JPH06281282A - Cold storage apparatus - Google Patents

Cold storage apparatus

Info

Publication number
JPH06281282A
JPH06281282A JP6975793A JP6975793A JPH06281282A JP H06281282 A JPH06281282 A JP H06281282A JP 6975793 A JP6975793 A JP 6975793A JP 6975793 A JP6975793 A JP 6975793A JP H06281282 A JPH06281282 A JP H06281282A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
heat exchanger
cold storage
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6975793A
Other languages
Japanese (ja)
Inventor
Koichi Kitagawa
晃一 北川
Koichi Yamaguchi
山口  広一
Katsuaki Yamagishi
勝明 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6975793A priority Critical patent/JPH06281282A/en
Publication of JPH06281282A publication Critical patent/JPH06281282A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To enhance cold storing velocity by effectively utilizing operating characteristics of a refrigerating cycle. CONSTITUTION:A heat exchanger for heat exchanging between refrigerant sealed in a refrigerating cycle and water of cold storage material filled in a cold storage layer 41 is connected to the cycle having a compressor 27, an outdoor heat exchanger 35, an indoor heat exchanger 37 and electronic expansion valves 45, 47. A refrigerant channel of the exchanger is disposed from an upper part to a lower part of the layer 41, and a four-way valve 39 for switching a flowing direction of refrigerant in the channel in the exchanger to a direction directed from the upper part to the lower part of the layer 41 and a direction directed from the lower part to the upper part of the layer 41 is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、冷凍サイクルを利用
したヒートポンプエアコンに使用される蓄冷熱装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold heat storage device used in a heat pump air conditioner using a refrigeration cycle.

【0002】[0002]

【従来の技術】冷凍サイクルを利用したヒートポンプエ
アコンにおいては、冷房運転時での空調負荷の低減(電
力使用時間のピークシフト)や、暖房運転の立ち上がり
時などの補助熱源として、蓄冷熱装置を用いたものがあ
る。図10は、従来の蓄冷熱装置を備えたヒートポンプ
エアコンにおける冷凍サイクル構成図である。この冷凍
サイクルは、冷媒を高温・高圧のガスとして吐出する圧
縮機1、蓄熱・蓄熱利用暖房・通常暖房運転と蓄冷・蓄
冷利用冷房・通常冷房運転とで、実線状態と破線状態と
に冷媒流路が切り替わる四方弁3、暖房運転時に凝縮器
となり冷房運転時に蒸発器となる室内熱交換器5、暖房
及び蓄熱運転時に蒸発器となり冷房及び蓄冷運転時に凝
縮器となる室外熱交換器7、内部に蓄冷熱材が満たされ
蓄冷熱材と冷媒との間で熱交換を行う熱交換器が収納さ
れた蓄冷熱槽9を備えている。蓄冷熱槽9の熱交換器
は、蓄熱及び蓄冷利用運転時に凝縮器となり、蓄冷及び
蓄熱利用運転時に蒸発器となる。符号11,13は電子
膨脹弁、符号15,17,19,21,23は二方弁,
符号25は一方向弁である。
2. Description of the Related Art In a heat pump air conditioner using a refrigeration cycle, a cold storage heat storage device is used as an auxiliary heat source for reducing the air conditioning load during the cooling operation (peak shift of power usage time) and for starting the heating operation. There is something I had. FIG. 10: is a refrigerating-cycle block diagram in the heat pump air conditioner provided with the conventional cold storage heat storage apparatus. This refrigeration cycle includes a compressor 1 that discharges a refrigerant as a high-temperature / high-pressure gas, heat storage / heat storage-use heating / normal heating operation and cold storage / cooling-use cooling / normal cooling operation, and a refrigerant flow in a solid line state and a broken line state. A four-way valve 3 for switching the path, an indoor heat exchanger 5 that serves as a condenser during heating operation and serves as an evaporator during heating operation, an outdoor heat exchanger 7 that serves as an evaporator during heating and heat storage operations and serves as a condenser during heating and heat storage operations, and inside The cold storage heat storage tank 9 is provided with a heat exchanger that is filled with the cold storage heat material and exchanges heat between the cold storage heat material and the refrigerant. The heat exchanger of the cold storage heat tank 9 serves as a condenser during the heat storage and cold storage utilization operation, and serves as an evaporator during the cold storage and heat storage utilization operation. Reference numerals 11 and 13 are electronic expansion valves, reference numerals 15, 17, 19, 21, and 23 are two-way valves,
Reference numeral 25 is a one-way valve.

【0003】蓄冷熱槽9としては、図11に示すような
スタティック型のものを使用するのが一般的である。す
なわち、冷媒が内部を流れる配管により構成した熱交換
器27を、蓄冷熱材である水29の中に設置し、冷媒と
水29との間で熱交換させることで、蓄熱・蓄冷及び蓄
熱利用暖房・蓄冷利用冷房の各運転を行う構成である。
この場合、熱交換器27を構成する配管は、蓄冷熱槽9
の上部から下部にわたり一様に配置されている。
As the cold heat storage tank 9, a static type as shown in FIG. 11 is generally used. That is, the heat exchanger 27 configured by the pipe through which the refrigerant flows is installed in the water 29, which is a cold storage heat material, and heat is exchanged between the refrigerant and the water 29, so that heat storage / cooling storage and heat storage utilization are performed. It is configured to perform each operation of heating and cooling using cooling.
In this case, the pipes forming the heat exchanger 27 have the cold storage heat tank 9
Are evenly arranged from the top to the bottom.

【0004】[0004]

【発明が解決しようとする課題】ところで、蓄冷熱槽9
内の熱交換器27を流れる冷媒は、蓄冷熱槽9の上部か
ら下部に向けて流れるように熱交換器27を冷凍サイク
ルに接続した場合と、逆に下部から上部に向けて流れる
ように接続した場合とで、蓄冷熱槽9内に起こる水29
の自然対流により、冷凍サイクルの特性が変化する。
By the way, the cold storage tank 9 is used.
The refrigerant flowing through the heat exchanger 27 in the inside is connected so as to flow from the lower portion to the upper portion of the cold storage tank 9 so that the refrigerant flows from the lower portion to the upper portion. Water that occurs in the cold storage tank 9 when
The natural convection of changes the characteristics of the refrigeration cycle.

【0005】例えば、蓄熱運転について説明する。冷媒
を蓄冷熱槽9の上部から下部に向けて流した場合には、
圧縮機1から流入した高温のガスが、蓄冷熱槽9内の水
29と徐々に熱交換して凝縮して行く際に、蓄冷熱槽9
内の水29は自然対流が起こり、水29の温度は、図1
2(a)における実線Wで示すように、蓄冷熱槽9の上
部の方が下部よりも高くなる。
For example, the heat storage operation will be described. When the refrigerant flows from the upper part to the lower part of the cold storage heat tank 9,
When the high temperature gas flowing in from the compressor 1 gradually exchanges heat with the water 29 in the cold storage heat tank 9 and condenses, the cold storage heat tank 9
Natural convection occurs in the water 29 therein, and the temperature of the water 29 is as shown in FIG.
As shown by the solid line W in 2 (a), the upper part of the cold storage heat tank 9 is higher than the lower part.

【0006】このように熱交換器27の冷媒入口側の温
度が高くなる温度分布では、冷凍サイクルからみると、
凝縮温度が高くなり、蓄熱速度が大きくなるが、そのと
き必要な圧縮機の入力量は大きくなるという弊害があ
る。
In the temperature distribution in which the temperature on the refrigerant inlet side of the heat exchanger 27 rises in this way, as seen from the refrigeration cycle,
Although the condensing temperature becomes high and the heat storage rate becomes high, there is an adverse effect that the amount of input of the compressor required at that time becomes large.

【0007】一方、逆に冷媒を蓄冷熱槽9の下部から上
部に向けて流した場合には、蓄冷熱槽9の下部から熱交
換して行くために、蓄冷熱槽9内の水29の温度は、図
12(b)における実線Wで示すように、自然対流の効
果で均一になる傾向がある。したがって、この場合に
は、上部から下部へと流した場合に比べて蓄冷熱槽9内
の水の温度分布がより均一化し、冷媒と水29との温度
差が小さくなることから蓄熱速度は小さくなるが、圧縮
機1の入力量は低減できることになる。
On the other hand, when the refrigerant is made to flow from the lower part of the cold storage heat tank 9 to the upper part, heat is exchanged from the lower part of the cold heat storage tank 9 so that the water 29 in the cold heat storage tank 9 is exchanged. The temperature tends to be uniform due to the effect of natural convection, as indicated by the solid line W in FIG. Therefore, in this case, the temperature distribution of the water in the cold storage tank 9 becomes more uniform and the temperature difference between the refrigerant and the water 29 becomes smaller than in the case of flowing from the upper part to the lower part, so the heat storage rate is small. However, the input amount of the compressor 1 can be reduced.

【0008】以上のように、蓄熱運転時には、蓄冷熱槽
9内での冷媒の流す方向によりそれぞれ一長一短がある
が、一般的には蓄熱速度を高めることを目的として、冷
媒を上部から下部に向けて流すことが多い。
As described above, during heat storage operation, there are merits and demerits depending on the flowing direction of the refrigerant in the cold storage tank 9, but in general, the refrigerant is directed from the upper part to the lower part for the purpose of increasing the heat storage rate. Often shed.

【0009】なお、図12(a),(b)において、一
点鎖線R1 は熱交換器27内における冷媒の温度を示し
ており、この冷媒温度は図12(a),(b)ともにほ
ぼ一定であるが、図12(a)の冷媒を上部から下部に
向けて流す方が、図12(b)の冷媒を下部から上部に
向けて流す方より若干温度が高い。
12 (a) and 12 (b), the alternate long and short dash line R 1 indicates the temperature of the refrigerant in the heat exchanger 27, and this refrigerant temperature is almost the same in both FIGS. 12 (a) and 12 (b). Although constant, the temperature of the refrigerant in FIG. 12A flowing from the upper portion to the lower portion is slightly higher than that of the refrigerant in FIG. 12B flowing from the lower portion to the upper portion.

【0010】また、冷凍サイクルに封入する冷媒とし
て、高沸点冷媒と低沸点冷媒とを混合させた非共沸混合
冷媒を用いた場合には、冷媒は相変化するときに組成が
変化するために、温度が変化する。図12(a),
(b)における破線R2 が、蓄熱運転時での非共沸混合
冷媒の蓄冷熱槽9内での温度変化である。蓄熱運転のよ
うに、熱交換器27内で冷媒が凝縮する場合には、図1
2(a),(b)からわかるように、冷媒は熱交換器2
7の入口に比べて出口では数℃、例えば5℃程度低くな
り、図12(a)のように冷媒を上部から下部へ向けて
流した場合には、蓄冷熱槽9内の水の温度分布の付く傾
向はさらに大きくなる。
Further, when a non-azeotropic mixed refrigerant in which a high boiling point refrigerant and a low boiling point refrigerant are mixed is used as the refrigerant sealed in the refrigeration cycle, the composition of the refrigerant changes when the phase changes. , The temperature changes. FIG. 12 (a),
The broken line R 2 in (b) is the temperature change in the cold storage tank 9 of the non-azeotropic mixed refrigerant during the heat storage operation. When the refrigerant condenses in the heat exchanger 27 as in the heat storage operation,
As can be seen from 2 (a) and 2 (b), the refrigerant is the heat exchanger 2
The temperature at the outlet is several degrees Celsius, for example, about 5 degrees Celsius lower than that at the inlet of No. 7, and when the refrigerant flows from the upper part to the lower part as shown in FIG. The tendency to be marked is further increased.

【0011】ここで、深夜時間帯の電気料金の割引き制
度を活用した経済性について考える。最も経済的に蓄冷
熱装置を活用するためには、電力使用時間帯のピークシ
フトや初期立ち上がりに必要なだけの熱量、すなわち過
不足のない熱量を蓄熱することが望ましい。その蓄熱量
は、外気温度変化・空調される空間の大きさや断熱性な
どに基づいた空調負荷から決められる。そして、外気へ
のヒートリークがあることを考えると、深夜時間料金体
系の中で、圧縮機の運転周波数や室外熱交換器の送風量
などを制御して、最も効率がよくなるように冷凍サイク
ルを運転することが望まれている。
Now, let us consider the economics of utilizing the discount system for the electricity rate in the middle of the night. In order to utilize the cold storage device most economically, it is desirable to store the amount of heat necessary for the peak shift and the initial start-up in the power usage time period, that is, the amount of heat that is sufficient. The amount of heat storage is determined from the air conditioning load based on changes in the outside air temperature, the size of the air-conditioned space, and the heat insulation. Considering that there is a heat leak to the outside air, by controlling the operating frequency of the compressor and the air flow rate of the outdoor heat exchanger in the midnight time charge system, the refrigeration cycle is optimized to maximize efficiency. It is desired to drive.

【0012】そこで、この発明は、冷凍サイクルの運転
特性を効率的に活用し、より経済性の優れたものとする
ことを目的としている。
Therefore, an object of the present invention is to efficiently utilize the operating characteristics of the refrigerating cycle and to make it more economical.

【0013】[0013]

【課題を解決するための手段】前記目的を達成するため
に、この発明は、第1に、圧縮機,室外熱交換器,室内
熱交換器及び膨脹機構を備えた冷凍サイクルに、この冷
凍サイクルに封入された冷媒と容器内に満たされた蓄冷
熱材との間で熱交換を行う熱交換器を接続し、この熱交
換器における冷媒流路を前記容器の上部から下部にわた
って配置し、前記熱交換器の冷媒流路における冷媒の流
れ方向を、前記容器の上部から下部に向かう方向と、下
部から上部に向かう方向とに切り替える切り替え手段を
設けた構成としてある。
In order to achieve the above object, the present invention is, firstly, a refrigeration cycle including a compressor, an outdoor heat exchanger, an indoor heat exchanger and an expansion mechanism. A heat exchanger for exchanging heat between the refrigerant filled in and the cold storage heat material filled in the container is connected, and the refrigerant passage in this heat exchanger is arranged from the upper part to the lower part of the container, The configuration is such that switching means is provided for switching the flow direction of the refrigerant in the refrigerant flow path of the heat exchanger between the direction from the upper part to the lower part of the container and the direction from the lower part to the upper part.

【0014】第2に、第1の構成において、切り替え手
段は、容器内の熱交換器が凝縮器となり室外熱交換器が
蒸発器となって行う蓄熱運転時には、蓄冷熱材の温度及
び深夜電力料金時間帯の残り時間に基づき制御手段によ
って切り替えられる構成としてある。
Secondly, in the first configuration, the switching means is configured such that the heat exchanger in the container serves as a condenser and the outdoor heat exchanger serves as an evaporator during the heat storage operation, and the temperature of the cold storage heat material and the midnight power. It is configured to be switched by the control means based on the remaining time of the charge time zone.

【0015】第3に、第1の構成において、切り替え手
段は、容器内の熱交換器が凝縮器となり室内熱交換器が
蒸発器となって行う蓄冷利用冷房運転の開始時には、冷
媒が容器の上部から下部に向かって流れるよう制御手段
によって切り替えられ、蓄冷利用冷房運転開始時後の所
定時間経過後には、冷媒が容器の下部から上部に向かっ
て流れるよう制御手段によって切り替えられる構成とし
てある。
Thirdly, in the first configuration, the switching means is such that, at the start of the cooling operation using cold storage in which the heat exchanger in the container serves as a condenser and the indoor heat exchanger serves as an evaporator, the refrigerant is stored in the container. The control means switches the flow from the upper part to the lower part, and the control means switches the refrigerant to flow from the lower part to the upper part of the container after a predetermined time elapses after the start of the cooling operation using the cold storage.

【0016】第4に、第1の構成において、切り替え手
段は、圧縮機の運転周波数に基づき制御手段によって切
り替えられる構成としてある。
Fourthly, in the first configuration, the switching means is configured to be switched by the control means based on the operating frequency of the compressor.

【0017】第5に、第1,第2,第3または第4の構
成において、冷凍サイクルに封入する冷媒を、非共沸混
合冷媒とした構成としてある。
Fifth, in the first, second, third or fourth configuration, the refrigerant to be sealed in the refrigeration cycle is a non-azeotropic mixed refrigerant.

【0018】[0018]

【作用】このように構成された蓄冷熱装置によれば、容
器内の熱交換器の冷媒流路における冷媒の流れ方向を、
容器の上部から下部に向かう方向と、下部から上部に向
かう方向とに切り替えることにより、熱交換器に接続さ
れる冷凍サイクルが効率よく運転され、より経済性の優
れたものとなる。
According to the cold energy storage device configured as described above, the flow direction of the refrigerant in the refrigerant flow path of the heat exchanger in the container is
By switching between the direction from the upper part to the lower part of the container and the direction from the lower part to the upper part, the refrigeration cycle connected to the heat exchanger is efficiently operated, and the economy is further improved.

【0019】[0019]

【実施例】以下、この発明の実施例を図面に基づき説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1は、この発明の一実施例を示す蓄冷熱
装置を備えたヒートポンプ式エアコンに使用される冷凍
サイクル構成図である。この冷凍サイクルは、冷媒を高
温・高圧のガスとして吐出する圧縮機27を有し、圧縮
機27には、蓄熱・蓄熱利用暖房・通常暖房・蓄冷・蓄
冷利用冷房・通常冷房の各運転状態によって実線状態と
破線状態とに冷媒流路が切り替わる三つの四方弁29,
31,33が接続されている。四方弁29には室外熱交
換器35が、四方弁33には室内熱交換器37がそれぞ
れ接続されている。
FIG. 1 is a block diagram of a refrigeration cycle used in a heat pump type air conditioner equipped with a cold heat storage device according to an embodiment of the present invention. This refrigeration cycle has a compressor 27 that discharges a refrigerant as a high-temperature, high-pressure gas. The compressor 27 has a heat storage / heating-use heating / normal heating / cooling / cooling-use cooling / normal cooling operation state. Three four-way valves 29 whose refrigerant flow paths are switched between a solid line state and a broken line state,
31, 33 are connected. An outdoor heat exchanger 35 is connected to the four-way valve 29, and an indoor heat exchanger 37 is connected to the four-way valve 33.

【0021】四方弁31には、四方弁39を介して容器
としての蓄冷熱槽41が接続されている。蓄冷熱槽41
は、前記図11に示したものと同様に、蓄冷熱槽41の
上部から下部にわたり配管が一様に配置された熱交換器
を有し、内部に蓄冷熱材である水が満たされている。四
方弁39は、蓄冷熱槽41内の熱交換器内での冷媒の流
れ方向を、蓄冷熱槽41の上部から下部に向かって流れ
る状態と、下部から上部に向かって流れる状態とに切り
替える切り替え手段を構成しており、制御手段を構成す
るマイクロコンピュータなどからなる制御回路43によ
って切り替え制御される。
A cold storage tank 41 as a container is connected to the four-way valve 31 via a four-way valve 39. Cold storage heat tank 41
11 has a heat exchanger in which pipes are uniformly arranged from the upper part to the lower part of the cold storage heat tank 41, as in the case shown in FIG. 11, and is filled with water as a cold storage heat material. . The four-way valve 39 switches the flow direction of the refrigerant in the heat exchanger in the cold storage heat tank 41 between a state of flowing from the upper part to the lower part of the cold heat storage tank 41 and a state of flowing from the lower part to the upper part. A control circuit 43, which constitutes a control means and is composed of a microcomputer or the like, constitutes a control means.

【0022】制御回路43は、蓄熱運転においては、深
夜電力料金時間帯の残り時間及び蓄冷熱材である水の温
度を判定基準として冷媒の流れ方向を切り替える。ま
た、制御回路43は、蓄冷運転時には水の温度を判定基
準とし、蓄冷利用冷房運転時には運転時間を判定基準と
して冷媒の流れ方向を切り替える。さらに、制御回路4
3は、圧縮機27の運転周波数を判定基準として冷媒の
流れ方向を切り替える。なお、符号45,47は電子膨
脹弁、符号49は二方弁,符号51,53,55は一方
向弁である。
In the heat storage operation, the control circuit 43 switches the flow direction of the refrigerant on the basis of the remaining time of the midnight power charge time zone and the temperature of water as the cold storage material. Further, the control circuit 43 switches the flow direction of the refrigerant using the temperature of water as a criterion during the cold storage operation and the operation time as a criterion during the cooling operation using the cold storage. Furthermore, the control circuit 4
3 switches the flow direction of the refrigerant with the operating frequency of the compressor 27 as a criterion. Reference numerals 45 and 47 are electronic expansion valves, reference numeral 49 is a two-way valve, and reference numerals 51, 53 and 55 are one-way valves.

【0023】このような構成の蓄冷熱装置を備えた冷凍
サイクルにおける蓄熱・蓄熱利用暖房・蓄冷・蓄冷利用
冷房の各運転における冷媒の流れの経路を、図2〜図5
に太線で示してある。
2 to 5 show the flow paths of the refrigerant in each operation of heat storage, heating using heat storage, cold storage, and cooling using cold storage in a refrigeration cycle equipped with the cold storage device having such a configuration.
Is indicated by a thick line.

【0024】図6は、図2に示す蓄熱運転時において、
蓄冷熱槽41内での冷媒の流れ方向の切り替えによる蓄
冷熱材(水)の温度変化の一例を示している。図6にお
いて、実線がこの発明の実施例によるもので、一点鎖線
が上部から下部に向けて流し続けた場合、破線が下部か
ら上部に向けて流し続けた場合であり、温度Tは必要と
する蓄熱温度である。図7は、図6の実線で示すような
温度変化をもたらすための制御回路43の制御動作を示
すフローチャートである。
FIG. 6 shows the heat storage operation shown in FIG.
An example of a temperature change of the cold storage heat material (water) by switching the flow direction of the refrigerant in the cold storage heat tank 41 is shown. In FIG. 6, the solid line is according to the embodiment of the present invention, and the one-dot chain line indicates the case where the flow continues from the upper part to the lower part, and the broken line indicates the case where the flow continues from the lower part to the upper part, and the temperature T is required. The heat storage temperature. FIG. 7 is a flowchart showing the control operation of the control circuit 43 for causing the temperature change shown by the solid line in FIG.

【0025】図6及び図7を用いて蓄熱運転時での制御
動作を説明する。電力の深夜料金開始時(図6の時間
S)に蓄熱運転を開始し(ステップ701)、このとき
水の温度はTa である。その後、深夜料金時間帯の残存
時間の判定と(ステップ703)、蓄冷熱槽41の水の
温度の判定(ステップ705)がなされる。残存時間の
判定は、深夜料金時間帯の終了時間が開始時間とともに
決められているので、終了時間までの時間を計測すれば
よく、また蓄冷熱槽41の水の温度は、蓄冷熱槽41内
に設ける温度センサによって測定できる。
The control operation during the heat storage operation will be described with reference to FIGS. 6 and 7. The heat storage operation is started at the start of the midnight charge of electric power (time S in FIG. 6) (step 701), and at this time, the temperature of the water is T a . Then, the remaining time of the midnight charge time zone is determined (step 703), and the temperature of the water in the cold storage tank 41 is determined (step 705). Since the end time of the midnight charge time zone is determined together with the start time in the determination of the remaining time, the time until the end time may be measured, and the temperature of the water in the cold storage heat tank 41 is the same as that in the cold storage heat tank 41. It can be measured by a temperature sensor provided in the.

【0026】蓄熱運転開始直後は、深夜料金の残存時間
が所定値のTIM 1 を越えており、蓄冷熱槽41の温度も
T 1 を越えておらず、T 1 以下であるので、蓄冷熱槽4
1内の熱交換器において冷媒は下部から上部に向けて流
れるように四方弁39を切り替える(ステップ70
7)。これにより、蓄冷熱槽41内の水の温度は、図6
のように点Aから点Bまで徐々に上昇するが、このとき
の蓄冷熱槽41内の水の温度分布は非常に小さいもので
あり、冷媒と水との温度差が小さくなることからその蓄
熱速度は小さいが、圧縮機27の入力量は低減できるこ
とになる。
Immediately after the heat storage operation is started, the remaining time of the midnight charge exceeds the predetermined value TIM 1 , and the temperature of the cold storage heat tank 41 is also increased.
Not exceed T 1, since by T 1 or less, cold storage heat tank 4
In the heat exchanger in 1, the four-way valve 39 is switched so that the refrigerant flows from the lower part to the upper part (step 70).
7). As a result, the temperature of the water in the cold storage tank 41 is
Although the temperature gradually rises from the point A to the point B like this, the temperature distribution of the water in the cold storage heat tank 41 at this time is very small and the temperature difference between the refrigerant and the water becomes small, so that the heat storage Although the speed is low, the input amount of the compressor 27 can be reduced.

【0027】深夜料金時間帯の残存時間が少なく所定値
のTIM 1 以下の場合(ステップ703)、及び蓄冷熱層
41の水の温度が所定値のT 1 を越えた場合(ステップ
705)には、図6の時間Pにて四方弁39を切り替え
(このときの水の温度はTb)、冷媒を蓄冷熱槽41の
上部から下部に向けて流す(ステップ709,71
1)。この状態での点Bからの温度上昇過程において
は、蓄冷熱槽41内温度は上部の方が下部より高くなる
ので、必要な圧縮機27の入力量は大きくなるが、冷凍
サイクルとしては凝縮温度が高くなり蓄熱速度が大きく
なる。このため、点B以降の温度上昇率は、蓄熱運転開
始から四方弁39を切り替えるまでの同上昇率に比べて
大きくなる。四方弁39の切り替え時間Pは、深夜料金
終了時間Eにて必要とする蓄熱温度Tに到達するように
する。
When the remaining time in the midnight charge time zone is small and is equal to or less than the predetermined value TIM 1 (step 703), or when the temperature of the water in the cold storage heat layer 41 exceeds the predetermined value T 1 (step 705). At time P in FIG. 6, the four-way valve 39 is switched (the temperature of the water at this time is T b ), and the refrigerant flows from the upper part to the lower part of the cold storage heat tank 41 (steps 709, 71).
1). In the temperature rising process from the point B in this state, the internal temperature of the cold storage heat tank 41 is higher in the upper part than in the lower part, so that the required input amount of the compressor 27 is large, but the refrigeration cycle has a condensing temperature. Becomes higher and the heat storage rate becomes higher. Therefore, the temperature increase rate after the point B is greater than the same temperature increase rate from the start of the heat storage operation to the switching of the four-way valve 39. The switching time P of the four-way valve 39 is set to reach the heat storage temperature T required at the midnight charge end time E.

【0028】上記のような制御とは別に、必要とする蓄
熱材の温度が高い場合には、蓄熱運転開始当初から、蓄
冷熱槽41の上部か下部に向けて流すようにし、逆に必
要とする蓄熱材の温度が低い場合には、下部から上部に
向けて流す運転のみとしてもよい。さらに、深夜電気料
金終了時で必要とする蓄熱量が得られるように、蓄熱運
転開始時間を遅らせるようにしてもよい。これらの制御
には、例えば外気温度を判定基準として行えばよい。
In addition to the control described above, when the required temperature of the heat storage material is high, the heat storage operation is started from the beginning and is made to flow toward the upper part or the lower part of the cold storage tank 41, and vice versa. When the temperature of the stored heat storage material is low, only the operation of flowing from the lower part to the upper part may be performed. Furthermore, the heat storage operation start time may be delayed so that the required heat storage amount can be obtained at the end of the midnight electricity rate. For these controls, for example, the outside air temperature may be used as the determination reference.

【0029】以上のような蓄熱運転を行うことで、図3
に示す蓄熱を利用する蓄熱利用暖房運転開始までの時間
をなるべく小さくしてヒートリーク量を小さくし、蓄熱
利用運転時に使用できるエネルギ量を大きくすることに
より、蓄冷熱装置の運転効率を向上させることができ
る。
By performing the heat storage operation as described above, FIG.
To improve the operation efficiency of the cold storage heat storage device by reducing the heat leak amount by shortening the time until the start of the heat storage utilization heating operation using the heat storage shown in Fig. 1 to increase the amount of energy that can be used during the heat storage utilization operation. You can

【0030】一方、図4に示す蓄冷運転時には、蓄冷熱
槽41内の水の温度が約0℃に到達するまでは、冷媒を
蓄冷熱槽41の上部から下部に向かって流し、その後下
部から上部へと流すことにより効率的に冷凍サイクルを
運転することが可能となる。これは、蓄冷熱槽41内で
製氷が始まると、水の密度の温度依存性が4℃をピーク
として変わることにより、製氷される前の温度が少し高
い水が蓄冷熱槽41の下部に溜まる傾向があるためであ
る。
On the other hand, during the cold storage operation shown in FIG. 4, the refrigerant flows from the upper part to the lower part of the cold storage heat tank 41 until the temperature of the water in the cold storage heat tank 41 reaches about 0 ° C., and then from the lower part. By flowing it to the upper part, it becomes possible to operate the refrigeration cycle efficiently. This is because when ice making starts in the cold storage heat storage tank 41, the temperature dependence of the density of water changes at a peak of 4 ° C., so that water having a slightly higher temperature before ice making accumulates in the lower part of the cold storage heat storage tank 41. This is because there is a tendency.

【0031】図5に示す蓄冷利用冷房運転でも、蓄冷運
転と同様に運転開始当初は蓄冷熱槽41の上部から下部
に向けて冷媒を流し、その後下部から上部に向けて流
す。この場合の制御回路43の制御動作を図8のフロー
チャートに示す。蓄冷利用冷房運転を開始した後(ステ
ップ801)、運転時間の判定を行う(ステップ80
3)。運転時間はタイマ回路を内蔵することで判定でき
る。ここで、運転時間が所定値t1 に達しない場合、つ
まり運転開始当初は、圧縮機27から吐出されたガス冷
媒を蓄冷熱槽41の上部から下部に向けて流す(ステッ
プ805)。これにより、蓄熱槽41内の水の温度分布
に差がついて凝縮温度が高くなり、運転立ち上がり時間
が短縮される。運転時間が所定値t1 に達し冷房負荷が
小さくなった場合には、逆に冷媒を下部から上部に向け
て流す(ステップ807)。これにより、蓄熱槽41内
の水の温度分布が小さくなって凝縮温度が低くなり、安
定した運転に対応できる。
In the cooling operation using cold storage shown in FIG. 5, as in the cold storage operation, at the beginning of the operation, the refrigerant flows from the upper part to the lower part of the cold heat storage tank 41, and then from the lower part to the upper part. The control operation of the control circuit 43 in this case is shown in the flowchart of FIG. After the cooling operation using cooling storage is started (step 801), the operation time is determined (step 80).
3). The operating time can be determined by incorporating a timer circuit. Here, when the operation time does not reach the predetermined value t 1 , that is, at the beginning of the operation, the gas refrigerant discharged from the compressor 27 flows from the upper part to the lower part of the cold storage heat tank 41 (step 805). As a result, the temperature distribution of the water in the heat storage tank 41 becomes different, the condensation temperature becomes higher, and the operation start-up time is shortened. When the operating time reaches the predetermined value t 1 and the cooling load is reduced, the refrigerant is flowed from the lower part to the upper part (step 807). As a result, the temperature distribution of the water in the heat storage tank 41 becomes smaller, the condensation temperature becomes lower, and stable operation can be accommodated.

【0032】圧縮機27をインバータなどにより回転数
を変えられるものを使用する場合には、図9のフローチ
ャートに示すような制御を行う。エアコンの運転を開始
した後(ステップ901)、圧縮機周波数が所定値F1
より低いかどうか判定し(ステップ903)、圧縮機周
波数が所定値F1 より低く運転負荷が小さい場合には、
凝縮温度を上げるため、冷媒を蓄冷熱槽41の上部から
下部へ向かって流すように四方弁39を切り替え(ステ
ップ905)、圧縮機周波数が所定値F1 以上で運転負
荷が大きい場合には、冷媒を蓄冷熱槽41の下部から上
部へ向かって流すように四方弁39を切り替える(ステ
ップ907)。
When the compressor 27 whose rotation speed can be changed by an inverter or the like is used, the control shown in the flowchart of FIG. 9 is performed. After the operation of the air conditioner is started (step 901), the compressor frequency is a predetermined value F 1
If the compressor frequency is lower than the predetermined value F 1 and the operating load is small, it is determined whether or not it is lower (step 903).
In order to raise the condensation temperature, the four-way valve 39 is switched so that the refrigerant flows from the upper part to the lower part of the cold storage tank 41 (step 905), and when the compressor frequency is equal to or higher than the predetermined value F 1 and the operation load is large, The four-way valve 39 is switched so that the refrigerant flows from the lower part to the upper part of the cold storage heat tank 41 (step 907).

【0033】冷凍サイクルに封入する冷媒を、高沸点冷
媒と低沸点冷媒とを混合した非共沸混合冷媒とした場合
には、単一冷媒を用いた場合に比べて、熱交換器の入口
と出口との温度差が大きくなる傾向にあり、相変化して
いるときにも数℃の温度差が生じる。このため、蓄冷熱
槽41の熱交換器における冷媒の流れ方向を、前述した
ように切り替え制御することで、冷凍サイクルの運転特
性がより大きく変化し、非共沸混合冷媒の特性を生かし
てより効率的な運転が可能となる。
When the refrigerant to be sealed in the refrigeration cycle is a non-azeotropic mixed refrigerant in which a high boiling point refrigerant and a low boiling point refrigerant are mixed, the inlet of the heat exchanger is The temperature difference with the outlet tends to increase, and a temperature difference of several degrees Celsius occurs even during phase change. Therefore, by controlling the flow direction of the refrigerant in the heat exchanger of the cold storage tank 41 by switching control as described above, the operating characteristics of the refrigeration cycle are changed more greatly, and the characteristics of the non-azeotropic mixed refrigerant are used more effectively. Efficient operation is possible.

【0034】[0034]

【発明の効果】以上説明してきたように、この発明によ
れば、蓄冷熱材が満たされた容器内に熱交換器を設け、
この熱交換器の冷媒流路における冷媒の流れ方向を、容
器の上部から下部に向かう方向と、同下部から上部に向
かう方向とに切り替えるようにしたので、冷凍サイクル
の運転特性を効率的に活用でき、より経済性の優れたも
のとすることができる。
As described above, according to the present invention, the heat exchanger is provided in the container filled with the cold storage material,
Since the flow direction of the refrigerant in the refrigerant flow path of the heat exchanger is switched between the direction from the upper part to the lower part of the container and the direction from the lower part to the upper part, the operating characteristics of the refrigeration cycle can be efficiently utilized. It can be made more economical.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示すヒートポンプエアコ
ンの冷凍サイクル構成図である。
FIG. 1 is a configuration diagram of a refrigeration cycle of a heat pump air conditioner showing an embodiment of the present invention.

【図2】図1の冷凍サイクルにおける蓄熱運転時での冷
媒の流れる経路を示す説明図である。
FIG. 2 is an explanatory diagram showing a refrigerant flow path during a heat storage operation in the refrigeration cycle of FIG.

【図3】図1の冷凍サイクルにおける蓄熱利用暖房運転
時での冷媒の流れる経路を示す説明図である。
FIG. 3 is an explanatory diagram showing a refrigerant flow path during a heating operation using heat storage in the refrigeration cycle of FIG. 1.

【図4】図1の冷凍サイクルにおける蓄冷運転時での冷
媒の流れる経路を示す説明図である。
FIG. 4 is an explanatory diagram showing a refrigerant flow path during a cold storage operation in the refrigeration cycle of FIG.

【図5】図1の冷凍サイクルにおける蓄冷利用冷房運転
時での冷媒の流れる経路を示す説明図である。
FIG. 5 is an explanatory diagram showing a refrigerant flow path during a cooling storage utilizing cooling operation in the refrigeration cycle of FIG. 1.

【図6】図1の冷凍サイクルにおける蓄熱運転時での蓄
冷熱材(水)の温度変化を示す説明図である。
6 is an explanatory diagram showing a temperature change of a cold storage heat material (water) during a heat storage operation in the refrigeration cycle of FIG.

【図7】図1の冷凍サイクルにおける蓄熱運転時での制
御動作を示すフローチャートである。
7 is a flowchart showing a control operation during a heat storage operation in the refrigeration cycle of FIG.

【図8】図1の冷凍サイクルにおける蓄冷利用冷房運転
時での制御動作を示すフローチャートである。
8 is a flowchart showing a control operation during a cooling operation using cooling storage in the refrigeration cycle of FIG.

【図9】図1の冷凍サイクルにおける圧縮機の運転周波
数の違いによる制御動作を示すフローチャートである。
9 is a flowchart showing a control operation depending on a difference in operating frequency of the compressor in the refrigeration cycle of FIG.

【図10】従来例を示すヒートポンプエアコンの冷凍サ
イクル構成図である。
FIG. 10 is a refrigeration cycle configuration diagram of a heat pump air conditioner showing a conventional example.

【図11】図10の冷凍サイクルにおける蓄冷熱槽の概
略的な内部構造図である。
11 is a schematic internal structural diagram of a cold storage heat tank in the refrigeration cycle of FIG.

【図12】蓄冷熱材、単一冷媒及び非共沸混合冷媒の温
度変化を、図11の蓄冷熱槽の上下位置に対応して示し
た説明図であり、(a)は冷媒を蓄冷熱槽の上部から下
部に向けて流した場合のものであり、(b)は冷媒を下
部から上部に向けて流した場合のものである。
FIG. 12 is an explanatory diagram showing temperature changes of the cold storage heat material, the single refrigerant, and the non-azeotropic mixed refrigerant in correspondence with the upper and lower positions of the cold storage heat tank of FIG. 11, and FIG. The case where the refrigerant flows from the upper part to the lower part of the tank, and (b) shows the case where the refrigerant flows from the lower part to the upper part.

【符号の説明】[Explanation of symbols]

27 圧縮機 35 室外熱交換器 37 室内熱交換器 39 四方弁(切り替え手段) 41 蓄冷熱槽(容器) 43 制御回路(制御手段) 45,47 電子膨脹弁(膨脹機構) 27 Compressor 35 Outdoor Heat Exchanger 37 Indoor Heat Exchanger 39 Four-way Valve (Switching Means) 41 Cold Storage Tank (Container) 43 Control Circuit (Control Means) 45, 47 Electronic Expansion Valve (Expansion Mechanism)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機,室外熱交換器,室内熱交換器及
び膨脹機構を備えた冷凍サイクルに、この冷凍サイクル
に封入された冷媒と容器内に満たされた蓄冷熱材との間
で熱交換を行う熱交換器を接続し、この熱交換器におけ
る冷媒流路を前記容器の上部から下部にわたって配置
し、前記熱交換器の冷媒流路における冷媒の流れ方向
を、前記容器の上部から下部に向かう方向と、下部から
上部に向かう方向とに切り替える切り替え手段を設けた
ことを特徴とする蓄冷熱装置。
1. A refrigeration cycle including a compressor, an outdoor heat exchanger, an indoor heat exchanger, and an expansion mechanism provides heat between the refrigerant enclosed in the refrigeration cycle and the cold storage heat material filled in the container. A heat exchanger for exchange is connected, a refrigerant flow path in the heat exchanger is arranged from the upper part to the lower part of the container, and a flow direction of the refrigerant in the refrigerant flow path of the heat exchanger is changed from the upper part to the lower part of the container. A regenerator which is provided with switching means for switching between a direction toward the upper side and a direction from the lower side toward the upper side.
【請求項2】 切り替え手段は、容器内の熱交換器が凝
縮器となり室外熱交換器が蒸発器となって行う蓄熱運転
時には、蓄冷熱材の温度及び深夜電力料金時間帯の残り
時間に基づき制御手段によって切り替えられることを特
徴とする請求項1記載の蓄冷熱装置。
2. In the heat storage operation in which the heat exchanger in the container serves as a condenser and the outdoor heat exchanger serves as an evaporator, the switching means is based on the temperature of the cold storage heat material and the remaining time of the midnight power charge time zone. The regenerator according to claim 1, wherein the regenerator is switched by a control means.
【請求項3】 切り替え手段は、容器内の熱交換器が凝
縮器となり室内熱交換器が蒸発器となって行う蓄冷利用
冷房運転の開始時には、冷媒が容器の上部から下部に向
かって流れるよう制御手段によって切り替えられ、蓄冷
利用冷房運転開始時後の所定時間経過後には、冷媒が容
器の下部から上部に向かって流れるよう制御手段によっ
て切り替えられることを特徴とする請求項1記載の蓄冷
熱装置。
3. The switching means is configured such that the refrigerant flows from the upper part to the lower part of the container at the start of the cooling operation using the cold storage in which the heat exchanger in the container serves as a condenser and the indoor heat exchanger serves as an evaporator. The heat storage device according to claim 1, wherein the heat storage device is switched by the control device, and after the predetermined time has elapsed after the start of the cooling operation using the cold storage, the control device switches so that the refrigerant flows from the lower part to the upper part of the container. .
【請求項4】 切り替え手段は、圧縮機の運転周波数に
基づき制御手段によって切り替えられることを特徴とす
る請求項1記載の蓄冷熱装置。
4. The regenerator according to claim 1, wherein the switching means is switched by the control means based on the operating frequency of the compressor.
【請求項5】 冷凍サイクルに封入する冷媒を、非共沸
混合冷媒としたことを特徴とする請求項1,2,3また
は4記載の蓄冷熱装置。
5. The regenerator of claim 1, 2, 3 or 4, wherein the refrigerant enclosed in the refrigeration cycle is a non-azeotropic mixed refrigerant.
JP6975793A 1993-03-29 1993-03-29 Cold storage apparatus Pending JPH06281282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6975793A JPH06281282A (en) 1993-03-29 1993-03-29 Cold storage apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6975793A JPH06281282A (en) 1993-03-29 1993-03-29 Cold storage apparatus

Publications (1)

Publication Number Publication Date
JPH06281282A true JPH06281282A (en) 1994-10-07

Family

ID=13411993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6975793A Pending JPH06281282A (en) 1993-03-29 1993-03-29 Cold storage apparatus

Country Status (1)

Country Link
JP (1) JPH06281282A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2147098A1 (en) * 1996-03-04 2000-08-16 Lg Electronics Inc Air conditioning apparatus - has three internal devices and external device comprising separately operable units each with heat exchanger, valves and accumulator
WO2000060288A1 (en) * 1999-04-02 2000-10-12 Matsushita Refrigeration Company Heat pump
JP2020536214A (en) * 2017-09-30 2020-12-10 ヨーク (ウーシー) エアー・コンディショニング・アンド・リフリジェレーション・カンパニー,リミテッド Thermal pump unit and its control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2147098A1 (en) * 1996-03-04 2000-08-16 Lg Electronics Inc Air conditioning apparatus - has three internal devices and external device comprising separately operable units each with heat exchanger, valves and accumulator
WO2000060288A1 (en) * 1999-04-02 2000-10-12 Matsushita Refrigeration Company Heat pump
JP2020536214A (en) * 2017-09-30 2020-12-10 ヨーク (ウーシー) エアー・コンディショニング・アンド・リフリジェレーション・カンパニー,リミテッド Thermal pump unit and its control method

Similar Documents

Publication Publication Date Title
US4471630A (en) Cooling system having combination of compression and absorption type units
CN104949409B (en) A kind of flexible air source heat pump defrosting system and method that need not start compressor
JPH04110574A (en) Method and apparatus for heating and cooling with refrigerant gas
JPH0333985B2 (en)
JP3737357B2 (en) Water heater
JP3758334B2 (en) Heat pump solar water heating system
WO2008091109A1 (en) Method and apparatus for defrosting
JP2008082601A (en) Heat pump hot water supply device
JPH0432669A (en) Heat pump system controlling method therefor
JPH06281282A (en) Cold storage apparatus
JP4321318B2 (en) Triple effect absorption refrigerator
JP2015021643A (en) Heat pump device
JPH10311597A (en) Heat-pump-type boiling device
JP2821724B2 (en) Single double effect absorption refrigerator
JP2906507B2 (en) Heat pump water heater
JPH03211359A (en) Heat-pump hot water supplier
JP2023079334A (en) refrigerator
JPH0849935A (en) Regeneration air-conditioner
JPS611967A (en) Air-conditioning and hot-water supply heat pump device
JP2000171078A (en) Cooler with ice heat storage tank and cooler/heater with ice heat storage tank
JPS611968A (en) Air-conditioning and hot-water supply heat pump device
JP3649853B2 (en) Air conditioning system
JP2658457B2 (en) Heating and cooling machine
JPH03211334A (en) Heat storage type heat source device
JPS5829396Y2 (en) Air conditioning equipment