JP3056987B2 - Absorption cooling system - Google Patents

Absorption cooling system

Info

Publication number
JP3056987B2
JP3056987B2 JP7306029A JP30602995A JP3056987B2 JP 3056987 B2 JP3056987 B2 JP 3056987B2 JP 7306029 A JP7306029 A JP 7306029A JP 30602995 A JP30602995 A JP 30602995A JP 3056987 B2 JP3056987 B2 JP 3056987B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
temperature regenerator
evaporator
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7306029A
Other languages
Japanese (ja)
Other versions
JPH09133426A (en
Inventor
克也 大島
茂 吉村
佐登志 内藤
薫 河本
慎介 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Rinnai Corp
Original Assignee
Osaka Gas Co Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Rinnai Corp filed Critical Osaka Gas Co Ltd
Priority to JP7306029A priority Critical patent/JP3056987B2/en
Publication of JPH09133426A publication Critical patent/JPH09133426A/en
Application granted granted Critical
Publication of JP3056987B2 publication Critical patent/JP3056987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収式冷房装置に
関する。
[0001] The present invention relates to an absorption cooling device.

【0002】[0002]

【従来の技術】室外熱交換器、吸収器伝熱管、凝縮器伝
熱管を順に環状接続してなり冷却水ポンプにより冷却水
を循環させる冷却水回路と、室内熱交換器、蒸発器伝熱
管を環状接続してなり冷水ポンプにより冷水を循環させ
る冷水回路と、加熱源により低濃度吸収液中の冷媒を気
化させて中濃度吸収液と蒸気冷媒とに分離する高温再生
器、該高温再生器を内包し前記中濃度吸収液を高濃度吸
収液と蒸気冷媒とに分離する低温再生器、前記凝縮器伝
熱管を配設するとともに各再生器から高温の蒸気冷媒が
送り込まれる凝縮器、冷媒弁を配設するとともに前記凝
縮器で液化した液冷媒を蒸発器に導く冷媒配管、この液
冷媒を減圧下で蒸発させる蒸発器、該蒸発器に併設され
前記吸収器伝熱管を配設し前記蒸発器で蒸発した蒸気冷
媒を前記低温再生器から送られる高濃度の吸収液に吸収
させる吸収器、及び該吸収器内の吸収液を前記高温再生
器に戻す溶液ポンプを有する吸収サイクルと、前記高温
再生器の温度を検出する温度検出手段と、前記冷却水ポ
ンプ、前記冷水ポンプ、前記加熱源、前記冷媒弁、及び
前記溶液ポンプを制御する制御器とを備える吸収式冷房
装置が従来より知られている。
2. Description of the Related Art A cooling water circuit in which an outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape and circulates cooling water by a cooling water pump, and an indoor heat exchanger and an evaporator heat transfer tube. A chilled water circuit that is circularly connected and circulates chilled water by a chilled water pump, a high-temperature regenerator that vaporizes a refrigerant in the low-concentration absorbent by a heating source and separates the refrigerant into a medium-concentration absorbent and a vapor refrigerant, A low-temperature regenerator that encloses and separates the medium-concentration absorption liquid into a high-concentration absorption liquid and a vapor refrigerant, a condenser in which high-temperature vapor refrigerant is sent from each regenerator while disposing the condenser heat transfer tube, and a refrigerant valve. A refrigerant pipe that is disposed and guides a liquid refrigerant liquefied by the condenser to an evaporator; an evaporator that evaporates the liquid refrigerant under reduced pressure; and an evaporator that is provided with the absorber heat transfer tube that is provided alongside the evaporator. Low-temperature regeneration of vapor refrigerant evaporated in An absorber for absorbing the high-concentration absorbing solution sent from the device, and an absorption cycle having a solution pump for returning the absorbing solution in the absorber to the high-temperature regenerator; and a temperature detecting unit for detecting the temperature of the high-temperature regenerator. 2. Description of the Related Art An absorption cooling apparatus including a controller for controlling the cooling water pump, the chilled water pump, the heating source, the refrigerant valve, and the solution pump has been conventionally known.

【0003】[0003]

【発明が解決しようとする課題】上記従来の吸収式冷房
装置では、冷却水不足や冷却水ポンプ不良等により高温
再生器が異常昇温した場合(温度検出手段が高温再生器
の異常高温を検出した場合)には、“高温異常停止”と
して、以下に示す、“通常停止”と同様の稀釈運転を行
っている。制御器は、加熱源及び冷水ポンプの作動を停
止するとともに、溶液ポンプ及び冷却水ポンプの作動を
継続する。
In the above-mentioned conventional absorption type cooling apparatus, when the temperature of the high-temperature regenerator rises abnormally due to a shortage of cooling water or a failure of the cooling water pump (the temperature detecting means detects abnormal high temperature of the high-temperature regenerator). ), The same dilution operation as “normal stop” described below is performed as “high temperature abnormal stop”. The controller stops the operation of the heating source and the chilled water pump, and continues the operation of the solution pump and the chilled water pump.

【0004】様々の試験を行った結果、発明者らは、上
記従来の吸収式冷房装置は、以下に示す課題を有する事
を見いだした。“高温異常停止”した場合は、上記の様
な稀釈運転を行っても、部分的に吸収液の濃度が異常に
高くなる傾向にあり、高濃度となった吸収液が晶析する
虞がある。尚、吸収液が晶析すると吸収液の循環が阻害
され、再運転不能を招く。
As a result of conducting various tests, the inventors have found that the above-mentioned conventional absorption type cooling apparatus has the following problems. In the case of "high temperature abnormal stop", even if the dilution operation as described above is performed, the concentration of the absorbing solution tends to be abnormally high partially, and the absorbing solution having a high concentration may crystallize. . When the absorbing solution is crystallized, the circulation of the absorbing solution is hindered, and re-operation becomes impossible.

【0005】本発明の目的は、高温再生器が異常昇温し
た際に部分的に高濃度となる吸収液の濃度分布を均一化
して晶析を防止した吸収式冷房装置の提供にある。
[0005] It is an object of the present invention to provide an absorption type cooling device in which the concentration distribution of an absorbing solution which becomes partially high when the high temperature regenerator abnormally rises in temperature is made uniform to prevent crystallization.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、以下の構成を採用した。 (1)室外熱交換器、吸収器伝熱管、凝縮器伝熱管を順
に環状接続してなり冷却水ポンプにより冷却水を循環さ
せる冷却水回路と、室内熱交換器、蒸発器伝熱管を環状
接続してなり冷水ポンプにより冷水を循環させる冷水回
路と、加熱源により低濃度吸収液中の冷媒を気化させて
中濃度吸収液と蒸気冷媒とに分離する高温再生器、該高
温再生器を内包し前記中濃度吸収液を高濃度吸収液と蒸
気冷媒とに分離する低温再生器、前記凝縮器伝熱管を配
設するとともに各再生器から高温の蒸気冷媒が送り込ま
れる凝縮器、冷媒弁を配設するとともに前記凝縮器で液
化した液冷媒を蒸発器に導く冷媒配管、この液冷媒を減
圧下で蒸発させる蒸発器、該蒸発器に併設され前記吸収
器伝熱管を配設し前記蒸発器で蒸発した蒸気冷媒を前記
低温再生器から送られる高濃度吸収液に吸収させる吸収
器、及び該吸収器内の低濃度吸収液を前記高温再生器に
戻す溶液ポンプを有する吸収サイクルと、前記高温再生
器の温度を検出する温度検出手段と、前記冷却水ポン
プ、前記冷水ポンプ、前記加熱源、前記冷媒弁、及び前
記溶液ポンプを制御する制御器とを備え、前記温度検出
手段が前記高温再生器の異常過熱を検出すると、前記制
御器は、前記加熱源の作動を停止するとともに、前記溶
液ポンプ及び前記冷却水ポンプの作動を継続する稀釈運
転を行う吸収式冷房装置において、前記制御器は、稀釈
運転中、前記冷媒弁を開弁維持する。
In order to solve the above problems, the present invention employs the following constitution. (1) An outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape, and a cooling water circuit that circulates cooling water by a cooling water pump, and an indoor heat exchanger and an evaporator heat transfer tube are connected in a ring shape. A chilled water circuit that circulates chilled water by a chilled water pump, a high-temperature regenerator that vaporizes a refrigerant in the low-concentration absorbent by a heating source and separates the refrigerant into a medium-concentration absorbent and a vapor refrigerant, and includes the high-temperature regenerator A low-temperature regenerator that separates the medium-concentration absorbing liquid into a high-concentration absorbing liquid and a vapor refrigerant, the condenser heat transfer tube is provided, and a condenser into which high-temperature vapor refrigerant is sent from each regenerator and a refrigerant valve are provided. A refrigerant pipe for guiding the liquid refrigerant liquefied by the condenser to the evaporator; an evaporator for evaporating the liquid refrigerant under reduced pressure; and an absorber heat transfer tube provided alongside the evaporator and evaporating by the evaporator. From the low-temperature regenerator An absorber for absorbing the high-concentration absorbent to be absorbed, and an absorption cycle having a solution pump for returning the low-concentration absorbent in the absorber to the high-temperature regenerator; and a temperature detection unit for detecting the temperature of the high-temperature regenerator, The cooling water pump, the chilled water pump, the heating source, the refrigerant valve, and a controller that controls the solution pump, and when the temperature detecting means detects abnormal overheating of the high-temperature regenerator, the controller In the absorption cooling apparatus that performs a dilution operation in which the operation of the heating source is stopped and the operation of the solution pump and the cooling water pump is continued, the controller maintains the refrigerant valve open during the dilution operation. I do.

【0007】(2)冷却塔ファンを付設した冷却塔、吸
収器伝熱管、凝縮器伝熱管を順に環状接続してなり冷却
水ポンプにより冷却水を循環させる冷却水回路と、送風
ファンを付設した室内熱交換器、蒸発器伝熱管を環状接
続してなり冷水ポンプにより冷水を循環させる冷水回路
と、加熱源により低濃度吸収液中の冷媒を気化させて中
濃度吸収液と蒸気冷媒とに分離する高温再生器、該高温
再生器を内包し前記中濃度吸収液を高濃度吸収液と蒸気
冷媒とに分離する低温再生器、前記凝縮器伝熱管を配設
するとともに各再生器から高温の蒸気冷媒が送り込まれ
る凝縮器、冷媒弁を配設するとともに前記凝縮器で液化
した液冷媒を蒸発器に導く冷媒配管、この液冷媒を減圧
下で蒸発させる蒸発器、該蒸発器に併設され前記吸収器
伝熱管を配設し前記蒸発器で蒸発した蒸気冷媒を前記低
温再生器から送られる高濃度吸収液に吸収させる吸収
器、及び該吸収器内の低濃度吸収液を前記高温再生器に
戻す溶液ポンプを有する吸収サイクルと、前記高温再生
器の温度を検出する温度検出手段と、前記冷却塔ファ
ン、前記送風ファン、前記冷却水ポンプ、前記冷水ポン
プ、前記加熱源、前記冷媒弁、及び前記溶液ポンプを制
御する制御器とを備え、前記温度検出手段が前記高温再
生器の異常過熱を検出すると、前記制御器は、前記加熱
源及び前記送風ファンの作動を停止するとともに、前記
溶液ポンプ、前記冷却水ポンプ、及び前記冷却塔ファン
の作動を継続する稀釈運転を行う吸収式冷房装置におい
て、前記制御器は、稀釈運転中、前記冷媒弁を開弁維持
する。
(2) A cooling tower with a cooling tower fan, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape, and a cooling water circuit for circulating cooling water by a cooling water pump and a blower fan are provided. A chilled water circuit in which an indoor heat exchanger and an evaporator heat transfer tube are connected in a loop, and chilled water is circulated by a chilled water pump, and a heating source vaporizes the refrigerant in the low-concentration absorbent and separates it into medium-concentration absorbent and vapor refrigerant. A high-temperature regenerator, a low-temperature regenerator containing the high-temperature regenerator and separating the medium-concentration absorbent into a high-concentration absorbent and a vapor refrigerant, and the condenser heat-transfer tubes. A condenser into which the refrigerant is fed, a refrigerant valve, and a refrigerant pipe for guiding the liquid refrigerant liquefied by the condenser to the evaporator; an evaporator for evaporating the liquid refrigerant under reduced pressure; Before installing heat transfer tubes An absorber for absorbing the vapor refrigerant evaporated by the evaporator into the high-concentration absorbent sent from the low-temperature regenerator, and an absorption cycle having a solution pump for returning the low-concentration absorbent in the absorber to the high-temperature regenerator; A temperature detection unit that detects the temperature of the high-temperature regenerator, and a controller that controls the cooling tower fan, the blower fan, the cooling water pump, the chilled water pump, the heating source, the refrigerant valve, and the solution pump. When the temperature detecting means detects abnormal overheating of the high-temperature regenerator, the controller stops the operation of the heating source and the blower fan, and the solution pump, the cooling water pump, and the cooling device. In the absorption cooling device performing the dilution operation in which the operation of the tower fan is continued, the controller keeps the refrigerant valve open during the dilution operation.

【0008】(3)冷却塔ファンを付設した冷却塔、吸
収器伝熱管、凝縮器伝熱管を順に環状接続してなり冷却
水ポンプにより冷却水を循環させる冷却水回路と、送風
ファンを付設した室内熱交換器、蒸発器伝熱管を環状接
続してなり、タンデムポンプの冷水ポンプ部により冷水
を循環させる冷水回路と、加熱源により低濃度吸収液中
の冷媒を気化させて中濃度吸収液と蒸気冷媒とに分離す
る高温再生器、該高温再生器を内包し前記中濃度吸収液
を高濃度吸収液と蒸気冷媒とに分離する低温再生器、前
記凝縮器伝熱管を配設するとともに各再生器から高温の
蒸気冷媒が送り込まれる凝縮器、冷媒弁を配設するとと
もに前記凝縮器で液化した液冷媒を蒸発器に導く冷媒配
管、この液冷媒を減圧下で蒸発させる蒸発器、該蒸発器
に併設され前記吸収器伝熱管を配設し前記蒸発器で蒸発
した蒸気冷媒を前記低温再生器から送られる高濃度吸収
液に吸収させる吸収器、及び該吸収器内の低濃度吸収液
を前記高温再生器に戻すタンデムポンプの溶液ポンプ部
を有する吸収サイクルと、前記高温再生器の温度を検出
する温度検出手段と、前記冷却塔ファン、前記送風ファ
ン、前記冷却水ポンプ、前記タンデムポンプ、前記加熱
源、及び前記冷媒弁を制御する制御器とを備え、前記温
度検出手段が前記高温再生器の異常過熱を検出すると、
前記制御器は、前記加熱源及び前記送風ファンの作動を
停止するとともに、前記タンデムポンプ、前記冷却水ポ
ンプ、及び前記冷却塔ファンの作動を継続する稀釈運転
を行う吸収式冷房装置において、前記制御器は、稀釈運
転中、前記冷媒弁を開弁維持する。
(3) A cooling tower provided with a cooling tower fan, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape, and a cooling water circuit for circulating cooling water by a cooling water pump and a blower fan are provided. An indoor heat exchanger and an evaporator heat transfer tube are connected in a ring, and a chilled water circuit that circulates chilled water by a chilled water pump part of a tandem pump, and a medium in which the refrigerant in the low-concentration absorbing liquid is vaporized by a heating source. A high-temperature regenerator that separates into a vapor refrigerant, a low-temperature regenerator that includes the high-temperature regenerator and separates the medium-concentration absorbent into a high-concentration absorbent and a vapor refrigerant, A condenser into which a high-temperature vapor refrigerant is sent from a condenser, a refrigerant pipe provided with a refrigerant valve and leading a liquid refrigerant liquefied by the condenser to an evaporator, an evaporator for evaporating the liquid refrigerant under reduced pressure, and an evaporator. Attached to the An absorber for disposing a heat transfer tube and absorbing the vapor refrigerant evaporated by the evaporator into the high-concentration absorbent sent from the low-temperature regenerator, and returning the low-concentration absorbent in the absorber to the high-temperature regenerator An absorption cycle having a solution pump section of a tandem pump, temperature detecting means for detecting the temperature of the high-temperature regenerator, the cooling tower fan, the blowing fan, the cooling water pump, the tandem pump, the heating source, and the And a controller for controlling the refrigerant valve, wherein the temperature detecting means detects abnormal overheating of the high-temperature regenerator,
In the absorption cooling device, the controller stops the operation of the heating source and the blower fan, and performs a dilution operation in which the tandem pump, the cooling water pump, and the cooling tower fan continue to operate. The vessel keeps the refrigerant valve open during the dilution operation.

【0009】[0009]

【作用】[Action]

〔請求項1について〕高温再生器は加熱源により加熱さ
れ、低濃度吸収液は、冷媒が気化して中濃度吸収液と蒸
気冷媒とに分離する。低温再生器は、中濃度吸収液を高
濃度吸収液と蒸気冷媒とに分離する。各再生器から蒸気
冷媒が凝縮器に送り込まれる。凝縮器伝熱管を流れる冷
却水により蒸気冷媒が凝縮し、凝縮器内に溜まる。
[Claim 1] The high-temperature regenerator is heated by a heating source, and the low-concentration absorbent is vaporized by the refrigerant and separated into the medium-concentration absorbent and the vapor refrigerant. The low-temperature regenerator separates the medium-concentration absorbent into a high-concentration absorbent and a vapor refrigerant. The vapor refrigerant is sent from each regenerator to the condenser. The vapor refrigerant is condensed by the cooling water flowing through the condenser heat transfer tube and accumulates in the condenser.

【0010】凝縮器内の液冷媒は、冷媒弁を配設した冷
媒配管を通って蒸発器に送りこまれ、冷水が流れる蒸発
器伝熱管に当たって蒸発し、蒸発器伝熱管内を通過する
冷水を冷却する。尚、冷房運転中、冷媒弁は、制御器に
より開閉制御される。冷却された冷水が室内熱交換器を
通過する事により室内冷房が行なわれる。
The liquid refrigerant in the condenser is sent to the evaporator through a refrigerant pipe provided with a refrigerant valve, hits an evaporator heat transfer pipe through which cold water flows, evaporates, and cools the cold water passing through the evaporator heat transfer pipe. I do. During the cooling operation, the opening and closing of the refrigerant valve is controlled by the controller. Indoor cooling is performed by the cooled cold water passing through the indoor heat exchanger.

【0011】蒸発器で蒸発した蒸気冷媒は、低温再生器
から送られる高濃度吸収液に吸収され吸収器内に溜ま
る。吸収器内に溜まった低濃度吸収液は、溶液ポンプに
より高温再生器に戻される。凝縮器伝熱管を流れる冷却
水により蒸気冷媒が凝縮し、凝縮器内に溜まる。
[0011] The vapor refrigerant evaporated in the evaporator is absorbed by the high-concentration absorbing liquid sent from the low-temperature regenerator and accumulates in the absorber. The low concentration absorbent collected in the absorber is returned to the high temperature regenerator by the solution pump. The vapor refrigerant is condensed by the cooling water flowing through the condenser heat transfer tube and accumulates in the condenser.

【0012】ところで、温度検出手段が高温再生器の異
常過熱を検出すると、制御器は、加熱源の作動を停止
し、冷媒弁を開弁維持し、溶液ポンプ及び冷却水ポンプ
の作動を継続する稀釈運転を行う。
When the temperature detecting means detects abnormal overheating of the high-temperature regenerator, the controller stops the operation of the heating source, keeps the refrigerant valve open, and continues the operation of the solution pump and the cooling water pump. Perform dilution operation.

【0013】〔請求項2について〕高温再生器は加熱源
により加熱され、低濃度吸収液は、冷媒が気化して中濃
度吸収液と蒸気冷媒とに分離する。低温再生器は、中濃
度吸収液を高濃度吸収液と蒸気冷媒とに分離する。各再
生器から蒸気冷媒が凝縮器に送り込まれる。冷却塔ファ
ンにより冷却され、凝縮器伝熱管を流れる冷却水により
蒸気冷媒が凝縮し、凝縮器内に溜まる。
[0013] The high-temperature regenerator is heated by a heating source, and the low-concentration absorbent is vaporized by the refrigerant and separated into a medium-concentration absorbent and a vapor refrigerant. The low-temperature regenerator separates the medium-concentration absorbent into a high-concentration absorbent and a vapor refrigerant. The vapor refrigerant is sent from each regenerator to the condenser. The vapor refrigerant is condensed by the cooling water that is cooled by the cooling tower fan and flows through the condenser heat transfer tube, and accumulates in the condenser.

【0014】凝縮器内の液冷媒は、冷媒弁を配設した冷
媒配管を通って蒸発器に送りこまれ、冷水が流れる蒸発
器伝熱管に当たって蒸発し、蒸発器伝熱管内を通過する
冷水を冷却する。尚、冷房運転中、冷媒弁は、制御器に
より開閉制御される。冷却された冷水が室内熱交換器を
通過する事により、送風ファンで送られる空気と熱交換
し、室内冷房が行なわれる。
The liquid refrigerant in the condenser is sent to the evaporator through a refrigerant pipe provided with a refrigerant valve, and hits an evaporator heat transfer pipe through which cold water flows, evaporates, and cools the cold water passing through the evaporator heat transfer pipe. I do. During the cooling operation, the opening and closing of the refrigerant valve is controlled by the controller. When the cooled cold water passes through the indoor heat exchanger, it exchanges heat with the air sent by the blower fan to perform indoor cooling.

【0015】蒸発器で蒸発した蒸気冷媒は、低温再生器
から送られる高濃度吸収液に吸収され吸収器内に溜ま
る。吸収器内に溜まった低濃度吸収液は、溶液ポンプに
より高温再生器に戻される。
The vapor refrigerant evaporated in the evaporator is absorbed by the high-concentration absorbing liquid sent from the low-temperature regenerator and accumulates in the absorber. The low concentration absorbent collected in the absorber is returned to the high temperature regenerator by the solution pump.

【0016】ところで、温度検出手段が高温再生器の異
常過熱を検出すると、制御器は、加熱源、及び送風ファ
ンの作動を停止し、冷媒弁を開弁維持し、溶液ポンプ、
冷却水ポンプ、及び冷却塔ファンの作動を継続する稀釈
運転を行う。
When the temperature detecting means detects abnormal overheating of the high-temperature regenerator, the controller stops the operation of the heating source and the blower fan, keeps the refrigerant valve open, maintains the solution pump,
Perform dilution operation to continue operation of the cooling water pump and cooling tower fan.

【0017】〔請求項3について〕高温再生器は加熱源
により加熱され、低濃度吸収液は、冷媒が気化して中濃
度吸収液と蒸気冷媒とに分離する。低温再生器は、中濃
度吸収液を高濃度吸収液と蒸気冷媒とに分離する。各再
生器から蒸気冷媒が凝縮器に送り込まれる。冷却塔ファ
ンにより冷却され、凝縮器伝熱管を流れる冷却水により
蒸気冷媒が凝縮し、凝縮器内に溜まる。
[Claim 3] The high-temperature regenerator is heated by a heating source, and the low-concentration absorbent is vaporized by the refrigerant and separated into a medium-concentration absorbent and a vapor refrigerant. The low-temperature regenerator separates the medium-concentration absorbent into a high-concentration absorbent and a vapor refrigerant. The vapor refrigerant is sent from each regenerator to the condenser. The vapor refrigerant is condensed by the cooling water that is cooled by the cooling tower fan and flows through the condenser heat transfer tube, and accumulates in the condenser.

【0018】凝縮器内の液冷媒は、冷媒弁を配設した冷
媒配管を通って蒸発器に送りこまれ、冷水が流れる蒸発
器伝熱管に当たって蒸発し、蒸発器伝熱管内を通過する
冷水を冷却する。尚、冷房運転中、冷媒弁は、制御器に
より開閉制御される。冷却された冷水が室内熱交換器を
通過する事により、送風ファンで送られる空気と熱交換
し、室内冷房が行われる。
The liquid refrigerant in the condenser is sent to the evaporator through a refrigerant pipe provided with a refrigerant valve, and hits the evaporator heat transfer pipe through which the cold water flows, evaporates, and cools the cold water passing through the evaporator heat transfer pipe. I do. During the cooling operation, the opening and closing of the refrigerant valve is controlled by the controller. When the cooled cold water passes through the indoor heat exchanger, it exchanges heat with the air sent by the blower fan to perform indoor cooling.

【0019】蒸発器で蒸発した蒸気冷媒は、低温再生器
から送られる高濃度吸収液に吸収され吸収器内に溜ま
る。吸収器内に溜まった液冷媒は、タンデムポンプの溶
液ポンプ部により高温再生器に戻される。
The vapor refrigerant evaporated in the evaporator is absorbed by the high-concentration absorbent sent from the low-temperature regenerator and accumulates in the absorber. The liquid refrigerant accumulated in the absorber is returned to the high temperature regenerator by the solution pump section of the tandem pump.

【0020】温度検出手段が高温再生器の異常過熱を検
出すると、制御器は、加熱源及び送風ファンの作動を停
止し、冷媒弁を開弁維持し、タンデムポンプ、冷却水ポ
ンプ、及び冷却塔ファンの作動を継続する稀釈運転を行
う。
When the temperature detecting means detects abnormal overheating of the high-temperature regenerator, the controller stops the operation of the heating source and the blower fan, keeps the refrigerant valve open, maintains the tandem pump, the cooling water pump, and the cooling tower. Perform dilution operation to keep the fan running.

【0021】[0021]

【発明の効果】【The invention's effect】

〔請求項1について〕高温再生器が異常に昇温すると、
蒸気冷媒の生成が促進されるので、高温再生器及び低温
再生器内で分離が進行し、部分的に吸収液(高温・低温
再生器、吸収器内の吸収液)の濃度が高くなり、吸収液
が晶析する可能性が高くなる。
[Claim 1] When the high temperature regenerator abnormally heats up,
Since the generation of vapor refrigerant is promoted, separation proceeds in the high-temperature regenerator and low-temperature regenerator, and the concentration of the absorption liquid (high-temperature / low-temperature regenerator, absorption liquid in the absorber) partially increases, and the absorption The possibility that the liquid crystallizes increases.

【0022】そこで、温度検出手段が高温再生器の異常
過熱を検出すると、制御器は、加熱源の作動を停止し、
冷媒弁を開弁維持し、溶液ポンプ及び冷却水ポンプの作
動を継続する稀釈運転を行う。これにより、凝縮器内に
溜まっている液冷媒は、速やかに、凝縮器、蒸発器を経
て吸収器に送り込まれ、吸収液内の低濃度吸収液が高温
再生器に戻される。
When the temperature detecting means detects abnormal overheating of the high-temperature regenerator, the controller stops the operation of the heating source,
A dilution operation is performed in which the refrigerant valve is kept open and the operation of the solution pump and the cooling water pump is continued. As a result, the liquid refrigerant accumulated in the condenser is immediately sent to the absorber through the condenser and the evaporator, and the low-concentration absorbent in the absorbent is returned to the high-temperature regenerator.

【0023】この為、高温再生器が異常昇温した際に部
分的に高濃度となる吸収液(高温・低温再生器、吸収器
内の吸収液)の濃度分布が速やかに平均化され、吸収液
の晶析を防止する事ができる。
For this reason, the concentration distribution of the absorbing solution (the high-temperature / low-temperature regenerator, the absorbing solution in the absorber) which becomes partially concentrated when the high-temperature regenerator abnormally rises in temperature is quickly averaged, and the absorption is increased. The crystallization of the liquid can be prevented.

【0024】尚、稀釈運転中、各吸収器から送られてく
る蒸気冷媒を凝集して液冷媒の生成を行う為に冷却水ポ
ンプの作動は継続される。
During the dilution operation, the operation of the cooling water pump is continued in order to coagulate the vapor refrigerant sent from each absorber to generate a liquid refrigerant.

【0025】〔請求項2について〕高温再生器が異常に
昇温すると、蒸気冷媒の生成が促進されるので、高温再
生器及び低温再生器内で分離が進行し、部分的に吸収液
(高温・低温再生器、吸収器内の吸収液)の濃度が高く
なり、吸収液が晶析する可能性が高くなる。
[Claim 2] When the temperature of the high-temperature regenerator rises abnormally, the generation of vapor refrigerant is promoted, so that the separation proceeds in the high-temperature regenerator and the low-temperature regenerator, and the absorption liquid (high-temperature・ The concentration of the low-temperature regenerator and the absorption liquid in the absorber increases, and the possibility that the absorption liquid crystallizes increases.

【0026】そこで、温度検出手段が高温再生器の異常
過熱を検出すると、制御器は、加熱源の作動を停止し、
冷媒弁を開弁維持し、溶液ポンプ、冷却水ポンプ、冷却
塔ファンの作動を継続する稀釈運転を行う。これによ
り、凝縮器内に溜まっている液冷媒は、速やかに、凝縮
器、蒸発器を経て吸収器に送り込まれ、吸収液内の低濃
度吸収液が高温再生器に戻される。
When the temperature detecting means detects abnormal overheating of the high-temperature regenerator, the controller stops the operation of the heating source,
Keep the refrigerant valve open and perform dilution operation to continue operation of the solution pump, cooling water pump, and cooling tower fan. As a result, the liquid refrigerant accumulated in the condenser is immediately sent to the absorber through the condenser and the evaporator, and the low-concentration absorbent in the absorbent is returned to the high-temperature regenerator.

【0027】この為、高温再生器が異常昇温した際に部
分的に高濃度となる吸収液(高温・低温再生器、吸収器
内の吸収液)の濃度分布が速やかに平均化され、吸収液
の晶析を防止する事ができる。
For this reason, the concentration distribution of the absorbing liquid (the high-temperature / low-temperature regenerator and the absorbing liquid in the absorber) which becomes partially concentrated when the high-temperature regenerator abnormally rises in temperature is quickly averaged, and the absorption is increased. The crystallization of the liquid can be prevented.

【0028】尚、稀釈運転中、各吸収器から送られて来
る蒸気冷媒を凝集して液冷媒の生成を行う為に冷却水ポ
ンプ及び冷却塔ファンの作動は継続される。
During the dilution operation, the operation of the cooling water pump and the cooling tower fan is continued in order to coagulate the vapor refrigerant sent from each absorber to generate a liquid refrigerant.

【0029】〔請求項3について〕高温再生器が異常に
昇温すると、蒸気冷媒の生成が促進されるので、高温再
生器及び低温再生器内で分離が進行し、部分的に吸収液
(高温・低温再生器、吸収器内の吸収液)の濃度が高く
なり、吸収液が晶析する可能性が高くなる。
[Claim 3] When the temperature of the high-temperature regenerator rises abnormally, the generation of vapor refrigerant is promoted, so that the separation proceeds in the high-temperature regenerator and the low-temperature regenerator, and the absorption liquid (high-temperature・ The concentration of the low-temperature regenerator and the absorption liquid in the absorber increases, and the possibility that the absorption liquid crystallizes increases.

【0030】そこで、温度検出手段が高温再生器の異常
過熱を検出すると、制御器は、加熱源及び送風ファンの
作動を停止し、冷媒弁を開弁維持し、タンデムポンプ、
冷却水ポンプ、冷却塔ファンの作動を継続する稀釈運転
を行う。これにより、凝縮器内に溜まっている液冷媒
は、速やかに、凝縮器、蒸発器を経て吸収器に送り込ま
れ、吸収液内の低濃度吸収液が高温再生器に戻される。
When the temperature detecting means detects abnormal overheating of the high-temperature regenerator, the controller stops the operation of the heating source and the blower fan, keeps the refrigerant valve open, and sets the tandem pump,
Perform dilution operation to keep the cooling water pump and cooling tower fan running. As a result, the liquid refrigerant accumulated in the condenser is immediately sent to the absorber through the condenser and the evaporator, and the low-concentration absorbent in the absorbent is returned to the high-temperature regenerator.

【0031】この為、高温再生器が異常昇温した際に部
分的に高濃度となる吸収液(高温・低温再生器、吸収器
内の吸収液)の濃度分布が速やかに平均化され、吸収液
の晶析を防止する事ができる。
For this reason, the concentration distribution of the absorbing solution (high-temperature / low-temperature regenerator, absorbing solution in the absorber) which becomes partially concentrated when the high-temperature regenerator abnormally rises in temperature is quickly averaged, and the absorption is increased. The crystallization of the liquid can be prevented.

【0032】稀釈運転中、各吸収器から送られてくる蒸
気冷媒を凝集して液冷媒の生成を行う為に冷却水ポンプ
及び冷却塔ファンの作動を継続する。又、冷水温の上昇
を極力抑える(蒸発器内での蒸発を阻止)為、送風ファ
ンの作動を停止する。
During the dilution operation, the operation of the cooling water pump and the cooling tower fan is continued in order to coagulate the vapor refrigerant sent from each absorber to generate a liquid refrigerant. In addition, the operation of the blower fan is stopped in order to minimize the rise in cold water temperature (to prevent evaporation in the evaporator).

【0033】[0033]

【発明の実施の形態】本発明の一実施例(請求項3に対
応)を図1〜図5に基づいて説明する。図に示す様に、
吸収式冷暖房装置Aは、冷房運転時に冷却水10を循環
させる冷却水回路1と、冷温水20を循環させる冷温水
回路2と、高温再生器3、低温再生器4、凝縮器5、蒸
発器6、吸収器7、及びタンデムポンプ80等を有する
吸収サイクル8と、制御器9、温度センサ91とを備え
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention (corresponding to claim 3) will be described with reference to FIGS. As shown in the figure,
The absorption type cooling and heating apparatus A includes a cooling water circuit 1 for circulating cooling water 10 during cooling operation, a cooling and heating water circuit 2 for circulating cooling and heating water 20, a high-temperature regenerator 3, a low-temperature regenerator 4, a condenser 5, and an evaporator. 6, an absorption cycle 8 having an absorber 7, a tandem pump 80, and the like, a controller 9, and a temperature sensor 91.

【0034】冷却水回路1は、水冷式熱交換器を構成す
る冷却塔ファン11及び冷却塔12と、冷却水槽13
と、冷却水ポンプ14と、吸収器伝熱管15、凝縮器伝
熱管16を順に環状接続して構成され、冷房運転時には
冷却水ポンプ14(1230リットル/h)を作動させ
て冷却水10を循環させる。尚、冷却塔ファン11は、
吸収器伝熱管15に供給される冷却水10の温度が3
1.5℃になる様に制御器9により回転数が制御され
る。又、暖房運転時(図4参照)には、冷却水回路1内
の冷却水10は全て抜かれる。
The cooling water circuit 1 includes a cooling tower fan 11 and a cooling tower 12 constituting a water-cooled heat exchanger, and a cooling water tank 13.
, A cooling water pump 14, an absorber heat transfer tube 15, and a condenser heat transfer tube 16 are sequentially connected in a ring shape, and the cooling water pump 14 (1230 liter / h) is operated to circulate the cooling water 10 during cooling operation. Let it. The cooling tower fan 11 is
When the temperature of the cooling water 10 supplied to the absorber heat transfer tube 15 is 3
The controller 9 controls the number of rotations to 1.5 ° C. During the heating operation (see FIG. 4), all the cooling water 10 in the cooling water circuit 1 is drained.

【0035】冷温水回路2は、送風ファン211を有す
る室内熱交換器21(複数台数を並列接続可)、シスタ
ーン22、タンデムポンプ80の冷温水ポンプ部801
(最大能力時620リットル/h)、蒸発器伝熱管37
を環状接続してなり、冷温水ポンプ部801により冷温
水20を循環させている。尚、冷房運転時の室内熱交換
器21の吸熱量は4340kcal(最大能力時)であ
り、暖房運転時の室内熱交換器21の放熱量は6200
kcal(最大能力時)である。
The cold / hot water circuit 2 includes an indoor heat exchanger 21 having a blower fan 211 (a plurality of heat exchangers can be connected in parallel), a cistern 22, and a cold / hot water pump section 801 of a tandem pump 80.
(620 liters / h at maximum capacity), evaporator heat transfer tube 37
Are circularly connected, and the cold / hot water 20 is circulated by the cold / hot water pump section 801. The amount of heat absorbed by the indoor heat exchanger 21 during the cooling operation is 4340 kcal (at the maximum capacity), and the amount of heat released from the indoor heat exchanger 21 during the heating operation is 6200.
kcal (at maximum capacity).

【0036】高温再生器3は、ガスバーナ31により加
熱されるドーム状の加熱室32、上方に立設する吹出筒
321、及び希液33(本実施例では58%臭化リチウ
ム水溶液)中の冷媒(水)を蒸発させて中液34(60
%臭化リチウム水溶液)と蒸気冷媒35とに分離する分
離筒322等により構成される。尚、加熱室32には、
高温再生器3の温度(希液33又は器体の温度)を測定
する為の温度センサ91が配設されている。
The high-temperature regenerator 3 includes a dome-shaped heating chamber 32 heated by a gas burner 31, a blowing cylinder 321 standing upright, and a refrigerant in a dilute liquid 33 (58% aqueous lithium bromide in this embodiment). (Water) is evaporated and the middle liquid 34 (60
% Lithium bromide aqueous solution) and a vapor refrigerant 35. In addition, in the heating chamber 32,
A temperature sensor 91 for measuring the temperature of the high temperature regenerator 3 (the temperature of the diluted liquid 33 or the temperature of the container) is provided.

【0037】ガスバーナ31は、ブンゼン式であり、ガ
ス電磁弁311、312、ガス比例弁313を連設した
ガス管314によりガスが供給され、燃焼用ファン31
5により燃焼用空気が供給されて燃焼する。
The gas burner 31 is of a Bunsen type. Gas is supplied by a gas pipe 314 having gas solenoid valves 311 and 312 and a gas proportional valve 313 connected thereto.
5 supplies combustion air and burns.

【0038】冷房運転時、ガスバーナ31は、室内熱交
換器21に供給される冷温水20の温度が7℃になる様
にインプット量が1500〜4800kcalの間で制
御器9により制御される。尚、ターボ冷房運転時はイン
プット量が6500kcalとされる。
During the cooling operation, the controller 9 controls the gas burner 31 so that the input amount is between 1500 and 4800 kcal so that the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 becomes 7 ° C. During the turbo cooling operation, the input amount is set to 6500 kcal.

【0039】又、暖房運転時は、室内熱交換器21に供
給される冷温水20の温度が60℃になる様にインプッ
ト量が1500〜8000kcalの間で制御器9によ
り制御される。
During the heating operation, the controller 9 controls the input amount between 1500 and 8000 kcal so that the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 becomes 60 ° C.

【0040】冷房運転時は、冷暖切替弁36を閉弁して
いるので、中液34(165℃)は、中液配管341→
高温熱交換流路342→オリフィス343付きの中液配
管344を経て低温再生器4の上部に送り込まれる。
During the cooling operation, since the cooling / heating switching valve 36 is closed, the intermediate liquid 34 (165 ° C.) is supplied to the intermediate liquid pipe 341 →
The high-temperature heat exchange flow path 342 is sent to the upper part of the low-temperature regenerator 4 via the middle liquid pipe 344 having the orifice 343.

【0041】低温再生器4は、高温再生器3を内包し、
冷房運転時には、高温再生器3から送り込まれた中液3
4を濃液41(62%臭化リチウム水溶液)と蒸気冷媒
42とに分離する。尚、暖房運転時、中液34は低温再
生器4に送り込まれない。
The low-temperature regenerator 4 includes the high-temperature regenerator 3,
During the cooling operation, the middle liquid 3 sent from the high temperature regenerator 3
4 is separated into a concentrated liquid 41 (62% aqueous solution of lithium bromide) and a vapor refrigerant 42. During the heating operation, the middle liquid 34 is not sent to the low-temperature regenerator 4.

【0042】凝縮器5には、暖房運転時、オリフィス5
11付きの蒸気冷媒配管51を介して高温再生器3から
高温の蒸気冷媒35が送り込まれるが、冷却水10が凝
縮器伝熱管16内を流れていないので凝縮しない。
The condenser 5 has an orifice 5 during heating operation.
The high-temperature vapor refrigerant 35 is sent from the high-temperature regenerator 3 through the vapor refrigerant pipe 51 provided with 11, but does not condense because the cooling water 10 does not flow in the condenser heat transfer tube 16.

【0043】冷房運転時には、高温再生器3、低温再生
器4から蒸気冷媒35、42が凝縮器5に送り込まれ、
蒸気冷媒35、42は、コイル状の凝縮器伝熱管16を
流れる冷却水10によって冷却され液化し、液冷媒
(水)52は凝縮器5の底部に溜まる。尚、昇温(3
7.5℃)した冷却水10は、冷却塔12で冷却(3
1.5℃)される。
During the cooling operation, steam refrigerants 35 and 42 are sent from the high temperature regenerator 3 and the low temperature regenerator 4 to the condenser 5,
The vapor refrigerants 35 and 42 are cooled and liquefied by the cooling water 10 flowing through the coil-shaped condenser heat transfer tubes 16, and the liquid refrigerant (water) 52 accumulates at the bottom of the condenser 5. In addition, temperature rise (3
The cooling water 10 (at 7.5 ° C.) is cooled (3
1.5 ° C).

【0044】蒸発器6は、コイル状(螺旋溝付き)の蒸
発器伝熱管37を配設している。そして、暖房運転時に
は冷暖切替弁36が開弁するので、中液配管341(冷
暖切替弁36)→暖房配管361を介して高温の中液3
4が蒸発器6に送り込まれる。又、同時に、凝縮器5か
らは高温の蒸気冷媒42が、冷媒配管53(冷媒弁5
4)を介して送り込まれる。
The evaporator 6 is provided with a coil-shaped (with a spiral groove) evaporator heat transfer tube 37. Since the cooling / heating switching valve 36 is opened during the heating operation, the medium liquid pipe 341 (cooling / heating switching valve 36) → the high temperature medium liquid 3 via the heating pipe 361.
4 is sent to the evaporator 6. At the same time, high-temperature vapor refrigerant 42 is supplied from the condenser 5 to the refrigerant pipe 53 (the refrigerant valve 5).
Sent through 4).

【0045】冷房運転時に冷媒弁54が開弁すると、液
冷媒52は、冷媒配管53→冷媒弁54→散布器55を
介して蒸発器伝熱管37に散布され、蒸発器6内は略真
空(約6.5mmHg)であるので、液冷媒52は蒸発
器伝熱管37内を流れる冷温水20から気化熱を奪って
蒸発する。そして、冷却された冷温水20は室内に配置
された室内熱交換器21で室内に送風される空気と熱交
換(最大能力時、吸熱4340kcal/h)して昇温
し、昇温した冷温水20は再び蒸発器伝熱管37を通過
して冷却される。
When the refrigerant valve 54 is opened during the cooling operation, the liquid refrigerant 52 is sprayed to the evaporator heat transfer pipe 37 via the refrigerant pipe 53 → the refrigerant valve 54 → the sprayer 55, and the inside of the evaporator 6 is substantially vacuum ( Since the pressure is about 6.5 mmHg, the liquid refrigerant 52 evaporates from the cold / hot water 20 flowing through the evaporator heat transfer tube 37 by evaporating heat. Then, the cooled cold / hot water 20 exchanges heat with the air blown into the room (at maximum capacity, heat absorption 4340 kcal / h) in the indoor heat exchanger 21 placed in the room to raise the temperature. 20 is again cooled by passing through the evaporator heat transfer tube 37.

【0046】吸収器伝熱管15を配設した吸収器7は、
蒸発器6に併設され、上部等が蒸発器6と連絡してい
る。そして、冷房運転時には、蒸発器6で蒸発した蒸気
冷媒61は上部等から吸収器7内に進入し、低温再生器
4→濃液配管411→低温熱交換流路412→濃液配管
413→散布器70を介して吸収器伝熱管15上に散布
される濃液41に吸収され、低濃度となった希液33は
吸収器7の底部に溜まる。又、暖房運転時には、蒸発器
6から高温の吸収液が送り込まれる。
The absorber 7 provided with the absorber heat transfer tube 15 is
The upper part is connected to the evaporator 6. Then, during the cooling operation, the vapor refrigerant 61 evaporated by the evaporator 6 enters the absorber 7 from above or the like, and the low-temperature regenerator 4 → the concentrated liquid pipe 411 → the low-temperature heat exchange channel 412 → the concentrated liquid pipe 413 → dispersed. The diluted liquid 33 which has been absorbed by the concentrated liquid 41 scattered on the absorber heat transfer tube 15 via the vessel 70 and has become a low concentration accumulates at the bottom of the absorber 7. During the heating operation, a high-temperature absorbing liquid is sent from the evaporator 6.

【0047】タンデムポンプ80は、AC- 100Vで
動作する三相DCブラシレスモータ(定格出力200
W、消費電力250W)であり、冷温水ポンプ部801
と溶液ポンプ部802とを有する。このタンデムポンプ
80には、ホール素子800が取り付けられ、制御器9
によりフィードバック制御される。尚、冷温水20の流
量制御はブロードで良いので、冷温水ポンプ部801と
溶液ポンプ部802とを一台のモータで駆動しても不具
合は生じない。
The tandem pump 80 is a three-phase DC brushless motor (rated output 200
W, power consumption 250 W).
And a solution pump section 802. The tandem pump 80 is provided with a Hall element 800 and a controller 9.
Is feedback-controlled. Since the flow rate control of the cold / hot water 20 may be broad, no problem occurs even if the cold / hot water pump section 801 and the solution pump section 802 are driven by one motor.

【0048】吸収器7の底部に溜まった希液33(暖房
運転時は吸収液)は、希液配管71→溶液ポンプ部80
2(最大流量100リットル/h)→希液配管72→低
温熱交換流路73→高温熱交換流路74→希液配管75
を介して高温再生器3の加熱室32に送られる。
The diluted liquid 33 (absorbed liquid during the heating operation) collected at the bottom of the absorber 7 is diluted with a diluted liquid pipe 71 → a solution pump section 80.
2 (maximum flow rate 100 liter / h) → dilute liquid pipe 72 → low temperature heat exchange path 73 → high temperature heat exchange path 74 → dilute liquid pipe 75
Through the heating chamber 32 of the high-temperature regenerator 3.

【0049】温度センサ91は、高温再生器3の加熱室
32の温度(希液33の温度)を検出する為のものであ
る。制御器9は、運転スイッチ(図示せず)からの信
号、温度センサ91を含む各種センサからの信号等に基
づき、以下のものを制御する。ガス電磁弁311、31
2、ガス比例弁313、タンデムポンプ80、冷却塔フ
ァン11、冷媒弁54、冷暖切替弁36、冷却水ポンプ
14、送風ファン211。
The temperature sensor 91 is for detecting the temperature of the heating chamber 32 of the high temperature regenerator 3 (the temperature of the diluted liquid 33). The controller 9 controls the following based on a signal from an operation switch (not shown), signals from various sensors including the temperature sensor 91, and the like. Gas solenoid valves 311, 31
2. Gas proportional valve 313, tandem pump 80, cooling tower fan 11, refrigerant valve 54, cooling / heating switching valve 36, cooling water pump 14, blower fan 211.

【0050】つぎに、冷房運転中にある吸収式冷暖房装
置Aが“高温異常停止”する際における、制御器9のマ
イクロコンピュータの作動を、図5に示すフローチャー
トに基づいて説明する。ステップs1で、蒸発器温度が
1℃以下であるか否か判別し、1℃以下である場合(Y
ES)はステップs3に進み、1℃を越える場合(N
O)はステップs2に進む。
Next, the operation of the microcomputer of the controller 9 when the absorption-type cooling and heating apparatus A during the cooling operation performs the "high temperature abnormal stop" will be described with reference to the flowchart shown in FIG. In step s1, it is determined whether or not the evaporator temperature is 1 ° C. or less, and if it is 1 ° C. or less (Y
ES) proceeds to step s3, and if it exceeds 1 ° C. (N
O) proceeds to step s2.

【0051】ステップs2で、蒸発器温度が3℃以上で
あるか否か判別し、3℃以上である場合(YES)はス
テップs4に進み、3℃未満の場合(NO)はステップ
s1に戻る。ステップs3で、冷媒弁54を開弁してス
テップs5に進む。ステップs4で、冷媒弁54を閉弁
してステップs5に進む。
In step s2, it is determined whether or not the evaporator temperature is 3 ° C. or higher. If it is 3 ° C. or higher (YES), the process proceeds to step s4. If it is lower than 3 ° C. (NO), the process returns to step s1. . In step s3, the refrigerant valve 54 is opened, and the process proceeds to step s5. In step s4, the refrigerant valve 54 is closed, and the process proceeds to step s5.

【0052】ステップs5で、高温異常が発生した(温
度センサ91が175℃以上の温度を検出)か否か判別
し、発生した場合(YES)はステップs6に進み、発
生していない場合(NO)はステップs1に戻って冷房
運転を継続する。
In step s5, it is determined whether or not a high temperature abnormality has occurred (the temperature sensor 91 detects a temperature of 175 ° C. or higher). If it has occurred (YES), the process proceeds to step s6, and if not, it has not occurred (NO). ) Returns to step s1 to continue the cooling operation.

【0053】ステップs6で、ガス電磁弁311、31
2を閉弁してガスバーナ31を消火し、ステップs7に
進む。ステップs7で、冷媒弁54を開弁維持してステ
ップs8に進む。ステップs8で、以下に示す稀釈運転
を約9分間、行う。
At step s6, the gas solenoid valves 311, 31
2 is closed to extinguish the gas burner 31, and the process proceeds to step s7. In step s7, the refrigerant valve 54 is kept open, and the process proceeds to step s8. In step s8, the following dilution operation is performed for about 9 minutes.

【0054】〔稀釈運転〕送風ファン211の作動を停
止し、燃焼用ファン315、タンデムポンプ80、冷却
水ポンプ14、冷却塔ファン11の作動を継続する。こ
れにより、凝縮器5内に溜まっている液冷媒52は、速
やかに蒸発器6を経て吸収器7に送り込まれ、吸収器7
内の希液33が高温再生器3に戻され、高温再生器3内
の吸収液は稀釈される。又、稀釈された高温再生器3内
の吸収液は、中液配管341→高温熱交換流路342→
オリフィス343付きの中液配管344を経て低温再生
器4に送り込まれ、低温再生器4内の吸収液は稀釈され
る。
[Dilution Operation] The operation of the blower fan 211 is stopped, and the operations of the combustion fan 315, the tandem pump 80, the cooling water pump 14, and the cooling tower fan 11 are continued. As a result, the liquid refrigerant 52 accumulated in the condenser 5 is quickly sent to the absorber 7 via the evaporator 6, and
Is returned to the high temperature regenerator 3, and the absorbing liquid in the high temperature regenerator 3 is diluted. Further, the diluted absorbing liquid in the high-temperature regenerator 3 is supplied to the intermediate liquid pipe 341 → the high-temperature heat exchange channel 342 →
The liquid is sent to the low-temperature regenerator 4 through the middle liquid pipe 344 with the orifice 343, and the absorbent in the low-temperature regenerator 4 is diluted.

【0055】稀釈運転中に冷却水ポンプ14及び冷却塔
ファン11の作動を継続する理由は、液を冷却する為で
ある。又、稀釈運転中に燃焼用ファン315の作動を継
続する理由は、ガスバーナ31を冷却する為である。更
に、稀釈運転中に送風ファン211の作動を停止する理
由は、冷温水20の温度上昇を極力抑える(蒸発器6内
での蒸発を阻止)為である。
The reason why the operation of the cooling water pump 14 and the cooling tower fan 11 is continued during the dilution operation is to cool the liquid. The reason why the operation of the combustion fan 315 is continued during the dilution operation is to cool the gas burner 31. Further, the reason why the operation of the blower fan 211 is stopped during the dilution operation is to suppress the temperature rise of the cold / hot water 20 as much as possible (prevent the evaporation in the evaporator 6).

【0056】ステップs9で、高温再生器3の温度≦1
10℃である(温度センサ91が110℃以下の温度を
検出)か否か判別し、110℃以下の場合(YES)
は、ステップs10に進み、110℃を越えている場合
は、ステップs8に戻って上記稀釈運転を継続する。
At step s9, the temperature of the high-temperature regenerator 3 ≦ 1
It is determined whether or not the temperature is 10 ° C. (the temperature sensor 91 detects a temperature of 110 ° C. or less).
Proceeds to step s10, and if it exceeds 110 ° C., returns to step s8 to continue the dilution operation.

【0057】ステップs10で、冷媒弁54を閉弁し、
燃焼用ファン315、タンデムポンプ80、冷却水ポン
プ14、及び冷却塔ファン11の作動を停止し、稀釈運
転を終了(高温異常停止)する。
In step s10, the refrigerant valve 54 is closed,
The operation of the combustion fan 315, the tandem pump 80, the cooling water pump 14, and the cooling tower fan 11 is stopped, and the dilution operation is terminated (abnormal high temperature stop).

【0058】本実施例の吸収式冷暖房装置Aは、以下の
利点を有する。高温再生器3が異常に昇温すると、蒸気
冷媒35、42の生成が促進されるので、高温再生器3
及び低温再生器4内で分離が進行し、部分的に吸収液
(高温再生器3、低温再生器4、吸収器7内の吸収液)
の濃度が高くなり、吸収液が晶析する可能性が高くな
る。
The absorption type air conditioner A of this embodiment has the following advantages. When the temperature of the high-temperature regenerator 3 rises abnormally, the generation of the vapor refrigerants 35 and 42 is promoted.
The separation proceeds in the low-temperature regenerator 4 and partially absorbs (absorbent in the high-temperature regenerator 3, the low-temperature regenerator 4, and the absorber 7).
And the likelihood of crystallization of the absorbing solution increases.

【0059】しかし、吸収式冷暖房装置Aは、温度セン
サ91が175℃以上を検出して、“高温異常停止”す
る際、制御器9が、ガス電磁弁311、312を閉弁
(ガスバーナ31を消火)し、送風ファン211の作動
を停止し、冷媒弁54を開弁維持し、タンデムポンプ8
0、冷却水ポンプ14、冷却塔ファン11の作動を継続
する稀釈運転を行う構成を採用している。
However, in the absorption type air conditioner A, when the temperature sensor 91 detects 175 ° C. or more and the “high temperature abnormal stop” is performed, the controller 9 closes the gas solenoid valves 311 and 312 (the gas burner 31 is turned off). (Fire extinguishing), the operation of the blower fan 211 is stopped, the refrigerant valve 54 is kept open, and the tandem pump 8
0, a configuration for performing a dilution operation for continuing the operation of the cooling water pump 14 and the cooling tower fan 11 is adopted.

【0060】これにより、凝縮器16内に溜まっている
液冷媒52は、速やかに蒸発器6を経て吸収器7に送り
込まれ、吸収液7内の希液33が高温再生器3に戻さ
れ、高温再生器3内の吸収液は稀釈される。又、稀釈さ
れた高温再生器3内の吸収液は、中液配管341→高温
熱交換流路342→オリフィス343付きの中液配管3
44を経て低温再生器4に送り込まれ、低温再生器4内
の吸収液は稀釈される。
As a result, the liquid refrigerant 52 stored in the condenser 16 is immediately sent to the absorber 7 via the evaporator 6, and the dilute liquid 33 in the absorbent 7 is returned to the high temperature regenerator 3, The absorption liquid in the high-temperature regenerator 3 is diluted. The diluted absorption liquid in the high-temperature regenerator 3 is supplied to the middle liquid pipe 341 → the high-temperature heat exchange channel 342 → the middle liquid pipe 3 having the orifice 343.
It is sent to the low-temperature regenerator 4 via 44, and the absorbing solution in the low-temperature regenerator 4 is diluted.

【0061】この為、高温再生器3が異常昇温した際に
部分的に高濃度となる吸収液(高温再生器3、低温再生
器4、吸収器7内の吸収液)の濃度分布が速やかに平均
化され、吸収液の晶析を防止する事ができる。尚、異常
昇温の原因を突き止めて解消すれば、支障無く、再運転
(冷房運転)を行う事ができる。
For this reason, the concentration distribution of the absorbing solution (the absorbing solution in the high-temperature regenerator 3, the low-temperature regenerator 4, and the absorber 7) which becomes partially high when the high-temperature regenerator 3 abnormally rises in temperature rapidly. And the crystallization of the absorbing solution can be prevented. In addition, if the cause of the abnormal temperature rise is identified and eliminated, the re-operation (cooling operation) can be performed without any trouble.

【0062】本発明は、上記実施例以外に、つぎの実施
態様を含む。 a.タンデムポンプ80を用いず、冷温水ポンプと溶液
ポンプとを個別のポンプで構成しても良い(請求項1、
2に対応)。この場合、稀釈運転中、冷温水ポンプを停
止する。 b.吸収式冷暖房装置Aは、冷房運転のみ行う構成であ
っても良い。 c.加熱源は電気ヒータ等であっても良い。
The present invention includes the following embodiments in addition to the above embodiment. a. Instead of using the tandem pump 80, the cold / hot water pump and the solution pump may be constituted by separate pumps.
2). In this case, the cold / hot water pump is stopped during the dilution operation. b. The absorption cooling and heating device A may be configured to perform only the cooling operation. c. The heating source may be an electric heater or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る吸収式冷暖房装置の原
理説明図である。
FIG. 1 is a diagram illustrating the principle of an absorption-type cooling and heating apparatus according to an embodiment of the present invention.

【図2】その吸収式冷暖房装置のシステム図である。FIG. 2 is a system diagram of the absorption type cooling and heating device.

【図3】その吸収式冷暖房装置を冷房運転させた場合の
作動説明図である。
FIG. 3 is an operation explanatory diagram when the absorption type cooling and heating apparatus is operated for cooling.

【図4】その吸収式冷暖房装置を暖房運転させた場合の
作動説明図である。
FIG. 4 is an operation explanatory diagram when the absorption type cooling / heating device is operated for heating.

【図5】その吸収式冷暖房装置が“高温異常停止”する
際における、制御器の作動を示すフローチャートであ
る。
FIG. 5 is a flowchart showing the operation of the controller when the absorption-type cooling / heating device performs “high temperature abnormal stop”.

【符号の説明】[Explanation of symbols]

A 吸収式冷暖房装置(吸収式冷房装置) 1 冷却水回路 2 冷温水回路(冷水回路) 3 高温再生器 4 低温再生器 5 凝縮器 6 蒸発器 7 吸収器 8 吸収サイクル 9 制御器 11 冷却塔ファン 12 冷却塔(室外熱交換器) 14 冷却水ポンプ 15 吸収器伝熱管 16 凝縮器伝熱管 21 室内熱交換器 31 ガスバーナ(加熱源) 32 加熱部 33 希液(低濃度吸収液) 34 中液(中濃度吸収液) 35 蒸気冷媒 37 蒸発器伝熱管 41 濃液(高濃度吸収液) 42 蒸気冷媒(高温冷媒) 52 液冷媒 53 冷媒配管 54 冷媒弁 61 蒸気冷媒 80 タンデムポンプ 91 温度センサ(温度検出手段) 211 送風ファン 801 冷温水ポンプ部(冷温水ポンプ) 802 溶液ポンプ部(溶液ポンプ) A Absorption cooling / heating device (absorption cooling device) 1 Cooling water circuit 2 Cooling / heating water circuit (Cooling water circuit) 3 High temperature regenerator 4 Low temperature regenerator 5 Condenser 6 Evaporator 7 Absorber 8 Absorption cycle 9 Controller 11 Cooling tower fan 12 Cooling Tower (Outdoor Heat Exchanger) 14 Cooling Water Pump 15 Absorber Heat Transfer Tube 16 Condenser Heat Transfer Tube 21 Indoor Heat Exchanger 31 Gas Burner (Heating Source) 32 Heating Unit 33 Rare Liquid (Low Concentration Absorbent) 34 Medium Liquid ( Medium-concentration absorbing liquid 35 Vapor refrigerant 37 Evaporator heat transfer tube 41 Concentrated liquid (high-concentration absorbing liquid) 42 Vapor refrigerant (high-temperature refrigerant) 52 Liquid refrigerant 53 Refrigerant pipe 54 Refrigerant valve 61 Vapor refrigerant 80 Tandem pump 91 Temperature sensor (Temperature detection Means) 211 Blow fan 801 Cold / hot water pump (cold / hot water pump) 802 Solution pump (solution pump)

フロントページの続き (72)発明者 内藤 佐登志 静岡県浜松市倉松町916番地の1 株式 会社ハマテック内 (72)発明者 河本 薫 大阪市中央区平野町四丁目1番2号 大 阪瓦斯株式会社内 (72)発明者 高橋 慎介 大阪市中央区平野町四丁目1番2号 大 阪瓦斯株式会社内 (56)参考文献 特開 平7−190538(JP,A) 特開 平3−134442(JP,A) 特開 平6−229645(JP,A) 特開 平2−213659(JP,A) 特開 平6−347119(JP,A) 実開 平2−28051(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 306 Continued on the front page (72) Inventor Satoshi Naito One of 916 Kuramatsucho, Hamamatsu City, Shizuoka Prefecture Inside Hamatech Co., Ltd. (72) Inventor Kaoru Kawamoto 4-1-2 Hiranocho, Chuo-ku, Osaka-shi Osaka Gas Co., Ltd. (72) Inventor Shinsuke Takahashi 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi Inside Osaka Gas Co., Ltd. (56) References JP-A-7-190538 (JP, A) JP-A-3-134442 (JP) JP-A-6-229645 (JP, A) JP-A-2-213659 (JP, A) JP-A-6-347119 (JP, A) JP-A-2-28051 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) F25B 15/00 306

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 室外熱交換器、吸収器伝熱管、凝縮器伝
熱管を順に環状接続してなり冷却水ポンプにより冷却水
を循環させる冷却水回路と、 室内熱交換器、蒸発器伝熱管を環状接続してなり冷水ポ
ンプにより冷水を循環させる冷水回路と、 加熱源により低濃度吸収液中の冷媒を気化させて中濃度
吸収液と蒸気冷媒とに分離する高温再生器、該高温再生
器を内包し前記中濃度吸収液を高濃度吸収液と蒸気冷媒
とに分離する低温再生器、前記凝縮器伝熱管を配設する
とともに各再生器から高温の蒸気冷媒が送り込まれる凝
縮器、冷媒弁を配設するとともに前記凝縮器で液化した
液冷媒を蒸発器に導く冷媒配管、この液冷媒を減圧下で
蒸発させる蒸発器、該蒸発器に併設され前記吸収器伝熱
管を配設し前記蒸発器で蒸発した蒸気冷媒を前記低温再
生器から送られる高濃度吸収液に吸収させる吸収器、及
び該吸収器内の低濃度吸収液を前記高温再生器に戻す溶
液ポンプを有する吸収サイクルと、 前記高温再生器の温度を検出する温度検出手段と、 前記冷却水ポンプ、前記冷水ポンプ、前記加熱源、前記
冷媒弁、及び前記溶液ポンプを制御する制御器とを備
え、 前記温度検出手段が前記高温再生器の異常過熱を検出す
ると、前記制御器は、前記加熱源の作動を停止するとと
もに、前記溶液ポンプ及び前記冷却水ポンプの作動を継
続する稀釈運転を行う吸収式冷房装置において、 前記制御器は、稀釈運転中、前記冷媒弁を開弁維持する
事を特徴とする吸収式冷房装置。
1. A cooling water circuit in which an outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape, and a cooling water pump circulates cooling water; and an indoor heat exchanger and an evaporator heat transfer tube. A chilled water circuit that is annularly connected and circulates chilled water by a chilled water pump; a high-temperature regenerator that vaporizes a refrigerant in the low-concentration absorbent by a heating source and separates the refrigerant into a medium-concentration absorbent and a vapor refrigerant; A low-temperature regenerator that encloses and separates the medium-concentration absorption liquid into a high-concentration absorption liquid and a vapor refrigerant, a condenser in which high-temperature vapor refrigerant is sent from each regenerator while disposing the condenser heat transfer tube, and a refrigerant valve. A refrigerant pipe that is disposed and guides a liquid refrigerant liquefied by the condenser to an evaporator; an evaporator that evaporates the liquid refrigerant under reduced pressure; and an evaporator that is provided with the absorber heat transfer tube that is provided alongside the evaporator. Low-temperature regeneration of vapor refrigerant evaporated in An absorption cycle having an absorber for absorbing the high-concentration absorbent sent from the apparatus and a solution pump for returning the low-concentration absorbent in the absorber to the high-temperature regenerator; and a temperature detecting means for detecting the temperature of the high-temperature regenerator And a controller for controlling the cooling water pump, the chilled water pump, the heating source, the refrigerant valve, and the solution pump, and the control is performed when the temperature detecting unit detects abnormal overheating of the high temperature regenerator. The absorption type cooling device performs a dilution operation while stopping the operation of the heating source and continuing the operation of the solution pump and the cooling water pump, wherein the controller opens the refrigerant valve during the dilution operation. Absorption cooling system characterized by maintaining a valve.
【請求項2】 冷却塔ファンを付設した冷却塔、吸収器
伝熱管、凝縮器伝熱管を順に環状接続してなり冷却水ポ
ンプにより冷却水を循環させる冷却水回路と、 送風ファンを付設した室内熱交換器、蒸発器伝熱管を環
状接続してなり冷水ポンプにより冷水を循環させる冷水
回路と、 加熱源により低濃度吸収液中の冷媒を気化させて中濃度
吸収液と蒸気冷媒とに分離する高温再生器、該高温再生
器を内包し前記中濃度吸収液を高濃度吸収液と蒸気冷媒
とに分離する低温再生器、前記凝縮器伝熱管を配設する
とともに各再生器から高温の蒸気冷媒が送り込まれる凝
縮器、冷媒弁を配設するとともに前記凝縮器で液化した
液冷媒を蒸発器に導く冷媒配管、この液冷媒を減圧下で
蒸発させる蒸発器、該蒸発器に併設され前記吸収器伝熱
管を配設し前記蒸発器で蒸発した蒸気冷媒を前記低温再
生器から送られる高濃度吸収液に吸収させる吸収器、及
び該吸収器内の低濃度吸収液を前記高温再生器に戻す溶
液ポンプを有する吸収サイクルと、 前記高温再生器の温度を検出する温度検出手段と、 前記冷却塔ファン、前記送風ファン、前記冷却水ポン
プ、前記冷水ポンプ、前記加熱源、前記冷媒弁、及び前
記溶液ポンプを制御する制御器とを備え、 前記温度検出手段が前記高温再生器の異常過熱を検出す
ると、前記制御器は、前記加熱源及び前記送風ファンの
作動を停止するとともに、前記溶液ポンプ、前記冷却水
ポンプ、及び前記冷却塔ファンの作動を継続する稀釈運
転を行う吸収式冷房装置において、 前記制御器は、稀釈運転中、前記冷媒弁を開弁維持する
事を特徴とする吸収式冷房装置。
2. A cooling water circuit in which a cooling tower provided with a cooling tower fan, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape to circulate cooling water by a cooling water pump, and a room provided with a blower fan. A chilled water circuit in which heat exchangers and evaporator heat transfer tubes are connected in a ring, and chilled water is circulated by a chilled water pump, and a heating source vaporizes the refrigerant in the low-concentration absorbent and separates it into medium-concentration absorbent and vapor refrigerant. A high-temperature regenerator, a low-temperature regenerator that contains the high-temperature regenerator and separates the medium-concentration absorbent into a high-concentration absorbent and a vapor refrigerant, and the condenser heat-transfer tube is provided. A refrigerant pipe, which is provided with a refrigerant valve and a refrigerant valve for introducing a liquid refrigerant liquefied by the condenser to an evaporator, an evaporator for evaporating the liquid refrigerant under reduced pressure, and an absorber provided along with the evaporator. Heat transfer tubes are installed and the steam An absorber for absorbing the vapor refrigerant evaporated in the absorber into the high-concentration absorbent sent from the low-temperature regenerator, and an absorption cycle having a solution pump for returning the low-concentration absorbent in the absorber to the high-temperature regenerator; Temperature detecting means for detecting the temperature of the high-temperature regenerator, and a controller for controlling the cooling tower fan, the blower fan, the cooling water pump, the cold water pump, the heating source, the refrigerant valve, and the solution pump. When the temperature detecting means detects abnormal overheating of the high-temperature regenerator, the controller stops the operation of the heating source and the blower fan, and the solution pump, the cooling water pump, and the cooling tower. An absorption-type cooling device that performs a dilution operation in which the operation of a fan is continued, wherein the controller keeps the refrigerant valve open during the dilution operation.
【請求項3】 冷却塔ファンを付設した冷却塔、吸収器
伝熱管、凝縮器伝熱管を順に環状接続してなり冷却水ポ
ンプにより冷却水を循環させる冷却水回路と、 送風ファンを付設した室内熱交換器、蒸発器伝熱管を環
状接続してなり、タンデムポンプの冷水ポンプ部により
冷水を循環させる冷水回路と、 加熱源により低濃度吸収液中の冷媒を気化させて中濃度
吸収液と蒸気冷媒とに分離する高温再生器、該高温再生
器を内包し前記中濃度吸収液を高濃度吸収液と蒸気冷媒
とに分離する低温再生器、前記凝縮器伝熱管を配設する
とともに各再生器から高温の蒸気冷媒が送り込まれる凝
縮器、冷媒弁を配設するとともに前記凝縮器で液化した
液冷媒を蒸発器に導く冷媒配管、この液冷媒を減圧下で
蒸発させる蒸発器、該蒸発器に併設され前記吸収器伝熱
管を配設し前記蒸発器で蒸発した蒸気冷媒を前記低温再
生器から送られる高濃度吸収液に吸収させる吸収器、及
び該吸収器内の低濃度吸収液を前記高温再生器に戻すタ
ンデムポンプの溶液ポンプ部を有する吸収サイクルと、 前記高温再生器の温度を検出する温度検出手段と、 前記冷却塔ファン、前記送風ファン、前記冷却水ポン
プ、前記タンデムポンプ、前記加熱源、及び前記冷媒弁
を制御する制御器とを備え、 前記温度検出手段が前記高温再生器の異常過熱を検出す
ると、前記制御器は、前記加熱源及び前記送風ファンの
作動を停止するとともに、前記タンデムポンプ、前記冷
却水ポンプ、及び前記冷却塔ファンの作動を継続する稀
釈運転を行う吸収式冷房装置において、 前記制御器は、稀釈運転中、前記冷媒弁を開弁維持する
事を特徴とする吸収式冷房装置。
3. A cooling water circuit in which a cooling tower provided with a cooling tower fan, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape to circulate cooling water by a cooling water pump, and a room provided with a blower fan. A chilled water circuit in which heat exchangers and evaporator heat transfer tubes are connected in a ring, and chilled water is circulated by a chilled water pump part of a tandem pump, and a medium in the low-concentration absorbent is vaporized by vaporizing the refrigerant in the low-concentration absorbent by a heating source A high-temperature regenerator that separates the refrigerant into a refrigerant, a low-temperature regenerator that includes the high-temperature regenerator and separates the medium-concentration absorbing liquid into a high-concentration absorbing liquid and a vapor refrigerant, A condenser pipe into which high-temperature vapor refrigerant is fed, a refrigerant pipe provided with a refrigerant valve and a liquid refrigerant liquefied by the condenser to an evaporator, an evaporator for evaporating the liquid refrigerant under reduced pressure, and an evaporator. Attached to the absorber An absorber for disposing a heat pipe and absorbing the vapor refrigerant evaporated by the evaporator into the high-concentration absorbent sent from the low-temperature regenerator; and a tandem pump for returning the low-concentration absorbent in the absorber to the high-temperature regenerator An absorption cycle having a solution pump section, a temperature detecting means for detecting a temperature of the high-temperature regenerator, the cooling tower fan, the blower fan, the cooling water pump, the tandem pump, the heating source, and the refrigerant valve. When the temperature detecting means detects abnormal overheating of the high-temperature regenerator, the controller stops the operation of the heating source and the blower fan, and performs the operation of the tandem pump and the cooling device. In an absorption type cooling apparatus that performs a diluting operation for continuing the operation of the water pump and the cooling tower fan, the controller may maintain the refrigerant valve open during the diluting operation. Absorption type cooling apparatus according to symptoms.
JP7306029A 1995-09-05 1995-11-24 Absorption cooling system Expired - Fee Related JP3056987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7306029A JP3056987B2 (en) 1995-09-05 1995-11-24 Absorption cooling system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-228309 1995-09-05
JP22830995 1995-09-05
JP7306029A JP3056987B2 (en) 1995-09-05 1995-11-24 Absorption cooling system

Publications (2)

Publication Number Publication Date
JPH09133426A JPH09133426A (en) 1997-05-20
JP3056987B2 true JP3056987B2 (en) 2000-06-26

Family

ID=26528173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7306029A Expired - Fee Related JP3056987B2 (en) 1995-09-05 1995-11-24 Absorption cooling system

Country Status (1)

Country Link
JP (1) JP3056987B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101718442B1 (en) * 2010-08-09 2017-03-21 신토고교 가부시키가이샤 Blasting apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020050504A (en) * 2000-12-21 2002-06-27 황한규 Absorption freezer with crystalization prevention method
JP5075346B2 (en) * 2006-03-28 2012-11-21 三洋電機株式会社 Absorption refrigerator
KR101012051B1 (en) * 2008-03-28 2011-01-31 산요덴키가부시키가이샤 Absorption heat pump
KR102066891B1 (en) 2019-10-07 2020-01-16 박희문 Energy-Saving Absorption Refrigeration System

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101718442B1 (en) * 2010-08-09 2017-03-21 신토고교 가부시키가이샤 Blasting apparatus

Also Published As

Publication number Publication date
JPH09133426A (en) 1997-05-20

Similar Documents

Publication Publication Date Title
JP3056987B2 (en) Absorption cooling system
JP2000018762A (en) Absorption refrigerating machine
JP2994250B2 (en) Absorption air conditioner
JP2001099474A (en) Air conditioner
JP3128501B2 (en) Absorption air conditioner
JP2954519B2 (en) Absorption air conditioner
JP3056991B2 (en) Absorption air conditioner
JP2954513B2 (en) Absorption air conditioner
JP3056990B2 (en) Absorption air conditioner
JP3241623B2 (en) Absorption air conditioner
JP2994251B2 (en) Absorption cooling system
JP3057017B2 (en) Absorption air conditioner
JP3144538B2 (en) Absorption air conditioner
JP2839442B2 (en) Absorption refrigeration cycle device
JP3241624B2 (en) Absorption air conditioner
JP2650654B2 (en) Absorption refrigeration cycle device
JP3130465B2 (en) Absorption air conditioner
JP3308795B2 (en) Absorption air conditioner
JP3202157B2 (en) Air conditioner
KR100188893B1 (en) Absorption type air conditioning device
KR100295093B1 (en) Control method of diluting operation of absorption air conditioner
JP2668039B2 (en) Absorption chiller / heater
JP3328164B2 (en) Absorption air conditioner
JP3128502B2 (en) Absorption air conditioner
JPH10220901A (en) Absorbing type air conditioner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees