JP2007285649A - Absorption heating value control method for absorption heat pump device, and absorption heat pump device - Google Patents

Absorption heating value control method for absorption heat pump device, and absorption heat pump device Download PDF

Info

Publication number
JP2007285649A
JP2007285649A JP2006116008A JP2006116008A JP2007285649A JP 2007285649 A JP2007285649 A JP 2007285649A JP 2006116008 A JP2006116008 A JP 2006116008A JP 2006116008 A JP2006116008 A JP 2006116008A JP 2007285649 A JP2007285649 A JP 2007285649A
Authority
JP
Japan
Prior art keywords
regenerator
refrigerant
heat
absorber
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006116008A
Other languages
Japanese (ja)
Inventor
Yukihiro Fukuzumi
幸大 福住
Osayuki Inoue
修行 井上
Kiichi Irie
毅一 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2006116008A priority Critical patent/JP2007285649A/en
Publication of JP2007285649A publication Critical patent/JP2007285649A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small, space saving and inexpensive absorption heat pump device, and an absorption heating value control method for the absorption heat pump device capable of controlling a heating value to be generated by an absorber while maintaining a constant heat input amount. <P>SOLUTION: The absorption heating value control method is for the absorption heat pump device provided with the absorber A, an evaporator E, a regenerator G and a condenser C. In the absorption heating value control method for the absorption heat pump device, and the absorption heat pump device, a coolant liquid of the condenser C is led to the regenerator G through a coolant bypass piping 30, it is mixed into a concentrated solution of the regenerator G, and a mixed amount of the coolant liquid is controlled to control the absorption heating value. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、温水などの排熱を熱源として高温水や蒸気を発生させる第2種吸収ヒートポンプ装置の吸収発熱量制御方法、吸収ヒートポンプ装置に関するものである。   The present invention relates to an absorption heat generation control method and an absorption heat pump device of a second type absorption heat pump device that generates high-temperature water and steam using exhaust heat such as hot water as a heat source.

エンジンを用いたコージェネレーションでは、排ガスから熱回収して製造する蒸気は有効利用されるが、ジャケット温水は給湯以外に有効な使い道が少なく、冷却塔などで放熱するケースが多い。こうした排温水或いは排蒸気などの低質の熱源から高温の熱を発生させる吸収ヒートポンプは、例えば特許文献1、特許文献2等で公知である。また、低温の排熱から高温高圧の蒸気を発生させる吸収ヒートポンプも提案されている。
特公昭58−18574号公報 特公昭58−18575号公報
In cogeneration using an engine, steam produced by recovering heat from exhaust gas is used effectively, but jacket hot water has little effective use other than hot water supply, and often dissipates heat in a cooling tower. Absorption heat pumps that generate high-temperature heat from such a low-quality heat source such as waste water or waste steam are known from, for example, Patent Document 1 and Patent Document 2. An absorption heat pump that generates high-temperature and high-pressure steam from low-temperature exhaust heat has also been proposed.
Japanese Patent Publication No.58-18574 Japanese Patent Publication No. 58-18575

上記従来の吸収ヒートポンプの技術は、吸収ヒートポンプサイクルの効率や昇温幅の向上などに関するものであって、吸収器で発生する高温水や蒸気の出力、即ち吸収発熱量を制御するための具体的な方法については考えられていない。エンジンのジャケット冷却水を初めとする温水排熱は、その多くが冷却を必要とするため、吸収ヒートポンプで発生させる高温水や蒸気の需要が減少した場合でも、入熱量を常に一定に保つ必要があるが、このために排温水を冷却水と熱交換する場合は大型の熱交換器が必要であった。   The conventional absorption heat pump technology relates to the efficiency of the absorption heat pump cycle and the improvement of the temperature rise range, and is specific for controlling the output of high-temperature water and steam generated in the absorber, that is, the amount of heat generated by absorption. It is not considered about the method. Most of the hot water exhaust heat, including engine jacket cooling water, requires cooling, so even if the demand for high-temperature water and steam generated by the absorption heat pump decreases, the heat input must always be kept constant. However, for this purpose, a large heat exchanger is required when exchanging the hot water with the cooling water.

また、熱交換器を用いず、電動弁等を使用して排温水を冷却水と混合して放熱する場合も、電動弁は大径になるため高価であると共に、大径の配管の取りまわすために相当なスペースを必要とするものであった。   Also, when using a motorized valve, etc., without using a heat exchanger, the wastewater is mixed with cooling water to dissipate heat, and the motorized valve is expensive because it has a large diameter, and large diameter piping is used. Therefore, a considerable space was required.

本願発明は上述の点に鑑みてなされたもので、入熱量を一定に保ったまま吸収器で発生させる熱量を制御できる小型で省スペース、且つ低コストの吸収ヒートポンプ装置の吸収発熱量制御方法、及び吸収ヒートポンプを提供することを目的とする。   The present invention has been made in view of the above points, and is a small, space-saving and low-cost absorption heat generation control method for an absorption heat pump device that can control the amount of heat generated by the absorber while keeping the heat input constant. And an absorption heat pump.

上記課題を解決するため請求項1に記載の発明は、吸収器、蒸発器、再生器、凝縮器を備え、前記再生器の濃溶液は前記吸収器内に導かれ、前記蒸発器からの冷媒蒸気を吸収して吸収発熱し、被加熱媒体流路を通る被加熱媒体を加熱すると共に、前記冷媒蒸気を吸収し濃度の薄くなった希溶液となり、該希溶液は前記再生器内に導かれ、該再生器内で熱源媒体流路を流れる熱源媒体で加熱され冷媒蒸気を発生すると共に、濃縮されて濃溶液となり、前記再生器で発生した冷媒蒸気は前記凝縮器に導かれ、冷却媒体流路を流れる冷却媒体により凝縮され冷媒液となり、該冷媒液は前記蒸発器内に導かれ、熱源媒体流路を流れる熱源媒体により加熱されて蒸発して冷媒蒸気となり、該冷媒蒸気は前記吸収器に導かれるように構成された吸収ヒートポンプ装置の吸収発熱量制御方法であって、前記濃溶液又は希溶液に前記凝縮器の冷媒液を混入させ、該冷媒液の混入量を制御して前記吸収発熱量を制御することを特徴とする。   In order to solve the above-mentioned problems, the invention described in claim 1 includes an absorber, an evaporator, a regenerator, and a condenser, and a concentrated solution of the regenerator is guided into the absorber, and a refrigerant from the evaporator. Absorbs the vapor to generate heat, heats the heated medium passing through the heated medium flow path, and absorbs the refrigerant vapor to form a diluted diluted solution. The diluted solution is introduced into the regenerator. The refrigerant vapor is heated by the heat source medium flowing through the heat source medium flow path in the regenerator and is concentrated to become a concentrated solution. The refrigerant vapor generated in the regenerator is guided to the condenser, and the cooling medium flow The refrigerant liquid is condensed by the cooling medium flowing through the passage, and the refrigerant liquid is led into the evaporator, and is heated by the heat source medium flowing through the heat source medium flow path to evaporate into the refrigerant vapor. Absorbing heat configured to be led to A method of controlling the amount of heat generated by an absorption device, wherein the refrigerant liquid of the condenser is mixed into the concentrated solution or the dilute solution, and the amount of mixed heat of the refrigerant liquid is controlled to control the amount of heat generated by absorption. To do.

請求項2に記載の発明は、吸収器、蒸発器、再生器、凝縮器を備え、前記再生器の濃溶液は前記吸収器内に導かれ、前記蒸発器からの冷媒蒸気を吸収して吸収発熱し、被加熱媒体流路を通る被加熱媒体を加熱すると共に、前記冷媒蒸気を吸収し濃度の薄くなった希溶液となり、該希溶液は前記再生器内に導かれ、該再生器内で熱源媒体流路を流れる熱源媒体で加熱され冷媒蒸気を発生すると共に、濃縮されて濃溶液となり、前記再生器で発生した冷媒蒸気は前記凝縮器に導かれ、冷却媒体流路を流れる冷却媒体により凝縮され冷媒液となり、該冷媒液は前記蒸発器内に導かれ、熱源媒体流路を流れる熱源媒体により加熱されて蒸発して冷媒蒸気となり、該冷媒蒸気は前記吸収器に導かれるように構成された吸収ヒートポンプ装置の吸収発熱量制御方法であって、前記凝縮器の冷媒液を前記再生器又は吸収器に導入し、該冷媒液の導入量を制御して前記吸収発熱量を制御することを特徴とする。   The invention described in claim 2 includes an absorber, an evaporator, a regenerator, and a condenser, and the concentrated solution of the regenerator is guided into the absorber and absorbs and absorbs refrigerant vapor from the evaporator. Generates heat, heats the heated medium passing through the heated medium flow path, absorbs the refrigerant vapor, and becomes a diluted solution having a reduced concentration. The diluted solution is guided into the regenerator, The refrigerant vapor is heated by the heat source medium flowing through the heat source medium flow path and is concentrated to become a concentrated solution. The refrigerant vapor generated in the regenerator is guided to the condenser and is cooled by the cooling medium flowing through the cooling medium flow path. Condensed into a refrigerant liquid, the refrigerant liquid is led into the evaporator, heated by a heat source medium flowing through the heat source medium flow path to evaporate into a refrigerant vapor, and the refrigerant vapor is led to the absorber Heat generated by the absorbed heat pump device A control method, introducing a refrigerant liquid of the condenser to the regenerator or the absorber, and controlling the absorption amount of heat generation by controlling the introduction amount of the refrigerant liquid.

請求項3に記載の発明は、請求項1又は2に記載の吸収ヒートポンプ装置の吸収発熱量制御方法において、前記蒸発器における未蒸発の高温冷媒液を凝縮器に戻すことによって該蒸発器の負荷を確保して吸収量発熱量を制御することを特徴とする。   The invention according to claim 3 is the absorption heat generation amount control method of the absorption heat pump device according to claim 1 or 2, wherein the load of the evaporator is returned by returning the non-evaporated high-temperature refrigerant liquid in the evaporator to the condenser. And the amount of heat generated by absorption is controlled.

請求項4に記載の発明は、吸収器、蒸発器、再生器、凝縮器を備え、前記再生器の濃溶液は前記吸収器内に導かれ、前記蒸発器からの冷媒蒸気を吸収して吸収発熱し、被加熱媒体流路を通る被加熱媒体を加熱すると共に、前記冷媒蒸気を吸収し濃度の薄くなった希溶液となり、該希溶液は前記再生器内に導かれ、該再生器内で熱源媒体流路を流れる熱源媒体で加熱され冷媒蒸気を発生すると共に、濃縮されて濃溶液となり、前記再生器で発生した冷媒蒸気は前記凝縮器に導かれ、冷却媒体流路を流れる冷却媒体により凝縮され冷媒液となり、該冷媒液は前記蒸発器内に導かれ、熱源媒体流路を流れる熱源媒体により加熱されて蒸発して冷媒蒸気となり、該冷媒蒸気は前記吸収器に導かれるように構成された吸収ヒートポンプ装置において、前記濃溶液又は希溶液に前記凝縮器の冷媒液を混入する手段を備え、該冷媒液の混入量を制御して前記吸収器内の吸収発熱量を制御することを特徴とする。   The invention according to claim 4 includes an absorber, an evaporator, a regenerator, and a condenser, and the concentrated solution of the regenerator is guided into the absorber and absorbs and absorbs the refrigerant vapor from the evaporator. Generates heat, heats the heated medium passing through the heated medium flow path, absorbs the refrigerant vapor, and becomes a diluted solution having a reduced concentration. The diluted solution is guided into the regenerator, The refrigerant vapor is heated by the heat source medium flowing through the heat source medium flow path and is concentrated to become a concentrated solution. The refrigerant vapor generated in the regenerator is guided to the condenser and is cooled by the cooling medium flowing through the cooling medium flow path. Condensed into a refrigerant liquid, the refrigerant liquid is led into the evaporator, heated by a heat source medium flowing through the heat source medium flow path to evaporate into a refrigerant vapor, and the refrigerant vapor is led to the absorber In the absorption heat pump device Concentrated solution or provided with means for mixing the coolant liquid of the condenser in a dilute solution, and controlling the absorption amount of heat generated in the absorber by controlling the mixing amount of the refrigerant liquid.

請求項5に記載の発明は、吸収器、蒸発器、再生器、凝縮器を備え、前記再生器の濃溶液は前記吸収器内に導かれ、前記蒸発器からの冷媒蒸気を吸収して吸収発熱し、被加熱媒体流路を通る被加熱媒体を加熱すると共に、前記冷媒蒸気を吸収し濃度の薄くなった希溶液となり、該希溶液は前記再生器内に導かれ、該再生器内で熱源媒体流路を流れる熱源媒体で加熱され冷媒蒸気を発生すると共に、濃縮されて濃溶液となり、前記再生器で発生した冷媒蒸気は前記凝縮器に導かれ、冷却媒体流路を流れる冷却媒体により凝縮され冷媒液となり、該冷媒液は前記蒸発器内に導かれ、熱源媒体流路を流れる熱源媒体により加熱されて蒸発して冷媒蒸気となり、該冷媒蒸気は前記吸収器に導かれるように構成された吸収ヒートポンプ装置において、前記凝縮器の冷媒液を前記再生器又は吸収器に導入する手段を備え、該再生器又は吸収器に導く冷媒液量を制御して前記吸収器内の吸収発熱量を制御することを特徴とする。   The invention according to claim 5 includes an absorber, an evaporator, a regenerator, and a condenser, and the concentrated solution of the regenerator is guided into the absorber and absorbs and absorbs refrigerant vapor from the evaporator. Generates heat, heats the heated medium passing through the heated medium flow path, absorbs the refrigerant vapor, and becomes a diluted solution having a reduced concentration. The diluted solution is guided into the regenerator, The refrigerant vapor is heated by the heat source medium flowing through the heat source medium flow path and is concentrated to become a concentrated solution. The refrigerant vapor generated in the regenerator is guided to the condenser and is cooled by the cooling medium flowing through the cooling medium flow path. Condensed into a refrigerant liquid, the refrigerant liquid is led into the evaporator, heated by a heat source medium flowing through the heat source medium flow path to evaporate into a refrigerant vapor, and the refrigerant vapor is led to the absorber In the absorption heat pump device Means for introducing the refrigerant liquid of the condenser into the regenerator or absorber, and controlling the amount of refrigerant liquid led to the regenerator or absorber to control the amount of heat generated by absorption in the absorber. .

請求項6に記載の発明は、請求項4又は5に記載の吸収ヒートポンプ装置において、前記蒸発器から前記凝縮器に冷媒液を戻す手段を設け、前記蒸発器における未蒸発の高温冷媒液を凝縮器に戻すことによって該蒸発器の負荷を確保して前記吸収器内の吸収発熱量を制御することを特徴とする。   According to a sixth aspect of the present invention, in the absorption heat pump device according to the fourth or fifth aspect, a means for returning the refrigerant liquid from the evaporator to the condenser is provided to condense the high-temperature refrigerant liquid that has not been evaporated in the evaporator. The load of the evaporator is secured by returning to the evaporator, and the amount of heat generated by absorption in the absorber is controlled.

請求項1に記載の発明によれば、濃溶液又は希溶液に混入する冷媒液の量を制御して吸収発熱量を制御するので、入熱量を一定に保ったまま吸収器で発生する熱量を制御することが可能となる。そして冷媒の流量は温水や冷却水に比べて遥かに小さいため、配管径が小さく、制御弁等も小型で省スペース且つ低コストで吸収発熱量制御方法を実現できる。   According to the first aspect of the invention, since the amount of heat generated by absorption is controlled by controlling the amount of refrigerant liquid mixed in the concentrated solution or dilute solution, the amount of heat generated in the absorber is maintained while keeping the amount of heat input constant. It becomes possible to control. Since the flow rate of the refrigerant is much smaller than that of hot water or cooling water, the absorption heat generation amount control method can be realized with a small pipe diameter, a small control valve, etc., space saving, and low cost.

請求項2に記載の発明によれば、冷媒液を再生器又は吸収器に導入する量を制御するので、入熱量を一定に保ったまま吸収器で発生する熱量を制御することが可能となる。そして冷媒の流量は温水や冷却水に比べて遥かに小さいため、配管径が小さく、制御弁等も小型で省スペース且つ低コストで吸収発熱量制御方法を実現できる。   According to the second aspect of the present invention, since the amount of refrigerant liquid introduced into the regenerator or absorber is controlled, it is possible to control the amount of heat generated in the absorber while keeping the heat input constant. . Since the flow rate of the refrigerant is much smaller than that of hot water or cooling water, the absorption heat generation amount control method can be realized with a small pipe diameter, a small control valve, etc., space saving, and low cost.

請求項3に記載の発明によれば、蒸発器における未蒸発の高温冷媒液を凝縮器に戻すことによって該蒸発器の負荷を確保して吸収発熱量を制御するので、溶液ポンプの容量を小型化できる。   According to the third aspect of the present invention, since the unheated high-temperature refrigerant liquid in the evaporator is returned to the condenser to secure the load on the evaporator and control the amount of heat generated by absorption, the capacity of the solution pump can be reduced. Can be

請求項4に記載の発明によれば、濃溶液又は希溶液に前記凝縮器の冷媒液を混入する手段を備え、該冷媒液の混入量を制御して吸収器内の吸収発熱量を制御するので、入熱量を一定に保ったまま吸収器で発生する熱量を制御することが可能な小型で省スペース且つ低コストの吸収ヒートポンプ装置を実現できる。   According to the fourth aspect of the invention, there is provided means for mixing the refrigerant liquid of the condenser into the concentrated solution or the dilute solution, and the amount of the refrigerant liquid mixed is controlled to control the amount of heat generated by absorption in the absorber. Therefore, it is possible to realize a small-sized, space-saving and low-cost absorption heat pump device that can control the amount of heat generated in the absorber while keeping the heat input constant.

請求項5に記載の発明によれば、凝縮器の冷媒液を再生器又は吸収器に導入する手段を備え、再生器又は凝縮器に導く冷媒液量を制御して吸収器内の吸収発熱量を制御するので、入熱量を一定に保ったまま吸収器で発生する熱量を制御することが可能な小型で省スペース且つ低コストの吸収ヒートポンプ装置を実現できる。   According to the fifth aspect of the present invention, there is provided means for introducing the refrigerant liquid of the condenser into the regenerator or absorber, and the amount of heat generated by absorption in the absorber is controlled by controlling the amount of refrigerant liquid led to the regenerator or condenser. Therefore, it is possible to realize a small-sized, space-saving and low-cost absorption heat pump apparatus that can control the amount of heat generated in the absorber while keeping the heat input constant.

請求項6に記載の発明によれば、蒸発器から凝縮器に冷媒液を戻す手段を設け、蒸発器における未蒸発の高温冷媒液を凝縮器に戻すことによって蒸発器の負荷を確保して吸収器内の吸収発熱量を制御するので、溶液ポンプの容量を小型化できる。   According to the sixth aspect of the present invention, means for returning the refrigerant liquid from the evaporator to the condenser is provided, and the high-temperature refrigerant liquid that has not been evaporated in the evaporator is returned to the condenser to secure the load on the evaporator and absorb it. Since the amount of heat generated by absorption is controlled, the capacity of the solution pump can be reduced.

以下、本発明の実施の形態例を図面に基づいて説明する。図1は本発明に係る吸収ヒートポンプ装置の構成例(第1の実施形態例)を示す図である。本吸収ヒートポンプ装置100−1は、吸収器A、蒸発器E、再生器G、凝縮器C、溶液熱交換器10、溶液ポンプ11、濃溶液配管12、希溶液配管13、冷媒ポンプ14、冷媒配管15、熱源温水配管16、熱源温水配管17、冷却水配管18、給水ポンプ19、給水予熱伝熱管20、蒸気発生伝熱管21、冷媒バイパス配管30、冷媒バイパス弁31、冷媒戻り配管32、冷媒戻り弁33から構成されている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration example (first embodiment) of an absorption heat pump apparatus according to the present invention. The absorption heat pump apparatus 100-1 includes an absorber A, an evaporator E, a regenerator G, a condenser C, a solution heat exchanger 10, a solution pump 11, a concentrated solution pipe 12, a diluted solution pipe 13, a refrigerant pump 14, and a refrigerant. Pipe 15, heat source hot water pipe 16, heat source hot water pipe 17, cooling water pipe 18, feed water pump 19, feed water preheating heat transfer pipe 20, steam generation heat transfer pipe 21, refrigerant bypass pipe 30, refrigerant bypass valve 31, refrigerant return pipe 32, refrigerant The return valve 33 is configured.

上記構造の吸収ヒートポンプ装置100−1において、再生器G内の濃溶液は、溶液ポンプ11により濃溶液配管12を通り、溶液熱交換器10の被加熱側を通りで加熱された後、吸収器A内に散布される。吸収器A内に散布された濃溶液は、蒸発器Eから流入する冷媒蒸気を吸収して吸収熱を発生し、この吸収熱で蒸気発生伝熱管21の中を流れる被加熱媒体を加熱する。冷媒蒸気を吸収してその濃度が薄くなった希溶液は、希溶液配管13を通り、溶液熱交換器10の加熱側を通り再生器Gに戻り散布される。再生器Gに散布された希溶液は、熱源温水配管17の中を流れる熱源温水によって加熱され、冷媒蒸気を発生して濃縮され濃溶液となり、溶液サイクルを一巡する。   In the absorption heat pump apparatus 100-1 having the above structure, the concentrated solution in the regenerator G is heated by the solution pump 11 through the concentrated solution pipe 12 and the heated side of the solution heat exchanger 10, and then the absorber. It is sprayed in A. The concentrated solution sprayed in the absorber A absorbs the refrigerant vapor flowing from the evaporator E to generate absorption heat, and heats the heated medium flowing in the vapor generation heat transfer tube 21 with this absorption heat. The dilute solution whose concentration has been reduced by absorbing the refrigerant vapor passes through the dilute solution pipe 13, passes through the heating side of the solution heat exchanger 10, and returns to the regenerator G to be dispersed. The dilute solution sprayed on the regenerator G is heated by the heat source hot water flowing through the heat source hot water pipe 17, generates refrigerant vapor and is concentrated into a concentrated solution, and goes through the solution cycle.

上記再生器Gで発生した冷媒蒸気は、凝縮器Cに導かれ、冷却水配管18の中を流れる冷却水によって冷却されて凝縮し、冷媒液となる。該冷媒液は冷媒ポンプ14から冷媒配管15を通って蒸発器E内に送られ散布される。該散布された冷媒液は、熱源温水配管16の中を流れる熱源温水によって加熱されて蒸発し、吸収器Aに導かれる。以上が冷媒と溶液のサイクルである。   The refrigerant vapor generated in the regenerator G is guided to the condenser C, and is cooled and condensed by the cooling water flowing through the cooling water pipe 18 to become a refrigerant liquid. The refrigerant liquid is sent from the refrigerant pump 14 through the refrigerant pipe 15 into the evaporator E and dispersed. The sprayed refrigerant liquid is heated and evaporated by the heat source hot water flowing in the heat source hot water pipe 16 and guided to the absorber A. The above is the cycle of the refrigerant and the solution.

一方、被加熱媒体(水)は、給水ポンプ19で加圧されて給水予熱伝熱管20に導かれる。給水予熱伝熱管20では、蒸発器Eで発生した冷媒蒸気を凝縮することで、被加熱媒体(水)が加熱され、続いて吸収器A内の蒸気発生伝熱管21で濃溶液が冷媒蒸気を吸収することにより発生する吸収熱によって加熱されて水蒸気となる。このように、吸収ヒートポンプ1の熱源温水配管16、17に熱源温水を、冷却水配管18に冷却水を供給することによって、吸収器Aで高温の吸収熱を発生させることができる。   On the other hand, the medium to be heated (water) is pressurized by the feed water pump 19 and guided to the feed water preheating heat transfer tube 20. In the feed water preheating heat transfer tube 20, the refrigerant vapor generated in the evaporator E is condensed to heat the medium to be heated (water), and then the concentrated solution generates refrigerant vapor in the vapor generation heat transfer tube 21 in the absorber A. It is heated by absorption heat generated by absorption and becomes water vapor. As described above, by supplying the heat source hot water to the heat source hot water pipes 16 and 17 and the cooling water to the cooling water pipe 18 of the absorption heat pump 1, the absorber A can generate high-temperature absorption heat.

なお、給水予熱伝熱管20の設置場所としては、溶液循環系からの熱回収や、熱源温水による直接加熱、凝縮器Cの凝縮熱などが利用できる。また、これらを組み合わせても良い。また、冷媒配管15に熱交換器を設置し、蒸発器Eに供給する冷媒を予熱しても良い。   In addition, as an installation place of the feed water preheating heat transfer tube 20, heat recovery from the solution circulation system, direct heating with heat source hot water, condensation heat of the condenser C, or the like can be used. Moreover, you may combine these. Further, a heat exchanger may be installed in the refrigerant pipe 15 to preheat the refrigerant supplied to the evaporator E.

図2は図1に示す吸収ヒートポンプの吸収サイクルをデューリング線図上に表したものである。上記吸収ヒートポンプにおいて、高温熱の需要が減少した場合、吸収器Aの発生熱量を減少させる必要がある。単純に熱源温水の流量を絞ることで入熱量を減少させ、吸収器Aでの発生熱量を減少させる方法も考えられるが、熱源温水の一例としてガスエンジンコジェネのジャケット水を考えると、これはエンジンの冷却水であるから常に熱を取り去ってやる必要があるため、熱源温水の放熱を確保する必要がある。例えば、熱源温水を冷却水と熱交換することで熱源温水の冷却を行うことができるが、この場合は上述のように熱交換器として大型のものが必要となる。また、熱交換器を用いず、電動弁等を使用して排温水を冷却水と混合して放熱する方法も考えられるが、この場合は上述のように電動弁が大径になるため高価であると共に、大径の配管を取り回すために相当なスペースを必要とする。   FIG. 2 shows an absorption cycle of the absorption heat pump shown in FIG. 1 on a Duering diagram. In the absorption heat pump, when the demand for high-temperature heat decreases, it is necessary to reduce the amount of heat generated by the absorber A. A method of reducing the amount of heat input by simply reducing the flow rate of the heat source hot water and reducing the amount of heat generated in the absorber A is considered, but considering the jacket water of the gas engine cogeneration as an example of the heat source hot water, Since it is necessary to always remove heat because it is a cooling water, it is necessary to ensure the heat radiation of the heat source hot water. For example, the heat source hot water can be cooled with the cooling water to cool the heat source hot water. In this case, a large heat exchanger is required as described above. In addition, it is possible to use a motorized valve or the like without using a heat exchanger to mix waste heat water with cooling water to dissipate heat, but in this case the motorized valve has a large diameter as described above, which is expensive. In addition, considerable space is required for handling large-diameter piping.

そこで本実施形態例では、凝縮器Cが保有している冷媒液を冷媒バイパス配管30の冷媒バイパス弁31を開くことによって再生器Gに導き、再生器Gの濃溶液を希釈する構成を採用した。これを図2のデューリング線図で説明すると、吸収器Aから濃度ξ1の希溶液が再生器Gで濃縮されてξ2となり、その後凝縮器Cから冷媒液を冷媒バイパス配管30を通して導入し混合して希釈すると、濃度ξ*になる。この濃度ξ*の溶液が溶液ポンプ11によって吸収器Aに送られる。この結果、サイクルの濃縮幅が狭くなることと、再生器Gでの濃縮に費やされるエネルギーの一部(ξ*からξ2までの濃縮に必要な熱量)が凝縮器Cの冷却水配管18を通る冷却水に放熱されてCOPが低下することから、吸収器Aでの発生熱量を低下させることができる。なお、図2において、TA、TC、TE、TGはそれぞれ吸収器Aの温度、凝縮器Cの温度、蒸発器Eの温度、再生器Gの温度をそれぞれ示す。 Therefore, in this embodiment, the configuration in which the refrigerant liquid held in the condenser C is guided to the regenerator G by opening the refrigerant bypass valve 31 of the refrigerant bypass pipe 30 and the concentrated solution of the regenerator G is diluted. . This will be explained with reference to the Duling diagram of FIG. 2. A dilute solution having a concentration ξ1 from the absorber A is concentrated in the regenerator G to become ξ2, and then the refrigerant liquid is introduced from the condenser C through the refrigerant bypass pipe 30 and mixed. When diluted, the concentration becomes ξ * . The solution having this concentration ξ * is sent to the absorber A by the solution pump 11. As a result, the concentration range of the cycle is narrowed, and a part of the energy consumed for concentration in the regenerator G (the amount of heat necessary for concentration from ξ * to ξ2) passes through the cooling water pipe 18 of the condenser C. Since COP is reduced by radiating heat to the cooling water, the amount of heat generated in the absorber A can be reduced. In FIG. 2, TA, TC, TE, and TG respectively indicate the temperature of the absorber A, the temperature of the condenser C, the temperature of the evaporator E, and the temperature of the regenerator G.

このとき、吸収器Aでの発生熱量が減少する一方で、蒸発器Eへの入熱量が減少することになるため、熱源温水の熱量を減少させないように、溶液循環量、即ち溶液ポンプの流量を増加させる必要がある。これは溶液ポンプの吐出し側に設けた絞り弁によっても良いし、溶液ポンプ11の回転数をインバータ制御等により制御してもよい。   At this time, the amount of heat generated in the absorber A decreases, while the amount of heat input to the evaporator E decreases, so that the amount of solution circulation, that is, the flow rate of the solution pump is not reduced so as to reduce the amount of heat of the heat source hot water. Need to be increased. This may be a throttle valve provided on the discharge side of the solution pump, or the rotational speed of the solution pump 11 may be controlled by inverter control or the like.

また、蒸発器Eの入熱量を確保するための別の方法として、図1の吸収ヒートポンプでは、蒸発器Eから凝縮器Cにつながる冷媒戻り配管32及び冷媒戻り弁33を設け、蒸発器Eで蒸発しなかった高温の冷媒液を凝縮器Cに流入させ、冷却水配管18を通る冷却水に放熱する構成としている。この方法によると、溶液ポンプ11の流量に過大な余裕を持たせる必要がないため、溶液ポンプ11を小型化することができる。   Further, as another method for securing the heat input amount of the evaporator E, the absorption heat pump of FIG. 1 is provided with a refrigerant return pipe 32 and a refrigerant return valve 33 connected from the evaporator E to the condenser C. The high-temperature refrigerant liquid that has not evaporated is allowed to flow into the condenser C and dissipate heat to the cooling water passing through the cooling water pipe 18. According to this method, the solution pump 11 can be downsized because it is not necessary to provide an excessive margin for the flow rate of the solution pump 11.

図3は本発明に係る吸収ヒートポンプ装置の構成例(第2の実施形態)を示す図である。本吸収ヒートポンプ装置100−2が図1の吸収ヒートポンプ装置100−1と異なる点は、図1の冷媒バイパス配管30及び冷媒バイパス弁31を除去し、冷媒配管15から分岐した冷媒バイパス配管40及び冷媒バイパス弁41を設けた点である。即ち、冷媒バイパス配管及び冷媒バイパス弁の接続箇所のみが異なる。その他の構成機器、吸収サイクル、フローなどは図1の吸収ヒートポンプと同一である。   FIG. 3 is a diagram showing a configuration example (second embodiment) of the absorption heat pump device according to the present invention. The absorption heat pump apparatus 100-2 differs from the absorption heat pump apparatus 100-1 in FIG. 1 in that the refrigerant bypass pipe 30 and the refrigerant bypass valve 31 in FIG. The bypass valve 41 is provided. That is, only the connection location of the refrigerant bypass pipe and the refrigerant bypass valve is different. Other components, absorption cycle, flow, etc. are the same as those of the absorption heat pump of FIG.

上記のように本吸収ヒートポンプ100−2では、冷媒ポンプ14により冷媒配管15を通って蒸発器Eに送られる冷媒液を冷媒バイパス配管40で冷媒配管15から分岐し、吸収器Aに導くようにしている。即ち、ここでは、凝縮器Cが保有している冷媒液を、冷媒バイパス配管40の冷媒バイパス弁41を開くことによって吸収器Aの溶液入口側に流し、再生器Gから吸収器Aに流入する濃溶液を希釈する構成となっている。   As described above, in the present absorption heat pump 100-2, the refrigerant liquid sent to the evaporator E through the refrigerant pipe 15 by the refrigerant pump 14 is branched from the refrigerant pipe 15 by the refrigerant bypass pipe 40 and led to the absorber A. ing. That is, here, the refrigerant liquid held in the condenser C is caused to flow to the solution inlet side of the absorber A by opening the refrigerant bypass valve 41 of the refrigerant bypass pipe 40 and flows into the absorber A from the regenerator G. The concentrated solution is diluted.

これを図4に示すデューリング線図で説明すると、再生器Gから吸収器Aに流入する濃度ξ2の濃溶液が冷媒バイパス配管40からの冷媒液と混合して希釈され、濃度ξ*になって吸収器Aに散布され、蒸発器Eからの冷媒蒸気を吸収して濃度ξ1の希溶液となり再生器Gに送られる。この結果、上述した図1に示す吸収ヒートポンプと同様、サイクルの濃度幅が狭くなることと、再生器Gで濃縮に費やされるエネルギーの一部(ξ*からξ2までの濃縮に必要な熱量)が凝縮器Cの冷却水に放熱されCOPが低下することから、吸収器Aでの発生熱量を低下させることができる。また、本実施形態例でも蒸発器Eの入熱量を確保するため、図3では蒸発器Eから凝縮器Cにつながる冷媒戻り配管32及び冷媒戻り弁33を設け、蒸発器Eで蒸発しなかった高温の冷媒液を凝縮器Cに流入させ、その熱を冷却水に放熱する構成としている。 This will be described with reference to the Duering diagram shown in FIG. 4. The concentrated solution having the concentration ξ2 flowing from the regenerator G into the absorber A is mixed with the refrigerant liquid from the refrigerant bypass pipe 40 and diluted to a concentration ξ * . Then, it is dispersed in the absorber A, absorbs the refrigerant vapor from the evaporator E, becomes a dilute solution having a concentration ξ1, and is sent to the regenerator G. As a result, similar to the absorption heat pump shown in FIG. 1 described above, the cycle concentration range becomes narrower, and a part of the energy consumed for concentration in the regenerator G (the amount of heat necessary for concentration from ξ * to ξ2) is reduced. Since heat is dissipated in the cooling water of the condenser C and COP is reduced, the amount of heat generated in the absorber A can be reduced. Further, in this embodiment, in order to secure the heat input amount of the evaporator E, the refrigerant return pipe 32 and the refrigerant return valve 33 connected from the evaporator E to the condenser C are provided in FIG. A high-temperature refrigerant liquid is caused to flow into the condenser C, and the heat is radiated to the cooling water.

図5は本発明に係る吸収ヒートポンプ装置の構成例(第3の実施形態例)を示す図である。本吸収ヒートポンプ装置100−3では、凝縮器Cの冷媒液が冷媒ポンプ14により冷媒配管15を通って冷媒熱回収器50の被加熱側に送られ加熱され、更に蒸発器Eに送られ散布される。蒸発器Eで未蒸発の冷媒液は冷媒戻り配管51を通って冷媒熱回収器50の加熱側に流入し、冷却されて凝縮器Cに戻るように構成されている。これにより、冷媒スプレーポンプを設置することなく、蒸発器Eでの冷媒散布量を多くして、なおかつ蒸発器Eの未蒸発冷媒を凝縮器Cに戻すことによる顕熱損失を小さくすることができる。   FIG. 5 is a diagram showing a configuration example (third embodiment) of an absorption heat pump device according to the present invention. In the present absorption heat pump device 100-3, the refrigerant liquid in the condenser C is sent to the heated side of the refrigerant heat recovery device 50 through the refrigerant pipe 15 by the refrigerant pump 14, heated, and further sent to the evaporator E to be dispersed. The The refrigerant liquid that has not evaporated in the evaporator E flows through the refrigerant return pipe 51 and flows into the heating side of the refrigerant heat recovery unit 50, is cooled, and returns to the condenser C. Thereby, without installing a refrigerant spray pump, the amount of refrigerant sprayed in the evaporator E can be increased, and the sensible heat loss caused by returning the non-evaporated refrigerant in the evaporator E to the condenser C can be reduced. .

本吸収ヒートポンプ100−3では、上述のように冷媒を熱回収しながら、循環散布するように構成し、凝縮器Cから蒸発器Eに冷媒液を送る冷媒配管15に、冷媒熱回収器50をバイパスするように冷媒バイパス配管52及び冷媒バイパス弁53を設置している。容量制御時は、冷媒バイパス弁53を開けて、凝縮器Cから蒸発器に送られる冷媒液の一部又は全部が冷媒バイパス配管52を通るようにすることで、蒸発器Eで蒸発しなかった高温の冷媒液から冷媒熱回収器50で熱回収する量を減少させることができ、高温の冷媒液が凝縮器Cに流入して冷却水に放熱する構成としている。これにより、上記第1の実施形態例、及び第2の実施形態例で述べたのと同様に、容量制御時に蒸発器の入熱量を確保することができるため、溶液ポンプ11の容量を過大に大きくする必要がなく、溶液ポンプ11の小型化が可能となる。   The absorption heat pump 100-3 is configured to circulate and spray the refrigerant while recovering the heat as described above, and the refrigerant heat recovery unit 50 is connected to the refrigerant pipe 15 that sends the refrigerant liquid from the condenser C to the evaporator E. A refrigerant bypass pipe 52 and a refrigerant bypass valve 53 are installed so as to bypass. At the time of capacity control, the refrigerant bypass valve 53 is opened so that part or all of the refrigerant liquid sent from the condenser C to the evaporator passes through the refrigerant bypass pipe 52 so that it does not evaporate in the evaporator E. The amount of heat recovered from the high-temperature refrigerant liquid by the refrigerant heat recovery unit 50 can be reduced, and the high-temperature refrigerant liquid flows into the condenser C and dissipates heat to the cooling water. As a result, as described in the first embodiment and the second embodiment, the amount of heat input to the evaporator can be ensured during capacity control, so that the capacity of the solution pump 11 is excessive. There is no need to increase the size, and the solution pump 11 can be downsized.

また、凝縮器Cの冷媒液は、冷媒ポンプ14の吐出配管から分岐した配管54及びバルブ55を通って、再生器Gの濃溶液に混入されるように構成されている。これにより、凝縮器Cの冷媒液を冷媒ポンプ14の吐出圧を利用して再生器Gに物理的制約なく送り込むことができる。これに対して、図1に示す構成の吸収ヒートポンプでは、凝縮器Cの冷媒液面を再生器Gの濃溶液液面より高くする必要があり、これには熱交換器の配置に物理的制約がある。   The refrigerant liquid of the condenser C is mixed with the concentrated solution of the regenerator G through the pipe 54 and the valve 55 branched from the discharge pipe of the refrigerant pump 14. Thereby, the refrigerant liquid of the condenser C can be sent into the regenerator G without physical restrictions using the discharge pressure of the refrigerant pump 14. On the other hand, in the absorption heat pump having the configuration shown in FIG. 1, it is necessary to make the refrigerant liquid level of the condenser C higher than the concentrated solution liquid level of the regenerator G. This is a physical restriction on the arrangement of the heat exchanger. There is.

なお、上記実施形態例では、排熱の形態をエンジンのジャケット温水としたが、これに限定されるものではなく、工場排熱で吸収ヒートポンプを駆動する場合も同様に適用できる。また、温水に限らず他の熱媒でも構わない。   In the above embodiment, the exhaust heat form is the engine jacket warm water, but the present invention is not limited to this, and the present invention can be similarly applied to driving the absorption heat pump with factory exhaust heat. Moreover, not only warm water but another heat medium may be used.

また、上記実施形態例では被加熱媒体に水を用い、蒸気発生伝熱管21で加熱して蒸気としているが、相変化せず、高温水のまま取り出して良い。また、水に限らず他の熱媒でもよい。   Further, in the above embodiment, water is used as the medium to be heated, and the steam is generated by heating with the steam generation heat transfer tube 21, but the phase may not be changed and may be taken out as high temperature water. Further, the heat medium is not limited to water.

上記第1の実施形態例である図1の吸収ヒートポンプ装置100−1において、冷媒バイパス配管30の接続先は、再生器Gの缶胴に限らず、溶液ポンプ11の吸込み配管や吸収器Aからの希溶液の再生器Gの入口より上流側でもよい。   In the absorption heat pump device 100-1 of FIG. 1 as the first embodiment, the connection destination of the refrigerant bypass pipe 30 is not limited to the can body of the regenerator G, but from the suction pipe and the absorber A of the solution pump 11. It may be upstream of the inlet of the regenerator G of the dilute solution.

上記第2の実施形態例である図3の吸収ヒートポンプ装置100−2において、冷媒バイパス配管40の接続先は、吸収器Aの再生器Gからの濃溶液入口側に限らず、吸収器Aの缶胴内でも良い。   In the absorption heat pump apparatus 100-2 of FIG. 3 which is the second embodiment, the connection destination of the refrigerant bypass pipe 40 is not limited to the concentrated solution inlet side from the regenerator G of the absorber A, but of the absorber A. It can be inside the can body.

上記第3の実施形態例である図5の吸収ヒートポンプ装置100−3において、冷媒バイパス配管52は、凝縮器Cから蒸発器Eに向かう冷媒配管15に限らず、冷媒の戻り側、即ち蒸発器Eから凝縮器Cに向かう冷媒戻り配管51に設置してもよい。   In the absorption heat pump apparatus 100-3 of FIG. 5 as the third embodiment, the refrigerant bypass pipe 52 is not limited to the refrigerant pipe 15 from the condenser C to the evaporator E, but is the refrigerant return side, that is, the evaporator. You may install in the refrigerant | coolant return piping 51 which goes to the condenser C from E.

上記実施形態例では、単段昇温型の吸収ヒートポンプの被加熱媒体の加熱量を制御するについて述べたが、図示は省略するが多段昇温型の吸収ヒートポンプについても同様に適用できる。   In the above embodiment example, the heating amount of the heating medium of the single-stage temperature rising type absorption heat pump has been described. However, although not shown, the present invention can be similarly applied to a multi-stage temperature rising type absorption heat pump.

以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載のない何れの形状・構造・材質であっても、本願発明の作用・効果を奏する以上、本願発明の技術的思想の範囲内である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. It should be noted that any shape, structure, and material not directly described in the specification and drawings are within the scope of the technical idea of the present invention as long as the effects and advantages of the present invention are exhibited.

本発明に係る吸収ヒートポンプ装置の構成例を示す図である。(第1実施形態例)It is a figure which shows the structural example of the absorption heat pump apparatus which concerns on this invention. (First embodiment) 図1の吸収ヒートポンプの吸収サイクルをデューリング線図上に示した図である。It is the figure which showed the absorption cycle of the absorption heat pump of FIG. 1 on the Duering diagram. 本発明に係る吸収ヒートポンプ装置の構成例を示す図である。(第2実施形態例)It is a figure which shows the structural example of the absorption heat pump apparatus which concerns on this invention. (Second Embodiment) 図3の吸収ヒートポンプの吸収サイクルを説明するためのデューリング線図上に示した図である。It is the figure shown on the Duhring diagram for demonstrating the absorption cycle of the absorption heat pump of FIG. 本発明に係る吸収ヒートポンプ装置の構成例を示す図である。(第3実施形態例)It is a figure which shows the structural example of the absorption heat pump apparatus which concerns on this invention. (Third embodiment)

符号の説明Explanation of symbols

A 吸収器
E 蒸発器
G 再生器
C 凝縮器
10 溶液熱交換器
11 溶液ポンプ
12 濃溶液配管
13 希溶液配管
14 冷媒ポンプ
15 冷媒配管
16 熱源温水配管
17 熱源温水配管
18 冷却水配管
19 給水ポンプ
20 給水予熱伝熱管
21 蒸気発生伝熱管
30 冷媒バイパス配管
31 冷媒バイパス弁
32 冷媒戻り配管
33 冷媒戻り弁
40 冷媒バイパス配管
41 冷媒バイパス弁
50 冷媒熱回収器
51 冷媒戻り配管
52 冷媒バイパス配管
53 冷媒バイパス弁
100−1 吸収ヒートポンプ
100−2 吸収ヒートポンプ
100−3 吸収ヒートポンプ
A Absorber E Evaporator G Regenerator C Condenser 10 Solution heat exchanger 11 Solution pump 12 Concentrated solution piping 13 Dilute solution piping 14 Refrigerant pump 15 Refrigerant piping 16 Heat source hot water piping 17 Heat source hot water piping 18 Cooling water piping 19 Water supply pump 20 Water supply preheating heat transfer pipe 21 Steam generation heat transfer pipe 30 Refrigerant bypass pipe 31 Refrigerant bypass valve 32 Refrigerant return pipe 33 Refrigerant return valve 40 Refrigerant bypass pipe 41 Refrigerant bypass valve 50 Refrigerant heat recovery device 51 Refrigerant return pipe 52 Refrigerant bypass pipe 53 Refrigerant bypass valve 100-1 Absorption heat pump 100-2 Absorption heat pump 100-3 Absorption heat pump

Claims (6)

