, and the high temperature generator. A refrigerant drain control valve provided in a refrigerant pipe leading from the evaporator to the condenser, a cold water circulation circuit connected to the evaporator and having a cold water pump, and a hot water circulation circuit connected to the water heater and having a hot water pump. , during operation of cold water main control, the heating amount of the high temperature generator is controlled by the cold water outlet temperature of the evaporator, and the opening degree of the hot water drain control valve is adjusted according to the hot water outlet temperature of the water heater, and during operation of hot water main control, In a control device for an absorption chiller/heater that controls the heating amount of a high temperature generator based on the hot water outlet temperature, and adjusts the opening degree of a refrigerant drain control valve based on the cold water outlet temperature,
When the cold water main control is operating, the rotation speed of the hot water pump is controlled based on the opening degree of the hot water drain control valve, and the rotation speed of the cold water pump is controlled based on the heating amount of the high temperature generator, and the hot water main control is being operated. Absorption cold/hot water characterized by comprising a mechanism for controlling the rotation speed of a hot water pump based on the heating amount of a high temperature generator and also controlling the rotation speed of a cold water pump based on the opening degree of a refrigerant drain control valve. Machine control device. 2. High temperature generator, water heater attached to this high temperature generator,
A refrigeration cycle is formed by connecting a low temperature generator, a condenser, an evaporator, and an absorber with piping, and a cold water circulation circuit that is connected to the evaporator and has a cold water pump, and a hot water pump that is connected to the water heater. Equipped with a hot water circulation circuit having
An absorption chiller/heater that controls the heating amount of the high-temperature generator by the cold water outlet temperature of the evaporator during operation of cold water main control, and controls the heating amount of the high-temperature generator by the hot water outlet temperature of the water heater during operation of hot water main control. In the control device, the capacity of the hot water pump is controlled according to the hot water load during operation of the cold water main control,
A control device for an absorption chiller/heater, further comprising a mechanism for controlling the capacity of the chilled water pump according to the chilled water load during hot water main control operation. 3. High temperature generator, water heater attached to this high temperature generator,
A refrigeration cycle is formed by connecting the low temperature generator, condenser, evaporator, and absorber with piping, and a hot water drain control valve installed in the hot water drain pipe leading from the water heater to the high temperature generator, and the high temperature generator. A refrigerant drain control valve provided in a refrigerant pipe leading from the evaporator to the condenser, a cold water circulation circuit connected to the evaporator and having a cold water pump, and a hot water circulation circuit connected to the water heater and having a hot water pump. , during operation of cold water main control, the heating amount of the high temperature generator is controlled by the cold water outlet temperature of the evaporator, and the opening degree of the hot water drain control valve is controlled according to the hot water outlet temperature of the water heater. In a control device for an absorption chiller/heater that controls the heating amount of the generator based on the hot water outlet temperature and also controls the opening degree of the chilled water drain control valve based on the chilled water outlet temperature, the opening of the hot water drain control valve is controlled during operation of chilled water main control. A control device for an absorption chiller/heater, characterized in that the rotation speed of the hot water pump is controlled based on the opening degree of a cold water drain control valve during hot water main control operation.
JP2249489A 1990-09-18 1990-09-18 Absorption chiller / heater controller Expired - Fee Related JP2777471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2249489A JP2777471B2 (en) 1990-09-18 1990-09-18 Absorption chiller / heater controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2249489A JP2777471B2 (en) 1990-09-18 1990-09-18 Absorption chiller / heater controller

Publications (2)

Publication Number Publication Date
JPH04126960A true JPH04126960A (en) 1992-04-27
JP2777471B2 JP2777471B2 (en) 1998-07-16

Family

ID=17193736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2249489A Expired - Fee Related JP2777471B2 (en) 1990-09-18 1990-09-18 Absorption chiller / heater controller

Country Status (1)

Country Link
JP (1) JP2777471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003122A (en) * 2005-06-24 2007-01-11 Sanyo Electric Co Ltd Operation control method of absorption chiller and heater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102346787B1 (en) * 2021-05-10 2022-01-04 (주)씨엔에이치엔지니어링 Absorption chiller with integrated pulse control inverter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003122A (en) * 2005-06-24 2007-01-11 Sanyo Electric Co Ltd Operation control method of absorption chiller and heater
JP4721783B2 (en) * 2005-06-24 2011-07-13 三洋電機株式会社 Operation control method of absorption chiller / heater

Also Published As

Publication number Publication date
JP2777471B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
JPH04126960A (en) Control device for absorption type cold water or hot water machine
JP3630775B2 (en) Heat input control method of absorption refrigerator
JP3363518B2 (en) Operation control method of single double effect absorption refrigerator
JP2858922B2 (en) Absorption chiller / heater controller
JP2532982B2 (en) Absorption refrigerator control device
JP2523044B2 (en) Absorption chiller / heater controller
JPH04143562A (en) Low temperature waste heat utilizing absorption type refrigerating plant and controlling method therefor
JP3086594B2 (en) Single double effect absorption refrigerator
JPH11148694A (en) Method for controlling operation of air conditioner
JPH07324839A (en) Single and double effect absorption hot and chilled water generator
JP2858921B2 (en) Control device for absorption refrigerator
JPH06281282A (en) Cold storage apparatus
JPH05223390A (en) Controlling method for solution flow rate of absorption cold/warm water device
JP2000179977A (en) Control for multiple-effect absorption type refrigerating machine
JP3280261B2 (en) Absorption refrigeration equipment
JPH08159596A (en) Absorption refrigerator
JPH0868572A (en) Dual-effect absorption refrigerator
JP3157668B2 (en) Absorption chiller / heater
JPH04136667A (en) Controller for absorbing freezer
JPH04136666A (en) Controller for absorbing freezer
JPH04161766A (en) Control device for absorption type freezer
JPH0317473A (en) Absorption cold and hot water air conditioner
JPH07269978A (en) Double effect absorption refrigerator
JPH08296916A (en) Absorption type refrigerating machine
JPS6222056B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees