JP2019035560A - Absorption type heat exchange system - Google Patents

Absorption type heat exchange system Download PDF

Info

Publication number
JP2019035560A
JP2019035560A JP2017158909A JP2017158909A JP2019035560A JP 2019035560 A JP2019035560 A JP 2019035560A JP 2017158909 A JP2017158909 A JP 2017158909A JP 2017158909 A JP2017158909 A JP 2017158909A JP 2019035560 A JP2019035560 A JP 2019035560A
Authority
JP
Japan
Prior art keywords
fluid
temperature
heat source
heat
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017158909A
Other languages
Japanese (ja)
Other versions
JP6907438B2 (en
Inventor
與四郎 竹村
Yoshiro Takemura
與四郎 竹村
青山 淳
Atsushi Aoyama
淳 青山
甲介 平田
Kosuke Hirata
甲介 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to JP2017158909A priority Critical patent/JP6907438B2/en
Priority to CN201810902596.2A priority patent/CN109425144B/en
Priority to CN201821286198.4U priority patent/CN208817758U/en
Publication of JP2019035560A publication Critical patent/JP2019035560A/en
Application granted granted Critical
Publication of JP6907438B2 publication Critical patent/JP6907438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Abstract

To provide an absorption type heat exchange system for making outlet temperature of a heated fluid raising temperature higher than inlet temperature of a heat source fluid reducing temperature.SOLUTION: An absorption type heat exchange system 1 includes: an absorption part 10 for raising temperature of a first heated fluid RP by absorption heat emitted when an absorbent liquid Sa absorbs refrigerant vapor Ve; a condensation part 40 for raising temperature of a heated fluid GP by condensation heat emitted when refrigerant vapor Vg becomes a refrigerant liquid Vf; a steam part 20 for taking away evaporative latent heat required when the refrigerant liquid Vf evaporates and becomes the refrigerant vapor Ve, from a heat source fluid RS; and a reproduction part 30 for taking away heat required for heating a diluted solution Sw to bring to a concentrated solution Sa, from a heat source fluid RS. The absorption part 10 has inner pressure and temperature higher than those of the reproduction part 30 due to an absorption heat pump cycle of the absorbent liquid and the refrigerant, and a part of the heat source fluid branched from a heat source fluid RA before introducing to the vaporization part 20 and the reproduction part 30 is introduced as the first heated fluid RP to the absorption part 10.SELECTED DRAWING: Figure 1

Description

本発明は吸収式熱交換システムに関し、特に温度上昇させる流体の出口温度が、温度低下する流体の入口温度よりも高くなるように、2つの流体間で熱交換させる吸収式熱交換システムに関する。   The present invention relates to an absorption heat exchange system, and more particularly, to an absorption heat exchange system in which heat is exchanged between two fluids so that an outlet temperature of a fluid whose temperature is increased is higher than an inlet temperature of a fluid whose temperature is decreased.

熱交換器は、高温の流体と低温の流体との間で熱を交換する装置として広く用いられている。2つの流体の間で直接熱交換が行われる熱交換器では、低温の流体の出口温度を、高温の流体の入口温度よりも高い温度にすることはできない(例えば、特許文献1参照。)。   A heat exchanger is widely used as a device for exchanging heat between a hot fluid and a cold fluid. In a heat exchanger in which heat is directly exchanged between two fluids, the outlet temperature of the low temperature fluid cannot be higher than the inlet temperature of the high temperature fluid (see, for example, Patent Document 1).

特許第5498809号公報(図11等参照)Japanese Patent No. 5498809 (see FIG. 11 etc.)

熱交換器の用途の1つとして、排熱を回収することが挙げられる。排熱は、使用されずに捨てられる熱であるため、排熱を回収して温度を上昇させる流体の出口温度を、排熱を含む熱が奪われて温度が低下する流体の入口温度よりも高い温度にすることができれば、活用の幅が広がることとなる。   One application of heat exchangers is to recover waste heat. Since exhaust heat is heat that is discarded without being used, the outlet temperature of the fluid that recovers the exhaust heat and raises the temperature is higher than the inlet temperature of the fluid that loses heat and includes the exhaust heat. If the temperature can be increased, the range of utilization will expand.

本発明は上述の課題に鑑み、温度を上昇させる被加熱流体の出口温度を、温度が低下する加熱源流体の入口温度よりも高くすることができる吸収式熱交換システムを提供することを目的とする。   In view of the above-described problems, the present invention has an object to provide an absorption heat exchange system that can increase the outlet temperature of the heated fluid that raises the temperature higher than the inlet temperature of the heating source fluid that lowers the temperature. To do.

上記目的を達成するために、本発明の第1の態様に係る吸収式熱交換システムは、例えば図1に示すように、吸収液Saが冷媒の蒸気Veを吸収して濃度が低下した希溶液Swとなる際に放出した吸収熱によって第1の被加熱流体RPの温度を上昇させる吸収部10と;冷媒の蒸気Vgが凝縮して冷媒液Vfとなる際に放出した凝縮熱によって第2の被加熱流体GPの温度を上昇させる凝縮部40と;凝縮部40から冷媒液Vfを導入し、導入した冷媒液Vfが蒸発して吸収部10に供給される冷媒の蒸気Veとなる際に必要な蒸発潜熱を加熱源流体RSから奪うことで加熱源流体RSの温度を低下させる蒸発部20と;吸収部10から希溶液Swを導入し、導入した希溶液Swを加熱し希溶液Swから冷媒Vgを離脱させて濃度が上昇した濃溶液Saとするのに必要な熱を加熱源流体RSから奪うことで加熱源流体RSの温度を低下させる再生部30とを備え;吸収液Sa、Swと冷媒Ve、Vf、Vgとの吸収ヒートポンプサイクルによって、吸収部10は再生部30よりも内部の圧力及び温度が高くなり、蒸発部20は凝縮部40よりも内部の圧力及び温度が高くなるように構成され;蒸発部20及び再生部30に導入される前の加熱源流体RAから分岐された一部の加熱源流体を第1の被加熱流体RPとして吸収部10に導入するように構成されている。   In order to achieve the above object, the absorption heat exchange system according to the first aspect of the present invention is a dilute solution in which, for example, as shown in FIG. An absorption section 10 that raises the temperature of the first heated fluid RP by the absorbed heat released when it becomes Sw; and a second heat by the condensation heat released when the refrigerant vapor Vg condenses into the refrigerant liquid Vf. Condensing section 40 for raising the temperature of the fluid GP to be heated; Necessary when introducing the refrigerant liquid Vf from the condensing section 40 and evaporating the introduced refrigerant liquid Vf into the refrigerant vapor Ve supplied to the absorption section 10 Evaporating part 20 for lowering the temperature of heating source fluid RS by taking away the latent heat of evaporation from heating source fluid RS; introducing diluted solution Sw from absorbing part 10; heating the introduced diluted solution Sw; refrigerant from diluted solution Sw Vg was released and the concentration increased A regenerator 30 that lowers the temperature of the heating source fluid RS by removing the heat necessary to obtain the solution Sa from the heating source fluid RS; an absorption heat pump of the absorbing liquids Sa and Sw and the refrigerants Ve, Vf, and Vg Depending on the cycle, the absorption unit 10 has a higher internal pressure and temperature than the regeneration unit 30, and the evaporation unit 20 is configured to have a higher internal pressure and temperature than the condensation unit 40; the evaporation unit 20 and the regeneration unit 30. A part of the heating source fluid branched from the heating source fluid RA before being introduced into the absorber is introduced into the absorber 10 as the first heated fluid RP.

このように構成すると、蒸発部及び再生部に導入される前の加熱源流体から分岐された一部の加熱源流体を第1の被加熱流体として吸収部に導入するので、吸収部から流出した第1の被加熱流体の温度を蒸発部及び再生部に導入される前の加熱源流体の温度よりも高くすることができる。   With this configuration, a part of the heating source fluid branched from the heating source fluid before being introduced into the evaporation unit and the regeneration unit is introduced into the absorption unit as the first heated fluid, and thus flows out of the absorption unit. The temperature of the first heated fluid can be made higher than the temperature of the heating source fluid before being introduced into the evaporation unit and the regeneration unit.

また、本発明の第2の態様に係る吸収式熱交換システムは、例えば図1を参照して示すと、上記本発明の第1の態様に係る吸収式熱交換システム1において、吸収部10から流出した第1の被加熱流体RPの温度が所定の温度になるように、蒸発部20及び再生部30に流入する加熱源流体RSの流量と吸収部10に第1の被加熱流体RPとして流入する加熱源流体RPの流量との比が設定されている。   Moreover, when the absorption heat exchange system according to the second aspect of the present invention is shown with reference to FIG. 1, for example, in the absorption heat exchange system 1 according to the first aspect of the present invention, from the absorption unit 10. The flow rate of the heating source fluid RS flowing into the evaporation unit 20 and the regeneration unit 30 and the absorption unit 10 as the first heated fluid RP so that the temperature of the first heated fluid RP that has flowed out becomes a predetermined temperature. The ratio with the flow rate of the heating source fluid RP to be set is set.

このように構成すると、吸収部から流出した第1の被加熱流体の温度を調節することができる。   If comprised in this way, the temperature of the 1st to-be-heated fluid which flowed out from the absorption part can be adjusted.

また、本発明の第3の態様に係る吸収式熱交換システムは、例えば図1に示すように、上記本発明の第1の態様又は第2の態様に係る吸収式熱交換システム1において、凝縮部40から流出した第2の被加熱流体GPが蒸発部20及び再生部30の少なくとも一方から流出した加熱源流体RSと混合するように構成されている。   Further, the absorption heat exchange system according to the third aspect of the present invention is, for example, as shown in FIG. 1, in the absorption heat exchange system 1 according to the first aspect or the second aspect of the present invention. The second heated fluid GP flowing out from the section 40 is configured to mix with the heating source fluid RS flowing out from at least one of the evaporation section 20 and the regeneration section 30.

このように構成すると、吸収式熱交換システムに流入する加熱源流体の流量と吸収式熱交換システムから流出する加熱源流体の流量とのバランスを図ることができる。   With this configuration, it is possible to balance the flow rate of the heating source fluid flowing into the absorption heat exchange system and the flow rate of the heating source fluid flowing out of the absorption heat exchange system.

また、本発明の第4の態様に係る吸収式熱交換システムは、例えば図2に示すように、上記本発明の第1の態様乃至第3の態様のいずれか1つの態様に係る吸収式熱交換システム2において、凝縮部40から流出した第2の被加熱流体GPから分岐された一部の第2の被加熱流体GPdを、吸収部10に導入される前の第1の被加熱流体RPに合流させる部分被加熱流体バイパス流路48を備える。   In addition, the absorption heat exchange system according to the fourth aspect of the present invention is, for example, as shown in FIG. 2, the absorption heat heat according to any one of the first to third aspects of the present invention. In the exchange system 2, the first heated fluid RP before introducing a part of the second heated fluid GPd branched from the second heated fluid GP flowing out from the condensing unit 40 into the absorption unit 10. And a partially heated fluid bypass channel 48 to be joined.

このように構成すると、システム構成を簡単にすることができる。   With this configuration, the system configuration can be simplified.

また、本発明の第5の態様に係る吸収式熱交換システムは、例えば図2を参照して示すと、上記本発明の第4の態様に係る吸収式熱交換システム2において、吸収部10から流出した第1の被加熱流体RPの温度が所定の温度になるように、凝縮部40から流出した第2の被加熱流体GPの、蒸発部20及び再生部30の少なくとも一方から流出した加熱源流体RSと混合する流量と、部分被加熱流体バイパス流路48を流れる流量との比が設定されている。   Moreover, when the absorption heat exchange system according to the fifth aspect of the present invention is shown, for example, with reference to FIG. 2, in the absorption heat exchange system 2 according to the fourth aspect of the present invention, from the absorption unit 10. A heating source that has flowed out of at least one of the evaporation unit 20 and the regeneration unit 30 of the second heated fluid GP that has flowed out from the condensing unit 40 so that the temperature of the first heated fluid RP that has flowed out becomes a predetermined temperature. The ratio between the flow rate mixed with the fluid RS and the flow rate flowing through the partially heated fluid bypass flow path 48 is set.

このように構成すると、吸収部から流出した第1の被加熱流体の温度及び流量のバランスを調節することができる。   If comprised in this way, the balance of the temperature and flow volume of the 1st to-be-heated fluid which flowed out from the absorption part can be adjusted.

また、本発明の第6の態様に係る吸収式熱交換システムは、例えば図3に示すように、上記本発明の第1の態様乃至第5の態様のいずれか1つの態様に係る吸収式熱交換システム3において、凝縮部40から蒸発部20に搬送される冷媒液Vfと、蒸発部20及び再生部30の少なくとも一方から流出した加熱源流体RSと、の間で熱交換を行わせる冷媒熱交換器99を備える。   In addition, the absorption heat exchange system according to the sixth aspect of the present invention is, for example, as shown in FIG. 3, the absorption heat heat according to any one of the first to fifth aspects of the present invention. In the exchange system 3, refrigerant heat causing heat exchange between the refrigerant liquid Vf conveyed from the condenser 40 to the evaporator 20 and the heating source fluid RS flowing out from at least one of the evaporator 20 and the regenerator 30. An exchange 99 is provided.

このように構成すると、吸収式熱交換システムから流出する加熱源流体の温度を下げることができ、吸収式熱交換システムにおいて加熱源流体から回収する熱量を増加させることができる。   If comprised in this way, the temperature of the heating source fluid which flows out out of an absorption heat exchange system can be lowered | hung, and the quantity of heat collect | recovered from a heating source fluid in an absorption heat exchange system can be increased.

本発明によれば、蒸発部及び再生部に導入される前の加熱源流体から分岐された一部の加熱源流体を第1の被加熱流体として吸収部に導入するので、吸収部から流出した第1の被加熱流体の温度を蒸発部及び再生部に導入される前の加熱源流体の温度よりも高くすることができる。   According to the present invention, since a part of the heating source fluid branched from the heating source fluid before being introduced into the evaporation unit and the regeneration unit is introduced into the absorption unit as the first heated fluid, it flows out of the absorption unit The temperature of the first heated fluid can be made higher than the temperature of the heating source fluid before being introduced into the evaporation unit and the regeneration unit.

本発明の第1の実施の形態に係る吸収式熱交換システムの模式的系統図である。1 is a schematic system diagram of an absorption heat exchange system according to a first embodiment of the present invention. 本発明の第2の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a typical systematic diagram of the absorption heat exchange system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a typical systematic diagram of the absorption heat exchange system which concerns on the 3rd Embodiment of this invention. 本発明の第1の実施の形態の変形例に係る吸収式熱交換システムの模式的系統図である。It is a typical systematic diagram of the absorption heat exchange system which concerns on the modification of the 1st Embodiment of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or similar members are denoted by the same or similar reference numerals, and redundant description is omitted.

まず図1を参照して、本発明の第1の実施の形態に係る吸収式熱交換システム1を説明する。図1は、吸収式熱交換システム1の模式的系統図である。吸収式熱交換システム1は、吸収液と冷媒との吸収ヒートポンプサイクルを利用して、熱利用機器HCFに向けて吸収式熱交換システム1から流出する昇温対象流体RPの温度が、駆動熱源として吸収式熱交換システム1に流入する駆動熱源流体RSの温度よりも高くなるように熱移動させるシステムである。ここで、昇温対象流体RPは、吸収式熱交換システム1において温度を上昇させる対象となる流体であり、第1の被加熱流体に相当する。駆動熱源流体RSは、吸収式熱交換システム1において温度が低下する流体であり、加熱源流体に相当する。吸収式熱交換システム1は、吸収液S(Sa、Sw)と冷媒V(Ve、Vg、Vf)との吸収ヒートポンプサイクルが行われる主要機器を構成する吸収器10、蒸発器20、再生器30、及び凝縮器40を備えている。吸収器10、蒸発器20、再生器30、凝縮器40は、それぞれ、吸収部、蒸発部、再生部、凝縮部に相当する。   First, with reference to FIG. 1, the absorption heat exchange system 1 which concerns on the 1st Embodiment of this invention is demonstrated. FIG. 1 is a schematic system diagram of an absorption heat exchange system 1. The absorption heat exchange system 1 uses the absorption heat pump cycle of the absorption liquid and the refrigerant, and the temperature of the temperature increase target fluid RP flowing out from the absorption heat exchange system 1 toward the heat utilization device HCF is used as a drive heat source. In this system, heat is transferred so as to be higher than the temperature of the drive heat source fluid RS flowing into the absorption heat exchange system 1. Here, the temperature increase target fluid RP is a fluid to be increased in temperature in the absorption heat exchange system 1 and corresponds to a first heated fluid. The driving heat source fluid RS is a fluid whose temperature decreases in the absorption heat exchange system 1 and corresponds to a heating source fluid. The absorption heat exchange system 1 includes an absorber 10, an evaporator 20, and a regenerator 30 that constitute main equipment in which an absorption heat pump cycle of the absorbing liquid S (Sa, Sw) and the refrigerant V (Ve, Vg, Vf) is performed. , And a condenser 40. The absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 correspond to an absorption unit, an evaporation unit, a regeneration unit, and a condensation unit, respectively.

本明細書においては、吸収液に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「希溶液Sw」や「濃溶液Sa」等と呼称するが、性状等を不問にするときは総称して「吸収液S」ということとする。同様に、冷媒に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「蒸発器冷媒蒸気Ve」、「再生器冷媒蒸気Vg」、「冷媒液Vf」等と呼称するが、性状等を不問にするときは総称して「冷媒V」ということとする。本実施の形態では、吸収液S(吸収剤と冷媒Vとの混合物)としてLiBr水溶液が用いられており、冷媒Vとして水(HO)が用いられている。 In the present specification, the absorption liquid is referred to as “dilute solution Sw”, “concentrated solution Sa” or the like in accordance with the property or the position on the heat pump cycle in order to facilitate distinction on the heat pump cycle. In general, the term “absorbing liquid S” is used. Similarly, regarding the refrigerant, in order to easily distinguish on the heat pump cycle, “evaporator refrigerant vapor Ve”, “regenerator refrigerant vapor Vg”, “refrigerant liquid Vf”, etc., depending on the properties and the position on the heat pump cycle. However, when the properties and the like are not asked, they are collectively referred to as “refrigerant V”. In the present embodiment, an LiBr aqueous solution is used as the absorbing liquid S (a mixture of the absorbent and the refrigerant V), and water (H 2 O) is used as the refrigerant V.

吸収器10は、昇温対象流体RPの流路を構成する伝熱管12と、濃溶液Saを伝熱管12の表面に供給する濃溶液供給装置13とを内部に有している。伝熱管12は、一端に昇温流体導入管51が接続され、他端に昇温流体流出管19が接続されている。昇温流体導入管51は、昇温対象流体RPを伝熱管12に導く流路を構成する管である。昇温流体導入管51には、内部を流れる昇温対象流体RPの流量を調節する昇温流体弁51vが設けられている。昇温流体流出管19は、吸収器10で加熱された昇温対象流体RPを流す流路を構成する管である。吸収器10は、濃溶液供給装置13から濃溶液Saが伝熱管12の表面に供給され、濃溶液Saが蒸発器冷媒蒸気Veを吸収して希溶液Swとなる際に吸収熱を発生させる。この吸収熱を、伝熱管12を流れる昇温対象流体RPが受熱して、昇温対象流体RPが加熱されるように構成されている。   The absorber 10 includes a heat transfer tube 12 that constitutes a flow path of the temperature increase target fluid RP and a concentrated solution supply device 13 that supplies the concentrated solution Sa to the surface of the heat transfer tube 12. The heat transfer pipe 12 has one end connected to the temperature rising fluid introduction pipe 51 and the other end connected to the temperature rising fluid outflow pipe 19. The temperature rising fluid introduction pipe 51 is a pipe constituting a flow path for guiding the temperature rising target fluid RP to the heat transfer pipe 12. The temperature rising fluid introduction pipe 51 is provided with a temperature rising fluid valve 51v for adjusting the flow rate of the temperature rising target fluid RP flowing inside. The temperature rising fluid outflow pipe 19 is a pipe constituting a flow path for flowing the temperature rising target fluid RP heated by the absorber 10. The absorber 10 generates absorbed heat when the concentrated solution Sa is supplied from the concentrated solution supply device 13 to the surface of the heat transfer tube 12 and the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve to become the diluted solution Sw. The absorption target fluid RP that flows through the heat transfer pipe 12 receives the absorbed heat, and the temperature increase target fluid RP is heated.

蒸発器20は、駆動熱源流体RSの流路を構成する熱源管22を、蒸発器缶胴21の内部に有している。蒸発器20は、蒸発器缶胴21の内部に冷媒液Vfを散布するノズルを有していない。このため、熱源管22は、蒸発器缶胴21内に貯留された冷媒液Vfに浸かるように配設されている(満液式蒸発器)。熱源管22の一端には、駆動熱源導入管52が接続されている。駆動熱源導入管52は、駆動熱源流体RSを熱源管22に導く流路を構成する管である。駆動熱源導入管52には、内部を流れる駆動熱源流体RSの流量を調節する駆動熱源弁52vが設けられている。駆動熱源導入管52の他端は、昇温流体導入管51の他端と共に、熱源流体流入管55に接続されている。熱源流体流入管55は、合流熱源流体RAが流れる流路を構成する管である。熱源流体流入管55を流れる合流熱源流体RAは、分流して、昇温流体導入管51と駆動熱源導入管52とに流入するように構成されている。つまり、昇温対象流体RPは、合流熱源流体RAのうちの昇温流体導入管51に流入したものであり、駆動熱源流体RSは、合流熱源流体RAのうちの駆動熱源導入管52に流入したものである。蒸発器20は、熱源管22周辺の冷媒液Vfが熱源管22内を流れる駆動熱源流体RSの熱で蒸発して蒸発器冷媒蒸気Veが発生するように構成されている。蒸発器缶胴21には、蒸発器缶胴21内に冷媒液Vfを供給する冷媒液管45が接続されている。   The evaporator 20 has a heat source pipe 22 constituting a flow path of the driving heat source fluid RS inside the evaporator can body 21. The evaporator 20 does not have a nozzle for spraying the refrigerant liquid Vf inside the evaporator can body 21. For this reason, the heat source pipe 22 is disposed so as to be immersed in the refrigerant liquid Vf stored in the evaporator can body 21 (full liquid evaporator). A drive heat source introduction tube 52 is connected to one end of the heat source tube 22. The drive heat source introduction pipe 52 is a pipe constituting a flow path that guides the drive heat source fluid RS to the heat source pipe 22. The drive heat source introduction pipe 52 is provided with a drive heat source valve 52v that adjusts the flow rate of the drive heat source fluid RS flowing inside. The other end of the drive heat source introduction pipe 52 is connected to the heat source fluid inflow pipe 55 together with the other end of the temperature rising fluid introduction pipe 51. The heat source fluid inflow pipe 55 is a pipe constituting a flow path through which the combined heat source fluid RA flows. The combined heat source fluid RA flowing through the heat source fluid inflow pipe 55 is divided and flows into the temperature rising fluid introduction pipe 51 and the drive heat source introduction pipe 52. That is, the temperature increase target fluid RP flows into the temperature rising fluid introduction pipe 51 of the combined heat source fluid RA, and the drive heat source fluid RS flows into the drive heat source introduction pipe 52 of the combined heat source fluid RA. Is. The evaporator 20 is configured such that the refrigerant liquid Vf around the heat source pipe 22 is evaporated by the heat of the driving heat source fluid RS flowing in the heat source pipe 22 to generate the evaporator refrigerant vapor Ve. A refrigerant liquid pipe 45 that supplies the refrigerant liquid Vf into the evaporator can body 21 is connected to the evaporator can body 21.

吸収器10と蒸発器20とは、相互に連通している。吸収器10と蒸発器20とが連通することにより、蒸発器20で発生した蒸発器冷媒蒸気Veを吸収器10に供給することができるように構成されている。   The absorber 10 and the evaporator 20 are in communication with each other. By connecting the absorber 10 and the evaporator 20, the evaporator refrigerant vapor Ve generated in the evaporator 20 can be supplied to the absorber 10.

再生器30は、希溶液Swを加熱する駆動熱源流体RSを内部に流す熱源管32と、希溶液Swを熱源管32の表面に供給する希溶液供給装置33とを有している。熱源管32内を流れる駆動熱源流体RSは、蒸発器20の熱源管22内を流れた後の駆動熱源流体RSとなっている。蒸発器20の熱源管22と再生器30の熱源管32とは、駆動熱源流体RSを流す駆動熱源連絡管25で接続されている。再生器30の熱源管32の駆動熱源連絡管25が接続された端部とは反対側の端部には、駆動熱源流出管39が接続されている。駆動熱源流出管39は、駆動熱源流体RSを再生器30の外へ導く流路を構成する管である。再生器30は、希溶液供給装置33から供給された希溶液Swが駆動熱源流体RSに加熱されることにより、希溶液Swから冷媒Vが蒸発して濃度が上昇した濃溶液Saが生成されるように構成されている。希溶液Swから蒸発した冷媒Vは再生器冷媒蒸気Vgとして凝縮器40に移動するように構成されている。   The regenerator 30 includes a heat source pipe 32 that flows a driving heat source fluid RS that heats the dilute solution Sw, and a dilute solution supply device 33 that supplies the dilute solution Sw to the surface of the heat source pipe 32. The driving heat source fluid RS flowing in the heat source pipe 32 is the driving heat source fluid RS after flowing in the heat source pipe 22 of the evaporator 20. The heat source pipe 22 of the evaporator 20 and the heat source pipe 32 of the regenerator 30 are connected by a driving heat source communication pipe 25 that flows the driving heat source fluid RS. A drive heat source outflow pipe 39 is connected to the end of the heat source pipe 32 of the regenerator 30 opposite to the end to which the drive heat source communication pipe 25 is connected. The drive heat source outflow pipe 39 is a pipe constituting a flow path that guides the drive heat source fluid RS to the outside of the regenerator 30. In the regenerator 30, when the dilute solution Sw supplied from the dilute solution supply device 33 is heated by the driving heat source fluid RS, the concentrated solution Sa having an increased concentration is generated from the dilute solution Sw by evaporating the refrigerant V. It is configured as follows. The refrigerant V evaporated from the dilute solution Sw is configured to move to the condenser 40 as a regenerator refrigerant vapor Vg.

凝縮器40は、低温熱源流体GPが流れる伝熱管42を凝縮器缶胴41の内部に有している。伝熱管42の一端には、低温熱源流体GPを伝熱管42に導く流路を構成する低温熱源導入管57が接続されている。伝熱管42の他端には、凝縮器40から流出した低温熱源流体GPを流す流路を構成する低温熱源流出管49の一端が接続されている。低温熱源流出管49の他端は、駆動熱源流出管39の他端と共に、熱源流体流出管59に接続されている。熱源流体流出管59は、駆動熱源流出管39を流れる駆動熱源流体RSと、低温熱源流出管49を流れる低温熱源流体GPと、が合流した合流熱源流体RAが流れる流路を構成する管である。凝縮器40は、再生器30で発生した再生器冷媒蒸気Vgを導入し、これが凝縮して冷媒液Vfとなる際に放出した凝縮熱を、伝熱管42内を流れる低温熱源流体GPが受熱して、低温熱源流体GPが加熱されるように構成されている。低温熱源流体GPは、第2の被加熱流体に相当する。再生器30と凝縮器40とは、相互に連通するように、再生器30の缶胴と凝縮器缶胴41とが一体に形成されている。再生器30と凝縮器40とが連通することにより、再生器30で発生した再生器冷媒蒸気Vgを凝縮器40に供給することができるように構成されている。   The condenser 40 has a heat transfer tube 42 through which the low-temperature heat source fluid GP flows inside the condenser can body 41. One end of the heat transfer tube 42 is connected to a low temperature heat source introduction tube 57 that constitutes a flow path for guiding the low temperature heat source fluid GP to the heat transfer tube 42. The other end of the heat transfer tube 42 is connected to one end of a low temperature heat source outflow tube 49 that constitutes a flow path through which the low temperature heat source fluid GP flowing out of the condenser 40 flows. The other end of the low temperature heat source outflow pipe 49 is connected to the heat source fluid outflow pipe 59 together with the other end of the drive heat source outflow pipe 39. The heat source fluid outflow pipe 59 is a pipe that forms a flow path through which the combined heat source fluid RA, in which the driving heat source fluid RS flowing through the driving heat source outflow pipe 39 and the low temperature heat source fluid GP flowing through the low temperature heat source outflow pipe 49 merge, flows. . The condenser 40 introduces the regenerator refrigerant vapor Vg generated in the regenerator 30, and the low-temperature heat source fluid GP flowing in the heat transfer tube 42 receives the heat of condensation released when the vapor is condensed and becomes the refrigerant liquid Vf. Thus, the low-temperature heat source fluid GP is configured to be heated. The low-temperature heat source fluid GP corresponds to a second heated fluid. The can body of the regenerator 30 and the condenser can body 41 are integrally formed so that the regenerator 30 and the condenser 40 communicate with each other. By connecting the regenerator 30 and the condenser 40, the regenerator refrigerant vapor Vg generated in the regenerator 30 can be supplied to the condenser 40.

再生器30の濃溶液Saが貯留される部分と吸収器10の濃溶液供給装置13とは、濃溶液Saを流す濃溶液管35で接続されている。濃溶液管35には、濃溶液Saを圧送する溶液ポンプ35pが配設されている。吸収器10の希溶液Swが貯留される部分と希溶液供給装置33とは、希溶液Swを流す希溶液管36で接続されている。濃溶液管35及び希溶液管36には、濃溶液Saと希溶液Swとの間で熱交換を行わせる溶液熱交換器38が配設されている。凝縮器40の冷媒液Vfが貯留される部分と蒸発器缶胴21とは、冷媒液Vfを流す冷媒液管45で接続されている。冷媒液管45には、冷媒液Vfを圧送する冷媒ポンプ46が配設されている。   The portion where the concentrated solution Sa of the regenerator 30 is stored and the concentrated solution supply device 13 of the absorber 10 are connected by a concentrated solution tube 35 through which the concentrated solution Sa flows. The concentrated solution pipe 35 is provided with a solution pump 35p that pumps the concentrated solution Sa. The portion of the absorber 10 where the dilute solution Sw is stored and the dilute solution supply device 33 are connected by a dilute solution tube 36 through which the dilute solution Sw flows. The concentrated solution tube 35 and the diluted solution tube 36 are provided with a solution heat exchanger 38 that performs heat exchange between the concentrated solution Sa and the diluted solution Sw. The portion of the condenser 40 in which the refrigerant liquid Vf is stored and the evaporator can body 21 are connected by a refrigerant liquid pipe 45 through which the refrigerant liquid Vf flows. The refrigerant liquid pipe 45 is provided with a refrigerant pump 46 that pumps the refrigerant liquid Vf.

吸収式熱交換システム1は、定常運転中、吸収器10の内部の圧力及び温度は再生器30の内部の圧力及び温度よりも高くなり、蒸発器20の内部の圧力及び温度は凝縮器40の内部の圧力及び温度よりも高くなる。吸収式熱交換システム1は、吸収器10、蒸発器20、再生器30、凝縮器40が、第2種吸収ヒートポンプの構成となっている。   In the absorption heat exchange system 1, during steady operation, the pressure and temperature inside the absorber 10 are higher than the pressure and temperature inside the regenerator 30, and the pressure and temperature inside the evaporator 20 are It becomes higher than the internal pressure and temperature. In the absorption heat exchange system 1, the absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 are configured as a second type absorption heat pump.

熱源流体流入管55及び熱源流体流出管59は、本実施の形態では、熱源設備HSFに接続されている。熱源設備HSFは、例えば製鉄所や発電所等からの排熱を回収する設備である。熱源設備HSFは、本実施の形態では、熱源流体流出管59から取り入れた合流熱源流体RAを、排熱で加熱し温度を上昇させて熱源流体流入管55に供給するものである。昇温流体流出管19及び低温熱源導入管57は、本実施の形態では、熱利用設備HCFに接続されている。熱利用設備HCFは、例えば導入した熱を暖房用に利用したり他の吸収冷凍機や吸収ヒートポンプ等の熱源機器の熱源として利用したりするものである。熱利用設備HCFは、本実施の形態では、昇温流体流出管19から導入した昇温対象流体RPが保有する熱を利用し、昇温対象流体RPから熱を奪って温度が低下した流体を低温熱源流体GPとして低温熱源導入管57に流出するものである。   In this embodiment, the heat source fluid inflow pipe 55 and the heat source fluid outflow pipe 59 are connected to the heat source equipment HSF. The heat source facility HSF is a facility that recovers exhaust heat from, for example, an ironworks or a power plant. In the present embodiment, the heat source facility HSF heats the combined heat source fluid RA taken from the heat source fluid outflow pipe 59 with exhaust heat to increase the temperature and supplies the heat source fluid RA to the heat source fluid inflow pipe 55. In the present embodiment, the temperature rising fluid outflow pipe 19 and the low temperature heat source introduction pipe 57 are connected to the heat utilization facility HCF. The heat utilization facility HCF is used, for example, to use introduced heat for heating or as a heat source for heat source devices such as other absorption refrigerators and absorption heat pumps. In the present embodiment, the heat utilization facility HCF uses the heat held by the temperature rise target fluid RP introduced from the temperature rise fluid outflow pipe 19, and removes the fluid whose temperature has been lowered by taking heat away from the temperature rise target fluid RP. It flows out to the low-temperature heat source introduction pipe 57 as the low-temperature heat source fluid GP.

引き続き図1を参照して、吸収式熱交換システム1の作用を説明する。まず、冷媒側の吸収ヒートポンプサイクルを説明する。凝縮器40では、再生器30で蒸発した再生器冷媒蒸気Vgを受け入れて、伝熱管42を流れる低温熱源流体GPによって再生器冷媒蒸気Vgが冷却されて凝縮し、冷媒液Vfとなる。このとき、低温熱源流体GPは、再生器冷媒蒸気Vgが凝縮する際に放出した凝縮熱によって温度が上昇する。凝縮した冷媒液Vfは、冷媒ポンプ46で蒸発器缶胴21に送られる。蒸発器缶胴21に送られた冷媒液Vfは、熱源管22内を流れる駆動熱源流体RSによって加熱され、蒸発して蒸発器冷媒蒸気Veとなる。このとき、駆動熱源流体RSは、冷媒液Vfに熱を奪われて温度が低下する。蒸発器20で発生した蒸発器冷媒蒸気Veは、蒸発器20と連通する吸収器10へと移動する。   With continued reference to FIG. 1, the operation of the absorption heat exchange system 1 will be described. First, the absorption heat pump cycle on the refrigerant side will be described. In the condenser 40, the regenerator refrigerant vapor Vg evaporated in the regenerator 30 is received, and the regenerator refrigerant vapor Vg is cooled and condensed by the low-temperature heat source fluid GP flowing through the heat transfer pipe 42 to become a refrigerant liquid Vf. At this time, the temperature of the low-temperature heat source fluid GP rises due to the condensation heat released when the regenerator refrigerant vapor Vg condenses. The condensed refrigerant liquid Vf is sent to the evaporator can body 21 by the refrigerant pump 46. The refrigerant liquid Vf sent to the evaporator can body 21 is heated by the driving heat source fluid RS flowing in the heat source pipe 22 and evaporated to become the evaporator refrigerant vapor Ve. At this time, the driving heat source fluid RS is deprived of heat by the refrigerant liquid Vf, and the temperature is lowered. The evaporator refrigerant vapor Ve generated in the evaporator 20 moves to the absorber 10 that communicates with the evaporator 20.

次に溶液側の吸収ヒートポンプサイクルを説明する。吸収器10では、濃溶液Saが濃溶液供給装置13から供給され、この供給された濃溶液Saが蒸発器20から移動してきた蒸発器冷媒蒸気Veを吸収する。蒸発器冷媒蒸気Veを吸収した濃溶液Saは、濃度が低下して希溶液Swとなる。吸収器10では、濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に吸収熱が発生する。この吸収熱により、伝熱管12を流れる昇温対象流体RPが加熱され、昇温対象流体RPの温度が上昇する。伝熱管12を流れる昇温対象流体RPは、元は、蒸発器20の熱源管22に導入される駆動熱源流体RSの元と同じ合流熱源流体RAである。したがって、昇温流体流出管19を流れる昇温対象流体RPは、吸収器10で加熱された分だけ、蒸発器20及び再生器30に流入する駆動熱源流体RSよりも温度が高くなる。吸収器10で蒸発器冷媒蒸気Veを吸収した濃溶液Saは、濃度が低下して希溶液Swとなり、吸収器10の下部に貯留される。貯留された希溶液Swは、吸収器10と再生器30との内圧の差により再生器30に向かって希溶液管36を流れ、溶液熱交換器38で濃溶液Saと熱交換して温度が低下して、再生器30に至る。   Next, the absorption heat pump cycle on the solution side will be described. In the absorber 10, the concentrated solution Sa is supplied from the concentrated solution supply device 13, and the supplied concentrated solution Sa absorbs the evaporator refrigerant vapor Ve that has moved from the evaporator 20. The concentrated solution Sa that has absorbed the evaporator refrigerant vapor Ve is reduced in concentration to become a diluted solution Sw. In the absorber 10, heat of absorption is generated when the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve. Due to this absorbed heat, the temperature increase target fluid RP flowing through the heat transfer tube 12 is heated, and the temperature of the temperature increase target fluid RP rises. The temperature rising target fluid RP flowing through the heat transfer tube 12 is originally the same combined heat source fluid RA as the source of the driving heat source fluid RS introduced into the heat source tube 22 of the evaporator 20. Therefore, the temperature of the temperature rising target fluid RP flowing through the temperature rising fluid outflow pipe 19 is higher than that of the driving heat source fluid RS flowing into the evaporator 20 and the regenerator 30 by the amount heated by the absorber 10. The concentrated solution Sa that has absorbed the evaporator refrigerant vapor Ve by the absorber 10 is reduced in concentration to become the diluted solution Sw, and is stored in the lower part of the absorber 10. The stored diluted solution Sw flows through the diluted solution tube 36 toward the regenerator 30 due to the difference in internal pressure between the absorber 10 and the regenerator 30, and heat-exchanges with the concentrated solution Sa in the solution heat exchanger 38, so that the temperature is increased. Decreases and reaches the regenerator 30.

再生器30に送られた希溶液Swは、希溶液供給装置33から供給され、熱源管32を流れる駆動熱源流体RSによって加熱され、供給された希溶液Sw中の冷媒が蒸発して濃溶液Saとなり、再生器30の下部に貯留される。このとき、駆動熱源流体RSは、希溶液Swに熱を奪われて温度が低下する。熱源管32を流れる駆動熱源流体RSは、蒸発器20の熱源管22を通過してきたものである。希溶液Swから蒸発した冷媒Vは、再生器冷媒蒸気Vgとして凝縮器40へと移動する。再生器30の下部に貯留された濃溶液Saは、溶液ポンプ35pにより、濃溶液管35を介して吸収器10の濃溶液供給装置13に圧送される。濃溶液管35を流れる濃溶液Saは、溶液熱交換器38で希溶液Swと熱交換して温度が上昇してから吸収器10に流入し、濃溶液供給装置13から供給され、以降、同様のサイクルを繰り返す。   The dilute solution Sw sent to the regenerator 30 is supplied from the dilute solution supply device 33 and heated by the driving heat source fluid RS flowing through the heat source pipe 32, and the refrigerant in the supplied dilute solution Sw evaporates to concentrate the concentrated solution Sa. And stored in the lower part of the regenerator 30. At this time, the drive heat source fluid RS is deprived of heat by the dilute solution Sw, and the temperature decreases. The driving heat source fluid RS flowing through the heat source pipe 32 has passed through the heat source pipe 22 of the evaporator 20. The refrigerant V evaporated from the dilute solution Sw moves to the condenser 40 as the regenerator refrigerant vapor Vg. The concentrated solution Sa stored in the lower part of the regenerator 30 is pumped to the concentrated solution supply device 13 of the absorber 10 through the concentrated solution tube 35 by the solution pump 35p. The concentrated solution Sa flowing through the concentrated solution pipe 35 is heat-exchanged with the diluted solution Sw by the solution heat exchanger 38 and then rises in temperature, and then flows into the absorber 10 and supplied from the concentrated solution supply device 13. Repeat the cycle.

吸収液S及び冷媒Vが上記のような吸収ヒートポンプサイクルを行う過程における、被加熱流体及び加熱源流体の温度の変化を、具体例を挙げて説明する。熱源設備HSFから流出して熱源流体流入管55を流れる95℃の合流熱源流体RAは、分流した昇温対象流体RP及び駆動熱源流体RSがそれぞれ95℃である。駆動熱源導入管52を流れる95℃の駆動熱源流体RSは、蒸発器20の熱源管22を流れた際に冷媒液Vfに熱を奪われて、駆動熱源連絡管25に至ると88℃に温度が低下する。その後、駆動熱源連絡管25を流れる駆動熱源流体RSは、再生器30の熱源管32を流れた際に希溶液Swに熱を奪われて、駆動熱源流出管39に至ると80℃に温度が低下する。   A change in the temperature of the heated fluid and the heating source fluid in the process in which the absorbing liquid S and the refrigerant V perform the absorption heat pump cycle as described above will be described with a specific example. The 95 ° C. combined heat source fluid RA flowing out of the heat source facility HSF and flowing through the heat source fluid inflow pipe 55 has the divided temperature rising target fluid RP and the driving heat source fluid RS at 95 ° C., respectively. The 95 ° C. driving heat source fluid RS flowing through the driving heat source introduction pipe 52 is deprived of heat by the refrigerant liquid Vf when flowing through the heat source pipe 22 of the evaporator 20 and reaches a temperature of 88 ° C. when reaching the driving heat source communication pipe 25. Decreases. Thereafter, the driving heat source fluid RS flowing through the driving heat source communication pipe 25 is deprived of heat by the dilute solution Sw when flowing through the heat source pipe 32 of the regenerator 30, and reaches a temperature of 80 ° C. when reaching the driving heat source outflow pipe 39. descend.

他方、昇温流体導入管51を流れる昇温対象流体RPは、吸収器10の伝熱管12を流れた際に、濃溶液Saが蒸発器冷媒蒸気Veを吸収して発生した吸収熱を得て、昇温流体流出管19に至ると100℃に温度が上昇する。昇温流体流出管19を流れる100℃の昇温対象流体RPは、熱利用設備HCFに流入して熱が利用されて温度が低下する。熱利用設備HCFで熱が利用されて温度が低下した流体は、30℃の低温熱源流体GPとして低温熱源導入管57に流出する。低温熱源導入管57を流れる30℃の低温熱源流体GPは、凝縮器40の伝熱管42を流れた際に、再生器冷媒蒸気Vgが凝縮して冷媒液Vfとなる際に放出した凝縮熱を得て、低温熱源流出管49に至ると40℃に温度が上昇する。   On the other hand, the temperature rising target fluid RP flowing through the temperature rising fluid introduction pipe 51 obtains the heat of absorption generated when the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve when flowing through the heat transfer pipe 12 of the absorber 10. When the temperature rising fluid outflow pipe 19 is reached, the temperature rises to 100 ° C. The 100 ° C. temperature increase target fluid RP that flows through the temperature increase fluid outflow pipe 19 flows into the heat utilization facility HCF and heat is used to lower the temperature. The fluid whose temperature has been lowered by using heat in the heat utilization facility HCF flows out to the low temperature heat source introduction pipe 57 as a low temperature heat source fluid GP at 30 ° C. The low-temperature heat source fluid GP at 30 ° C. flowing through the low-temperature heat source introduction pipe 57 generates the condensation heat released when the regenerator refrigerant vapor Vg is condensed into the refrigerant liquid Vf when flowing through the heat transfer pipe 42 of the condenser 40. When the temperature reaches the low-temperature heat source outflow pipe 49, the temperature rises to 40 ° C.

低温熱源流出管49を流れる40℃の低温熱源流体GPは、駆動熱源流出管39を流れる80℃の駆動熱源流体RSと混合し、60℃の合流熱源流体RAとなって熱源流体流出管59を流れる。本実施の形態では、低温熱源流出管49の低温熱源流体GPと駆動熱源流出管39の駆動熱源流体RSとを混合することで、吸収式熱交換システム1に出入りする被加熱流体及び熱源流体の流量バランスを図っている。熱源流体流出管59を流れる60℃の合流熱源流体RAは、熱源設備HSFに流入して排熱を回収して温度が上昇する。熱利用設備HCFで温度が上昇した合流熱源流体RAは、95℃で熱源流体流入管55に流出し、以降、上述の流れを繰り返す。   The 40 ° C. low-temperature heat source fluid GP flowing through the low-temperature heat source outflow pipe 49 is mixed with the 80 ° C. drive heat source fluid RS flowing through the drive heat source outflow pipe 39 to become a combined heat source fluid RA at 60 ° C. Flowing. In the present embodiment, the low temperature heat source fluid GP in the low temperature heat source outflow pipe 49 and the drive heat source fluid RS in the drive heat source outflow pipe 39 are mixed, so that the heated fluid and the heat source fluid entering and exiting the absorption heat exchange system 1 are mixed. The flow is balanced. The combined heat source fluid RA at 60 ° C. flowing through the heat source fluid outlet pipe 59 flows into the heat source facility HSF, recovers exhaust heat, and rises in temperature. The combined heat source fluid RA whose temperature has increased in the heat utilization facility HCF flows out to the heat source fluid inlet pipe 55 at 95 ° C., and thereafter repeats the above-described flow.

吸収式熱交換システム1では、上述のような温度関係を成り立たせて、吸収器10から流出した昇温対象流体RPの温度が所定の温度(熱利用設備HCFにおける利用に適した温度であって本実施の形態では100℃)になるように、昇温流体導入管51を流れる昇温対象流体RPの流量と、駆動熱源導入管52を流れる駆動熱源流体RSの流量と、の比を決定している。本実施の形態では、昇温対象流体RPと駆動熱源流体RSとの流量比を概ね1:1としている。なお、相対的に、昇温対象流体RPの流量を少なくすれば昇温対象流体RPの温度は高くなり、昇温対象流体RPの流量を多くすれば昇温対象流体RPの温度は低くなる。ここで、昇温流体導入管51を流れる昇温対象流体RPと駆動熱源導入管52を流れる駆動熱源流体RSとの流量比は、制御装置(不図示)に設けられた記憶装置(不図示)にあらかじめ設定しておいてもよいし、制御装置に設けられた入力装置(不図示)により随時設定が可能な構成としてもよい。本実施の形態では、昇温対象流体RPと駆動熱源流体RSとの流量比の調節を、昇温流体弁51v及び駆動熱源弁52vの開度を調節することで行うこととしている。昇温流体弁51v及び駆動熱源弁52vの開度の調節は、典型的には上述した制御装置に設定された流量比に基づいて制御装置からの信号によって自動で行われるが、制御装置によらずに手動で開度を調節することとしてもよい。なお、昇温流体弁51v及び駆動熱源弁52vに代えて、昇温流体導入管51と駆動熱源導入管52と熱源流体流入管55との接続部に三方弁を設けることとしてもよい。   In the absorption heat exchange system 1, the temperature relationship as described above is established, and the temperature of the temperature increase target fluid RP flowing out from the absorber 10 is a predetermined temperature (a temperature suitable for use in the heat utilization facility HCF). In this embodiment, the ratio of the flow rate of the temperature rising target fluid RP flowing through the temperature rising fluid introduction pipe 51 and the flow rate of the driving heat source fluid RS flowing through the driving heat source introduction pipe 52 is determined so as to be 100 ° C. ing. In the present embodiment, the flow rate ratio between the temperature increase target fluid RP and the drive heat source fluid RS is approximately 1: 1. In addition, when the flow rate of the temperature increase target fluid RP is relatively decreased, the temperature of the temperature increase target fluid RP increases, and when the flow rate of the temperature increase target fluid RP is increased, the temperature of the temperature increase target fluid RP decreases. Here, the flow rate ratio between the temperature rising target fluid RP flowing through the temperature rising fluid introduction pipe 51 and the driving heat source fluid RS flowing through the driving heat source introduction pipe 52 is a storage device (not shown) provided in the control device (not shown). May be set in advance, or may be configured as needed by an input device (not shown) provided in the control device. In the present embodiment, the flow rate ratio between the temperature increase target fluid RP and the drive heat source fluid RS is adjusted by adjusting the opening degrees of the temperature increase fluid valve 51v and the drive heat source valve 52v. The adjustment of the opening degree of the temperature raising fluid valve 51v and the drive heat source valve 52v is typically performed automatically by a signal from the control device based on the flow rate ratio set in the control device described above. It is good also as adjusting an opening degree manually. Instead of the temperature rising fluid valve 51v and the driving heat source valve 52v, a three-way valve may be provided at the connecting portion of the temperature rising fluid introduction pipe 51, the driving heat source introduction pipe 52, and the heat source fluid inflow pipe 55.

これまで説明した、吸収式熱交換システム1に対して入出する、加熱源流体(合流熱源流体RA)と被加熱流体(昇温対象流体RP、低温熱源流体GP)との流れを概観すると、吸収式熱交換システム1において、熱源設備HSFから流出して吸収式熱交換システム1に95℃で流入した合流熱源流体RAは吸収式熱交換システム1から60℃で流出して熱源設備HSFに流入しており、熱利用設備HCFから流出して吸収式熱交換システム1に30℃で流入した低温熱源流体GPは吸収式熱交換システム1から昇温対象流体RPとして100℃で流出して熱利用設備HCFに流入している。これを、熱源設備HSFに対して流出入する合流熱源流体RAを加熱源流体、熱利用機器HCFに対して流出入する昇温対象流体RP及び低温熱源流体GPを被加熱流体としてみると、吸収式熱交換システム1は、加熱源流体と被加熱流体との間で熱交換作用をしているものとみることができ、被加熱流体が、流入した被加熱流体の温度から加熱源流体の温度よりも高い温度まで加熱するだけの熱量を、加熱源流体から奪った後に流出する熱交換システムとみることができる。吸収式熱交換システム1から流出する被加熱流体(昇温対象流体RP)の温度が高い程、吸収式熱交換システム1に対する被加熱流体の入出口温度差を加熱源流体の入出口温度差よりも拡大して、被加熱流体(昇温対象流体RP)の流量を少なくすることができる。さらに、吸収式熱交換システム1から流出して熱源設備HSFに流入する合流熱源流体RAの流量と熱源設備HSFから流出して吸収式熱交換システム1に流入する合流熱源流体RAの流量を等しいものとし、吸収式熱交換システム1から流出して熱利用機器HCFに流入する昇温対象流体RPの流量と熱利用機器HCFから流出して吸収式熱交換システム1に流入する低温熱源流体GPの流量を等しいものとした場合には、加熱源流体及び被加熱流体の両流体が、吸収式熱交換システム1内で区画された独立した系統として吸収式熱交換システム1に流入出しているものとみることができ、吸収式熱交換システム1を熱交換器としてみることがより明瞭になる。本実施の形態に示したように、吸収式熱交換システム1から流出した合流熱源流体RAが熱源設備HSF内を通過して加熱された後に吸収式熱交換システム1に戻り、吸収式熱交換システム1から流出した昇温対象流体RPが熱利用機器HCFを通過して熱が消費された後に低温熱源流体GPとして吸収式熱交換システム1に戻るように構成すると好適である。   The flow of the heating source fluid (merging heat source fluid RA) and the fluid to be heated (temperature increase target fluid RP, low temperature heat source fluid GP) entering and exiting the absorption heat exchange system 1 described so far is absorbed. In the heat exchanger system 1, the combined heat source fluid RA flowing out from the heat source facility HSF and flowing into the absorption heat exchange system 1 at 95 ° C. flows out from the absorption heat exchange system 1 at 60 ° C. and flows into the heat source facility HSF. The low-temperature heat source fluid GP flowing out from the heat utilization facility HCF and flowing into the absorption heat exchange system 1 at 30 ° C. flows out from the absorption heat exchange system 1 at 100 ° C. as the temperature increase target fluid RP. It flows into HCF. When the combined heat source fluid RA flowing into and out of the heat source facility HSF is regarded as a heating source fluid, and the temperature rising target fluid RP and the low temperature heat source fluid GP flowing into and out of the heat utilization device HCF are regarded as heated fluids, they are absorbed. The heat exchange system 1 can be regarded as performing a heat exchange action between the heating source fluid and the fluid to be heated, and the temperature of the heating source fluid is changed from the temperature of the fluid to be heated by the fluid to be heated. It can be regarded as a heat exchanging system that flows out after depriving the heating source fluid of the amount of heat that can be heated to a higher temperature. The higher the temperature of the heated fluid that flows out of the absorption heat exchange system 1 (the temperature increase target fluid RP), the greater the difference in the inlet / outlet temperature of the heated fluid relative to the absorption heat exchange system 1 from the inlet / outlet temperature difference of the heating source fluid. And the flow rate of the fluid to be heated (temperature rising target fluid RP) can be reduced. Further, the flow rate of the combined heat source fluid RA flowing out from the absorption heat exchange system 1 and flowing into the heat source facility HSF is equal to the flow rate of the combined heat source fluid RA flowing out from the heat source facility HSF and into the absorption heat exchange system 1 And the flow rate of the temperature-rising fluid RP that flows out from the absorption heat exchange system 1 and flows into the heat utilization device HCF, and the flow rate of the low-temperature heat source fluid GP that flows out from the heat utilization device HCF and flows into the absorption heat exchange system 1 Are equal to each other, it is considered that both the heating source fluid and the fluid to be heated flow into and out of the absorption heat exchange system 1 as independent systems partitioned in the absorption heat exchange system 1. It becomes clearer to view the absorption heat exchange system 1 as a heat exchanger. As shown in the present embodiment, the combined heat source fluid RA that has flowed out of the absorption heat exchange system 1 passes through the heat source facility HSF and is heated, and then returns to the absorption heat exchange system 1, so that the absorption heat exchange system It is preferable that the temperature-up target fluid RP flowing out from 1 passes through the heat utilization device HCF and is returned to the absorption heat exchange system 1 as the low-temperature heat source fluid GP after the heat is consumed.

なお、仮に、熱利用設備HCFに対して流出入する流体(被加熱流体)を、熱源設備HSFに対して流出入する流体(加熱源流体)に対して分流及び合流させずに、凝縮器40の伝熱管42を流れた低温熱源流体GPを吸収器10の伝熱管12に流すように独立した系統とする場合は、凝縮器40の伝熱管42を流れた低温熱源流体GPを吸収器10の伝熱管12に流入させる前に、蒸発器20及び再生器30から流出した駆動熱源流体RS又は蒸発器20及び再生器30に流入する前の駆動熱源流体RSと熱交換して加熱し昇温させる熱交換器が必要になる。これに対し、本実施の形態のように、熱利用設備HCFに対して流出入する流体(被加熱流体)を熱源設備HSFに対して流出入する流体(加熱源流体)に対して分流及び合流させると、上記仮定の場合に設ける熱交換器が不要となり、システム構成を簡単にすることができる。上記仮定の場合に設ける熱交換器が不要となることにより、熱交換器からの放熱損失と熱交換温度効率が1より小さいことによる被加熱流体の温度低下を回避して、熱交換器による熱効率の低下を解消することができる。さらに、熱交換器の設置スペース、熱交換器に流体が出入するための配管、熱交換器の保守点検作業をも省くこともできる。さらに、本実施の形態に係る吸収式熱交換システム1では、熱源設備HSFに流出する流体(加熱源流体)よりも低い温度の流体(被加熱流体)を熱利用設備HCFから導入し、熱源設備HSFから導入する流体(加熱源流体)よりも高い温度の流体(被加熱流体)を熱利用設備HCFに流出することができ、熱の有効利用を図ることができると共に、吸収式熱交換システム1に対する被加熱流体の入出口温度差を拡大して被加熱流体の流量を少なくすることができる。   Note that the fluid that flows in and out of the heat utilization facility HCF (heated fluid) is not shunted and merged with the fluid that flows in and out of the heat source facility HSF (heating source fluid). In the case where the low-temperature heat source fluid GP that has flowed through the heat transfer tube 42 is an independent system so as to flow to the heat transfer tube 12 of the absorber 10, the low-temperature heat source fluid GP that has flowed through the heat transfer tube 42 of the condenser 40 Before flowing into the heat transfer tube 12, heat is exchanged with the driving heat source fluid RS flowing out of the evaporator 20 and the regenerator 30 or with the driving heat source fluid RS before flowing into the evaporator 20 and the regenerator 30, and the temperature is raised by heating. A heat exchanger is required. On the other hand, as in the present embodiment, the fluid flowing into and out of the heat utilization facility HCF (heated fluid) is divided and joined to the fluid flowing into and out of the heat source facility HSF (heating source fluid). As a result, the heat exchanger provided in the case of the above assumption is unnecessary, and the system configuration can be simplified. By eliminating the need for a heat exchanger provided in the case of the above assumption, a heat loss by the heat exchanger and a temperature drop of the fluid to be heated due to the heat exchange temperature efficiency being less than 1 are avoided, and the heat efficiency by the heat exchanger Can be eliminated. Furthermore, the installation space for the heat exchanger, the piping for the fluid to enter and exit the heat exchanger, and the maintenance and inspection work for the heat exchanger can also be omitted. Further, in the absorption heat exchange system 1 according to the present embodiment, a fluid (heated fluid) having a temperature lower than the fluid (heating source fluid) flowing out to the heat source facility HSF is introduced from the heat utilization facility HCF, and the heat source facility A fluid (heated fluid) having a temperature higher than that of the fluid introduced from the HSF (heating source fluid) can flow out to the heat utilization facility HCF, so that the heat can be used effectively, and the absorption heat exchange system 1 The flow rate of the fluid to be heated can be reduced by expanding the temperature difference between the inlet and outlet of the fluid to be heated.

以上で説明したように、本実施の形態に係る吸収式熱交換システム1によれば、流出する昇温対象流体RPの温度が導入する駆動熱源流体RSの温度よりも高くなるように昇温対象流体RPを加熱することができ、駆動熱源流体RSよりも利用価値が高い昇温対象流体RPを外部に供給することができる。また、吸収器10で加熱される昇温対象流体RPを合流熱源流体RAから分岐すると共に、凝縮器40で加熱された低温熱源流体GPを、蒸発器20及び再生器30を通過した駆動熱源流体RSに合流させているので、駆動熱源流体RSと低温熱源流体GPとで熱交換させることなく、すなわち大型の熱交換器を設けることなく装置構成を簡単にして、比較的温度の高い昇温対象流体RPを供給(流出)することができる。また、吸収式熱交換システム1に流入出する駆動熱源流体RSの出入口温度差よりも、吸収式熱交換システム1に対して流入する低温熱源流体GPの温度と流出する昇温対象流体RPの温度との差を大きくすることができ、温度差が大きい分だけ熱利用設備HCFに供給する昇温対象流体RPの流量を少なくすることができ、搬送動力を削減することができる。   As described above, according to the absorption heat exchange system 1 according to the present embodiment, the temperature rise target is set so that the temperature of the temperature rise target fluid RP flowing out is higher than the temperature of the driving heat source fluid RS to be introduced. The fluid RP can be heated, and the temperature increase target fluid RP having a higher utility value than the driving heat source fluid RS can be supplied to the outside. In addition, the temperature increase target fluid RP heated by the absorber 10 is branched from the combined heat source fluid RA, and the low temperature heat source fluid GP heated by the condenser 40 is passed through the evaporator 20 and the regenerator 30 as a driving heat source fluid. Since it is merged with RS, the heat source fluid RS and the low-temperature heat source fluid GP do not exchange heat, that is, without providing a large heat exchanger, the device configuration is simplified, and the temperature is increased at a relatively high temperature. The fluid RP can be supplied (outflowed). Further, the temperature of the low temperature heat source fluid GP flowing into the absorption heat exchange system 1 and the temperature of the temperature rising target fluid RP flowing out from the inlet / outlet temperature difference of the drive heat source fluid RS flowing into and out of the absorption heat exchange system 1. And the flow rate of the temperature-rising fluid RP supplied to the heat utilization facility HCF can be reduced by an amount corresponding to the large temperature difference, and the conveyance power can be reduced.

次に図2を参照して、本発明の第2の実施の形態に係る吸収式熱交換システム2を説明する。図2は、吸収式熱交換システム2の模式的系統図である。吸収式熱交換システム2は、主として以下の点で吸収式熱交換システム1(図1参照)と異なっている。吸収式熱交換システム2は、低温熱源流出管49と昇温流体導入管51とを連絡する低温熱源バイパス管48が設けられている。低温熱源バイパス管48は、凝縮器40から流出して低温熱源流出管49を流れる低温熱源流体GPの一部を、吸収器10に流入する前の昇温流体導入管51を流れる昇温対象流体RPに合流させる管であり、部分被加熱流体バイパス流路に相当する。以下、説明の便宜上、低温熱源バイパス管48を流れる低温熱源流体GPを特に符号GPdで表して、低温熱源流出管49を流れる低温熱源流体GPと区別する場合がある。低温熱源バイパス管48には、内部を流れる低温熱源流体GPdの流量を調節する低温熱源バイパス弁48vが設けられている。他方、低温熱源バイパス管48との接続部よりも下流側の低温熱源流出管49には、内部を流れる低温熱源流体GPの流量を調節する低温熱源弁49vが設けられている。なお、低温熱源バイパス弁48v及び低温熱源弁49vに代えて、低温熱源流出管49と低温熱源バイパス管48との接続部に三方弁を設けることとしてもよい。吸収式熱交換システム2の上記以外の構成は、吸収式熱交換システム1(図1参照)と同様である。   Next, with reference to FIG. 2, an absorption heat exchange system 2 according to a second embodiment of the present invention will be described. FIG. 2 is a schematic system diagram of the absorption heat exchange system 2. The absorption heat exchange system 2 is different from the absorption heat exchange system 1 (see FIG. 1) mainly in the following points. The absorption heat exchange system 2 is provided with a low-temperature heat source bypass pipe 48 that connects the low-temperature heat source outflow pipe 49 and the heated fluid introduction pipe 51. The low temperature heat source bypass pipe 48 is part of the low temperature heat source fluid GP flowing out from the condenser 40 and flowing through the low temperature heat source outflow pipe 49, and the temperature rising target fluid flowing through the temperature rising fluid introduction pipe 51 before flowing into the absorber 10. This is a pipe that joins the RP and corresponds to a partially heated fluid bypass flow path. Hereinafter, for convenience of explanation, the low-temperature heat source fluid GP flowing through the low-temperature heat source bypass pipe 48 may be particularly expressed by a symbol GPd to be distinguished from the low-temperature heat source fluid GP flowing through the low-temperature heat source outflow pipe 49. The low temperature heat source bypass pipe 48 is provided with a low temperature heat source bypass valve 48v that adjusts the flow rate of the low temperature heat source fluid GPd flowing inside. On the other hand, a low-temperature heat source outlet pipe 49 downstream of the connection with the low-temperature heat source bypass pipe 48 is provided with a low-temperature heat source valve 49v that adjusts the flow rate of the low-temperature heat source fluid GP flowing inside. Instead of the low temperature heat source bypass valve 48v and the low temperature heat source valve 49v, a three-way valve may be provided at the connection portion between the low temperature heat source outflow pipe 49 and the low temperature heat source bypass pipe 48. The structure of the absorption heat exchange system 2 other than the above is the same as that of the absorption heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム2は、吸収式熱交換システム1(図1参照)の作用に加えて、低温熱源バイパス弁48v及び低温熱源弁49vの開度を調節して、凝縮器40で加熱された低温熱源流体GPの一部GPdを、吸収器10に流入する前の昇温対象流体RPに混合させている。低温熱源バイパス弁48v及び低温熱源弁49vの開度の調節は、典型的には吸収式熱交換システム1と同様に制御装置(不図示)に設定された流量比に基づいて制御装置からの信号によって自動で行われるが、制御装置によらずに手動で開度を調節することとしてもよい。昇温対象流体RPに混合させる低温熱源流体GPdの流量を調節することで、昇温流体流出管19を流れる昇温対象流体RPの温度及び/又は流量を調節することができる。本実施の形態では、吸収器10から流出した昇温対象流体RPの温度が所定の温度及び/又は流量になるように、低温熱源バイパス管48を流れる低温熱源流体GPdの流量と、熱源流体流出管59に向けて低温熱源流出管49を流れる低温熱源流体GPの流量と、の比を決定している。なお、相対的に、低温熱源バイパス管48を流れる低温熱源流体GPdの流量を多くすれば昇温流体流出管19を流れる昇温対象流体RPの温度が下がって流量が増加し、低温熱源バイパス管48を流れる低温熱源流体GPdの流量を少なくすれば昇温流体流出管19を流れる昇温対象流体RPの温度が上がって流量が減少する。低温熱源バイパス管48を流れる低温熱源流体GPdの流量を多くした場合は、上述のように昇温流体流出管19を流れる昇温対象流体RPの温度は下がるが流量が増加するため、昇温流体流出管19を流れる昇温対象流体RPが保有する熱量を増大させることができる。   In addition to the action of the absorption heat exchange system 1 (see FIG. 1), the absorption heat exchange system 2 configured as described above adjusts the opening of the low temperature heat source bypass valve 48v and the low temperature heat source valve 49v, A part GPd of the low-temperature heat source fluid GP heated by the condenser 40 is mixed with the temperature increase target fluid RP before flowing into the absorber 10. The adjustment of the opening degree of the low-temperature heat source bypass valve 48v and the low-temperature heat source valve 49v is typically a signal from the control device based on the flow rate ratio set in the control device (not shown) as in the absorption heat exchange system 1. However, the opening degree may be manually adjusted without using the control device. By adjusting the flow rate of the low-temperature heat source fluid GPd to be mixed with the temperature increase target fluid RP, the temperature and / or flow rate of the temperature increase target fluid RP flowing through the temperature increase fluid outflow pipe 19 can be adjusted. In the present embodiment, the flow rate of the low-temperature heat source fluid GPd flowing through the low-temperature heat source bypass pipe 48 and the heat source fluid outflow so that the temperature of the temperature increase target fluid RP flowing out from the absorber 10 becomes a predetermined temperature and / or flow rate. The ratio of the flow rate of the low-temperature heat source fluid GP flowing through the low-temperature heat source outlet pipe 49 toward the pipe 59 is determined. If the flow rate of the low temperature heat source fluid GPd flowing through the low temperature heat source bypass pipe 48 is relatively increased, the temperature of the temperature rising target fluid RP flowing through the temperature rising fluid outflow pipe 19 decreases and the flow rate increases, and the low temperature heat source bypass pipe If the flow rate of the low-temperature heat source fluid GPd flowing through 48 is decreased, the temperature of the temperature-rising fluid RP flowing through the temperature-rising fluid outflow pipe 19 rises and the flow rate decreases. When the flow rate of the low temperature heat source fluid GPd flowing through the low temperature heat source bypass pipe 48 is increased, the temperature of the temperature increase target fluid RP flowing through the temperature increase fluid outflow pipe 19 decreases as described above, but the flow rate increases. The amount of heat held by the temperature rising target fluid RP flowing through the outflow pipe 19 can be increased.

次に図3を参照して、本発明の第3の実施の形態に係る吸収式熱交換システム3を説明する。図3は、吸収式熱交換システム3の模式的系統図である。吸収式熱交換システム3は、主として以下の点で吸収式熱交換システム2(図2参照)と異なっている。吸収式熱交換システム3は、吸収式熱交換システム2(図2参照)の構成に加えて、冷媒熱交換器99を備えている。冷媒熱交換器99は、凝縮器40から蒸発器20に向かう冷媒液Vfと、再生器30から流出した駆動熱源流体RSを含む流体との間で熱交換を行わせる機器である。本実施の形態では、低温熱源流体GPと合流する前の駆動熱源流体RSを、冷媒液Vfと熱交換を行わせることとしているが、合流熱源流体RAと冷媒液Vfとで熱交換を行わせることとしてもよい。冷媒熱交換器99は、冷媒ポンプ46よりも下流側の冷媒液管45及び駆動熱源流出管39に配設されている。冷媒熱交換器99には、シェルアンドチューブ型やプレート型の熱交換器が用いられる。吸収式熱交換システム3の上記以外の構成は、吸収式熱交換システム2(図2参照)と同様である。   Next, an absorption heat exchange system 3 according to a third embodiment of the present invention will be described with reference to FIG. FIG. 3 is a schematic system diagram of the absorption heat exchange system 3. The absorption heat exchange system 3 is different from the absorption heat exchange system 2 (see FIG. 2) mainly in the following points. The absorption heat exchange system 3 includes a refrigerant heat exchanger 99 in addition to the configuration of the absorption heat exchange system 2 (see FIG. 2). The refrigerant heat exchanger 99 is a device that exchanges heat between the refrigerant liquid Vf that travels from the condenser 40 toward the evaporator 20 and the fluid that includes the driving heat source fluid RS that has flowed out of the regenerator 30. In the present embodiment, the drive heat source fluid RS before joining the low-temperature heat source fluid GP is exchanged with the refrigerant liquid Vf, but heat exchange is performed between the merged heat source fluid RA and the refrigerant liquid Vf. It is good as well. The refrigerant heat exchanger 99 is disposed in the refrigerant liquid pipe 45 and the drive heat source outflow pipe 39 on the downstream side of the refrigerant pump 46. As the refrigerant heat exchanger 99, a shell and tube type or a plate type heat exchanger is used. The structure of the absorption heat exchange system 3 other than the above is the same as that of the absorption heat exchange system 2 (see FIG. 2).

上述のように構成された吸収式熱交換システム3は、吸収式熱交換システム2(図2参照)の作用に加えて、凝縮器40から蒸発器20に向かう冷媒液Vfと、再生器30から流出した駆動熱源流体RSとの間で熱交換が行われ、冷媒液Vfの温度が上昇し、駆動熱源流体RSの温度が低下する。冷媒熱交換器99から流出した冷媒液Vfは、温度が上昇して蒸発器20に流入するので、蒸発器20において蒸発するのに必要な熱量を抑制することができる。他方、冷媒熱交換器99から流出した駆動熱源流体RSは、温度が低下して低温熱源流体GPと混合した後に吸収式熱交換システム3から流出することとなり、吸収式熱交換システム3における駆動熱源流体RSの回収熱量を増やすことができる。なお、冷媒熱交換器99は、図示は省略するが、吸収式熱交換システム1(図1参照)にも適用することができる。   In addition to the action of the absorption heat exchange system 2 (see FIG. 2), the absorption heat exchange system 3 configured as described above includes the refrigerant liquid Vf from the condenser 40 toward the evaporator 20 and the regenerator 30. Heat exchange is performed with the driving heat source fluid RS that has flowed out, the temperature of the refrigerant liquid Vf increases, and the temperature of the driving heat source fluid RS decreases. Since the refrigerant liquid Vf flowing out from the refrigerant heat exchanger 99 rises in temperature and flows into the evaporator 20, the amount of heat necessary for evaporation in the evaporator 20 can be suppressed. On the other hand, the driving heat source fluid RS that has flowed out of the refrigerant heat exchanger 99 flows out of the absorption heat exchange system 3 after the temperature is lowered and mixed with the low-temperature heat source fluid GP, and the driving heat source in the absorption heat exchange system 3 The amount of heat recovered from the fluid RS can be increased. In addition, although illustration is abbreviate | omitted, the refrigerant | coolant heat exchanger 99 is applicable also to the absorption heat exchange system 1 (refer FIG. 1).

以上の説明では、熱源流体流入管55から駆動熱源導入管52に流入した駆動熱源流体RSが、蒸発器20の熱源管22を流れた後に再生器30の熱源管32を流れる、すなわち蒸発器20から再生器30へ直列に流れるとしたが、図4の第1の実施の形態の変形例に係る吸収式熱交換システム1Aに示すように、駆動熱源導入管52を再生器30の熱源管32に接続すると共に駆動熱源流出管39を蒸発器20の熱源管22に接続して、再生器30の熱源管32から蒸発器20の熱源管22へ直列に流れることとしてもよく、図示は省略するが蒸発器20の熱源管22及び再生器30の熱源管32に並列に流れることとしてもよい。駆動熱源流体RSが再生器30から蒸発器20へ直列に流れることとすると、吸収式熱交換システム1のCOPが向上する利点がある。図1に示すように駆動熱源流体RSが蒸発器20から再生器30へ直列に流れることとすると、吸収液Sの濃度が過度に上昇することを抑制して吸収液Sが結晶しにくくなる。また、駆動熱源流体RSが蒸発器20及び再生器30に並列に流れることとすると、COPの向上を図りつつ吸収液Sの濃度の上昇を抑制することができる。以上のように、駆動熱源導入管52に流入した駆動熱源流体RSが蒸発器20の熱源管22又は再生器30の熱源管32のいずれに最初に流入した場合であっても、昇温流体導入管51に流入した昇温対象流体RPは吸収器10の伝熱管12に導入することとなる。なお、駆動熱源流体RSが、再生器30の熱源管32から蒸発器20の熱源管22へ直列に流れること、あるいは蒸発器20の熱源管22及び再生器30の熱源管32に並列に流れることは、吸収式熱交換システム2(図2参照)及び吸収式熱交換システム3(図3参照)にも適用することができる。   In the above description, the driving heat source fluid RS flowing into the driving heat source introduction pipe 52 from the heat source fluid inflow pipe 55 flows through the heat source pipe 32 of the regenerator 30 after flowing through the heat source pipe 22 of the evaporator 20, that is, the evaporator 20. However, the drive heat source introduction pipe 52 is connected to the heat source pipe 32 of the regenerator 30 as shown in the absorption heat exchange system 1A according to the modification of the first embodiment of FIG. And the drive heat source outflow pipe 39 may be connected to the heat source pipe 22 of the evaporator 20 so as to flow in series from the heat source pipe 32 of the regenerator 30 to the heat source pipe 22 of the evaporator 20. May flow in parallel to the heat source tube 22 of the evaporator 20 and the heat source tube 32 of the regenerator 30. When the driving heat source fluid RS flows from the regenerator 30 to the evaporator 20 in series, there is an advantage that the COP of the absorption heat exchange system 1 is improved. As shown in FIG. 1, when the driving heat source fluid RS flows in series from the evaporator 20 to the regenerator 30, the concentration of the absorbing liquid S is prevented from excessively rising and the absorbing liquid S is difficult to crystallize. Further, if the driving heat source fluid RS flows in parallel to the evaporator 20 and the regenerator 30, an increase in the concentration of the absorbing liquid S can be suppressed while improving the COP. As described above, even if the driving heat source fluid RS flowing into the driving heat source introduction pipe 52 first flows into either the heat source pipe 22 of the evaporator 20 or the heat source pipe 32 of the regenerator 30, the temperature rising fluid is introduced. The temperature increase target fluid RP that has flowed into the pipe 51 is introduced into the heat transfer pipe 12 of the absorber 10. The driving heat source fluid RS flows in series from the heat source pipe 32 of the regenerator 30 to the heat source pipe 22 of the evaporator 20, or flows in parallel to the heat source pipe 22 of the evaporator 20 and the heat source pipe 32 of the regenerator 30. Can also be applied to the absorption heat exchange system 2 (see FIG. 2) and the absorption heat exchange system 3 (see FIG. 3).

以上の説明では、凝縮器40を流出した低温熱源流体GPを蒸発器20及び再生器30を流出した駆動熱源流体RSに合流させることとしたが、凝縮器40の伝熱管42内を流れる流体を独立した系統としつつ、低温熱源導入管57を駆動熱源流出管39及び熱源流体流出管59に接続して熱利用設備HCFから流出した流体を駆動熱源流体RSに合流させることとしてもよい。   In the above description, the low-temperature heat source fluid GP that has flowed out of the condenser 40 is merged with the driving heat source fluid RS that has flowed out of the evaporator 20 and the regenerator 30, but the fluid flowing in the heat transfer tube 42 of the condenser 40 is used. While using an independent system, the low-temperature heat source introduction pipe 57 may be connected to the drive heat source outflow pipe 39 and the heat source fluid outflow pipe 59 so that the fluid flowing out from the heat utilization equipment HCF is merged with the drive heat source fluid RS.

以上の説明において、加熱源流体(合流熱源流体RA、駆動熱源流体RS)と被加熱流体(昇温対象流体RP、低温熱源流体GP)とは、分流及び合流を行うので同種の流体となる。適用する流体には温水の他に熱媒用液体や化学液体であってもよい。特に、水より沸点が高い熱媒用液体や化学液体を採用すると、流体の沸騰を抑制するために流体に高い圧力を作用させることなく高い温度域迄適用できてよい。   In the above description, the heating source fluid (merging heat source fluid RA, driving heat source fluid RS) and the heated fluid (temperature increase target fluid RP, low temperature heat source fluid GP) are the same kind of fluid because they are divided and merged. The fluid to be applied may be a liquid for a heat medium or a chemical liquid in addition to hot water. In particular, when a heat medium liquid or a chemical liquid having a boiling point higher than that of water is employed, it can be applied to a high temperature range without applying a high pressure to the fluid in order to suppress boiling of the fluid.

以上の説明では、蒸発器20が満液式であるとしたが、流下液膜式であってもよい。蒸発器を流下液膜式とする場合は、蒸発器缶胴21内の上部に冷媒液Vfを供給する冷媒液供給装置を設け、満液式の場合に蒸発器缶胴21に接続することとしていた冷媒液管45の端部を、冷媒液供給装置に接続すればよい。また、蒸発器缶胴21の下部の冷媒液Vfを冷媒液供給装置に供給する配管及びポンプを設けてもよい。   In the above description, the evaporator 20 is a full liquid type, but may be a falling liquid film type. In the case where the evaporator is a falling liquid film type, a refrigerant liquid supply device for supplying the refrigerant liquid Vf is provided in the upper part of the evaporator can body 21 and connected to the evaporator can body 21 in the case of the full liquid type. What is necessary is just to connect the edge part of the refrigerant liquid pipe | tube 45 which had been connected to the refrigerant liquid supply apparatus. Further, a pipe and a pump for supplying the refrigerant liquid Vf below the evaporator can body 21 to the refrigerant liquid supply device may be provided.

以上の説明では、吸収ヒートポンプサイクルが行われる吸収器10、蒸発器20、再生器30、凝縮器40が単段で構成されている例を説明したが、これらを多段で構成してもよい。例えば、吸収ヒートポンプサイクルを二段昇温型とする場合、吸収器10及び蒸発器20を、高温側の高温吸収器(以下、説明の便宜上、符号「10」に「H」を添えて表す。)及び高温蒸発器(以下、説明の便宜上、符号「20」に「H」を添えて表す。)と、低温側の低温吸収器(以下、説明の便宜上、符号「10」に「L」を添えて表す。)及び低温蒸発器(以下、説明の便宜上、符号「20」に「L」を添えて表す。)とに分ければよい。高温吸収器10Hは低温吸収器10Lよりも内圧が高く、高温蒸発器20Hは低温蒸発器20Lよりも内圧が高い。高温吸収器10Hと高温蒸発器20Hとは、典型的には、高温蒸発器20Hの冷媒Vの蒸気を高温吸収器10Hに移動させることができるように上部で連通している。低温吸収器10Lと低温蒸発器20Lとは、典型的には、低温蒸発器20Lの冷媒Vの蒸気を低温吸収器10Lに移動させることができるように上部で連通している。合流熱源流体RAから分流した昇温対象流体RPは、低温吸収器10Lには流入せずに高温吸収器10Hに流入して高温吸収器10Hで加熱される。合流熱源流体RAから分流した駆動熱源流体RSは、高温蒸発器20Hには導入されずに低温蒸発器20Lに導入される。低温吸収器10Lは低温蒸発器20Lから移動してきた冷媒Vの蒸気を吸収液Sが吸収する際の吸収熱で高温蒸発器20H内の冷媒液Vfを加熱して高温蒸発器20H内に冷媒Vの蒸気を発生させ、発生した高温蒸発器20H内の冷媒Vの蒸気は高温吸収器10Hに移動して高温吸収器10H内の吸収液Sに吸収される際の吸収熱で昇温対象流体RPを加熱するように構成される。   In the above description, the example in which the absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 in which the absorption heat pump cycle is performed is configured in a single stage, may be configured in multiple stages. For example, when the absorption heat pump cycle is a two-stage temperature rising type, the absorber 10 and the evaporator 20 are represented by a high-temperature side high-temperature absorber (hereinafter, for convenience of explanation, “10” is added with “H”. ) And a high-temperature evaporator (hereinafter, “H” is added to the reference numeral “20” for convenience of explanation) and a low-temperature absorber on the low temperature side (hereinafter, “L” is assigned to the reference numeral “10” for convenience of explanation). And a low-temperature evaporator (hereinafter, for convenience of explanation, reference numeral “20” is added with “L”). The high temperature absorber 10H has a higher internal pressure than the low temperature absorber 10L, and the high temperature evaporator 20H has a higher internal pressure than the low temperature evaporator 20L. The high temperature absorber 10H and the high temperature evaporator 20H typically communicate with each other at the top so that the vapor of the refrigerant V of the high temperature evaporator 20H can be moved to the high temperature absorber 10H. The low-temperature absorber 10L and the low-temperature evaporator 20L typically communicate with each other at the top so that the vapor of the refrigerant V in the low-temperature evaporator 20L can be moved to the low-temperature absorber 10L. The temperature increase target fluid RP that is branched from the combined heat source fluid RA does not flow into the low temperature absorber 10L but flows into the high temperature absorber 10H and is heated by the high temperature absorber 10H. The driving heat source fluid RS branched from the combined heat source fluid RA is introduced into the low temperature evaporator 20L without being introduced into the high temperature evaporator 20H. The low-temperature absorber 10L heats the refrigerant liquid Vf in the high-temperature evaporator 20H by absorption heat when the absorbing liquid S absorbs the vapor of the refrigerant V that has moved from the low-temperature evaporator 20L, and the refrigerant V enters the high-temperature evaporator 20H. The generated vapor V of the refrigerant V in the high-temperature evaporator 20H moves to the high-temperature absorber 10H and is absorbed by the absorption liquid S in the high-temperature absorber 10H, and the temperature-up target fluid RP Configured to heat.

1、1A、2、3 吸収式熱交換システム
10 吸収器
20 蒸発器
30 再生器
40 凝縮器
48 低温熱源バイパス管
99 冷媒熱交換器
GP 低温熱源流体
RP 昇温対象流体
RS 駆動熱源流体
Sa 濃溶液
Sw 希溶液
Ve 蒸発器冷媒蒸気
Vf 冷媒液
Vg 再生器冷媒蒸気
1, 1A, 2, 3 Absorption heat exchange system 10 Absorber 20 Evaporator 30 Regenerator 40 Condenser 48 Low temperature heat source bypass pipe 99 Refrigerant heat exchanger GP Low temperature heat source fluid RP Temperature increase target fluid RS Drive heat source fluid Sa Concentrated solution Sw Dilute solution Ve Evaporator refrigerant vapor Vf Refrigerant liquid Vg Regenerator refrigerant vapor

Claims (6)

吸収液が冷媒の蒸気を吸収して濃度が低下した希溶液となる際に放出した吸収熱によって第1の被加熱流体の温度を上昇させる吸収部と;
冷媒の蒸気が凝縮して冷媒液となる際に放出した凝縮熱によって第2の被加熱流体の温度を上昇させる凝縮部と;
前記凝縮部から前記冷媒液を導入し、導入した前記冷媒液が蒸発して前記吸収部に供給される前記冷媒の蒸気となる際に必要な蒸発潜熱を加熱源流体から奪うことで前記加熱源流体の温度を低下させる蒸発部と;
前記吸収部から前記希溶液を導入し、導入した前記希溶液を加熱し前記希溶液から冷媒を離脱させて濃度が上昇した濃溶液とするのに必要な熱を加熱源流体から奪うことで前記加熱源流体の温度を低下させる再生部とを備え;
前記吸収液と前記冷媒との吸収ヒートポンプサイクルによって、前記吸収部は前記再生部よりも内部の圧力及び温度が高くなり、前記蒸発部は前記凝縮部よりも内部の圧力及び温度が高くなるように構成され;
前記蒸発部及び前記再生部に導入される前の前記加熱源流体から分岐された一部の前記加熱源流体を前記第1の被加熱流体として前記吸収部に導入するように構成された;
吸収式熱交換システム。
An absorber that raises the temperature of the first heated fluid by the absorbed heat released when the absorbing liquid absorbs the vapor of the refrigerant to become a diluted solution having a reduced concentration;
A condensing unit that raises the temperature of the second heated fluid by the condensation heat released when the vapor of the refrigerant condenses into a refrigerant liquid;
The heating source is provided by introducing the refrigerant liquid from the condensing unit and removing the latent heat of evaporation required when the introduced refrigerant liquid evaporates and becomes the vapor of the refrigerant supplied to the absorption unit from the heating source fluid. An evaporation section for lowering the temperature of the fluid;
The dilute solution is introduced from the absorption part, and the introduced dilute solution is heated to remove the refrigerant from the dilute solution to take away the heat necessary to obtain a concentrated solution from the heating source fluid. A regeneration unit for lowering the temperature of the heating source fluid;
By the absorption heat pump cycle of the absorption liquid and the refrigerant, the absorption unit has an internal pressure and temperature higher than the regeneration unit, and the evaporation unit has an internal pressure and temperature higher than the condensation unit. Composed;
A part of the heating source fluid branched from the heating source fluid before being introduced into the evaporation unit and the regeneration unit is introduced into the absorption unit as the first heated fluid;
Absorption heat exchange system.
前記吸収部から流出した前記第1の被加熱流体の温度が所定の温度になるように、前記蒸発部及び前記再生部に流入する前記加熱源流体の流量と前記吸収部に前記第1の被加熱流体として流入する前記加熱源流体の流量との比が設定された;
請求項1に記載の吸収式熱交換システム。
The flow rate of the heating source fluid flowing into the evaporating unit and the regeneration unit and the first heated target fluid so that the temperature of the first heated fluid flowing out from the absorbing unit becomes a predetermined temperature. A ratio with the flow rate of the heating source fluid flowing as heating fluid was set;
The absorption heat exchange system according to claim 1.
前記凝縮部から流出した前記第2の被加熱流体が前記蒸発部及び前記再生部の少なくとも一方から流出した前記加熱源流体と混合するように構成された;
請求項1又は請求項2に記載の吸収式熱交換システム。
The second heated fluid that has flowed out of the condensing unit is mixed with the heating source fluid that has flowed out of at least one of the evaporation unit and the regeneration unit;
The absorption heat exchange system according to claim 1 or 2.
前記凝縮部から流出した前記第2の被加熱流体から分岐された一部の前記第2の被加熱流体を、前記吸収部に導入される前の前記第1の被加熱流体に合流させる部分被加熱流体バイパス流路を備える;
請求項1乃至請求項3のいずれか1項に記載の吸収式熱交換システム。
A partial cover that joins a part of the second heated fluid branched from the second heated fluid that has flowed out of the condensing unit to the first heated fluid before being introduced into the absorption unit. Comprising a heated fluid bypass channel;
The absorption heat exchange system according to any one of claims 1 to 3.
前記吸収部から流出した前記第1の被加熱流体の温度が所定の温度になるように、前記凝縮部から流出した前記第2の被加熱流体の、前記蒸発部及び前記再生部の少なくとも一方から流出した前記加熱源流体と混合する流量と、前記部分被加熱流体バイパス流路を流れる流量との比が設定された;
請求項4に記載の吸収式熱交換システム。
From at least one of the evaporation unit and the regeneration unit of the second heated fluid that has flowed out of the condensing unit such that the temperature of the first heated fluid that has flowed out of the absorbing unit becomes a predetermined temperature. The ratio of the flow rate to mix with the heated source fluid that flowed out and the flow rate through the partially heated fluid bypass flow path was set;
The absorption heat exchange system according to claim 4.
前記凝縮部から前記蒸発部に搬送される前記冷媒液と、前記蒸発部及び前記再生部の少なくとも一方から流出した前記加熱源流体と、の間で熱交換を行わせる冷媒熱交換器を備える;
請求項1乃至請求項5のいずれか1項に記載の吸収式熱交換システム。
A refrigerant heat exchanger that exchanges heat between the refrigerant liquid conveyed from the condensing unit to the evaporation unit and the heating source fluid flowing out from at least one of the evaporation unit and the regeneration unit;
The absorption heat exchange system according to any one of claims 1 to 5.
JP2017158909A 2017-08-21 2017-08-21 Absorption heat exchange system Active JP6907438B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017158909A JP6907438B2 (en) 2017-08-21 2017-08-21 Absorption heat exchange system
CN201810902596.2A CN109425144B (en) 2017-08-21 2018-08-09 Absorption heat exchange system
CN201821286198.4U CN208817758U (en) 2017-08-21 2018-08-09 Absorption type heat exchange system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017158909A JP6907438B2 (en) 2017-08-21 2017-08-21 Absorption heat exchange system

Publications (2)

Publication Number Publication Date
JP2019035560A true JP2019035560A (en) 2019-03-07
JP6907438B2 JP6907438B2 (en) 2021-07-21

Family

ID=65514522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017158909A Active JP6907438B2 (en) 2017-08-21 2017-08-21 Absorption heat exchange system

Country Status (2)

Country Link
JP (1) JP6907438B2 (en)
CN (2) CN208817758U (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117976A (en) * 1981-12-29 1983-07-13 三洋電機株式会社 Absorption heat pump device
JPS61125144U (en) * 1985-01-24 1986-08-06
JP2005308373A (en) * 2004-04-26 2005-11-04 Shizuo Kobayashi Combustion furnace exhaust heat transporting system and method
JP2007333342A (en) * 2006-06-16 2007-12-27 Mitsubishi Heavy Ind Ltd Multi-effect absorption refrigerating machine
JP2012202589A (en) * 2011-03-24 2012-10-22 Hitachi Appliances Inc Absorption heat pump apparatus
JP2017075772A (en) * 2015-10-13 2017-04-20 荏原冷熱システム株式会社 Concentrator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105953426A (en) * 2016-05-13 2016-09-21 湖南同为节能科技有限公司 Heat pump type large-temperature-difference heat supply method
CN106352589A (en) * 2016-08-30 2017-01-25 北京华源泰盟节能设备有限公司 Split absorbing-type heat exchange unit and heat exchange method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117976A (en) * 1981-12-29 1983-07-13 三洋電機株式会社 Absorption heat pump device
JPS61125144U (en) * 1985-01-24 1986-08-06
JP2005308373A (en) * 2004-04-26 2005-11-04 Shizuo Kobayashi Combustion furnace exhaust heat transporting system and method
JP2007333342A (en) * 2006-06-16 2007-12-27 Mitsubishi Heavy Ind Ltd Multi-effect absorption refrigerating machine
JP2012202589A (en) * 2011-03-24 2012-10-22 Hitachi Appliances Inc Absorption heat pump apparatus
JP2017075772A (en) * 2015-10-13 2017-04-20 荏原冷熱システム株式会社 Concentrator

Also Published As

Publication number Publication date
CN208817758U (en) 2019-05-03
CN109425144A (en) 2019-03-05
JP6907438B2 (en) 2021-07-21
CN109425144B (en) 2022-03-29

Similar Documents

Publication Publication Date Title
JP6441511B2 (en) Multistage plate-type evaporative absorption refrigeration apparatus and method
KR101702952B1 (en) Triple effect absorption chiller
JP2006177570A (en) Absorption heat pump
JP2007127342A (en) Absorption heat pump and steam supply system
JP7015671B2 (en) Absorption heat exchange system
JP6896968B2 (en) Absorption heat exchange system
CN108180670B (en) Absorption heat exchange system
KR102165443B1 (en) Absoption chiller
JP6903852B2 (en) Absorption heat exchange system
JP6907438B2 (en) Absorption heat exchange system
JP2012202589A (en) Absorption heat pump apparatus
CN104180555A (en) Cool double-effect lithium bromide spray absorption type refrigeration cycle system
JP4148830B2 (en) Single double effect absorption refrigerator
JP4602734B2 (en) Two-stage temperature rising type absorption heat pump
CN209801851U (en) Absorption heat exchange system
CN110234941B (en) Absorption refrigerator
JP6364238B2 (en) Absorption type water heater
JPH11311459A (en) Absorption heat transformer
JP4260099B2 (en) Absorption refrigerator
CN111023624A (en) Absorption heat exchange system
JP3858655B2 (en) Absorption refrigeration system
JP4971929B2 (en) Absorption liquid circulation control method for absorption refrigerator
JP2003121021A (en) Double effect absorption refrigerating machine
JP2005009697A (en) Triple effect absorption refrigerator
JPH05272831A (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R150 Certificate of patent or registration of utility model

Ref document number: 6907438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150