吸収器、蒸発器、再生器、凝縮器を備え、前記再生器の濃溶液は前記吸収器内に導かれ、前記蒸発器からの冷媒蒸気を吸収して吸収発熱し、被加熱媒体流路を通る被加熱媒体を加熱すると共に、前記冷媒蒸気を吸収し濃度の薄くなった希溶液となり、該希溶液は前記再生器内に導かれ、該再生器内で熱源媒体流路を流れる熱源媒体で加熱され冷媒蒸気を発生すると共に、濃縮されて濃溶液となり、前記再生器で発生した冷媒蒸気は前記凝縮器に導かれ、冷却媒体流路を流れる冷却媒体により凝縮され冷媒液となり、該冷媒液は前記蒸発器内に導かれ、熱源媒体流路を流れる熱源媒体により加熱されて蒸発して冷媒蒸気となり、該冷媒蒸気は前記吸収器に導かれるように構成された吸収ヒートポンプ装置の吸収発熱量制御方法であって、
前記濃溶液又は希溶液に前記凝縮器の冷媒液を混入させ、該冷媒液の混入量を制御して前記吸収発熱量を制御することを特徴とする吸収ヒートポンプ装置の吸収発熱量制御方法。
An absorber, an evaporator, a regenerator, and a condenser are provided, and the concentrated solution of the regenerator is guided into the absorber, absorbs refrigerant vapor from the evaporator, generates heat, and passes through the heated medium flow path. The heated medium passing therethrough becomes a diluted solution having a reduced concentration by absorbing the refrigerant vapor, and the diluted solution is introduced into the regenerator and is a heat source medium flowing in the heat source medium flow path in the regenerator. The refrigerant vapor is heated and concentrated to become a concentrated solution. The refrigerant vapor generated in the regenerator is guided to the condenser and condensed by the cooling medium flowing through the cooling medium flow path to become a refrigerant liquid. Is introduced into the evaporator and heated by the heat source medium flowing through the heat source medium flow path to evaporate into refrigerant vapor, and the refrigerant heat is absorbed by the absorption heat pump device configured to be led to the absorber. A control method,
An absorption heat generation amount control method for an absorption heat pump device, wherein the refrigerant heat of the condenser is mixed into the concentrated solution or the dilute solution, and the absorption heat generation amount is controlled by controlling an amount of the refrigerant liquid mixed therein.
吸収器、蒸発器、再生器、凝縮器を備え、前記再生器の濃溶液は前記吸収器内に導かれ、前記蒸発器からの冷媒蒸気を吸収して吸収発熱し、被加熱媒体流路を通る被加熱媒体を加熱すると共に、前記冷媒蒸気を吸収し濃度の薄くなった希溶液となり、該希溶液は前記再生器内に導かれ、該再生器内で熱源媒体流路を流れる熱源媒体で加熱され冷媒蒸気を発生すると共に、濃縮されて濃溶液となり、前記再生器で発生した冷媒蒸気は前記凝縮器に導かれ、冷却媒体流路を流れる冷却媒体により凝縮され冷媒液となり、該冷媒液は前記蒸発器内に導かれ、熱源媒体流路を流れる熱源媒体により加熱されて蒸発して冷媒蒸気となり、該冷媒蒸気は前記吸収器に導かれるように構成された吸収ヒートポンプ装置の吸収発熱量制御方法であって、
前記凝縮器の冷媒液を前記再生器又は吸収器に導入し、該冷媒液の導入量を制御して前記吸収発熱量を制御することを特徴とする吸収ヒートポンプ装置の吸収発熱量制御方法。
An absorber, an evaporator, a regenerator, and a condenser are provided, and the concentrated solution of the regenerator is guided into the absorber, absorbs refrigerant vapor from the evaporator, generates heat, and passes through the heated medium flow path. The heated medium passing therethrough becomes a diluted solution having a reduced concentration by absorbing the refrigerant vapor, and the diluted solution is introduced into the regenerator and is a heat source medium flowing in the heat source medium flow path in the regenerator. The refrigerant vapor is heated and concentrated to become a concentrated solution. The refrigerant vapor generated in the regenerator is guided to the condenser and condensed by the cooling medium flowing through the cooling medium flow path to become a refrigerant liquid. Is introduced into the evaporator and heated by the heat source medium flowing through the heat source medium flow path to evaporate into refrigerant vapor, and the refrigerant heat is absorbed by the absorption heat pump device configured to be led to the absorber. A control method,
An absorption heat generation amount control method for an absorption heat pump apparatus, wherein the refrigerant liquid of the condenser is introduced into the regenerator or absorber, and the absorption heat generation amount is controlled by controlling an introduction amount of the refrigerant liquid.
請求項1又は2に記載の吸収ヒートポンプ装置の吸収発熱量制御方法において、
前記蒸発器における未蒸発の高温冷媒液を凝縮器に戻すことによって該蒸発器の負荷を確保して吸収量発熱量を制御することを特徴とする吸収ヒートポンプ装置の吸収発熱量制御方法。
In the absorption calorific value control method of the absorption heat pump device according to claim 1 or 2,
An absorption heat generation amount control method for an absorption heat pump device, wherein the load of the evaporator is secured by returning the non-evaporated high-temperature refrigerant liquid in the evaporator to the condenser to control the absorption amount heat generation amount.
吸収器、蒸発器、再生器、凝縮器を備え、前記再生器の濃溶液は前記吸収器内に導かれ、前記蒸発器からの冷媒蒸気を吸収して吸収発熱し、被加熱媒体流路を通る被加熱媒体を加熱すると共に、前記冷媒蒸気を吸収し濃度の薄くなった希溶液となり、該希溶液は前記再生器内に導かれ、該再生器内で熱源媒体流路を流れる熱源媒体で加熱され冷媒蒸気を発生すると共に、濃縮されて濃溶液となり、前記再生器で発生した冷媒蒸気は前記凝縮器に導かれ、冷却媒体流路を流れる冷却媒体により凝縮され冷媒液となり、該冷媒液は前記蒸発器内に導かれ、熱源媒体流路を流れる熱源媒体により加熱されて蒸発して冷媒蒸気となり、該冷媒蒸気は前記吸収器に導かれるように構成された吸収ヒートポンプ装置において、
前記濃溶液又は希溶液に前記凝縮器の冷媒液を混入する手段を備え、該冷媒液の混入量を制御して前記吸収器内の吸収発熱量を制御することを特徴とする吸収ヒートポンプ装置。
An absorber, an evaporator, a regenerator, and a condenser are provided, and the concentrated solution of the regenerator is guided into the absorber, absorbs refrigerant vapor from the evaporator, generates heat, and passes through the heated medium flow path. The heated medium passing therethrough becomes a diluted solution having a reduced concentration by absorbing the refrigerant vapor, and the diluted solution is introduced into the regenerator and is a heat source medium flowing in the heat source medium flow path in the regenerator. The refrigerant vapor is heated and concentrated to become a concentrated solution. The refrigerant vapor generated in the regenerator is guided to the condenser and condensed by the cooling medium flowing through the cooling medium flow path to become a refrigerant liquid. Is absorbed in the evaporator, heated by the heat source medium flowing through the heat source medium flow path, evaporated to become refrigerant vapor, and the refrigerant vapor is configured to be led to the absorber,
An absorption heat pump device comprising means for mixing the refrigerant liquid of the condenser into the concentrated solution or the diluted solution, and controlling the amount of heat generated by the absorption by controlling the mixing amount of the refrigerant liquid.
吸収器、蒸発器、再生器、凝縮器を備え、前記再生器の濃溶液は前記吸収器内に導かれ、前記蒸発器からの冷媒蒸気を吸収して吸収発熱し、被加熱媒体流路を通る被加熱媒体を加熱すると共に、前記冷媒蒸気を吸収し濃度の薄くなった希溶液となり、該希溶液は前記再生器内に導かれ、該再生器内で熱源媒体流路を流れる熱源媒体で加熱され冷媒蒸気を発生すると共に、濃縮されて濃溶液となり、前記再生器で発生した冷媒蒸気は前記凝縮器に導かれ、冷却媒体流路を流れる冷却媒体により凝縮され冷媒液となり、該冷媒液は前記蒸発器内に導かれ、熱源媒体流路を流れる熱源媒体により加熱されて蒸発して冷媒蒸気となり、該冷媒蒸気は前記吸収器に導かれるように構成された吸収ヒートポンプ装置において、
前記凝縮器の冷媒液を前記再生器又は吸収器に導入する手段を備え、前記再生器又は吸収器に導く冷媒液量を制御して前記吸収器内の吸収発熱量を制御することを特徴とする吸収ヒートポンプ装置。
An absorber, an evaporator, a regenerator, and a condenser are provided, and the concentrated solution of the regenerator is guided into the absorber, absorbs refrigerant vapor from the evaporator, generates heat, and passes through the heated medium flow path. The heated medium passing therethrough becomes a diluted solution having a reduced concentration by absorbing the refrigerant vapor, and the diluted solution is introduced into the regenerator and is a heat source medium flowing in the heat source medium flow path in the regenerator. The refrigerant vapor is heated and concentrated to become a concentrated solution. The refrigerant vapor generated in the regenerator is guided to the condenser and condensed by the cooling medium flowing through the cooling medium flow path to become a refrigerant liquid. Is absorbed in the evaporator, heated by the heat source medium flowing through the heat source medium flow path, evaporated to become refrigerant vapor, and the refrigerant vapor is configured to be led to the absorber,
Means for introducing the refrigerant liquid of the condenser into the regenerator or absorber, and controls the amount of refrigerant liquid led to the regenerator or absorber to control the amount of heat generated by absorption in the absorber. Absorbing heat pump device.
請求項4又は5に記載の吸収ヒートポンプ装置において、
前記蒸発器から前記凝縮器に冷媒液を戻す手段を設け、前記蒸発器における未蒸発の高温冷媒液を凝縮器に戻すことによって該蒸発器の負荷を確保して前記吸収器内の吸収発熱量を制御することを特徴とする吸収ヒートポンプ装置。
In the absorption heat pump device according to claim 4 or 5,
A means for returning the refrigerant liquid from the evaporator to the condenser is provided, and the load of the evaporator is secured by returning the unevaporated high-temperature refrigerant liquid in the evaporator to the condenser, thereby absorbing heat generated in the absorber. An absorption heat pump device characterized by controlling the temperature.
JP2006116008A 2006-04-19 2006-04-19 Absorption heating value control method for absorption heat pump device, and absorption heat pump device Pending JP2007285649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006116008A JP2007285649A (en) 2006-04-19 2006-04-19 Absorption heating value control method for absorption heat pump device, and absorption heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006116008A JP2007285649A (en) 2006-04-19 2006-04-19 Absorption heating value control method for absorption heat pump device, and absorption heat pump device

Publications (1)

Publication Number Publication Date
JP2007285649A true JP2007285649A (en) 2007-11-01

Family

ID=38757593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006116008A Pending JP2007285649A (en) 2006-04-19 2006-04-19 Absorption heating value control method for absorption heat pump device, and absorption heat pump device

Country Status (1)

Country Link
JP (1) JP2007285649A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216779A (en) * 2009-03-19 2010-09-30 Hitachi Appliances Inc Second class absorption heat pump
JP2013253748A (en) * 2012-06-07 2013-12-19 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump and operation method of absorption heat pump
JP2017040387A (en) * 2015-08-17 2017-02-23 荏原冷熱システム株式会社 Absorption heat pump
CN108105795A (en) * 2017-07-10 2018-06-01 昊姆(上海)节能科技有限公司 Compression, absorption heat pump coupling fume treatment auxiliary
KR102122996B1 (en) * 2018-12-24 2020-06-15 한국에너지기술연구원 Absorption heat pump system by using ion-exchange membrane generator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818574B2 (en) * 1975-12-23 1983-04-13 カブシキガイシヤ エバラセイサクシヨ heat pump
JPS5818575B2 (en) * 1975-12-24 1983-04-13 カブシキガイシヤ エバラセイサクシヨ heat pump
JPS5869372A (en) * 1981-10-19 1983-04-25 三洋電機株式会社 Absorption heat pump
JPS58150774A (en) * 1982-03-03 1983-09-07 三洋電機株式会社 Absorption heat pump
JPS6089648A (en) * 1983-10-20 1985-05-20 三洋電機株式会社 Crystal preventive device for absorption heat pump
JPH04347464A (en) * 1991-05-24 1992-12-02 Hitachi Zosen Corp Absorption type heat pump device
JPH06137706A (en) * 1992-10-28 1994-05-20 Hitachi Zosen Corp Control method for absorption type cooling and hot water equipment
JP2001082822A (en) * 1999-09-14 2001-03-30 Hitachi Ltd Absorption refrigerating machine, absorption refrigerating type cogeneration system and operating method for the same
JP2001289530A (en) * 2000-04-10 2001-10-19 Sanyo Electric Co Ltd Absorption chiller-heater

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818574B2 (en) * 1975-12-23 1983-04-13 カブシキガイシヤ エバラセイサクシヨ heat pump
JPS5818575B2 (en) * 1975-12-24 1983-04-13 カブシキガイシヤ エバラセイサクシヨ heat pump
JPS5869372A (en) * 1981-10-19 1983-04-25 三洋電機株式会社 Absorption heat pump
JPS58150774A (en) * 1982-03-03 1983-09-07 三洋電機株式会社 Absorption heat pump
JPS6089648A (en) * 1983-10-20 1985-05-20 三洋電機株式会社 Crystal preventive device for absorption heat pump
JPH04347464A (en) * 1991-05-24 1992-12-02 Hitachi Zosen Corp Absorption type heat pump device
JPH06137706A (en) * 1992-10-28 1994-05-20 Hitachi Zosen Corp Control method for absorption type cooling and hot water equipment
JP2001082822A (en) * 1999-09-14 2001-03-30 Hitachi Ltd Absorption refrigerating machine, absorption refrigerating type cogeneration system and operating method for the same
JP2001289530A (en) * 2000-04-10 2001-10-19 Sanyo Electric Co Ltd Absorption chiller-heater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216779A (en) * 2009-03-19 2010-09-30 Hitachi Appliances Inc Second class absorption heat pump
JP2013253748A (en) * 2012-06-07 2013-12-19 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump and operation method of absorption heat pump
JP2017040387A (en) * 2015-08-17 2017-02-23 荏原冷熱システム株式会社 Absorption heat pump
CN108105795A (en) * 2017-07-10 2018-06-01 昊姆(上海)节能科技有限公司 Compression, absorption heat pump coupling fume treatment auxiliary
KR102122996B1 (en) * 2018-12-24 2020-06-15 한국에너지기술연구원 Absorption heat pump system by using ion-exchange membrane generator

Similar Documents

Publication Publication Date Title
WO2009094897A1 (en) Absorptive heat pump system and heating method
JP2007333293A (en) Loop type heat pipe
KR101942203B1 (en) Combined hot water and air heating and conditioning system including heat pump
JP2010243012A (en) Exhaust gas heat recovery device
JP2007285649A (en) Absorption heating value control method for absorption heat pump device, and absorption heat pump device
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP2005009754A (en) Single/double effect absorption refrigerating machine, and its operation control method
KR101210968B1 (en) Hybrid absorption type air conditioning system
JPH0473556A (en) Absorption type heat pump
JP4852331B2 (en) Absorption heat pump device and operation method thereof
JP3245116B2 (en) Waste heat absorption chiller / heater with load fluctuation control function
KR100512827B1 (en) Absorption type refrigerator
WO2013136606A1 (en) Steam generating system
JP2006112686A (en) Two stage temperature rising type absorption heat pump
JPH04116352A (en) Absorption cooler/heater
JPH05280825A (en) Absorption heat pump
JP4107582B2 (en) Single double effect absorption refrigerator and operation control method thereof
JP4086505B2 (en) Heating operation method and apparatus for a multi-effect absorption refrigerator / cooling / heating machine
JP2005300047A (en) Heat exchanger system and absorption refrigerating machine using the same
JP4064199B2 (en) Triple effect absorption refrigerator
JP4315697B2 (en) Absorption chiller / heater
JP2005326089A (en) Absorption refrigerating machine
JP2005106408A (en) Absorption type freezer
KR100781880B1 (en) Absorption chiller
KR950013332B1 (en) Direct heat recovery absorption refregeration system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802