JP3144538B2 - Absorption air conditioner - Google Patents

Absorption air conditioner

Info

Publication number
JP3144538B2
JP3144538B2 JP30716295A JP30716295A JP3144538B2 JP 3144538 B2 JP3144538 B2 JP 3144538B2 JP 30716295 A JP30716295 A JP 30716295A JP 30716295 A JP30716295 A JP 30716295A JP 3144538 B2 JP3144538 B2 JP 3144538B2
Authority
JP
Japan
Prior art keywords
temperature
regenerator
evaporator
temperature regenerator
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30716295A
Other languages
Japanese (ja)
Other versions
JPH09126580A (en
Inventor
克也 大島
茂 吉村
克人 池田
泰成 古川
徹 福知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Rinnai Corp
Original Assignee
Osaka Gas Co Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Rinnai Corp filed Critical Osaka Gas Co Ltd
Priority to JP30716295A priority Critical patent/JP3144538B2/en
Publication of JPH09126580A publication Critical patent/JPH09126580A/en
Application granted granted Critical
Publication of JP3144538B2 publication Critical patent/JP3144538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は吸収式空調装置に関
する。
The present invention relates to an absorption type air conditioner.

【0002】[0002]

【従来の技術】室外熱交換器、吸収器伝熱管、及び凝縮
器伝熱管を順に環状接続してなり、冷却水ポンプにより
冷却水を循環させる冷却水回路と、室内熱交換器、蒸発
器伝熱管を環状接続してなり、冷水ポンプにより冷水を
循環させる冷水回路と、加熱源により低濃度吸収液中の
冷媒を気化させて中濃度吸収液と蒸気冷媒とに分離する
高温再生器、該高温再生器を内包し前記中濃度吸収液を
高濃度吸収液と蒸気冷媒とに分離する低温再生器、前記
凝縮器伝熱管を配設するとともに各再生器から高温の蒸
気冷媒が送り込まれる凝縮器、該凝縮器で液化した液冷
媒を減圧下で蒸発させる蒸発器、該蒸発器に併設され前
記吸収器伝熱管を配設し前記蒸発器で蒸発した蒸気冷媒
を前記低温再生器から送られる高濃度吸収液に吸収させ
る吸収器、及び該吸収器内の吸収液を前記高温再生器に
戻す溶液ポンプを有する吸収回路と、前記冷却水ポン
プ、前記冷水ポンプ、前記加熱源、及び前記溶液ポンプ
を制御する制御器とを備えた吸収式空調装置が従来より
知られている。
2. Description of the Related Art An outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape, a cooling water circuit for circulating cooling water by a cooling water pump, an indoor heat exchanger, and an evaporator transfer tube. A chilled water circuit in which heat pipes are connected in a loop and a chilled water pump circulates chilled water; a high-temperature regenerator that vaporizes a refrigerant in the low-concentration absorbent by a heating source and separates the refrigerant into a medium-concentration absorbent and a vapor refrigerant; A low-temperature regenerator that includes a regenerator and separates the medium-concentration absorbing liquid into a high-concentration absorbing liquid and a vapor refrigerant, a condenser in which high-temperature vapor refrigerant is sent from each regenerator while the condenser heat transfer tubes are provided. An evaporator for evaporating the liquid refrigerant liquefied in the condenser under reduced pressure; a heat transfer tube provided in the evaporator in parallel with the absorber; and a high concentration of vapor refrigerant evaporated in the evaporator sent from the low-temperature regenerator. An absorber to be absorbed by an absorbing solution; and An absorption air conditioner comprising: an absorption circuit having a solution pump for returning an absorbing solution in a collector to the high-temperature regenerator; and a controller for controlling the cooling water pump, the chilled water pump, the heating source, and the solution pump. Devices are conventionally known.

【0003】[0003]

【発明が解決しようとする課題】様々の試験を行った結
果、本願発明者らは、上記従来の吸収式空調装置は、以
下に示す課題を有する事を見いだした。
As a result of conducting various tests, the present inventors have found that the above-mentioned conventional absorption type air conditioner has the following problems.

【0004】前回の冷房運転が終了してから長時間が経
過して、高温再生器の温度(吸収液の温度)が低下して
いる状態で冷房運転を再開すると、高温再生器内が略真
空である為、核沸騰が起こり、大きな突沸音(バリバリ
音)がしばらくの間、続く。又、高温再生器の温度(吸
収液の温度)が低い状態で、加熱を開始(冷房運転を開
始する)と、高温再生器の温度(吸収液の温度)が上昇
するまで大きな音で沸騰音が続く。
When a long time has elapsed since the last cooling operation and the cooling operation is resumed in a state where the temperature of the high-temperature regenerator (the temperature of the absorbing solution) is lowered, the inside of the high-temperature regenerator becomes substantially vacuum. Therefore, nucleate boiling occurs, and a loud bumping sound (crisp sound) continues for a while. Also, when heating (cooling operation is started) in a state where the temperature of the high-temperature regenerator (temperature of the absorbing solution) is low, a boiling sound is generated until the temperature of the high-temperature regenerator (temperature of the absorbing solution) rises. Followed by

【0005】本発明の目的は、高温再生器の温度が低い
場合に冷房運転を開始しても、突沸音や大きな沸騰音が
発生しない吸収式空調装置の提供にある。
An object of the present invention is to provide an absorption type air conditioner which does not generate bumping noise or loud boiling noise even when the cooling operation is started when the temperature of the high temperature regenerator is low.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、以下の構成を採用した。 (1)室外熱交換器、吸収器伝熱管、及び凝縮器伝熱管
を順に環状接続してなり、冷却水ポンプにより冷却水を
循環させる冷却水回路と、室内熱交換器、蒸発器伝熱管
を環状接続してなり、冷水ポンプにより冷水を循環させ
る冷水回路と、加熱源により低濃度吸収液中の冷媒を気
化させて中濃度吸収液と蒸気冷媒とに分離する高温再生
器、該高温再生器を内包し前記中濃度吸収液を高濃度吸
収液と蒸気冷媒とに分離する低温再生器、前記凝縮器伝
熱管を配設するとともに各再生器から高温の蒸気冷媒が
送り込まれる凝縮器、該凝縮器で液化した液冷媒を減圧
下で蒸発させる蒸発器、該蒸発器に併設され前記吸収器
伝熱管を配設し前記蒸発器で蒸発した蒸気冷媒を前記低
温再生器から送られる高濃度吸収液に吸収させる吸収
器、及び該吸収器内の吸収液を前記高温再生器に戻す溶
液ポンプを有する吸収回路と、冷房運転中は閉弁する電
磁開閉弁を途中に配設し、前記高温再生器と前記蒸発器
とを接続するバイパス管と、前記高温再生器の温度を検
出する温度検出手段と、前記冷却水ポンプ、前記冷水ポ
ンプ、前記加熱源、前記溶液ポンプ、及び前記電磁開閉
弁を制御する制御器とを備えた吸収式空調装置におい
て、前記高温再生器の温度が設定温度以下の場合に冷房
運転開始が指示されると、前記制御器は、前記電磁開閉
弁を開弁し前記溶液ポンプを回転させる突沸防止運転を
実施する。
In order to solve the above problems, the present invention employs the following constitution. (1) An outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape, and a cooling water circuit for circulating cooling water by a cooling water pump, an indoor heat exchanger, and an evaporator heat transfer tube. A chilled water circuit that is annularly connected and circulates chilled water by a chilled water pump; a high-temperature regenerator that vaporizes a refrigerant in the low-concentration absorbent by a heating source and separates the refrigerant into a medium-concentration absorbent and a vapor refrigerant; , A low-temperature regenerator that separates the medium-concentration absorbing liquid into a high-concentration absorbing liquid and a vapor refrigerant, a condenser in which the condenser heat transfer tubes are provided, and a high-temperature vapor refrigerant is sent from each regenerator, An evaporator for evaporating the liquid refrigerant liquefied in the evaporator under reduced pressure, a high-concentration absorbing liquid sent from the low-temperature regenerator, the evaporator being provided with the absorber heat transfer tube, and the vapor refrigerant evaporated in the evaporator being sent from the low-temperature regenerator Absorber to be absorbed into the inside of the absorber An absorption circuit having a solution pump that returns the absorbent to the high-temperature regenerator, and a bypass pipe connecting an electromagnetic on-off valve that closes during cooling operation and connecting the high-temperature regenerator and the evaporator, An absorption air conditioner comprising: a temperature detection unit that detects a temperature of the high-temperature regenerator; and a controller that controls the cooling water pump, the chilled water pump, the heating source, the solution pump, and the electromagnetic on-off valve. When the start of the cooling operation is instructed when the temperature of the high-temperature regenerator is equal to or lower than the set temperature, the controller executes the bumping prevention operation of opening the electromagnetic on-off valve and rotating the solution pump.

【0007】(2)室外熱交換器、吸収器伝熱管、及び
凝縮器伝熱管を順に環状接続してなり、冷却水ポンプに
より冷却水を循環させる冷却水回路と、室内熱交換器、
蒸発器伝熱管を環状接続してなり、冷水ポンプにより冷
水を循環させる冷水回路と、加熱源により低濃度吸収液
中の冷媒を気化させて中濃度吸収液と蒸気冷媒とに分離
する高温再生器、該高温再生器を内包し前記中濃度吸収
液を高濃度吸収液と蒸気冷媒とに分離する低温再生器、
前記凝縮器伝熱管を配設するとともに各再生器から高温
の蒸気冷媒が送り込まれる凝縮器、該凝縮器で液化した
液冷媒を減圧下で蒸発させる蒸発器、該蒸発器に併設さ
れ前記吸収器伝熱管を配設し前記蒸発器で蒸発した蒸気
冷媒を前記低温再生器から送られる高濃度吸収液に吸収
させる吸収器、及び該吸収器内の吸収液を前記高温再生
器に戻す溶液ポンプを有する吸収回路と、前記高温再生
器の温度を検出する温度検出手段と、前記冷却水ポン
プ、前記冷水ポンプ、前記加熱源、及び前記溶液ポンプ
を制御する制御器とを備えた吸収式空調装置において、
前記高温再生器の温度が第1設定温度以下の場合に冷房
運転開始が指示されると、前記制御器は、小能力で前記
加熱源を作動させる沸騰音抑制運転を実施し、前記高温
再生器の温度が第2設定温度以上に上昇すると大能力で
前記加熱源を作動させるターボ運転を実施する。
(2) An outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape, and a cooling water circuit for circulating cooling water by a cooling water pump;
A chilled water circuit in which evaporator heat transfer tubes are connected in a ring, and chilled water is circulated by a chilled water pump. A low-temperature regenerator including the high-temperature regenerator and separating the medium-concentration absorbent into a high-concentration absorbent and a vapor refrigerant,
A condenser in which the condenser heat transfer tubes are provided and into which high-temperature vapor refrigerant is fed from each regenerator; an evaporator for evaporating the liquid refrigerant liquefied in the condenser under reduced pressure; and an absorber provided in conjunction with the evaporator. An absorber that disposes a heat transfer tube and absorbs the vapor refrigerant evaporated by the evaporator into a high-concentration absorbent sent from the low-temperature regenerator; and a solution pump that returns the absorbent in the absorber to the high-temperature regenerator. An absorption air conditioner comprising: an absorption circuit having: a temperature detection unit that detects a temperature of the high-temperature regenerator; and a controller that controls the cooling water pump, the cold water pump, the heating source, and the solution pump. ,
When the start of the cooling operation is instructed when the temperature of the high-temperature regenerator is equal to or lower than the first set temperature, the controller performs a boiling sound suppressing operation for operating the heating source with a small capacity, and When the temperature rises above the second set temperature, a turbo operation for operating the heating source with a large capacity is performed.

【0008】[0008]

【作用】[Action]

〔冷房運転の際の、請求項1〜2に共通する作用〕高温
再生器は加熱源により加熱され、低濃度吸収液は、冷媒
が気化して中濃度吸収液と蒸気冷媒とに分離する。低温
再生器は、中濃度吸収液を高濃度吸収液と蒸気冷媒とに
分離する。各再生器から蒸気冷媒が凝縮器に送り込まれ
る。凝縮器伝熱管を流れる冷却水により蒸気冷媒が凝縮
し、凝縮器内に溜まる。
[Operation common to claims 1 and 2 during cooling operation] The high-temperature regenerator is heated by a heating source, and the low-concentration absorbent is vaporized by the refrigerant and separated into a medium-concentration absorbent and a vapor refrigerant. The low-temperature regenerator separates the medium-concentration absorbent into a high-concentration absorbent and a vapor refrigerant. The vapor refrigerant is sent from each regenerator to the condenser. The vapor refrigerant is condensed by the cooling water flowing through the condenser heat transfer tube and accumulates in the condenser.

【0009】凝縮器から蒸発器に送りこまれた液冷媒
は、冷水が流れる蒸発器伝熱管に当たって蒸発し冷水を
冷却する。冷却された冷水が室内熱交換器を通過する事
により室内冷房が行われる。蒸発器で蒸発した蒸気冷媒
は、低温再生器から送られる高濃度吸収液に吸収され吸
収器内に溜まる。吸収器内に溜まった液冷媒は、溶液ポ
ンプにより高温再生器に戻される。
The liquid refrigerant sent from the condenser to the evaporator strikes the evaporator heat transfer tube through which the cold water flows, evaporates and cools the cold water. Indoor cooling is performed by the cooled cold water passing through the indoor heat exchanger. The vapor refrigerant evaporated in the evaporator is absorbed by the high-concentration absorbent sent from the low-temperature regenerator and accumulates in the absorber. The liquid refrigerant accumulated in the absorber is returned to the high temperature regenerator by the solution pump.

【0010】〔請求項1の作用〕高温再生器の温度が高
く、設定温度を越える場合に冷房運転開始が指示される
と、核沸騰が起こる可能性は極めて小さいので、制御器
は突沸防止運転を行わずに冷房運転を実施する。高温再
生器の温度が低く、設定温度以下の場合に冷房運転開始
が指示されると、制御器は、電磁開閉弁を開弁し溶液ポ
ンプを回転させる突沸防止運転を実施する。
When the temperature of the high-temperature regenerator is high and exceeds the set temperature, if the start of the cooling operation is instructed, the possibility of nucleate boiling is extremely small. The cooling operation is performed without performing. When the start of the cooling operation is instructed when the temperature of the high-temperature regenerator is low and is equal to or lower than the set temperature, the controller executes the bumping prevention operation of opening the electromagnetic on-off valve and rotating the solution pump.

【0011】溶液ポンプを回転させると高温再生器内の
吸収液が流動するので、核沸騰が起こらない。尚、電磁
開閉弁を開弁する理由は、低温再生器に吸収液が溜まる
のを防止し、吸収液を、高温再生器→バイパス管(電磁
開閉弁)→蒸発器→吸収器→溶液ポンプ→高温再生器と
循環させながら、昇温させる為である。
When the solution pump is rotated, the absorption liquid in the high-temperature regenerator flows, so that nucleate boiling does not occur. The reason for opening the solenoid on-off valve is to prevent the absorption liquid from accumulating in the low-temperature regenerator and transfer the absorption liquid to the high-temperature regenerator → bypass pipe (electromagnetic on-off valve) → evaporator → absorber → solution pump → This is to raise the temperature while circulating with the high-temperature regenerator.

【0012】〔請求項2の作用〕高温再生器の温度が高
く、第1設定温度を越える場合は、加熱源を作動させて
も沸騰音が小さいので、制御器は、沸騰音抑制運転を行
わずに冷房運転を実施する。高温再生器の温度が低く、
第1設定温度以下の場合に冷房運転開始が指示される
と、制御器は、小能力で加熱源を作動させる沸騰音抑制
運転を実施する。高温再生器の温度が第2設定温度以上
に上昇すると、制御器は、大能力で加熱源を作動させる
ターボ運転を実施する。
In the case where the temperature of the high-temperature regenerator is high and exceeds the first set temperature, the boiling sound is small even when the heating source is operated, so that the controller performs the boiling sound suppressing operation. Without cooling operation. The temperature of the high-temperature regenerator is low,
When the start of the cooling operation is instructed when the temperature is equal to or lower than the first set temperature, the controller performs the boiling sound suppressing operation of operating the heating source with a small capacity. When the temperature of the high-temperature regenerator rises above the second set temperature, the controller performs a turbo operation for operating the heating source with a large capacity.

【0013】[0013]

【発明の効果】【The invention's effect】

〔請求項1について〕吸収液を流動させる事により突沸
(核沸騰)が防止でき、低騒音で冷房運転を行う事がで
きる。前回の冷房運転からあまり時間が経過せず、高温
再生器の温度が高い場合には、直ちに冷房運転を行う事
ができる。
[Claim 1] By flowing the absorbing liquid, bumping (nuclear boiling) can be prevented, and the cooling operation can be performed with low noise. If not much time has passed since the last cooling operation and the temperature of the high-temperature regenerator is high, the cooling operation can be performed immediately.

【0014】〔請求項2について〕高温再生器の温度が
低い場合に、制御器は、小能力で加熱源を作動させるの
で、沸騰音を小さくする事ができる。沸騰音抑制運転の
後にターボ運転を行うので、冷房能力が出る迄の立ち上
げ時間が長くならない。
When the temperature of the high-temperature regenerator is low, the controller operates the heating source with a small capacity, so that the boiling noise can be reduced. Since the turbo operation is performed after the boiling sound suppressing operation, the start-up time until the cooling capacity is obtained does not become long.

【0015】[0015]

【発明の実施の形態】本発明の第1実施例(請求項1に
対応)を図1〜図5に基づいて説明する。図に示す様
に、家庭用の吸収式冷暖房装置Aは、冷房運転時に冷却
水10を循環させる冷却水回路1と、冷温水20を循環
させる冷温水回路2と、高温再生器3、低温再生器4、
凝縮器5、蒸発器6、吸収器7、及び溶液ポンプ802
等を有する吸収液回路8と、制御器9、温度センサ9
1、92、93とを備える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment (corresponding to claim 1) of the present invention will be described with reference to FIGS. As shown in the figure, a domestic absorption type air conditioning system A includes a cooling water circuit 1 for circulating cooling water 10 during cooling operation, a cooling and heating water circuit 2 for circulating cooling and heating water 20, a high temperature regenerator 3, and a low temperature regeneration. Vessel 4,
Condenser 5, evaporator 6, absorber 7, and solution pump 802
Liquid circuit 8 having a controller 9 and a temperature sensor 9
1, 92, and 93.

【0016】冷却水回路1は、冷却塔ファン11を付設
した冷却塔12と、冷却水槽13と、冷却水ポンプ14
と、吸収器伝熱管15と、凝縮器伝熱管16とを順に環
状接続して構成され、冷房運転時(図3参照)には冷却
水ポンプ14(1230リットル/h)を作動させて冷
却水10を循環させる。冷却塔ファン11は、交流コン
デンサモータ111(100V- 消費電力80W、8μ
F、1200rpm/60Hz)により駆動される。
The cooling water circuit 1 includes a cooling tower 12 provided with a cooling tower fan 11, a cooling water tank 13, and a cooling water pump 14.
, An absorber heat transfer tube 15 and a condenser heat transfer tube 16 are sequentially connected in a ring shape. During cooling operation (see FIG. 3), the cooling water pump 14 (1230 liter / h) is operated to cool the cooling water. Circulate 10 The cooling tower fan 11 includes an AC condenser motor 111 (100 V, power consumption 80 W, 8 μm).
F, 1200 rpm / 60 Hz).

【0017】交流コンデンサモータ111は、トライア
ック(商標)を介してAC- 100Vに電気接続され、
温度センサ93が検出する冷却水10の温度が31.5
℃に維持される様に制御器9により制御される。尚、温
度センサ93は、冷却水ポンプ14- 吸収器伝熱管15
間を接続する冷却水管101中に配設され、吸収器伝熱
管15に供給される冷却水10の温度を検出する。暖房
運転時(図4参照)は、冷却水回路1内の冷却水10は
全て抜かれ、交流コンデンサモータ111には通電され
ない。
The AC condenser motor 111 is electrically connected to AC-100V through a triac (trademark),
The temperature of the cooling water 10 detected by the temperature sensor 93 is 31.5
The temperature is controlled by the controller 9 so as to maintain the temperature. The temperature sensor 93 is connected to the cooling water pump 14 and the heat transfer tube 15 of the absorber.
The temperature of the cooling water 10, which is provided in the cooling water pipe 101 connecting between the pipes and is supplied to the absorber heat transfer pipe 15, is detected. During the heating operation (see FIG. 4), all of the cooling water 10 in the cooling water circuit 1 is drained, and the AC condenser motor 111 is not energized.

【0018】冷温水回路2は、送風ファン211を付設
した室内熱交換器21(複数台数を並列接続可)、シス
ターン22、冷温水ポンプ801(最大能力時620リ
ットル/h)、蒸発器伝熱管37を環状接続してなり、
冷温水ポンプ801により冷温水20を循環させてい
る。尚、冷房運転時の室内熱交換器21の吸熱量は43
40kcal(最大能力時)であり、暖房運転時の室内
熱交換器21の放熱量は6200kcal(最大能力
時)である。
The chilled / hot water circuit 2 includes an indoor heat exchanger 21 provided with a blower fan 211 (a plurality of units can be connected in parallel), a cistern 22, a chilled / hot water pump 801 (at a maximum capacity of 620 liter / h), and an evaporator heat transfer tube. 37 is connected in a ring,
The cold / hot water 20 is circulated by a cold / hot water pump 801. The amount of heat absorbed by the indoor heat exchanger 21 during the cooling operation is 43
40 kcal (at the maximum capacity), and the heat radiation amount of the indoor heat exchanger 21 during the heating operation is 6,200 kcal (at the maximum capacity).

【0019】高温再生器3は、ガスバーナ31により加
熱されるドーム状の加熱室32、上方に立設する吹出筒
321、及び希液33(本実施例では58%臭化リチウ
ム水溶液)中の冷媒(水)を蒸発させて中液34(60
%臭化リチウム水溶液)と蒸気冷媒35とに分離する分
離筒322等により構成される。尚、加熱室32には、
高温再生器3の温度(希液33の温度)を測定する為の
温度センサ91が配設されている。
The high-temperature regenerator 3 includes a dome-shaped heating chamber 32 heated by a gas burner 31, a blowing cylinder 321 standing upright, and a refrigerant in a dilute liquid 33 (58% aqueous lithium bromide in this embodiment). (Water) is evaporated and the middle liquid 34 (60
% Lithium bromide aqueous solution) and a vapor refrigerant 35. In addition, in the heating chamber 32,
A temperature sensor 91 for measuring the temperature of the high temperature regenerator 3 (the temperature of the diluted liquid 33) is provided.

【0020】ガスバーナ31は、ブンゼン式であり、ガ
ス電磁弁311、312、ガス比例弁313を連設した
ガス管314によりガスが供給され、燃焼用ファン31
5により燃焼用空気が供給されて燃焼する。
The gas burner 31 is of a Bunsen type. Gas is supplied by a gas pipe 314 having gas solenoid valves 311 and 312 and a gas proportional valve 313 connected thereto.
5 supplies combustion air and burns.

【0021】冷房運転時、ガスバーナ31は以下のイン
プット量で燃焼する。 小燃焼時……3500kcal 中燃焼時……4800kcal 大燃焼時……6500kcal 比例制御……1500kcal〜4800kcal (室内熱交換器21に供給される冷温水20の温度が7
℃になる様にインプット量が制御器9により比例制御)
During the cooling operation, the gas burner 31 burns with the following input amount. Small combustion: 3500 kcal Medium combustion: 4800 kcal Large combustion: 6500 kcal Proportional control: 1500 kcal to 4800 kcal (The temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 is 7
(The input amount is controlled proportionally by the controller 9 so that the temperature becomes ° C.)

【0022】尚、冷房運転時は、冷暖切替弁36が閉弁
しているので、中液34(165℃)は、中液配管34
1→高温熱交換流路342→オリフィス343付きの中
液配管344を経て低温再生器4の上部に送り込まれ
る。
During the cooling operation, since the cooling / heating switching valve 36 is closed, the middle liquid 34 (165 ° C.)
1 → high-temperature heat exchange flow path 342 → supplied to the upper part of low-temperature regenerator 4 via middle liquid pipe 344 with orifice 343.

【0023】低温再生器4は、高温再生器3を内包し、
冷房運転時には、高温再生器3から送り込まれた中液3
4を濃液41(62%臭化リチウム水溶液)と蒸気冷媒
42とに分離する。又、暖房運転時、中液34は低温再
生器4に送り込まれない。
The low-temperature regenerator 4 includes the high-temperature regenerator 3,
During the cooling operation, the middle liquid 3 sent from the high temperature regenerator 3
4 is separated into a concentrated liquid 41 (62% aqueous solution of lithium bromide) and a vapor refrigerant 42. During the heating operation, the middle liquid 34 is not sent to the low-temperature regenerator 4.

【0024】凝縮器5には、暖房運転時、オリフィス5
11付きの蒸気冷媒配管51を介して高温再生器3から
高温の蒸気冷媒35が送り込まれるが、冷却水10が凝
縮器伝熱管16内を流れていないので凝縮しない。
The condenser 5 has an orifice 5 during heating operation.
The high-temperature vapor refrigerant 35 is sent from the high-temperature regenerator 3 through the vapor refrigerant pipe 51 provided with 11, but does not condense because the cooling water 10 does not flow in the condenser heat transfer tube 16.

【0025】冷房運転時には高温再生器3、低温再生器
4から蒸気冷媒35、42が凝縮器5に送り込まれ、蒸
気冷媒35、42は、コイル状の凝縮器伝熱管16を流
れる冷却水10によって冷却され液化し、液冷媒(水)
52は凝縮器5の底部に溜まる。尚、昇温(37.5
℃)した冷却水10は、冷却塔12で冷却(31.5
℃)される。
During the cooling operation, steam refrigerants 35 and 42 are sent from the high-temperature regenerator 3 and the low-temperature regenerator 4 to the condenser 5, and the vapor refrigerants 35 and 42 are cooled by the cooling water 10 flowing through the coil-shaped condenser heat transfer tubes 16. Cooled and liquefied, liquid refrigerant (water)
52 accumulates at the bottom of the condenser 5. In addition, temperature rise (37.5)
The cooling water 10 cooled in the cooling tower 12 (31.5 ° C.).
° C).

【0026】蒸発器6は、コイル状(溝付き)の蒸発器
伝熱管37を配設している。そして、暖房運転時には冷
暖切替弁36が開弁するので、中液配管341(冷暖切
替弁36)→暖房配管361を介して高温の中液34が
蒸発器6に送り込まれる。又、同時に、凝縮器5からは
高温の蒸気冷媒42が、冷媒配管53(冷媒弁54)を
介して送り込まれる。
The evaporator 6 is provided with a coil-shaped (with groove) evaporator heat transfer tube 37. Since the cooling / heating switching valve 36 is opened during the heating operation, the high-temperature medium liquid 34 is sent to the evaporator 6 through the middle liquid pipe 341 (the cooling / heating switching valve 36) → the heating pipe 361. At the same time, the high-temperature vapor refrigerant 42 is sent from the condenser 5 through the refrigerant pipe 53 (refrigerant valve 54).

【0027】冷房運転時に冷媒弁54が開弁すると、液
冷媒52は、冷媒配管53(冷媒弁54)→散布器55
を介して蒸発器伝熱管37に散布され、蒸発器6内は略
真空(約6.5mmHg)であるので、液冷媒52は蒸
発器伝熱管37内を流れる冷温水20から気化熱を奪っ
て蒸発する。そして、冷却された冷温水20は室内に配
置された室内熱交換器21で室内に送風される空気と熱
交換(最大能力時、吸熱4340kcal/h)して昇
温し、昇温した冷温水20は再び蒸発器伝熱管37を通
過して冷却される。
When the refrigerant valve 54 is opened during the cooling operation, the liquid refrigerant 52 is supplied to the refrigerant pipe 53 (refrigerant valve 54) → the sprayer 55.
And the inside of the evaporator 6 is substantially vacuum (approximately 6.5 mmHg). Therefore, the liquid refrigerant 52 takes vaporization heat from the cold and hot water 20 flowing through the evaporator heat transfer tube 37. Evaporate. Then, the cooled cold / hot water 20 exchanges heat with the air blown into the room (at maximum capacity, heat absorption 4340 kcal / h) in the indoor heat exchanger 21 placed in the room to raise the temperature. 20 is again cooled by passing through the evaporator heat transfer tube 37.

【0028】吸収器伝熱管15を配設した吸収器7は、
蒸発器6に併設され、上部等が蒸発器6と連絡してい
る。そして、冷房運転時には、蒸発器6で蒸発した蒸気
冷媒61は上部等から吸収器7内に進入し、低温再生器
4→濃液配管411→低温熱交換流路412→濃液配管
413→散布器70を介して吸収器伝熱管15上に散布
される濃液41に吸収され、低濃度となった希液33は
吸収器7の底部に溜まる。又、暖房運転時には、蒸発器
6から高温の冷媒が送り込まれる。
The absorber 7 provided with the absorber heat transfer tube 15 is
The upper part is connected to the evaporator 6. Then, during the cooling operation, the vapor refrigerant 61 evaporated by the evaporator 6 enters the absorber 7 from above or the like, and the low-temperature regenerator 4 → the concentrated liquid pipe 411 → the low-temperature heat exchange channel 412 → the concentrated liquid pipe 413 → dispersed. The diluted liquid 33 which has been absorbed by the concentrated liquid 41 scattered on the absorber heat transfer tube 15 via the vessel 70 and has become a low concentration accumulates at the bottom of the absorber 7. During the heating operation, a high-temperature refrigerant is sent from the evaporator 6.

【0029】溶液ポンプ802は、AC- 100Vで動
作する三相DCブラシレスモータ(定格出力200W、
消費電力250W)である。この溶液ポンプ802に
は、ホール素子800が取り付けられ、制御器9により
フィードバック制御される。尚、冷温水20の流量制御
はブロードで良いので、冷温水ポンプ801と溶液ポン
プ802とを一台のタンデムポンプで構成しても良い。
The solution pump 802 is a three-phase DC brushless motor (rated output 200 W,
Power consumption 250 W). A Hall element 800 is attached to the solution pump 802, and is feedback-controlled by the controller 9. Since the flow control of the cold / hot water 20 may be broad, the cold / hot water pump 801 and the solution pump 802 may be constituted by one tandem pump.

【0030】吸収器6の底部に溜まった希液33(暖房
運転時は吸収液)は、希液配管71→溶液ポンプ802
(最大流量100リットル/h)→希液配管72→低温
熱交換流路73→高温熱交換流路74→希液配管75を
介して高温再生器3の加熱室32に送られる。
The diluted liquid 33 (absorbed liquid during the heating operation) accumulated at the bottom of the absorber 6 is diluted with a diluted liquid pipe 71 → a solution pump 802.
(Maximum flow rate 100 liter / h) → dilute liquid pipe 72 → low temperature heat exchange channel 73 → high temperature heat exchange channel 74 → sent to heating chamber 32 of high temperature regenerator 3 via dilute liquid pipe 75.

【0031】制御器9は、運転スイッチ(図示せず)か
らの信号、温度センサ91、92、93を含む各種セン
サからの信号等に基づき、以下のものを制御する。ガス
電磁弁311、312、ガス比例弁313、冷温水ポン
プ801、溶液ポンプ802、交流コンデンサモータ1
11、冷媒弁54、冷暖切替弁36、冷却水ポンプ1
4、送風ファン211。
The controller 9 controls the following based on signals from operation switches (not shown), signals from various sensors including the temperature sensors 91, 92 and 93, and the like. Gas solenoid valves 311, 312, gas proportional valve 313, cold / hot water pump 801, solution pump 802, AC condenser motor 1
11, refrigerant valve 54, cooling / heating switching valve 36, cooling water pump 1
4, the blower fan 211.

【0032】つぎに、冷房運転を再開した場合の、制御
器9のマイクロコンピュータ(図示せず)による吸収式
冷暖房装置Aの作動を図5に基づいて述べる。冷房運転
スイッチ(図示せず)をオンすると、ステップs1で、
温度センサ91の出力に基づき、高温再生器3の温度
(希液33の温度)が50℃(第1設定温度)以下であ
るか否かを判別し、50℃以下の場合(YES)はステ
ップs2に進み、50℃を越える場合(NO)はステッ
プs14に進む。
Next, the operation of the absorption type air conditioner A by the microcomputer (not shown) of the controller 9 when the cooling operation is restarted will be described with reference to FIG. When a cooling operation switch (not shown) is turned on, in step s1,
Based on the output of the temperature sensor 91, it is determined whether or not the temperature of the high-temperature regenerator 3 (the temperature of the diluted liquid 33) is equal to or lower than 50 ° C. (first set temperature). Proceed to s2, and if it exceeds 50 ° C. (NO), proceed to step s14.

【0033】ステップs2で、冷却水槽13に水を溜め
るクーリングタワー給水処理(CT給水)を行い、終了
後、ステップs3に進む。
In step s2, a cooling tower water supply process (CT water supply) for storing water in the cooling water tank 13 is performed, and after completion, the flow proceeds to step s3.

【0034】ステップs3で、冷暖切替弁36を開弁、
溶液ポンプ802を2400rpmで低速回転させる突
沸防止運転を開始し、ステップs4に進む。この突沸防
止運転により、高温再生器3内の希液33が流動し、核
沸騰が防止できる。尚、冷暖切替弁36の開弁により、
低温再生器4に吸収液が進入せず、高温再生器3→暖房
配管361(冷暖切替弁36)→蒸発器6→吸収器7→
溶液ポンプ802→高温再生器3と循環させながら吸収
液を昇温させることができる。
At step s3, the cooling / heating switching valve 36 is opened,
The bumping prevention operation of rotating the solution pump 802 at a low speed of 2400 rpm is started, and the process proceeds to step s4. By this bumping prevention operation, the dilute liquid 33 in the high-temperature regenerator 3 flows and nucleate boiling can be prevented. By opening the cooling / heating switching valve 36,
The absorption liquid does not enter the low-temperature regenerator 4 and the high-temperature regenerator 3 → heating pipe 361 (cooling / heating switching valve 36) → evaporator 6 → absorber 7 →
The temperature of the absorbing solution can be raised while circulating from the solution pump 802 to the high temperature regenerator 3.

【0035】ステップs4で点火動作を行い、ステップ
s5でガスバーナ31が点火して燃焼を開始する。ステ
ップs6で、インプットが小能力である3500kca
lとなる様に、ガス比例弁313の開度を決定し、ステ
ップs7に進む。
In step s4, an ignition operation is performed, and in step s5, the gas burner 31 is ignited to start combustion. In step s6, the input is a small capacity of 3500 kca
The opening degree of the gas proportional valve 313 is determined so as to be 1, and the process proceeds to step s7.

【0036】ステップs7において、温度センサ91の
出力に基づき、高温再生器3の温度(希液33の温度)
が60℃(第2設定温度)以上であるか否かを判別し、
60℃以上の場合(YES)はステップs8に進み、6
0℃未満の場合(NO)はステップs6に戻って、35
00kcalのインプットで燃焼を継続する。
In step s7, based on the output of the temperature sensor 91, the temperature of the high-temperature regenerator 3 (the temperature of the diluted liquid 33)
Is higher than or equal to 60 ° C. (second set temperature)
If the temperature is equal to or higher than 60 ° C. (YES), the process proceeds to step s8,
If the temperature is lower than 0 ° C. (NO), the process returns to step s6, where 35
Continue burning with a 00 kcal input.

【0037】ステップs8で、冷暖切替弁36を閉弁
し、ステップs9に進む。ステップs9で、高温再生器
3の温度(希液33の温度)に対応した回転数で溶液ポ
ンプ802が回転する様に、溶液ポンプ802の回転数
制御を開始し、ステップs10に進む。
In step s8, the cooling / heating switching valve 36 is closed, and the flow advances to step s9. In step s9, rotation speed control of the solution pump 802 is started so that the solution pump 802 rotates at a rotation speed corresponding to the temperature of the high temperature regenerator 3 (the temperature of the diluted liquid 33), and the process proceeds to step s10.

【0038】ステップs10において、温度センサ9
1、92の出力に基づき、高温再生器3の温度(希液3
3の温度)が150℃以上に昇温しているか、又は冷温
水20の温度が11℃以下になっているかを判別し、何
方かが成立している場合(YES)はステップs11に
進み、何方も成立していない場合(NO)はステップs
9に戻る。
In step s10, the temperature sensor 9
1 and 92, the temperature of the high-temperature regenerator 3 (dilute solution 3
3) is raised to 150 ° C. or higher, or the temperature of the cold / hot water 20 is lowered to 11 ° C. or lower. If any of the conditions is satisfied (YES), the process proceeds to step s11. If none of them is satisfied (NO), step s
Return to 9.

【0039】ステップs11で、インプットが4800
kcalとなる様に、ガス比例弁313の開度を決定
し、ステップs12に進む。ステップs12において、
温度センサ92の出力に基づき、冷温水20の温度が1
0℃以下になっているかを判別し、なっている場合(Y
ES)はステップs13に進み、なっていない場合(N
O)はステップs11に戻って、4800kcalのイ
ンプットで燃焼を継続する。
In step s11, the input is 4800
The opening degree of the gas proportional valve 313 is determined so as to be kcal, and the process proceeds to step s12. In step s12,
Based on the output of the temperature sensor 92, the temperature of the cold / hot water 20 becomes 1
It is determined whether the temperature is 0 ° C. or less.
ES) proceeds to step s13, and if not (N)
O) returns to step s11 to continue the combustion with the input of 4800 kcal.

【0040】ステップs13において、温度センサ92
の出力に基づき室内熱交換器21に供給される冷温水2
0の温度が7℃になる様にガス比例弁313の開度を決
定し、インプット量を1500kcal〜4800kc
alの範囲で比例制御する。
In step s13, the temperature sensor 92
Cold / hot water 2 supplied to the indoor heat exchanger 21 based on the output of
The degree of opening of the gas proportional valve 313 is determined so that the temperature of 0 becomes 7 ° C., and the input amount is set to 1500 kcal to 4800 kc.
Perform proportional control in the range of al.

【0041】ステップs14で、冷却水槽13に水を溜
めるクーリングタワー給水処理(CT給水)を行い、終
了後、ステップs15に進む。ステップs15で点火動
作を行い、ステップs16でガスバーナ31が点火して
燃焼を開始する。
In step s14, a cooling tower water supply process (CT water supply) for storing water in the cooling water tank 13 is performed, and after completion, the flow proceeds to step s15. In step s15, an ignition operation is performed, and in step s16, the gas burner 31 is ignited to start combustion.

【0042】ステップs17で、インプットが4800
kcalとなる様に、ガス比例弁313の開度を決定
し、ステップs18に進む。
In step s17, the input is 4800
The opening degree of the gas proportional valve 313 is determined so as to be kcal, and the process proceeds to step s18.

【0043】ステップs18において、高温再生器3の
温度(希液33の温度)が80℃に到達すると、高温再
生器3の温度(希液33の温度)に対応した回転数で溶
液ポンプ802が回転する様に、溶液ポンプ802の回
転数制御を開始し、ステップs19に進む。ステップs
19において、温度センサ92の出力に基づき、冷温水
20の温度が10℃以下になっているかを判別し、なっ
ている場合(YES)はステップs20に進み、なって
いない場合(NO)はステップs17に戻って、480
0kcalのインプットで燃焼を継続する。
In step s18, when the temperature of the high-temperature regenerator 3 (temperature of the dilute liquid 33) reaches 80 ° C., the solution pump 802 is rotated at a rotation speed corresponding to the temperature of the high-temperature regenerator 3 (temperature of the dilute liquid 33). The rotation speed control of the solution pump 802 is started so as to rotate, and the process proceeds to step s19. Steps
At 19, it is determined whether the temperature of the cold / hot water 20 is lower than or equal to 10 ° C. based on the output of the temperature sensor 92. If yes (YES), proceed to step s20; if not (NO), go to step s20. Returning to s17, 480
Continue combustion with 0 kcal input.

【0044】ステップs20において、温度センサ92
の出力に基づき室内熱交換器21に供給される冷温水2
0の温度が7℃になる様にガス比例弁313の開度を決
定し、インプット量を1500kcal〜4800kc
alの範囲で比例制御する。
In step s20, the temperature sensor 92
Cold / hot water 2 supplied to the indoor heat exchanger 21 based on the output of
The degree of opening of the gas proportional valve 313 is determined so that the temperature of 0 becomes 7 ° C., and the input amount is set to 1500 kcal to 4800 kc.
Perform proportional control in the range of al.

【0045】つぎに、本実施例の利点を述べる。 〔ア〕高温再生器3の温度(希液33の温度)が50℃
以下の場合には、高温再生器3の温度が60℃に到達す
る迄、冷暖切替弁36を開弁維持し、溶液ポンプ802
を2400rpmで低速回転させる突沸防止運転(ステ
ップs3〜ステップs8)を行う構成である。これによ
り、吸収液は、低温再生器4に溜まらず、高温再生器3
→暖房配管361(冷暖切替弁36)→蒸発器6→吸収
器7→溶液ポンプ802→高温再生器3と循環しながら
昇温していき、流動するので核沸騰(突沸)が防止でき
る。よって、家庭用の吸収式冷暖房装置Aは低騒音で冷
房運転を行う事ができる。
Next, advantages of this embodiment will be described. [A] The temperature of the high-temperature regenerator 3 (the temperature of the diluted liquid 33) is 50 ° C.
In the following cases, the cooling / heating switching valve 36 is kept open until the temperature of the high-temperature regenerator 3 reaches 60 ° C.
Is configured to perform a bumping prevention operation (Step s3 to Step s8) in which is rotated at a low speed at 2400 rpm. As a result, the absorbing liquid does not accumulate in the low-temperature regenerator 4 and the high-temperature regenerator 3
→ Heating pipe 361 (cooling / heating switching valve 36) → Evaporator 6 → Absorber 7 → Solution pump 802 → High temperature regenerator 3 The temperature rises while circulating and flows, so that nucleate boiling (bump boiling) can be prevented. Therefore, the home-use absorption cooling and heating apparatus A can perform the cooling operation with low noise.

【0046】〔イ〕前回の冷房運転からあまり時間が経
過せず、高温再生器3の温度が50℃を越える場合(核
沸騰の虞がない)には、突沸防止運転が成されないので
冷房運転を速やかに成され、合理的である。
[B] If not much time has passed since the previous cooling operation and the temperature of the high-temperature regenerator 3 exceeds 50 ° C. (there is no risk of nucleate boiling), the bumping prevention operation is not performed, so the cooling operation is performed. Be done promptly and be reasonable.

【0047】つぎに、本発明の第2実施例(請求項2に
対応)を、図1〜図4、図6に基づいて説明する。本実
施例の吸収式冷暖房装置Bは、機械的な構成は吸収式冷
暖房装置Aと同じであるが、冷房運転を再開した場合の
作動が以下に示す様に異なる。冷房運転を再開する場
合、制御器9のマイクロコンピュータ(図示せず)は、
図6のフローチャートに示す様に作動する。
Next, a second embodiment (corresponding to claim 2) of the present invention will be described with reference to FIGS. The absorption type air conditioner B of this embodiment has the same mechanical configuration as the absorption type air conditioner A, but the operation when the cooling operation is restarted is different as described below. When restarting the cooling operation, the microcomputer (not shown) of the controller 9
It operates as shown in the flowchart of FIG.

【0048】冷房運転スイッチ(図示せず)をオンする
と、ステップS1で、温度センサ91の出力に基づき、
高温再生器3の温度(希液33の温度)が50℃(第1
設定温度)以下であるか否かを判別し、50℃以下の場
合(YES)はステップS2に進み、50℃を越える場
合(NO)はステップS15に進む。
When a cooling operation switch (not shown) is turned on, in step S1, based on the output of the temperature sensor 91,
The temperature of the high-temperature regenerator 3 (the temperature of the diluted liquid 33) is 50 ° C. (first temperature).
It is determined whether the temperature is equal to or lower than (set temperature). If the temperature is lower than 50 ° C. (YES), the process proceeds to step S2. If the temperature exceeds 50 ° C. (NO), the process proceeds to step S15.

【0049】ステップS2で、冷却水槽13に水を溜め
るクーリングタワー給水処理(CT給水)を行い、終了
後、ステップS3に進む。
In step S2, a cooling tower water supply process (CT water supply) for storing water in the cooling water tank 13 is performed, and after completion, the flow proceeds to step S3.

【0050】ステップS3で、冷暖切替弁36を開弁、
溶液ポンプ802を2400rpmで低速回転させる液
面調整運転を10秒間実施し、ステップS4に進む。こ
の液面調整運転により、吸収液は、吹出筒321→中液
配管341(冷暖切替弁)→暖房配管361→蒸発器6
→吸収器7→溶液ポンプ802→高温再生器3と循環す
るので、分離筒322内の吸収液や吹出筒321内の吸
収液の液面の高さが調整される。
In step S3, the cooling / heating switching valve 36 is opened,
A liquid level adjustment operation of rotating the solution pump 802 at a low speed of 2400 rpm is performed for 10 seconds, and the process proceeds to step S4. By this liquid level adjustment operation, the absorbing liquid is discharged from the blow-out cylinder 321 → the middle liquid pipe 341 (cooling / heating switching valve) → the heating pipe 361 → the evaporator 6
Since the circulation is performed in the order of → the absorber 7 → the solution pump 802 → the high-temperature regenerator 3, the liquid level of the absorption liquid in the separation cylinder 322 and the absorption liquid in the blowing cylinder 321 is adjusted.

【0051】ステップS4でプリパージを10秒間行
い、ステップS5で点火動作を行い、ステップS6でガ
スバーナ31が点火して燃焼を開始する。ステップS7
で、インプットが3500kcalとなる様に、ガス比
例弁313の開度を決定し、ステップS8に進む。
Pre-purge is performed for 10 seconds in step S4, ignition operation is performed in step S5, and gas burner 31 is ignited in step S6 to start combustion. Step S7
Then, the opening of the gas proportional valve 313 is determined so that the input becomes 3500 kcal, and the process proceeds to step S8.

【0052】ステップS8において、温度センサ91の
出力に基づき、高温再生器3の温度(希液33の温度)
が60℃(第2設定温度)以上であるか否かを判別し、
60℃以上の場合(YES)はステップS9に進み、6
0℃未満の場合(NO)はステップS7に戻って、35
00kcalのインプットで燃焼を継続する。
In step S8, based on the output of the temperature sensor 91, the temperature of the high-temperature regenerator 3 (the temperature of the dilute liquid 33)
Is higher than or equal to 60 ° C. (second set temperature)
If the temperature is equal to or higher than 60 ° C. (YES), the process proceeds to step S9,
If the temperature is lower than 0 ° C. (NO), the process returns to step S7, where 35
Continue burning with a 00 kcal input.

【0053】ステップS9で、インプットが6500k
calとなる様に、ガス比例弁313の開度を決定し、
ステップS10に進む。ステップS10において、高温
再生器3の温度(希液33の温度)が80℃以上になる
と、高温再生器3の温度(希液33の温度)に対応した
回転数で溶液ポンプ802が回転する様に、溶液ポンプ
802の回転数制御を開始し、ステップS11に進む。
At step S9, the input is 6500k
The opening degree of the gas proportional valve 313 is determined so as to be cal.
Proceed to step S10. In step S10, when the temperature of the high-temperature regenerator 3 (the temperature of the diluted liquid 33) becomes 80 ° C. or higher, the solution pump 802 rotates at a rotation speed corresponding to the temperature of the high-temperature regenerator 3 (the temperature of the diluted liquid 33). Then, the rotation speed control of the solution pump 802 is started, and the process proceeds to step S11.

【0054】ステップS11において、温度センサ9
1、92の出力に基づき、高温再生器3の温度(希液3
3の温度)が150℃以上に昇温しているか、又は冷温
水20の温度が11℃以下になっているかを判別し、何
方かが成立している場合(YES)はステップS12に
進み、何方も成立していない場合(NO)はステップS
9に戻る。
In step S11, the temperature sensor 9
1 and 92, the temperature of the high-temperature regenerator 3 (dilute solution 3
3) is raised to 150 ° C. or higher, or the temperature of the cold / hot water 20 is lowered to 11 ° C. or lower. If any of the conditions is satisfied (YES), the process proceeds to step S12. If none of them is satisfied (NO), step S
Return to 9.

【0055】ステップS12で、インプットが4800
kcalとなる様に、ガス比例弁313の開度を決定
し、ステップS13に進む。ステップS13において、
温度センサ92の出力に基づき、冷温水20の温度が1
0℃以下になっているかを判別し、なっている場合(Y
ES)はステップS14に進み、なっていない場合(N
O)はステップS12に戻って、4800kcalのイ
ンプットで燃焼を継続する。
In step S12, the input is 4800
The opening of the gas proportional valve 313 is determined so as to be kcal, and the process proceeds to step S13. In step S13,
Based on the output of the temperature sensor 92, the temperature of the cold / hot water 20 becomes 1
It is determined whether the temperature is 0 ° C. or less.
ES) proceeds to step S14, and if not (N
O) returns to step S12 to continue the combustion with the input of 4800 kcal.

【0056】ステップS14において、温度センサ92
の出力に基づき室内熱交換器21に供給される冷温水2
0の温度が7℃になる様にガス比例弁313の開度を決
定し、インプット量を1500kcal〜4800kc
alの範囲で比例制御する。
In step S14, the temperature sensor 92
Cold / hot water 2 supplied to the indoor heat exchanger 21 based on the output of
The degree of opening of the gas proportional valve 313 is determined so that the temperature of 0 becomes 7 ° C., and the input amount is set to 1500 kcal to 4800 kc.
Perform proportional control in the range of al.

【0057】ステップS15で、冷却水槽13に水を溜
めるクーリングタワー給水処理(CT給水)を行い、終
了後、ステップS16に進む。ステップS16でプリパ
ージを10秒間行い、ステップS17で点火動作を行
い、ステップS18でガスバーナ31が点火して燃焼を
開始する。ステップS19で、インプットが4800k
calとなる様に、ガス比例弁313の開度を決定し、
ステップS20に進む。
In step S15, a cooling tower water supply process (CT water supply) for storing water in the cooling water tank 13 is performed, and after completion, the flow proceeds to step S16. Pre-purge is performed for 10 seconds in step S16, an ignition operation is performed in step S17, and the gas burner 31 is ignited in step S18 to start combustion. In the step S19, the input is 4800k.
The opening degree of the gas proportional valve 313 is determined so as to be cal.
Proceed to step S20.

【0058】ステップS20において、高温再生器3の
温度(希液33の温度)が80℃以上になると、高温再
生器3の温度(希液33の温度)に対応した回転数で溶
液ポンプ802が回転する様に、溶液ポンプ802の回
転数制御を開始し、ステップS21に進む。
In step S20, when the temperature of the high-temperature regenerator 3 (the temperature of the dilute liquid 33) becomes 80 ° C. or higher, the solution pump 802 is rotated at a rotation speed corresponding to the temperature of the high-temperature regenerator 3 (the temperature of the dilute liquid 33). The rotation speed control of the solution pump 802 is started so as to rotate, and the process proceeds to step S21.

【0059】ステップS21において、温度センサ92
の出力に基づき、冷温水20の温度が10℃以下になっ
ているかを判別し、なっている場合(YES)はステッ
プS22に進み、なっていない場合(NO)はステップ
S19に戻って、4800kcalのインプットで燃焼
を継続する。
In step S21, the temperature sensor 92
It is determined whether the temperature of the cold / hot water 20 is lower than or equal to 10 ° C. based on the output. If yes (YES), the process proceeds to step S22. If not (NO), the process returns to step S19 and returns to 4800 kcal. Continue burning with the input of.

【0060】ステップS22において、温度センサ92
の出力に基づき室内熱交換器21に供給される冷温水2
0の温度が7℃になる様にガス比例弁313の開度を決
定し、インプット量を1500kcal〜4800kc
alの範囲で比例制御する。
In step S22, the temperature sensor 92
Cold / hot water 2 supplied to the indoor heat exchanger 21 based on the output of
The degree of opening of the gas proportional valve 313 is determined so that the temperature of 0 becomes 7 ° C., and the input amount is set to 1500 kcal to 4800 kc.
Perform proportional control in the range of al.

【0061】つぎに、本実施例の利点を述べる。 〔ウ〕高温再生器3の温度(希液33の温度)が低く、
50℃以下の場合には、液面調整運転終了の後、低イン
プット(3500kcal)でガスバーナ31を燃焼さ
せる沸騰音抑制運転を行うので、沸騰音を小さくする事
ができる。
Next, the advantages of this embodiment will be described. [C] The temperature of the high-temperature regenerator 3 (the temperature of the diluted liquid 33) is low,
When the temperature is 50 ° C. or lower, the boiling noise suppressing operation for burning the gas burner 31 with a low input (3500 kcal) is performed after the liquid level adjustment operation is completed, so that the boiling noise can be reduced.

【0062】〔エ〕沸騰音抑制運転を実施する事による
立ち上げ時間の遅れは、沸騰音抑制運転の後に高インプ
ット(6500kcal)でガスバーナ31を燃焼させ
るターボ運転をステップS9で行うので、冷房能力が出
るまでの立ち上げ時間が著しく長くならない。
[D] The delay in the start-up time due to the execution of the boiling noise suppressing operation is caused by the turbo operation of burning the gas burner 31 at a high input (6500 kcal) after the boiling noise suppressing operation in step S9, and thus the cooling capacity is increased. The start-up time before the appearance is not significantly longer.

【0063】上記実施例では、加熱源としてガスバーナ
を用いているが、他の熱源、例えば、電気ヒータを用い
ても良い。
In the above embodiment, a gas burner is used as a heating source, but another heat source, for example, an electric heater may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1、第2実施例に係る吸収式冷暖房
装置の原理説明図である。
FIG. 1 is a diagram illustrating the principle of an absorption type air conditioner according to first and second embodiments of the present invention.

【図2】その吸収式冷暖房装置のシステム図である。FIG. 2 is a system diagram of the absorption type cooling and heating device.

【図3】その吸収式冷暖房装置を冷房運転させた場合の
作動説明図である。
FIG. 3 is an operation explanatory diagram when the absorption type cooling and heating apparatus is operated for cooling.

【図4】その吸収式冷暖房装置を暖房運転させた場合の
作動説明図である。
FIG. 4 is an operation explanatory diagram when the absorption type cooling / heating device is operated for heating.

【図5】本発明の第1実施例の吸収式冷暖房装置におい
て、冷房運転を再開した場合の制御器の作動を示すフロ
ーチャートである。
FIG. 5 is a flowchart showing the operation of the controller when the cooling operation is restarted in the absorption type cooling and heating apparatus according to the first embodiment of the present invention.

【図6】本発明の第2実施例の吸収式冷暖房装置におい
て、冷房運転を再開した場合の制御器の作動を示すフロ
ーチャートである。
FIG. 6 is a flowchart showing the operation of the controller when the cooling operation is restarted in the absorption-type cooling and heating apparatus according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A、B 吸収式冷暖房装置(吸収式空調装置) 1 冷却水回路 2 冷温水回路(冷水回路) 3 高温再生器 4 低温再生器 5 凝縮器 6 蒸発器 7 吸収器 8 吸収液回路(吸収回路) 9 制御器 10 冷却水 12 冷却塔(室外熱交換器) 14 冷却水ポンプ 15 吸収器伝熱管 16 凝縮器伝熱管 20 冷温水(冷水) 21 室内熱交換器 31 ガスバーナ(加熱源) 33 希液(低濃度吸収液) 34 中液(中濃度吸収液) 35 蒸気冷媒 36 冷暖切替弁(電磁開閉弁) 37 蒸発器伝熱管 41 濃液(高濃度吸収液) 42 蒸気冷媒 52 液冷媒 61 蒸気冷媒 91 温度センサ(温度検出手段) 361 暖房配管(バイパス管) 801 冷温水ポンプ(冷水ポンプ) 802 溶液ポンプ A, B Absorption air conditioner (absorption air conditioner) 1 Cooling water circuit 2 Cold and hot water circuit (cold water circuit) 3 High temperature regenerator 4 Low temperature regenerator 5 Condenser 6 Evaporator 7 Absorber 8 Absorber circuit (absorption circuit) Reference Signs List 9 Controller 10 Cooling water 12 Cooling tower (outdoor heat exchanger) 14 Cooling water pump 15 Absorber heat transfer tube 16 Condenser heat transfer tube 20 Cold / hot water (cold water) 21 Indoor heat exchanger 31 Gas burner (heating source) 33 Rare liquid ( Low-concentration absorbing liquid) 34 Medium liquid (medium-concentration absorbing liquid) 35 Vapor refrigerant 36 Cooling / heating switching valve (electromagnetic on-off valve) 37 Evaporator heat transfer tube 41 Rich liquid (high-concentration absorbing liquid) 42 Vapor refrigerant 52 Liquid refrigerant 61 Vapor refrigerant 91 Temperature sensor (temperature detecting means) 361 Heating pipe (bypass pipe) 801 Cold / hot water pump (cold water pump) 802 Solution pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 克人 名古屋市中川区福住町2番26号 リンナ イ株式会社内 (72)発明者 古川 泰成 大阪市中央区平野町4丁目1番2号 大 阪瓦斯株式会社内 (72)発明者 福知 徹 大阪市中央区平野町4丁目1番2号 大 阪瓦斯株式会社内 (56)参考文献 特開 平6−174326(JP,A) 特開 平4−136666(JP,A) 特開 平9−126581(JP,A) 実開 昭55−133175(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 306 ──────────────────────────────────────────────────続 き Continued on the front page (72) Katsuhito Ikeda 2-26, Fukuzumi-cho, Nakagawa-ku, Nagoya Linnai Co., Ltd. (72) Yasunari Furukawa 4-1-2, Hirano-cho, Chuo-ku, Osaka Large Inside Osaka Gas Co., Ltd. (72) Inventor Toru Fukuchi 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi Inside Osaka Gas Co., Ltd. (56) References JP-A-6-174326 (JP, A) JP-A-4 JP-A-9-126581 (JP, A) JP-A-55-133175 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 15/00 306

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 室外熱交換器、吸収器伝熱管、及び凝縮
器伝熱管を順に環状接続してなり、冷却水ポンプにより
冷却水を循環させる冷却水回路と、 室内熱交換器、蒸発器伝熱管を環状接続してなり、冷水
ポンプにより冷水を循環させる冷水回路と、 加熱源により低濃度吸収液中の冷媒を気化させて中濃度
吸収液と蒸気冷媒とに分離する高温再生器、該高温再生
器を内包し前記中濃度吸収液を高濃度吸収液と蒸気冷媒
とに分離する低温再生器、前記凝縮器伝熱管を配設する
とともに各再生器から高温の蒸気冷媒が送り込まれる凝
縮器、該凝縮器で液化した液冷媒を減圧下で蒸発させる
蒸発器、該蒸発器に併設され前記吸収器伝熱管を配設し
前記蒸発器で蒸発した蒸気冷媒を前記低温再生器から送
られる高濃度吸収液に吸収させる吸収器、及び該吸収器
内の吸収液を前記高温再生器に戻す溶液ポンプを有する
吸収回路と、 冷房運転中は閉弁する電磁開閉弁を途中に配設し、前記
高温再生器と前記蒸発器とを接続するバイパス管と、 前記高温再生器の温度を検出する温度検出手段と、 前記冷却水ポンプ、前記冷水ポンプ、前記加熱源、前記
溶液ポンプ、及び前記電磁開閉弁を制御する制御器とを
備えた吸収式空調装置において、 前記高温再生器の温度が設定温度以下の場合に冷房運転
開始が指示されると、前記制御器は、前記電磁開閉弁を
開弁し前記溶液ポンプを回転させる突沸防止運転を実施
する事を特徴とする吸収式空調装置。
1. A cooling water circuit in which an outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a loop, and a cooling water circuit for circulating cooling water by a cooling water pump; an indoor heat exchanger; A chilled water circuit in which heat pipes are connected in a loop, and chilled water is circulated by a chilled water pump; A low-temperature regenerator that includes a regenerator and separates the medium-concentration absorbing liquid into a high-concentration absorbing liquid and a vapor refrigerant, a condenser in which high-temperature vapor refrigerant is sent from each regenerator while the condenser heat transfer tubes are provided. An evaporator for evaporating the liquid refrigerant liquefied in the condenser under reduced pressure; a heat transfer tube provided in the evaporator in parallel with the absorber; and a high concentration of vapor refrigerant evaporated in the evaporator sent from the low-temperature regenerator. An absorber to be absorbed by an absorbing solution; and An absorption circuit having a solution pump for returning the absorbent in the collector to the high-temperature regenerator, and an electromagnetic on-off valve that closes during the cooling operation are provided on the way, and connect the high-temperature regenerator and the evaporator. A bypass pipe; a temperature detecting means for detecting a temperature of the high-temperature regenerator; and a controller for controlling the cooling water pump, the cold water pump, the heating source, the solution pump, and the electromagnetic on-off valve. In the air conditioner, when the cooling operation start is instructed when the temperature of the high-temperature regenerator is equal to or lower than a set temperature, the controller performs a bumping prevention operation of opening the electromagnetic on-off valve and rotating the solution pump. Absorption type air conditioner characterized by what to implement.
【請求項2】 室外熱交換器、吸収器伝熱管、及び凝縮
器伝熱管を順に環状接続してなり、冷却水ポンプにより
冷却水を循環させる冷却水回路と、 室内熱交換器、蒸発器伝熱管を環状接続してなり、冷水
ポンプにより冷水を循環させる冷水回路と、 加熱源により低濃度吸収液中の冷媒を気化させて中濃度
吸収液と蒸気冷媒とに分離する高温再生器、該高温再生
器を内包し前記中濃度吸収液を高濃度吸収液と蒸気冷媒
とに分離する低温再生器、前記凝縮器伝熱管を配設する
とともに各再生器から高温の蒸気冷媒が送り込まれる凝
縮器、該凝縮器で液化した液冷媒を減圧下で蒸発させる
蒸発器、該蒸発器に併設され前記吸収器伝熱管を配設し
前記蒸発器で蒸発した蒸気冷媒を前記低温再生器から送
られる高濃度吸収液に吸収させる吸収器、及び該吸収器
内の吸収液を前記高温再生器に戻す溶液ポンプを有する
吸収回路と、 前記高温再生器の温度を検出する温度検出手段と、 前記冷却水ポンプ、前記冷水ポンプ、前記加熱源、及び
前記溶液ポンプを制御する制御器とを備えた吸収式空調
装置において、 前記高温再生器の温度が第1設定温度以下の場合に冷房
運転開始が指示されると、前記制御器は、小能力で前記
加熱源を作動させる沸騰音抑制運転を実施し、前記高温
再生器の温度が第2設定温度以上に上昇すると大能力で
前記加熱源を作動させるターボ運転を実施する事を特徴
とする吸収式空調装置。
2. A cooling water circuit in which an outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape, and a cooling water circuit for circulating cooling water by a cooling water pump, an indoor heat exchanger, and an evaporator transfer tube. A chilled water circuit in which heat pipes are connected in a loop, and chilled water is circulated by a chilled water pump; A low-temperature regenerator that includes a regenerator and separates the medium-concentration absorbing liquid into a high-concentration absorbing liquid and a vapor refrigerant, a condenser in which high-temperature vapor refrigerant is sent from each regenerator while the condenser heat transfer tubes are provided. An evaporator for evaporating the liquid refrigerant liquefied in the condenser under reduced pressure; a heat transfer tube provided in the evaporator in parallel with the absorber; and a high concentration of vapor refrigerant evaporated in the evaporator sent from the low-temperature regenerator. An absorber to be absorbed by an absorbing solution; and An absorption circuit having a solution pump for returning the absorbent in the collector to the high-temperature regenerator; a temperature detection unit for detecting the temperature of the high-temperature regenerator; the cooling water pump, the chilled water pump, the heating source, and A controller for controlling the solution pump, wherein when the cooling operation is instructed when the temperature of the high-temperature regenerator is equal to or lower than a first set temperature, the controller operates with a small capacity. An absorption type air conditioner, wherein a boiling sound suppressing operation for operating a heating source is performed, and a turbo operation for operating the heating source with a large capacity is performed when the temperature of the high-temperature regenerator rises to a second set temperature or higher. apparatus.
JP30716295A 1995-08-28 1995-11-27 Absorption air conditioner Expired - Fee Related JP3144538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30716295A JP3144538B2 (en) 1995-08-28 1995-11-27 Absorption air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-219080 1995-08-28
JP21908095 1995-08-28
JP30716295A JP3144538B2 (en) 1995-08-28 1995-11-27 Absorption air conditioner

Publications (2)

Publication Number Publication Date
JPH09126580A JPH09126580A (en) 1997-05-16
JP3144538B2 true JP3144538B2 (en) 2001-03-12

Family

ID=26522904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30716295A Expired - Fee Related JP3144538B2 (en) 1995-08-28 1995-11-27 Absorption air conditioner

Country Status (1)

Country Link
JP (1) JP3144538B2 (en)

Also Published As

Publication number Publication date
JPH09126580A (en) 1997-05-16

Similar Documents

Publication Publication Date Title
JP3144538B2 (en) Absorption air conditioner
JP3056987B2 (en) Absorption cooling system
JP3128501B2 (en) Absorption air conditioner
JP2954519B2 (en) Absorption air conditioner
JP2994251B2 (en) Absorption cooling system
JP2994250B2 (en) Absorption air conditioner
JP3241623B2 (en) Absorption air conditioner
JP3130465B2 (en) Absorption air conditioner
JP3308795B2 (en) Absorption air conditioner
JP2954513B2 (en) Absorption air conditioner
JP3241624B2 (en) Absorption air conditioner
JP3056990B2 (en) Absorption air conditioner
JP3202157B2 (en) Air conditioner
JP2650654B2 (en) Absorption refrigeration cycle device
JP3128502B2 (en) Absorption air conditioner
JP3056991B2 (en) Absorption air conditioner
JP3057017B2 (en) Absorption air conditioner
JP2839442B2 (en) Absorption refrigeration cycle device
JP2823266B2 (en) Regenerator control device
JP2746323B2 (en) Absorption air conditioner
JP3372662B2 (en) Absorption refrigeration cycle device
JP3328164B2 (en) Absorption air conditioner
JPH05231742A (en) Absorption type hot and chilled water generator
JP2001099473A (en) Operating method for air conditioner
JPH06159849A (en) Absorption-type cold/hot water feeder and its controlling method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees