JP3128501B2 - Absorption air conditioner - Google Patents
Absorption air conditionerInfo
- Publication number
- JP3128501B2 JP3128501B2 JP08020765A JP2076596A JP3128501B2 JP 3128501 B2 JP3128501 B2 JP 3128501B2 JP 08020765 A JP08020765 A JP 08020765A JP 2076596 A JP2076596 A JP 2076596A JP 3128501 B2 JP3128501 B2 JP 3128501B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heating
- cooling
- regenerator
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B29/00—Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
- F25B29/006—Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the sorption type system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/04—Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
- F25B49/043—Operating continuously
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Sorption Type Refrigeration Machines (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、吸収液を用いる吸
収式空調装置に関する。The present invention relates to an absorption type air conditioner using an absorption liquid.
【0002】[0002]
【従来の技術】室外ファンを付設した室外熱交換器、吸
収器伝熱管、及び凝縮器伝熱管を順に環状接続してな
り、冷房運転時には冷却水ポンプにより冷却水を循環さ
せる冷却水回路と、送風ファンを付設した室内熱交換
器、蒸発器伝熱管を環状接続してなり、冷温水ポンプに
より冷温水を循環させる冷温水回路と、吸収液が入れら
れ加熱部がガスバーナにより加熱され冷房運転時には低
濃度吸収液中の冷媒を気化させて中濃度吸収液と蒸気冷
媒とに分離する高温再生器、該高温再生器を包囲し冷房
運転時には前記中濃度吸収液を高濃度吸収液と蒸気冷媒
とに分離する低温再生器、前記凝縮器伝熱管を配設し冷
房運転時には各再生器から高温の蒸気冷媒が送り込まれ
る凝縮器、暖房運転時には前記高温再生器から高温の吸
収液が送り込まれ冷房運転時には前記凝縮器で液化した
液冷媒を蒸発させる蒸発器、該蒸発器に併設され前記吸
収器伝熱管を配設し冷房運転時には前記蒸発器で蒸発し
た蒸気冷媒を前記低温再生器から送られる高濃度吸収液
に吸収させる吸収器、及び吸収器内の吸収液を前記高温
再生器に戻す溶液ポンプを有する吸収液回路と、暖房運
転時には、室内熱交換器に供給される冷温水の温度が所
定温度(例えば60℃)に維持される様に前記ガスバー
ナのインプットを比例制御し(例えば、1500kca
l/h〜8000kcal/h)、冷房運転時には、室
内熱交換器に供給される冷温水の温度が所定温度(例え
ば7℃)に維持される様に前記ガスバーナのインプット
を比例制御(例えば、1500kcal/h〜4800
kcal/h)する制御器とを有し、前記送風ファンに
より冷風又は温風を室内に送風して室内冷暖房を行う、
フロンを使用しない吸収式空調装置が近年、注目されて
いる(図7参照)。2. Description of the Related Art A cooling water circuit in which an outdoor heat exchanger provided with an outdoor fan, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially annularly connected, and a cooling water pump circulates cooling water during cooling operation. An indoor heat exchanger equipped with a blower fan and an evaporator heat transfer tube are connected in a loop, and a cold / hot water circuit that circulates cold / hot water by a cold / hot water pump, and an absorbing liquid is put in and the heating unit is heated by a gas burner and cooling operation is performed. A high-temperature regenerator that vaporizes the refrigerant in the low-concentration absorbent and separates it into a medium-concentration absorbent and a vapor refrigerant, surrounds the high-temperature regenerator and converts the medium-concentration absorbent into a high-concentration absorbent and a vapor refrigerant during cooling operation. A low-temperature regenerator that separates the condenser and the condenser heat transfer tube is provided and a condenser in which a high-temperature vapor refrigerant is sent from each regenerator in a cooling operation, and a high-temperature absorbent is sent from the high-temperature regenerator in a heating operation to cool. An evaporator that evaporates the liquid refrigerant liquefied by the condenser during the operation, and the absorber heat transfer tube is provided in parallel with the evaporator, and the vapor refrigerant evaporated by the evaporator is sent from the low-temperature regenerator during the cooling operation. An absorber for absorbing the high-concentration absorbent, an absorbent circuit having a solution pump for returning the absorbent in the absorber to the high-temperature regenerator, and a temperature of cold and hot water supplied to the indoor heat exchanger during a heating operation. The input of the gas burner is proportionally controlled (for example, 1500 kca) so as to be maintained at a predetermined temperature (for example, 60 ° C.).
1 / h to 8000 kcal / h), during the cooling operation, the input of the gas burner is proportionally controlled (for example, 1500 kcal) so that the temperature of the cold and hot water supplied to the indoor heat exchanger is maintained at a predetermined temperature (for example, 7 ° C.). / H ~ 4800
kcal / h), and performs indoor cooling and heating by blowing cool air or hot air into the room by the blower fan.
In recent years, an absorption-type air conditioner that does not use Freon has attracted attention (see FIG. 7).
【0003】この吸収式空調装置では、運転開始時には
ガスバーナの炎口部分等の構成部品の温度が低く、燃焼
空気が流れ易い状態にある為、定常燃焼時と同じ比例制
御を行うと、エアーリッチの混合気となり、燃焼が不安
定になる。又、比例制御は、冷温水温度に対応して制御
されるが、運転開始時の冷温水温度と吸収液の温度とは
対応関係に無い為、高温再生器内の吸収液が過熱される
等の不具合が生じる虞がある。この為、運転開始時のガ
スバーナのインプットは、運転が安定する迄、上記定常
燃焼時の比例制御とは別に、燃焼能力範囲の例えば中間
点(4000kcal)に固定する事が考えられる。[0003] In this absorption type air conditioner, since the temperature of the components such as the burner port of the gas burner is low at the start of operation and the combustion air is easy to flow, if the same proportional control as in the steady combustion is performed, air-rich And the combustion becomes unstable. In addition, the proportional control is controlled according to the temperature of the cold and hot water, but since the temperature of the cold and hot water and the temperature of the absorbent at the start of the operation do not correspond to each other, the absorbent in the high-temperature regenerator is overheated. There is a possibility that the problem described above may occur. For this reason, it is conceivable that the input of the gas burner at the start of operation is fixed to, for example, the middle point (4000 kcal) of the combustion capacity range until the operation is stabilized, in addition to the proportional control at the time of steady combustion.
【0004】[0004]
【発明が解決しようとする課題】様々な試験を行った結
果、発明者らは、この吸収式空調装置には、以下に示す
課題がある事を見い出した。 初回運転時、又は運転停止から長時間が経過して、高
温再生器内の吸収液が冷えている状態(以下、コールド
状態と呼ぶ)で立ち上げると、冷房・暖房能力(冷風、
温風)が出るのに時間が長くかかる。As a result of conducting various tests, the inventors have found that the absorption type air conditioner has the following problems. At the time of initial operation, or when a long time has elapsed since the stoppage of the operation, and when the absorption liquid in the high-temperature regenerator is started up in a cold state (hereinafter referred to as a cold state), the cooling / heating capacity (cool air,
It takes a long time for hot air to come out.
【0005】冷房オフ、暖房オフ、サーモオフからの
立ち上げ等、運転停止から間が無く、高温再生器内の吸
収液が熱い状態(以下、ホット状態と呼ぶ)で立ち上げ
ると、高温再生器内の吸収液の温度(HGE温度)が上
がり過ぎて高温エラー停止し易い。〔冷房オフ、暖房オ
フ、サーモオフ〕と、〔冷房オフ立ち上げ、暖房オフ立
ち上げ、サーモオフ立ち上げ〕とを何回も繰り返し、冷
房比例制御に移行しない。If the absorption liquid in the high-temperature regenerator is started in a hot state (hereinafter, referred to as a hot state) immediately after the operation stop such as cooling-off, heating-off, and start-up from the thermo-off, the high-temperature regenerator The temperature of the absorbing solution (HGE temperature) becomes too high, and the high temperature error is likely to stop. [Cooling off, heating off, thermo off] and [cooling off startup, heating off startup, thermo off startup] are repeated many times, and the process does not shift to cooling proportional control.
【0006】本発明の目的は、ホット状態からの立ち上
げの際に吸収液の過熱を招かないとともに、コールド状
態からの立ち上げの際の、立ち上がり時間(冷房・暖房
能力が出る迄の時間)を短縮できる吸収式空調装置の提
供にある。An object of the present invention is to prevent the absorption liquid from being overheated when starting up from a hot state, and to set up a start-up time (time until cooling / heating capability is achieved) when starting up from a cold state. It is an object of the present invention to provide an absorption type air conditioner which can shorten the time.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するた
め、本発明は、以下の構成を採用した。 (1)室外熱交換器、吸収器伝熱管、及び凝縮器伝熱管
を順に環状接続してなり、冷房運転時には冷却水ポンプ
により冷却水を循環させる冷却水回路と、送風ファンを
付設した室内熱交換器、及び蒸発器伝熱管を環状接続し
てなり、冷温水ポンプにより冷温水を循環させる冷温水
回路と、吸収液が入れられ加熱部が加熱源により加熱さ
れる再生器、前記凝縮器伝熱管を配設し前記再生器から
高温の蒸気冷媒が送り込まれる凝縮器、暖房運転時には
高温の吸収液が送り込まれ冷房運転時には前記凝縮器で
液化した液冷媒を蒸発させる蒸発器、該蒸発器に併設さ
れ前記吸収器伝熱管を配設し冷房運転時には前記蒸発器
で蒸発した蒸気冷媒を前記再生器から送られる濃縮吸収
液に吸収させる吸収器、及び該吸収器内の吸収液を前記
再生器に戻す溶液ポンプを有する吸収液回路と、前記冷
温水が所定温度を維持する様に前記加熱源の加熱力を制
御する制御器とを有し、前記送風ファンにより冷風又は
温風を室内に送風して室内冷暖房を行う、吸収式空調装
置であって、再生器内の前記吸収液の温度が低温状態か
らの運転立ち上げの場合は、運転が安定するまで前記加
熱源の加熱力を大に固定し、高温状態からの運転立ち上
げの場合は、運転が安定するまで前記加熱源の加熱力を
小に固定する。In order to solve the above problems, the present invention employs the following constitution. (1) An outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape, and a cooling water circuit that circulates cooling water by a cooling water pump during a cooling operation, and an indoor heat provided with a blower fan. A cooler / hot water circuit in which an exchanger and an evaporator heat transfer tube are connected in a ring, and a chiller / heater pump circulates chilled / hot water; a regenerator in which an absorbing liquid is filled and a heating unit is heated by a heating source; A condenser in which a high-temperature vapor refrigerant is fed from the regenerator, in which a heat pipe is disposed, a high-temperature absorbing liquid is sent during a heating operation, and an evaporator that evaporates a liquid refrigerant liquefied by the condenser during a cooling operation during a cooling operation. An absorber that is provided in parallel with the absorber heat transfer tube and absorbs the vapor refrigerant evaporated by the evaporator in a concentrated absorbent sent from the regenerator during cooling operation, and the regenerator absorbs the absorbent in the absorber. Solution to return to An absorption liquid circuit having a pump, and a controller for controlling a heating power of the heating source so that the cold and hot water maintains a predetermined temperature, and blows cold or warm air into the room by the blower fan, and Performing cooling and heating, in the absorption air conditioner, when the temperature of the absorbent in the regenerator is the operation start-up from a low temperature state, the heating power of the heating source is fixed to a large value until the operation is stabilized, When the operation is started from a high temperature state, the heating power of the heating source is fixed at a small value until the operation is stabilized.
【0008】(2)室外熱交換器、吸収器伝熱管、及び
凝縮器伝熱管を順に環状接続してなり、冷房運転時には
冷却水ポンプにより冷却水を循環させる冷却水回路と、
送風ファンを付設した室内熱交換器、及び蒸発器伝熱管
を環状接続してなり、冷温水ポンプにより冷温水を循環
させる冷温水回路と、吸収液が入れられ加熱部が加熱源
により加熱され冷房運転時には低濃度吸収液中の冷媒を
気化させて中濃度吸収液と蒸気冷媒とに分離する高温再
生器、該高温再生器を包囲し冷房運転時には前記中濃度
吸収液を高濃度吸収液と蒸気冷媒とに分離する低温再生
器、前記凝縮器伝熱管を配設し冷房運転時には各再生器
から高温の蒸気冷媒が送り込まれる凝縮器、暖房運転時
には前記高温再生器から高温の吸収液が送り込まれ冷房
運転時には前記凝縮器で液化した液冷媒を蒸発させる蒸
発器、該蒸発器に併設され前記吸収器伝熱管を配設し冷
房運転時には前記蒸発器で蒸発した蒸気冷媒を前記低温
再生器から送られる高濃度吸収液に吸収させる吸収器、
及び該吸収器内の吸収液を前記高温再生器に戻す溶液ポ
ンプを有する吸収液回路と、前記冷温水が所定温度を維
持する様に前記加熱源の加熱力を制御する制御器とを有
し、前記送風ファンにより冷風又は温風を室内に送風し
て室内冷暖房を行う、吸収式空調装置であって、高温再
生器内の前記吸収液の温度が低温状態からの運転立ち上
げの場合は、運転が安定するまで前記加熱源の加熱力を
大に固定し、高温状態からの運転立ち上げの場合は、運
転が安定するまで前記加熱源の加熱力を小に固定する。(2) A cooling water circuit in which an outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape, and a cooling water pump circulates cooling water during cooling operation.
An indoor heat exchanger equipped with a blower fan and an evaporator heat transfer tube are connected in a loop, and a cold / hot water circuit for circulating cold / hot water by a cold / hot water pump, and an absorbing liquid is put into the heating unit and the heating unit is heated by a heating source to cool. During operation, a high-temperature regenerator that evaporates the refrigerant in the low-concentration absorbent and separates it into medium-concentration liquid and vapor refrigerant, surrounds the high-temperature regenerator and cools the medium-concentration liquid with high-concentration absorbent and vapor during cooling operation. A low-temperature regenerator that separates the refrigerant from the refrigerant, a condenser in which the condenser heat transfer tubes are provided and a high-temperature vapor refrigerant is sent from each regenerator during cooling operation, and a high-temperature absorbing liquid is sent from the high-temperature regenerator during heating operation. An evaporator for evaporating the liquid refrigerant liquefied by the condenser during the cooling operation, and the absorber heat transfer tube provided adjacent to the evaporator are provided. During the cooling operation, the vapor refrigerant evaporated by the evaporator is sent from the low-temperature regenerator. Is Absorber to absorb a high concentration absorption solution,
An absorption liquid circuit having a solution pump for returning the absorption liquid in the absorber to the high temperature regenerator, and a controller for controlling the heating power of the heating source so that the cold and hot water maintains a predetermined temperature. In the case of an absorption type air conditioner, in which cooling air or warm air is blown into a room by the blower fan to perform indoor cooling and heating, and when the temperature of the absorbing liquid in the high-temperature regenerator starts operation from a low temperature state, The heating power of the heating source is fixed at a large value until the operation is stabilized, and when the operation is started from a high temperature state, the heating power of the heating source is fixed at a small value until the operation is stabilized.
【0009】[0009]
〔請求項1について〕吸収液が入れられた再生器の加熱
部が加熱源により加熱される(冷房/暖房運転時)。
尚、コールド状態(初回運転時、又は運転停止から長時
間が経過して再生器内の吸収液が冷えている状態)の場
合は、立ち上げ時に、運転が安定するまで加熱源の加熱
力を大に固定して再生器内の吸収液の温度を迅速に上げ
る。[Claim 1] A heating section of a regenerator containing an absorbing liquid is heated by a heating source (at the time of cooling / heating operation).
In the case of a cold state (at the time of initial operation or a state in which the absorbent in the regenerator has been cooled after a long time has elapsed since the operation was stopped), when starting up, the heating power of the heating source should be reduced until the operation becomes stable. The temperature of the absorbing solution in the regenerator is quickly raised by fixing the temperature to a large value.
【0010】又、ホット状態(一時運転停止からの運転
立ち上げ、又は運転停止から余り時間が経過せず、再生
器内の吸収液が熱い状態)の場合は、立ち上げ時に、運
転が安定するまで加熱源の加熱力を小に固定して再生器
の過熱を防止する。In a hot state (starting operation after a temporary stoppage, or a state in which the absorption liquid in the regenerator is hot after a short time has passed since the stoppage of the operation), the operation is stabilized at the start-up. The heating power of the heating source is fixed to a small value to prevent overheating of the regenerator.
【0011】冷房運転時、高温の蒸気冷媒が再生器から
凝縮器内に送り込まれ、凝縮器伝熱管には冷却水が流れ
ているので液化して凝縮器内に溜まる。凝縮器から蒸発
器内に送り込まれた液冷媒は、冷温水が流れる蒸発器伝
熱管上に散布され、気化熱を奪って蒸発し、冷温水を冷
却する。そして、冷却された冷温水が冷却水ポンプによ
り室内熱交換器に供給されて室内熱交換器を通過し、送
風ファンが冷風を室内に送風する事により室内冷房が行
われる。During the cooling operation, high-temperature vapor refrigerant is sent from the regenerator into the condenser, and liquefies because the cooling water is flowing through the condenser heat transfer tube, and accumulates in the condenser. The liquid refrigerant sent from the condenser into the evaporator is scattered on the evaporator heat transfer pipe through which the cold and hot water flows, takes away heat of vaporization and evaporates, and cools the cold and hot water. Then, the cooled cold / hot water is supplied to the indoor heat exchanger by the cooling water pump, passes through the indoor heat exchanger, and the blowing fan blows cool air into the room, thereby performing indoor cooling.
【0012】暖房運転時、蒸発器内へは、再生器からの
高温の吸収液が送り込まれる。これにより、蒸発器伝熱
管を流れる冷温水が加熱される。そして、昇温した冷温
水が冷温水ポンプにより室内熱交換器に供給されて室内
熱交換器を通過し、送風ファンが温風を室内に送風する
事により室内暖房が行われる。During the heating operation, a high-temperature absorbing liquid from the regenerator is fed into the evaporator. Thereby, the cold / hot water flowing through the evaporator heat transfer tube is heated. Then, the heated and cooled water is supplied to the indoor heat exchanger by the cold and hot water pump, passes through the indoor heat exchanger, and the blowing fan blows warm air into the room, thereby performing indoor heating.
【0013】冷房運転時、蒸発器で蒸発して吸収器に入
った蒸気冷媒は、再生器から送られる濃縮吸収液に吸収
され、稀釈吸収液となって吸収器内に溜まる。暖房運転
時は、蒸発器内の吸収液が吸収器に進入し、吸収器内に
溜まる。During the cooling operation, the vapor refrigerant evaporated by the evaporator and entering the absorber is absorbed by the concentrated absorbing solution sent from the regenerator, and becomes a diluted absorbing solution and accumulates in the absorber. During the heating operation, the absorbent in the evaporator enters the absorber and accumulates in the absorber.
【0014】吸収器内に溜まった吸収液は、溶液ポンプ
により再生器に戻される(冷房/暖房運転時)。冷房運
転/暖房運転が安定して来たら、制御器は、冷温水が所
定温度を維持する様に加熱源の加熱力を比例制御する
(冷房/暖房運転時)。The absorbent collected in the absorber is returned to the regenerator by the solution pump (at the time of cooling / heating operation). When the cooling operation / heating operation becomes stable, the controller proportionally controls the heating power of the heating source so that the cold / hot water maintains a predetermined temperature (at the time of cooling / heating operation).
【0015】〔請求項2について〕吸収液が入れられた
高温再生器は、加熱部が加熱源により加熱される(冷房
/暖房運転時)。尚、コールド状態(初回運転時、又は
運転停止から長時間が経過して高温再生器内の吸収液が
冷えている状態)の場合は、立ち上げ時に、運転が安定
するまで加熱源の加熱力を大に固定して高温再生器内の
吸収液の温度を迅速に上げる。[Claim 2] In the high-temperature regenerator containing the absorbing liquid, the heating section is heated by a heating source (during cooling / heating operation). In the case of a cold state (when the absorption liquid in the high-temperature regenerator is cooled after a long time has elapsed since the first operation, or after the operation was stopped), the heating power of the heating source was stabilized at startup when the operation was stabilized. To quickly increase the temperature of the absorbing solution in the high-temperature regenerator.
【0016】又、ホット状態(一時運転停止からの運転
立ち上げ、又は運転停止から余り時間が経過せず、高温
再生器内の吸収液が熱い状態)の場合は、立ち上げ時
に、運転が安定する迄、加熱源の加熱力を小に固定して
高温再生器の過熱を防止する。In a hot state (operation start-up after a temporary operation stop, or a state in which the absorption liquid in the high-temperature regenerator is hot after a short time has elapsed since the operation stop), the operation is stable at the start-up. Until the heating, the heating power of the heating source is fixed to a small value to prevent the high temperature regenerator from overheating.
【0017】冷房運転時、高温再生器内に入れられた低
濃度吸収液の冷媒が気化する為、中濃度吸収液と高温の
蒸気冷媒とに分離し、中濃度吸収液が低温再生器に送り
込まれる。冷房運転時には各再生器から高温の蒸気冷媒
が凝縮器に送り込まれる。冷房運転時、凝縮器伝熱管に
は冷却水が流れているので、高温の蒸気冷媒は液化して
凝縮器内に溜まる。暖房運転時には、高温再生器から高
温の吸収液が蒸発器内に送り込まれる。これにより、蒸
発器伝熱管を流れる冷温水が加熱される。During the cooling operation, the refrigerant of the low-concentration absorbing liquid contained in the high-temperature regenerator evaporates, and is separated into a medium-concentration absorbing liquid and a high-temperature vapor refrigerant, and the medium-concentration absorbing liquid is sent to the low-temperature regenerator. It is. During the cooling operation, high-temperature vapor refrigerant is sent from each regenerator to the condenser. During the cooling operation, since the cooling water flows through the condenser heat transfer tubes, the high-temperature vapor refrigerant is liquefied and accumulated in the condenser. During the heating operation, the high-temperature absorbent is sent into the evaporator from the high-temperature regenerator. Thereby, the cold / hot water flowing through the evaporator heat transfer tube is heated.
【0018】冷房運転時、凝縮器から蒸発器内に送り込
まれた液冷媒は、冷温水が流れる蒸発器伝熱管上に散布
され、気化熱を奪って蒸発し、冷温水を冷却する。そし
て、冷却された冷温水が冷温水ポンプにより室内熱交換
器に供給されて室内熱交換器を通過し、送風ファンが冷
風を室内に送風する事により室内冷房が行われる。又、
暖房運転時には、昇温した冷温水が冷温水ポンプにより
室内熱交換器に供給されて室内熱交換器を通過し、送風
ファンが温風を室内に送風する事により室内暖房が行わ
れる。During the cooling operation, the liquid refrigerant sent from the condenser into the evaporator is scattered on the evaporator heat transfer tube through which the cold and hot water flows, takes away the heat of vaporization and evaporates, and cools the cold and hot water. Then, the cooled cold / hot water is supplied to the indoor heat exchanger by the cold / hot water pump, passes through the indoor heat exchanger, and the blowing fan blows cool air into the room, thereby performing indoor cooling. or,
During the heating operation, the heated hot and cold water is supplied to the indoor heat exchanger by the cold and hot water pump, passes through the indoor heat exchanger, and the blower fan blows warm air into the room to perform room heating.
【0019】冷房運転時、蒸発器で蒸発して吸収器に入
った蒸気冷媒は、高温再生器から送られる高濃度吸収液
に吸収され、低濃度吸収液となって吸収器内に溜まる。
暖房運転時は、蒸発器内の吸収液が吸収器に進入し、吸
収器内に溜まる。吸収器内に溜まった吸収液は、溶液ポ
ンプにより高温再生器に戻される(冷房/暖房運転
時)。冷房運転/暖房運転が安定して来たら、制御器
は、冷温水が所定温度を維持する様に加熱源の加熱力を
比例制御する(冷房/暖房運転時)。During the cooling operation, the vapor refrigerant evaporated in the evaporator and entering the absorber is absorbed by the high-concentration absorbent sent from the high-temperature regenerator and becomes a low-concentration absorbent and accumulates in the absorber.
During the heating operation, the absorbent in the evaporator enters the absorber and accumulates in the absorber. The absorbent collected in the absorber is returned to the high-temperature regenerator by the solution pump (at the time of cooling / heating operation). When the cooling operation / heating operation becomes stable, the controller proportionally controls the heating power of the heating source so that the cold / hot water maintains a predetermined temperature (at the time of cooling / heating operation).
【0020】[0020]
〔請求項1について〕コールド状態の場合は、立ち上げ
時、運転が安定するまで加熱源の加熱力を大に固定する
構成であるので、再生器内の吸収液の温度が迅速に上が
り、冷房運転時には濃縮吸収液の生成及び液冷媒の生成
が促される。この為、蒸発器内での、液冷媒の蒸発によ
る冷温水の冷却、及び吸収器内での蒸気冷媒の吸収が迅
速に行われ、又、暖房運転時には、蒸発器内で冷温水の
加熱が迅速に行われ、早期に冷風又は温風を室内に吹き
出す事ができる。よって、本構成の吸収式空調装置は、
コールド状態からの立ち上げにおいて、加熱力を、例え
ば中間点に固定した吸収式空調装置に比べ、冷房・暖房
能力が出る迄の時間を短縮できる。[Claim 1] In the cold state, at the time of startup, the heating power of the heating source is fixed to a large value until the operation becomes stable, so that the temperature of the absorbing solution in the regenerator rises quickly, During operation, generation of the concentrated absorption liquid and generation of the liquid refrigerant are promoted. For this reason, the cooling of the hot and cold water by evaporation of the liquid refrigerant in the evaporator and the absorption of the vapor refrigerant in the absorber are quickly performed, and the heating of the cold and hot water in the evaporator during the heating operation. It is performed quickly and can blow out cold or warm air into the room early. Therefore, the absorption type air conditioner of this configuration is
In the startup from the cold state, the heating power can be shortened, for example, the time until the cooling / heating capacity is increased, as compared with an absorption air conditioner fixed at an intermediate point.
【0021】又、ホット状態の場合は、立ち上げ時、運
転が安定するまで、加熱源の加熱力を小に固定する構成
であるので、再生器内の吸収液が過熱されない。この
為、ホット状態からの立ち上げにおいて、加熱ロスが生
じないとともに、冷房オフ、暖房オフ等と、オフ状態か
らの立ち上げとの繰り返しによる不安定な運転状態を防
止できる。In the hot state, the heating power of the heating source is fixed to a small value at startup and until the operation becomes stable, so that the absorbing liquid in the regenerator is not overheated. For this reason, when starting up from the hot state, heating loss does not occur, and an unstable operation state due to repetition of starting up from the off state, such as cooling off and heating off, can be prevented.
【0022】〔請求項2について〕コールド状態の場合
は、立ち上げ時、運転が安定するまで加熱源の加熱力を
大に固定する構成であるので、高温再生器内の吸収液の
温度が迅速に上がり、冷房運転時には、中・高濃度吸収
液の生成及び液冷媒の生成が促される。この為、蒸発器
内での、液冷媒の蒸発による冷温水の冷却、及び吸収器
内での蒸気冷媒の吸収が迅速に行われ、又、暖房運転時
には、蒸発器内で冷温水の過熱が迅速に行われ、早期に
冷風又は温風を室内に吹き出す事ができる。よって、本
構成の吸収式空調装置は、コールド状態からの立ち上げ
において、加熱力を例えば、中間点に固定した吸収式空
調装置に比べ、冷房・暖房能力が出る迄の時間を短縮で
きる。[Claim 2] In the cold state, the heating power of the heating source is largely fixed at the time of startup until the operation is stabilized, so that the temperature of the absorbing liquid in the high-temperature regenerator rapidly increases. During the cooling operation, the generation of the medium / high concentration absorbing liquid and the generation of the liquid refrigerant are promoted. For this reason, the cooling of the hot and cold water by the evaporation of the liquid refrigerant in the evaporator and the absorption of the vapor refrigerant in the absorber are performed quickly, and the overheating of the cold and hot water in the evaporator during the heating operation. It is performed quickly and can blow out cold or warm air into the room early. Therefore, in the startup of the absorption type air conditioner of the present configuration, when starting from the cold state, it is possible to shorten the time until the cooling / heating capacity is increased as compared with the absorption type air conditioner in which the heating power is fixed to, for example, the middle point.
【0023】又、ホット状態の場合は、立ち上げ時、運
転が安定するまで加熱源の加熱力を小に固定する構成で
あるので高温再生器内の吸収液が過熱されない。この
為、ホット状態からの立ち上げにおいて、加熱ロスが生
じないとともに、冷房オフ、暖房オフ等と、オフ状態か
らの立ち上げとの繰り返しによる、不安定な運転状態を
防止できる。In the hot state, the absorption liquid in the high-temperature regenerator is not overheated because the heating power of the heating source is fixed to a small value at startup when the operation is stabilized. For this reason, when starting up from the hot state, heating loss does not occur, and an unstable operation state due to repetition of starting up from the off state, such as cooling off and heating off, can be prevented.
【0024】[0024]
【発明の実施の形態】本発明の一実施例(請求項2に対
応)を図1〜図6に基づいて説明する。 図に示す様
に、吸収式空調装置Aは、冷房運転時に冷却水10を循
環させる冷却水回路1と、冷房・暖房運転時に冷温水2
0を循環させる冷温水回路2と、高温再生器3、低温再
生器4、凝縮器5、蒸発器6、吸収器7、及びタンデム
ポンプ80の溶液ポンプ部801により構成される吸収
液回路8と、制御器9とを具備する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention (corresponding to claim 2) will be described with reference to FIGS. As shown in the figure, an absorption type air conditioner A has a cooling water circuit 1 for circulating cooling water 10 during cooling operation, and a cooling / heating water 2 during cooling / heating operation.
A hot / cold water circuit 2 for circulating 0, a high temperature regenerator 3, a low temperature regenerator 4, a condenser 5, an evaporator 6, an absorber 7, and a solution pump section 801 of a tandem pump 80. , A controller 9.
【0025】冷却水回路1は、冷却塔ファン111を付
設した冷却塔11(室外熱交換器)と、冷却水タンク1
2と、冷却水ポンプ13と、吸収器伝熱管14、凝縮器
伝熱管15を順に環状接続して構成され、冷房運転時に
は冷却水ポンプ13(1230リットル/h)を作動さ
せて冷却水10を循環させる。The cooling water circuit 1 includes a cooling tower 11 (outdoor heat exchanger) provided with a cooling tower fan 111 and a cooling water tank 1.
2, a cooling water pump 13, an absorber heat transfer tube 14, and a condenser heat transfer tube 15 are sequentially connected in a ring shape. During cooling operation, the cooling water pump 13 (1230 liter / h) is operated to cool the cooling water 10. Circulate.
【0026】冷房運転時、冷却塔ファン111は、交流
コンデンサモータ112により駆動される。尚、交流コ
ンデンサモータ112は、トライアック(図示せず)を
介してAC- 100Vに接続され、冷却水温センサ91
が検出する冷却水温が31.5℃に維持される様に制御
器9により回転数が制御される(冷房比例制御時)。During the cooling operation, the cooling tower fan 111 is driven by an AC condenser motor 112. The AC condenser motor 112 is connected to AC-100V via a triac (not shown), and a cooling water temperature sensor 91
Is controlled by the controller 9 such that the cooling water temperature detected by the controller 9 is maintained at 31.5 ° C. (at the time of cooling proportional control).
【0027】上記冷却水温センサ91は、冷却水ポンプ
13- 吸収器伝熱管14間を接続する冷却水管101中
に配設され、吸収器伝熱管14に供給される冷却水10
の温度を検出する。又、暖房運転時には、冷却水回路1
内の冷却水10は全て抜かれ、交流コンデンサモータ1
12には通電されない。The cooling water temperature sensor 91 is provided in a cooling water pipe 101 connecting the cooling water pump 13 and the absorber heat transfer pipe 14, and the cooling water 10 supplied to the absorber heat transfer pipe 14.
Detect the temperature of In the heating operation, the cooling water circuit 1
All of the cooling water 10 inside is removed, and the AC condenser motor 1
12 is not energized.
【0028】冷温水回路2は、送風ファン211を付設
した室内熱交換器21、シスターン22、冷温水ポンプ
部802(最大能力時620リットル/h)、蒸発器伝
熱管24を環状接続してなり、タンデムポンプ80の冷
温水ポンプ部802により冷温水20を循環させてい
る。尚、冷房運転時の室内熱交換器21の吸熱量は43
40kcal(最大能力時)であり、暖房運転時の室内
熱交換器21の放熱量は6200kcal(最大能力
時)である。The cold / hot water circuit 2 is formed by connecting the indoor heat exchanger 21 with the blower fan 211, the cistern 22, the cold / hot water pump section 802 (at a maximum capacity of 620 liter / h), and the evaporator heat transfer tube 24 in an annular manner. The cold / hot water 20 is circulated by the cold / hot water pump section 802 of the tandem pump 80. The amount of heat absorbed by the indoor heat exchanger 21 during the cooling operation is 43
40 kcal (at the maximum capacity), and the heat radiation amount of the indoor heat exchanger 21 during the heating operation is 6,200 kcal (at the maximum capacity).
【0029】高温再生器3は、ガスバーナ311によっ
て吸収液を加熱する沸騰器31と、沸騰器31から立設
する分離筒32と、捕集容器33とにより構成され、冷
房運転時、沸騰器31内の低濃度吸収液(以下、希液3
0と呼ぶ;58%臭化リチウム水溶液)中に含まれる冷
媒(水)を蒸発させて中濃度吸収液(以下、中液34と
呼ぶ;60%臭化リチウム水溶液)と蒸気冷媒35とに
分離する。The high-temperature regenerator 3 is composed of a boiler 31 for heating the absorbent by a gas burner 311, a separation tube 32 erected from the boiler 31, and a collecting vessel 33. Low-concentration absorbing solution (hereinafter referred to as diluted solution 3)
0; a refrigerant (water) contained in a 58% aqueous lithium bromide solution is evaporated to be separated into a medium concentration absorbing liquid (hereinafter referred to as an intermediate liquid 34; a 60% aqueous lithium bromide solution) and a vapor refrigerant 35. I do.
【0030】ガスバーナ311は、ブンゼン式であり、
ガス電磁弁312、313、ガス比例弁314を連設し
たガス管315によりガスが供給され、燃焼用ファン3
16によりインプットに見合った量の燃焼用空気が供給
されて燃焼する。The gas burner 311 is of a Bunsen type,
Gas is supplied by a gas pipe 315 having gas solenoid valves 312 and 313 and a gas proportional valve 314 connected thereto.
16 supplies and burns the combustion air in an amount corresponding to the input.
【0031】321は断熱を図る為の間隙である。又、
沸騰器31の適所には、高温再生器3内の希液30の温
度(以下、HGE温度と呼ぶ)を検出する為のHGE温
度センサ301が配設されている。321 is a gap for heat insulation. or,
An HGE temperature sensor 301 for detecting the temperature of the dilute liquid 30 in the high-temperature regenerator 3 (hereinafter, referred to as HGE temperature) is provided at an appropriate position of the evaporator 31.
【0032】冷温水センサ201は、室内熱交換器21
の入口側の冷温水配管29に配設され、室内熱交換器2
1に供給される冷温水20の温度を検出する。The cold / hot water sensor 201 is connected to the indoor heat exchanger 21
Is disposed in the cold / hot water pipe 29 on the inlet side of the indoor heat exchanger 2.
The temperature of the cold / hot water 20 supplied to 1 is detected.
【0033】コールド状態で冷房運転を立ち上げる場合
(HGE温度<80℃)、制御器9は、点火開始時のガ
スバーナ311のインプットを8000kcal/hと
し、HGE温度≧150℃、或いは冷温水温度≦11℃
になったら4800kcal/hとする。When the cooling operation is started in the cold state (HGE temperature <80 ° C.), the controller 9 sets the input of the gas burner 311 at the start of ignition to 8000 kcal / h, and the HGE temperature ≧ 150 ° C. or the cold / hot water temperature ≦ 11 ℃
Becomes 4,800 kcal / h.
【0034】又、ホット状態で冷房運転を立ち上げる場
合(HGE温度≧80℃)、制御器9は、点火開始時の
ガスバーナ311のインプットを2500kcal/h
とする。When the cooling operation is started in the hot state (HGE temperature ≧ 80 ° C.), the controller 9 sets the input of the gas burner 311 at the start of ignition to 2500 kcal / h.
And
【0035】そして、冷房運転が安定して、冷温水温度
≦9℃になると、制御器9は、冷温水センサ201が検
出する冷温水20の温度(平均温度)が7℃になる様
に、1500kcal/h〜4800kcal/hの間
で、ガスバーナ311のインプットを比例制御(冷房比
例制御)する。When the cooling operation becomes stable and the temperature of the cold / hot water ≤ 9 ° C, the controller 9 sets the temperature (average temperature) of the cold / hot water 20 detected by the cold / hot water sensor 201 to 7 ° C. Between 1500 kcal / h and 4800 kcal / h, the input of the gas burner 311 is proportionally controlled (cooling proportional control).
【0036】コールド状態で暖房運転を立ち上げる場合
(HGE温度<60℃)、制御器9は点火開始時のガス
バーナ311のインプットを8000kcal/hとす
る。又、ホット状態で暖房運転を立ち上げる場合(HG
E温度≧60℃)、制御器9は点火開始時のガスバーナ
311のインプットを2500kcal/hとする。When starting the heating operation in the cold state (HGE temperature <60 ° C.), the controller 9 sets the input of the gas burner 311 at the start of ignition to 8000 kcal / h. When starting the heating operation in the hot state (HG
(E temperature ≧ 60 ° C.), and the controller 9 sets the input of the gas burner 311 at the start of ignition to 2500 kcal / h.
【0037】そして、暖房運転が安定して冷温水温度≧
58℃になると、制御器9は、冷温水センサ201が検
出する冷温水20の温度(平均温度)が60℃になる様
に、1500kcal/h〜8000kcal/hの間
で、ガスバーナ311のインプットを比例制御(暖房比
例制御)する。Then, the heating operation is stabilized and the cold / hot water temperature ≧
When the temperature reaches 58 ° C., the controller 9 controls the input of the gas burner 311 between 1500 kcal / h and 8000 kcal / h so that the temperature (average temperature) of the cold / hot water 20 detected by the cold / hot water sensor 201 becomes 60 ° C. Proportional control (heating proportional control) is performed.
【0038】冷房運転時は、冷暖切替弁36が閉弁して
いるので、中液34(165℃)は、中液配管341→
高温熱交換流路342→オリフィス343付きの中液配
管344を経て低温再生器4の上部に送り込まれる。During the cooling operation, since the cooling / heating switching valve 36 is closed, the intermediate liquid 34 (165 ° C.) is supplied to the intermediate liquid pipe 341 →
The high-temperature heat exchange flow path 342 is sent to the upper part of the low-temperature regenerator 4 via the middle liquid pipe 344 having the orifice 343.
【0039】低温再生器4は、捕集容器33を包囲し、
冷房運転時には、中液34は、捕集容器33から受熱し
て加熱される。これにより、中液34の一部が気化し
て、高濃度吸収液(以下、濃液41と呼ぶ;62%臭化
リチウム水溶液)と蒸気冷媒42とに分離される。又、
冷暖切替弁36が開弁する暖房運転時には、中液配管3
44はオリフィス343により流路抵抗が生じるので、
中液34は全て暖房配管361に流れ、低温再生器4に
送り込まれない。The low-temperature regenerator 4 surrounds the collection container 33,
During the cooling operation, the intermediate liquid 34 is heated by receiving heat from the collection container 33. As a result, a part of the middle liquid 34 is vaporized and separated into a high concentration absorbing liquid (hereinafter, referred to as a concentrated liquid 41; a 62% aqueous lithium bromide solution) and a vapor refrigerant 42. or,
During the heating operation in which the cooling / heating switching valve 36 is opened, the middle liquid pipe 3
Since the flow path resistance 44 is generated by the orifice 343,
All of the intermediate liquid 34 flows through the heating pipe 361 and is not sent to the low-temperature regenerator 4.
【0040】凝縮器5には、高温再生器3、低温再生器
4から蒸気冷媒35、42が凝縮器5に送り込まれ、蒸
気冷媒35、42は、コイル状の凝縮器伝熱管15を流
れる冷却水10によって冷却され液化し、液冷媒(水)
52は凝縮器5の底部に溜まる。尚、昇温(37.5
℃)した冷却水10は、冷却塔11で冷却(31.5
℃)される。In the condenser 5, vapor refrigerants 35 and 42 are sent from the high-temperature regenerator 3 and the low-temperature regenerator 4 to the condenser 5, and the vapor refrigerants 35 and 42 are cooled through the coil-shaped condenser heat transfer tubes 15. Liquid refrigerant (water) cooled by water 10
52 accumulates at the bottom of the condenser 5. In addition, temperature rise (37.5)
The cooling water 10 cooled in the cooling tower 11 (31.5 ° C.).
° C).
【0041】蒸発器6は、コイル状の蒸発器伝熱管24
を配設している。暖房運転時には冷暖切替弁36が開弁
するので、高温再生器3内の高温の吸収液が、冷暖切替
弁36→暖房配管361を介して蒸発器6に送り込まれ
る。又、冷房運転時には、液冷媒52が、冷媒配管53
→冷媒弁54→散布器55を介して蒸発器伝熱管24上
に散布され、蒸発器6内は略真空(約6.5mmHg)
であるので、液冷媒52は蒸発器伝熱管24内を流れる
冷温水20から気化熱を奪って蒸発する。そして、冷却
された冷温水20は室内に配置された室内熱交換器21
で室内に送風される空気と熱交換(最大能力時、吸熱約
4000kcal/h)して昇温し、昇温した冷温水2
0は再び蒸発器伝熱管24を通過して冷却される。The evaporator 6 includes a coil-shaped evaporator heat transfer tube 24.
Is arranged. Since the cooling / heating switching valve 36 is opened during the heating operation, the high-temperature absorbent in the high-temperature regenerator 3 is sent to the evaporator 6 via the cooling / heating switching valve 36 → the heating pipe 361. During the cooling operation, the liquid refrigerant 52 is
→ refrigerant valve 54 → sprayed on the evaporator heat transfer tube 24 via the sprayer 55, and the inside of the evaporator 6 is substantially vacuum (about 6.5 mmHg)
Therefore, the liquid refrigerant 52 evaporates by taking heat of vaporization from the cold / hot water 20 flowing in the evaporator heat transfer tube 24. Then, the cooled cold / hot water 20 is supplied to the indoor heat exchanger 21 disposed indoors.
And heat exchange with the air blown into the room (at maximum capacity, endothermic about 4000 kcal / h) to raise the temperature and raise the temperature of the cold and hot water 2
0 is again cooled by passing through the evaporator heat transfer tube 24.
【0042】吸収器伝熱管14を配設した吸収器7は、
蒸発器6に併設され、上部が蒸発器6と連通している。
そして、冷房運転時には、蒸発器6で蒸発した蒸気冷媒
は上部から吸収器7内に進入し、低温再生器4→濃液配
管411→低温熱交換流路412→濃液配管413→散
布器70を介して吸収器伝熱管14上に散布される濃液
41に吸収され、低濃度となった希液30は吸収器7の
底部に溜まる。又、暖房運転時、吸収器7には、蒸発器
6から高温の吸収液が進入する。The absorber 7 provided with the absorber heat transfer tube 14 is
The upper part is connected to the evaporator 6 and communicates with the evaporator 6.
Then, during the cooling operation, the vapor refrigerant evaporated in the evaporator 6 enters the absorber 7 from above, and the low-temperature regenerator 4 → the concentrated liquid pipe 411 → the low-temperature heat exchange channel 412 → the concentrated liquid pipe 413 → the sprayer 70 The diluted liquid 30 which has been absorbed by the concentrated liquid 41 scattered on the absorber heat transfer tube 14 and has become low in concentration accumulates at the bottom of the absorber 7. During the heating operation, high-temperature absorbing liquid enters the absorber 7 from the evaporator 6.
【0043】ホール素子(図示せず)が取り付けられた
タンデムポンプ80は、AC- 100Vで動作する三相
DCブラシレスモータであり、溶液ポンプ部801と冷
温水ポンプ部802とを具備する。このタンデムポンプ
80は、冷房比例運転時には、HGE温度- 回転数動作
線に基づいて回転する様にフィードバック制御される。
又、暖房比例運転時には、インプット- 回転数動作線に
基づいて回転する様にフィードバック制御される。尚、
タンデムポンプ80(1台)の替わりに、冷温水ポンプ
と溶液ポンプ(合計2台)とを使用しても良い。A tandem pump 80 to which a Hall element (not shown) is attached is a three-phase DC brushless motor operated at AC-100V, and includes a solution pump section 801 and a cold / hot water pump section 802. The tandem pump 80 is feedback controlled so as to rotate based on the HGE temperature-rotation speed operation line during the cooling proportional operation.
In addition, during the heating proportional operation, feedback control is performed such that the motor rotates based on the input-rotation speed operation line. still,
Instead of the tandem pump 80 (one unit), a cold / hot water pump and a solution pump (two units in total) may be used.
【0044】吸収器7の底部に溜まった希液30は、希
液配管71→溶液ポンプ部801→希液配管72→低温
・高温熱交換流路73→希液配管74を介して高温再生
器3の沸騰器31に送られる。The diluted liquid 30 accumulated at the bottom of the absorber 7 is supplied to the diluted liquid pipe 71 → the solution pump section 801 → the diluted liquid pipe 72 → the low temperature / high temperature heat exchange channel 73 → the high temperature regenerator via the diluted liquid pipe 74. 3 is sent to the boiler 31.
【0045】制御器9は、運転スイッチ(図示せず)、
各水位センサ、沸騰器31内の吸収液温度を検知するH
GE温度センサ301、室内熱交換器21に供給される
冷温水20の温度を検出する冷温水センサ201、蒸発
器6の内部温度を検出するEVA温度センサ61、ホー
ル素子、及び吸収器伝熱管14に供給する冷却水10の
温度を検出する冷却水温センサ91からの信号に基づい
て、以下のものを制御する。The controller 9 includes an operation switch (not shown),
Each water level sensor, H for detecting the temperature of the absorbing solution in the boiler 31
GE temperature sensor 301, cold / hot water sensor 201 for detecting the temperature of cold / hot water 20 supplied to indoor heat exchanger 21, EVA temperature sensor 61 for detecting the internal temperature of evaporator 6, Hall element, and absorber heat transfer tube 14. The following is controlled based on a signal from a cooling water temperature sensor 91 that detects the temperature of the cooling water 10 supplied to the cooling water.
【0046】給水弁221、ガス電磁弁312、31
3、ガス比例弁314、タンデムポンプ80、冷却水ポ
ンプ13、冷却塔ファン111、冷媒弁54、燃焼用フ
ァン316、及び冷暖切替弁36。Water supply valve 221, gas solenoid valves 312, 31
3. Gas proportional valve 314, tandem pump 80, cooling water pump 13, cooling tower fan 111, refrigerant valve 54, combustion fan 316, and cooling / heating switching valve 36.
【0047】冷房運転又は暖房運転時、吸収式空調装置
Aは、以下の様に作動する。吸収液が入れられた高温再
生器3は、沸騰器31がガスバーナ311により加熱さ
れる(冷房/暖房運転時)。During the cooling operation or the heating operation, the absorption air conditioner A operates as follows. In the high-temperature regenerator 3 containing the absorbing liquid, the boiler 31 is heated by the gas burner 311 (at the time of cooling / heating operation).
【0048】冷房運転時には、希液30中の冷媒が気化
して中液34と蒸気冷媒35とに分離する。冷房運転時
(図3参照)は、高温再生器3及び低温再生器4から高
温の蒸気冷媒35、42が凝縮器5に送り込まれる。During the cooling operation, the refrigerant in the dilute liquid 30 is vaporized and separated into the intermediate liquid 34 and the vapor refrigerant 35. During the cooling operation (see FIG. 3), high-temperature vapor refrigerants 35 and 42 are sent from the high-temperature regenerator 3 and the low-temperature regenerator 4 to the condenser 5.
【0049】凝縮器5から蒸発器6に送りこまれた液冷
媒52は、冷温水20が流れる蒸発器伝熱管24上に散
布され、気化熱を奪って蒸発し、蒸発した蒸気冷媒は吸
収器7内に進入し、低温再生器4から送られる濃液41
に吸収され希液30となって吸収器7内に溜まり、溶液
ポンプ部801により高温再生器3の沸騰器31内に戻
される。The liquid refrigerant 52 sent from the condenser 5 to the evaporator 6 is sprayed on the evaporator heat transfer tube 24 through which the cold and hot water 20 flows, evaporates by taking heat of vaporization, and the evaporated vapor refrigerant is absorbed by the absorber 7. And the concentrated liquid 41 sent from the low-temperature regenerator 4
And is collected in the absorber 7 as the dilute liquid 30 and returned to the boiling unit 31 of the high-temperature regenerator 3 by the solution pump unit 801.
【0050】液冷媒が、冷温水20が流れる蒸発器伝熱
管24上で蒸発する際に冷温水20を冷却し、冷却され
た冷温水20が冷温水ポンプ部802により室内熱交換
器21に送られて室内熱交換器21を通過し、送風ファ
ン211により冷風が室内に吹き出される事により室内
冷房が行われる。この時、室内制御器25は、室温セン
サ26が検出する室温が、室温設定器(図示せず)で設
定した設定室温になる様に、流量調節弁27及び送風フ
ァン211を制御する。When the liquid refrigerant evaporates on the evaporator heat transfer tube 24 through which the cold / hot water 20 flows, the cold / hot water 20 is cooled, and the cooled cold / hot water 20 is sent to the indoor heat exchanger 21 by the cold / hot water pump section 802. Then, the air passes through the indoor heat exchanger 21, and cool air is blown into the room by the blower fan 211, thereby performing indoor cooling. At this time, the indoor controller 25 controls the flow control valve 27 and the blower fan 211 so that the room temperature detected by the room temperature sensor 26 becomes the set room temperature set by the room temperature setting device (not shown).
【0051】冷房運転が安定する(冷温水≦9℃;図4
のステップs7、s10でYES)と、制御器9は、冷
温水センサ201の出力に基づき、室内熱交換器21に
供給される冷温水20の温度が7℃になる様に、ガスバ
ーナ311のインプットを比例制御(冷房比例制御;1
500kcal/h〜4800kcal/h)する。
又、制御器9は、この冷房比例制御時に、吸収器伝熱管
14へ供給される冷却水10の温度が31.5℃に維持
される様に冷却塔ファン111をフィードバック制御す
る。The cooling operation is stabilized (cooling / hot water ≦ 9 ° C .; FIG. 4)
(YES in steps s7 and s10), the controller 9 controls the input of the gas burner 311 based on the output of the cold / hot water sensor 201 so that the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 becomes 7 ° C. Proportional control (cooling proportional control; 1)
500 kcal / h to 4800 kcal / h).
Further, the controller 9 performs feedback control of the cooling tower fan 111 so that the temperature of the cooling water 10 supplied to the absorber heat transfer tube 14 is maintained at 31.5 ° C. during the cooling proportional control.
【0052】暖房運転の場合は、暖房配管361を介し
て、高温再生器3から高温の吸収液が蒸発器6に送り込
まれ、吸収液は蒸発器伝熱管24を流れる冷温水20を
加熱して降温し、更に吸収器7内に進入して吸収器7内
に溜まる。尚、溜まった吸収液は、溶液ポンプ部801
により沸騰器31内に戻される。In the heating operation, a high-temperature absorbent is sent from the high-temperature regenerator 3 to the evaporator 6 through the heating pipe 361, and the absorbent heats the cold / hot water 20 flowing through the evaporator heat transfer pipe 24. The temperature drops, and further enters the absorber 7 and accumulates in the absorber 7. Incidentally, the collected absorbing liquid is supplied to the solution pump unit 801.
Is returned into the boiler 31.
【0053】高温の吸収液により加熱されて昇温した冷
温水20が、冷温水ポンプ部802により室内熱交換器
21に供給されて室内交換器21内を通過し、送風ファ
ン211により温風が室内に吹き出される事により室内
暖房が行われる。The cold / hot water 20 heated and heated by the high-temperature absorbing liquid is supplied to the indoor heat exchanger 21 by the cold / hot water pump section 802 and passes through the indoor exchanger 21, and hot air is blown by the blower fan 211. The room is heated by being blown into the room.
【0054】暖房運転が安定する(冷温水≧58℃;図
5のステップs5、s8でYES)と、制御器9は冷温
水センサ201の出力に基づき、室内熱交換器21に供
給される冷温水20の温度が60℃になる様に、ガスバ
ーナ311のインプットを比例制御(暖房比例制御;1
500kcal/h〜8000kcal/h)する。
又、室内制御器25は、室温センサ26が検出する室温
が、室温設定器(図示せず)で設定した設定室温になる
様に、流量調節弁27及び送風ファン211を制御す
る。When the heating operation is stabilized (cold / hot water ≧ 58 ° C .; YES in steps s5 and s8 in FIG. 5), the controller 9 outputs the cold / hot water supplied to the indoor heat exchanger 21 based on the output of the cold / hot water sensor 201. The input of the gas burner 311 is proportionally controlled (heating proportional control; 1) so that the temperature of the water 20 becomes 60 ° C.
500 kcal / h to 8000 kcal / h).
Further, the indoor controller 25 controls the flow control valve 27 and the blower fan 211 such that the room temperature detected by the room temperature sensor 26 becomes the set room temperature set by the room temperature setting device (not shown).
【0055】つぎに、吸収式空調装置Aの冷房運転時の
制御器9の詳細を、図3の作動説明図、及び図4のフロ
ーチャートに基づいて述べる。使用者が冷房運転スイッ
チ(図示せず)をオンすると、制御器9のマイクロコン
ピュータは図4のフローチャートに基づいて作動する。Next, the details of the controller 9 during the cooling operation of the absorption type air conditioner A will be described based on the operation explanatory diagram of FIG. 3 and the flowchart of FIG. When the user turns on a cooling operation switch (not shown), the microcomputer of the controller 9 operates based on the flowchart of FIG.
【0056】給水弁221が開弁する様に指示して、シ
スターン22内に水を溜めるクーリングタワー処理(C
T処理)をステップs1で行ない、ステップs2に進
む。ステップs2で、HGE温度センサ301の出力に
基づき、HGE温度が80℃以上であるか否か判別し、
HGE温度が80℃未満である場合(NO;コールドス
タート)はステップs3に進み、80℃以上である場合
(YES;ホットスタート)はステップs8に進む。A cooling tower process (C) in which water supply valve 221 is instructed to open and water is stored in cistern 22
T processing) is performed in step s1, and the process proceeds to step s2. In step s2, based on the output of the HGE temperature sensor 301, it is determined whether or not the HGE temperature is 80 ° C. or higher,
If the HGE temperature is lower than 80 ° C. (NO; cold start), the process proceeds to step s3. If the HGE temperature is 80 ° C. or higher (YES; hot start), the process proceeds to step s8.
【0057】ステップs3で点火動作を行ない、ガスバ
ーナ311が燃焼を開始する。尚、冷暖切替弁36を閉
弁維持する。ステップs4で、インプットを8000k
cal/hにして冷房運転を立ち上げ、HGE温度≧8
0℃に達するとタンデムポンプ80に通電を開始する。
又、HGE温度≧100℃に達すると冷却水ポンプ13
へ通電を開始する。In step s3, the ignition operation is performed, and the gas burner 311 starts burning. The cooling / heating switching valve 36 is maintained closed. In step s4, input 8000k
cal / h and start the cooling operation, HGE temperature ≧ 8
When the temperature reaches 0 ° C., the power supply to the tandem pump 80 is started.
When the HGE temperature reaches 100 ° C., the cooling water pump 13
Start energization.
【0058】ステップs5で、HGE温度≧150℃、
又は冷温水≦11℃が成立するか否か判別し、何方か成
立する場合(YES)はステップs6に進み、何れも成
立しない場合(NO)はステップs4に戻って8000
kcal/hのインプットを維持する。In step s5, HGE temperature ≧ 150 ° C.
Alternatively, it is determined whether or not cold / hot water ≦ 11 ° C. is satisfied. If any of them is satisfied (YES), the process proceeds to step s6. If neither is satisfied (NO), the process returns to step s4 and returns to 8000.
Maintain an input of kcal / h.
【0059】ステップs6で、インプットを4800k
cal/hに低減し、タンデムポンプ80の回転数も低
減する。ステップs7で、冷温水が9℃以下に低下した
か否か判別し、冷温水≦9℃である場合(YES)はス
テップs11に進み、冷温水>9℃である場合(NO)
はステップs6に戻って4800kcal/hでのイン
プットを維持する。In step s6, the input is set to 4800k.
cal / h, and the rotational speed of the tandem pump 80 is also reduced. In step s7, it is determined whether or not the temperature of the cold / hot water has decreased to 9 ° C. or less. If the temperature of the cold / hot water ≦ 9 ° C. (YES), the process proceeds to step s11. If the temperature of the cold / hot water> 9 ° C. (NO).
Returns to step s6 and maintains the input at 4800 kcal / h.
【0060】ステップs8で点火動作を行ない、ガスバ
ーナ311が燃焼を開始する。尚、冷暖切替弁36を閉
弁維持する。ステップs9で、インプットを2500k
cal/hにして冷房運転を立ち上げ、タンデムポンプ
80に通電を開始する。又、HGE温度≧100℃に達
すると冷却水ポンプ13へ通電を開始する。At step s8, an ignition operation is performed, and the gas burner 311 starts combustion. The cooling / heating switching valve 36 is maintained closed. In step s9, the input is 2500k
The cooling operation is started at cal / h, and energization of the tandem pump 80 is started. When the HGE temperature reaches 100 ° C., energization of the cooling water pump 13 is started.
【0061】ステップs10で、冷温水が9℃以下に低
下したか否か判別し、冷温水≦9℃である場合(YE
S)はステップs11に進み、冷温水>9℃である場合
(NO)はステップs9に戻って2500kcal/h
でのインプットを維持する。In step s10, it is determined whether or not the temperature of the cold / hot water has dropped to 9 ° C. or less. If the temperature of the cold / hot water ≦ 9 ° C. (YE
S) proceeds to step s11, and if the temperature is lower than 9 ° C. (NO), the process returns to step s9 to 2500 kcal / h
Maintain input at.
【0062】ステップs11で、制御器9は、冷温水セ
ンサ201の出力に基づき、室内熱交換器21に供給さ
れる冷温水20の温度が7℃になる様に、ガスバーナ3
11のインプットを冷房比例制御(1500kcal/
h〜4800kcal/h)する。又、タンデムポンプ
80を、HGE温度に比例した回転数(HGE温度-回
転数動作線)にフィードバック制御する。更に、吸収器
伝熱管14に供給される冷却水10の温度が31.5℃
に維持される様に冷却塔ファン111をフィードバック
制御する。In step s11, the controller 9 controls the gas burner 3 based on the output of the cold / hot water sensor 201 so that the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 becomes 7 ° C.
11 inputs are controlled by cooling proportional control (1500 kcal /
h to 4800 kcal / h). Further, the tandem pump 80 is feedback-controlled to a rotation speed (HGE temperature-rotation speed operation line) proportional to the HGE temperature. Further, the temperature of the cooling water 10 supplied to the absorber heat transfer tube 14 is 31.5 ° C.
The feedback control of the cooling tower fan 111 is performed so as to maintain the temperature of the cooling tower.
【0063】ステップs12で、冷温水<5℃、又は室
温<設定温度が成立する(サーモオフ、冷房オフ)か否
か判別し、何方か成立する場合(YES)はステップs
13に進み、何れも成立しない場合(NO)はステップ
s11に戻って冷房比例制御を継続する。In step s12, it is determined whether or not cold / hot water <5 ° C. or room temperature <set temperature is satisfied (thermo-off, cooling-off). If any of them is satisfied (YES), step s is performed.
The process proceeds to step S13, and if none is satisfied (NO), the process returns to step s11 to continue the cooling proportional control.
【0064】ステップs13で、ガスバーナ311の消
火を指示する。ステップs14で、後述する、冷房オフ
運転処理又はサーモオフ運転処理を実施し、ステップs
15に進む。At step s13, an instruction to extinguish the gas burner 311 is issued. In step s14, a cooling-off operation process or a thermo-off operation process, which will be described later, is performed.
Proceed to 15.
【0065】〔冷房オフ運転処理〕ガスバーナ311の
消火後、HGE温度が100℃を越える間は、タンデム
ポンプ80を、HGE温度- 回転数動作線に基づいてフ
ィードバック制御する。HGE温度が100℃以下に低
下すると、タンデムポンプ80の回転数を900rpm
に固定し、冷暖切替弁36を開弁し冷却水ポンプ13を
停止する。 〔サーモオフ運転処理〕ガスバーナ311が消火する
と、10秒後、冷却水ポンプ13を停止する。[Cooling Off Operation Processing] After extinguishing the gas burner 311, while the HGE temperature exceeds 100 ° C., the tandem pump 80 is feedback-controlled based on the HGE temperature-rotation speed operation line. When the HGE temperature falls below 100 ° C., the rotation speed of the tandem pump 80 is reduced to 900 rpm.
, The cooling / heating switching valve 36 is opened, and the cooling water pump 13 is stopped. [Thermo-off operation process] When the gas burner 311 extinguishes, the cooling water pump 13 is stopped after 10 seconds.
【0066】ステップs15で、冷温水≧7℃以上(冷
房オフの場合)、又は室温≧設定温度(サーモオフの場
合)が成立するか否か判別し、成立する場合(YES)
は、冷房オフ立ち上げ、又はサーモオフ立ち上げを行う
為にステップs8に戻る。又、成立しない場合(NO)
はステップs14に戻って冷房オフ運転処理又はサーモ
オフ運転処理を実施する。In step s15, it is determined whether or not cold / hot water ≧ 7 ° C. or more (when cooling is off) or room temperature ≧ set temperature (when thermostat is off), and if so (YES).
Returns to step s8 to perform cooling-off startup or thermo-off startup. If not established (NO)
Returns to step s14 to execute the cooling-off operation process or the thermo-off operation process.
【0067】つぎに、吸収式空調装置Aの暖房運転時の
制御器9の詳細を、図5の作動説明図、及び図6のフロ
ーチャートに基づいて述べる。使用者が暖房運転スイッ
チ(図示せず)をオンすると、制御器9のマイクロコン
ピュータは図6のフローチャートに基づいて作動する。Next, the details of the controller 9 during the heating operation of the absorption type air conditioner A will be described based on the operation explanatory diagram of FIG. 5 and the flowchart of FIG. When the user turns on a heating operation switch (not shown), the microcomputer of the controller 9 operates based on the flowchart of FIG.
【0068】ステップS1で排水弁(図示せず)を開弁
維持して、冷却水回路1の冷却水10の水を抜く排水処
理を行う。排水処理が終了すると、ステップS2で、制
御器9は、HGE≧60℃であるか否か判別し、HGE
<60℃の場合(コールドスタート;NO)はステップ
S3に進み、HGE≧60℃の場合(ホットスタート;
YES)はステップS6に進む。In step S1, a drain valve (not shown) is kept open to perform a drain process for draining the cooling water 10 in the cooling water circuit 1. When the drainage process is completed, in step S2, the controller 9 determines whether or not HGE ≧ 60 ° C.
If <60 ° C. (cold start; NO), proceed to step S3, and if HGE ≧ 60 ° C. (hot start;
YES) proceeds to step S6.
【0069】ステップS3で、制御器9は、点火動作を
行ない、ガスバーナ311が燃焼を開始する。又、冷暖
切替弁36を開弁する。ステップS4で、制御器9は、
インプットを8000kcal/hにして暖房運転を立
ち上げ、HGE温度≧60℃に達するとタンデムポンプ
80に通電を開始し、約3000rpm(一定)で回転
させる。In step S3, the controller 9 performs an ignition operation, and the gas burner 311 starts combustion. Further, the cooling / heating switching valve 36 is opened. In step S4, the controller 9
The heating operation is started with the input set to 8000 kcal / h, and when the HGE temperature ≥60 ° C is reached, the tandem pump 80 is energized and rotated at about 3000 rpm (constant).
【0070】ステップS5で、制御器9は、室内熱交換
器21に供給される冷温水20が58℃以上に昇温した
か否か冷温水センサ201の出力に基づいて判別し、昇
温している場合(YES)はステップS9に進み、昇温
していない場合(NO)はステップS4に戻って800
0kcal/hのインプットを維持する。In step S5, the controller 9 determines whether or not the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 has risen to 58 ° C. or higher, based on the output of the cold / hot water sensor 201, and raises the temperature. If the temperature has risen (YES), the process proceeds to step S9. If the temperature has not risen (NO), the process returns to step S4 and returns to step S4.
Maintain an input of 0 kcal / h.
【0071】ステップS6で、制御器9は、点火動作を
行ない、ガスバーナ311が燃焼を開始する。又、冷暖
切替弁36を開弁する。ステップS7で、制御器9は、
インプットを2500kcal/hにして暖房運転を立
ち上げ、タンデムポンプ80に通電を開始し、約200
0rpm(一定)で回転させる。In step S6, the controller 9 performs an ignition operation, and the gas burner 311 starts combustion. Further, the cooling / heating switching valve 36 is opened. In step S7, the controller 9
The heating operation was started with the input set to 2500 kcal / h, and the tandem pump 80 was energized for approximately 200 kcal / h.
Rotate at 0 rpm (constant).
【0072】ステップS8で、制御器9は、室内熱交換
器21に供給される冷温水20が58℃以上に昇温した
か否か冷温水センサ201の出力に基づいて判別し、昇
温している場合(YES)はステップS9に進み、昇温
していない場合(NO)はステップS7に戻って250
0kcal/hのインプットを維持する。In step S8, the controller 9 determines whether or not the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 has risen to 58 ° C. or higher based on the output of the cold / hot water sensor 201, and raises the temperature. If the temperature has risen (YES), the process proceeds to step S9. If the temperature has not risen (NO), the process returns to step S7 and returns to step S7.
Maintain an input of 0 kcal / h.
【0073】ステップS9で、制御器9は、室内熱交換
器21に供給する冷温水20の温度が60℃に維持され
る様に、ガスバーナ311のインプットを暖房比例制御
(1500kcal/h〜8000kcal/h)す
る。又、タンデムポンプ80を、インプット- 回転数動
作線に基づいてフィードバック制御する。In step S 9, the controller 9 controls the input of the gas burner 311 for heating proportional control (1500 kcal / h to 8000 kcal / h) so that the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 is maintained at 60 ° C. h) Yes. Further, the tandem pump 80 is feedback-controlled based on the input-rotation speed operation line.
【0074】タンデム回転数(rpm)=インプット
(kcal/h)×K+A 但し、K、Aは定数Tandem rotation speed (rpm) = input (kcal / h) × K + A where K and A are constants
【0075】ステップS10で、冷温水≧62℃、又は
室温>設定温度が成立する(サーモオフ、暖房オフ)か
否か判別し、何方か成立する場合(YES)はステップ
S11に進み、何れも成立しない場合(NO)はステッ
プS9に戻って暖房比例制御を継続する。In step S10, it is determined whether or not cold / hot water ≧ 62 ° C. or room temperature> set temperature is satisfied (thermo-off, heating-off). If any of the conditions is satisfied (YES), the flow proceeds to step S11, and both are satisfied. If not (NO), the process returns to step S9 to continue the heating proportional control.
【0076】ステップS11で、ガスバーナ311の消
火を指示する。ステップS12で、後述する、暖房オフ
運転処理又はサーモオフ運転処理を実施し、ステップS
13に進む。In step S 11, an instruction is given to extinguish the gas burner 311. In step S12, a heating-off operation process or a thermo-off operation process, which will be described later, is performed.
Proceed to 13.
【0077】〔暖房オフ運転処理〕ガスバーナ311が
消火すると、制御器9は、タンデムポンプ80の回転数
制御を、インプット- 回転数動作線制御から、HGE温
度- 回転数動作線制御に変更する。[Heating Off Operation Processing] When the gas burner 311 extinguishes, the controller 9 changes the rotation speed control of the tandem pump 80 from the input-rotation speed operation line control to the HGE temperature-rotation speed operation line control.
【0078】〔サーモオフ運転処理〕ガスバーナ311
が消火すると、制御器9は、タンデムポンプ80の回転
数制御を、インプット- 回転数動作線制御から、HGE
温度- 回転数動作線制御に変更する。[Thermo-off operation process] Gas burner 311
Is extinguished, the controller 9 changes the rotation speed control of the tandem pump 80 from the input-rotation speed operation line control to the HGE control.
Change to temperature-speed operation line control.
【0079】ステップS13で、冷温水≦60℃(暖房
オフの場合)、又は室温≦設定温度(サーモオフの場
合)が成立するか否か判別し、成立する場合(YES)
は、暖房オフ立ち上げ、又はサーモオフ立ち上げを行う
為にステップS6に戻る。又、成立しない場合(NO)
はステップS12に戻って暖房オフ運転処理又はサーモ
オフ運転処理を実施する。In step S13, it is determined whether or not cold / hot water ≦ 60 ° C. (when heating is off) or room temperature ≦ set temperature (when thermostat is off), and if so (YES).
Returns to step S6 to perform heating-off startup or thermo-off startup. If not established (NO)
Returns to step S12 to perform the heating-off operation process or the thermo-off operation process.
【0080】つぎに、本実施例の吸収式空調装置Aの利
点を述べる。吸収式空調装置Aは、初回運転時、又は前
回の運転停止から長時間が経過して、HGE温度が低い
(冷房運転で80℃未満、暖房運転で60℃未満)コー
ルド状態からの冷房運転・暖房運転立ち上げの場合は、
点火から冷温水温度が所定温度(冷房では9℃以下、暖
房では58℃以上)になるまで、ガスバーナ311のイ
ンプットを8000kcal/hにして高温再生器3内
の吸収液の温度を迅速に上げ、冷房運転時には、濃液4
1の生成及び液冷媒の生成により、蒸発器6内での液冷
媒の蒸発と吸収器7での吸収作用による冷温水20の冷
却を促し、暖房運転時には、高温の吸収液による冷温水
20の加熱を促す構成である。Next, advantages of the absorption type air conditioner A of this embodiment will be described. The absorption-type air conditioner A has a low HGE temperature at the time of initial operation or after a long time has elapsed since the last operation stop (lower than 80 ° C. in the cooling operation, lower than 60 ° C. in the heating operation). When starting heating operation,
From the time of ignition until the temperature of the cold and hot water reaches a predetermined temperature (9 ° C. or less for cooling and 58 ° C. or more for heating), the input of the gas burner 311 is set to 8000 kcal / h, and the temperature of the absorbing solution in the high-temperature regenerator 3 is rapidly increased. During cooling operation, concentrate 4
1 and the generation of the liquid refrigerant, the evaporation of the liquid refrigerant in the evaporator 6 and the cooling of the cold / hot water 20 by the absorption action of the absorber 7 are promoted. It is a configuration that promotes heating.
【0081】この為、コールド状態からの冷房運転・暖
房運転立ち上げにおいて、立ち上げ時のインプットを燃
焼能力範囲の例えば中間点(4000kcal/h)に
固定した吸収式空調装置に比べ、吸収式空調装置Aは、
冷房能力、暖房能力が出る迄の時間を、1/2〜1/3
に短縮する事ができる。For this reason, when starting the cooling operation / heating operation from the cold state, compared with the absorption air conditioner in which the input at the time of startup is fixed to, for example, the middle point (4000 kcal / h) of the combustion capacity range, the absorption air conditioning system Device A is
The time until the cooling capacity and heating capacity appear is 1/2 to 1/3
Can be shortened to
【0082】更に、吸収式空調装置Aは、冷房・暖房オ
フ、サーモオフからの運転立ち上げ、又は運転停止から
余り時間が経過せず、HGE温度が高い(冷房運転で8
0℃以上、暖房運転で60℃以上)ホット状態からの冷
房運転・暖房運転立ち上げの場合は、点火から冷温水温
度が所定温度(冷房では9℃以下、暖房では58℃以
上)になるまで、ガスバーナ311のインプットを25
00kcal/hにする構成である。Further, in the absorption type air conditioner A, the HGE temperature is high (less than 8 hours in the cooling operation) since no time has elapsed since the cooling / heating is turned off, the operation is started from the thermo-off, or the operation is stopped.
0 ° C or higher, 60 ° C or higher for heating operation) In the case of starting the cooling operation or heating operation from the hot state, until the temperature of the cold / hot water reaches a predetermined temperature (9 ° C or lower for cooling and 58 ° C or higher for heating) from ignition. , Input 25 of gas burner 311
The configuration is set to 00 kcal / h.
【0083】この為、吸収式空調装置Aは、ホット状態
からの冷房運転・暖房運転立ち上げにおいて、高温再生
器3の過熱が防止できる。従って、インプットロスが防
止でき、無駄にガスが消費されない。又、冷房・暖房オ
フ、サーモオフからの運転立ち上げ時に、ハンチングを
多発する事無く、速やかに冷房・暖房比例制御に移行さ
せる事ができる。For this reason, the absorption type air conditioner A can prevent the high temperature regenerator 3 from being overheated when starting the cooling operation / heating operation from the hot state. Therefore, input loss can be prevented, and gas is not wasted. In addition, when the operation is started from cooling / heating off or thermo-off, the control can be promptly shifted to cooling / heating proportional control without frequent hunting.
【0084】本発明は、上記実施例以外に、つぎの実施
態様を含む。 a.上記実施例において、吸収液回路8を、以下の構成
に変更しても良く、吸収式空調装置Aに準じた効果を有
する(請求項1に対応)。吸収液回路8は、吸収液が入
れられ加熱部がガスバーナ等の加熱源により加熱される
再生器、凝縮器伝熱管を配設し再生器から高温の蒸気冷
媒が送り込まれる凝縮器、暖房運転時には高温の吸収液
及び蒸気冷媒が送り込まれ冷房運転時には凝縮器で液化
した液冷媒を蒸発させる蒸発器、該蒸発器に併設され吸
収器伝熱管を配設し冷房運転時には蒸発器で蒸発した蒸
気冷媒を再生器から送られる濃縮吸収液に吸収させる吸
収器、及び吸収器内の吸収液を再生器に戻す溶液ポンプ
を有する。この様に、吸収液回路8を一重効用にする
と、二重効用(吸収式空調装置A)のものに比べ冷房・
暖房効率は落ちるが、吸収式空調装置の構造を簡単にす
る事ができる。The present invention includes the following embodiments in addition to the above embodiments. a. In the above embodiment, the absorbing liquid circuit 8 may be changed to the following configuration, which has an effect similar to that of the absorption air conditioner A (corresponding to claim 1). The absorbent circuit 8 includes a regenerator in which an absorbent is charged and a heating unit is heated by a heating source such as a gas burner, a condenser in which a condenser heat transfer tube is provided, and a high-temperature vapor refrigerant is sent from the regenerator, and a heating operation. An evaporator to which a high-temperature absorbing liquid and a vapor refrigerant are fed to evaporate a liquid refrigerant liquefied by a condenser during a cooling operation, and an absorber heat transfer tube provided alongside the evaporator, and a vapor refrigerant evaporated by the evaporator during a cooling operation. And a solution pump for returning the absorbent in the absorber to the regenerator. In this way, when the absorption liquid circuit 8 is made to have a single effect, the cooling / cooling operation is compared with that of the double effect (absorption air conditioner A).
Although the heating efficiency is reduced, the structure of the absorption air conditioner can be simplified.
【0085】b.上記実施例では、ホット状態での運転
開始時には、低インプット(2500kcal/h)、
コールド状態での運転開始時には高インプット(800
0kcal/h)の二点に設定しているが、HGE温度
に応じて立ち上げ時のインプットを決定する構成にして
も良い。B. In the above embodiment, when starting operation in the hot state, low input (2500 kcal / h),
At the start of operation in cold state, high input (800
0 kcal / h), but the input at the time of startup may be determined according to the HGE temperature.
【0086】c.コールド状態とホット状態の判別は、
HGE温度以外に、前回の運転終了からの経過時間等で
行っても良い。 d.加熱源は、ガスバーナ以外に、電気ヒータ等でも良
い。 e.吸収式空調装置は、冷房専用であっても良い。C. The distinction between cold state and hot state
In addition to the HGE temperature, it may be performed based on the elapsed time from the end of the previous operation. d. The heating source may be an electric heater or the like in addition to the gas burner. e. The absorption air conditioner may be dedicated to cooling.
【0087】f.上記実施例では、運転が安定する時期
を冷温水温度で判断しているが、高温再生器内の吸収液
温度(HGE温度)が所定温度になった時、或いは、タ
イマーによる所定時間経過時としても良い。F. In the above embodiment, the time at which the operation is stabilized is determined by the temperature of the cold and hot water. However, when the temperature of the absorbent (HGE temperature) in the high-temperature regenerator has reached a predetermined temperature, or when a predetermined time has elapsed by a timer. Is also good.
【図1】本発明の一実施例に係る吸収式空調装置の原理
説明図である。FIG. 1 is a diagram illustrating the principle of an absorption air conditioner according to one embodiment of the present invention.
【図2】その吸収式空調装置のシステム図である。FIG. 2 is a system diagram of the absorption type air conditioner.
【図3】その吸収式空調装置を冷房運転させた場合の作
動説明図である。FIG. 3 is an operation explanatory diagram when the absorption type air conditioner is operated for cooling.
【図4】その吸収式空調装置の冷房運転時の作動を示す
フローチャートである。FIG. 4 is a flowchart showing an operation of the absorption type air conditioner during a cooling operation.
【図5】その吸収式空調装置を暖房運転させた場合の作
動説明図である。FIG. 5 is an operation explanatory diagram when the absorption type air conditioner is operated for heating.
【図6】その吸収式空調装置の暖房運転時の作動を示す
フローチャートである。FIG. 6 is a flowchart showing an operation of the absorption type air conditioner during a heating operation.
【図7】従来の吸収式空調装置の冷房運転時の作動を示
すフローチャートである。FIG. 7 is a flowchart showing an operation of the conventional absorption air conditioner during a cooling operation.
A 吸収式空調装置 1 冷却水回路 2 冷温水回路 3 高温再生器 4 低温再生器 5 凝縮器 6 蒸発器 7 吸収器 8 吸収液回路 9 制御器 10 冷却水 11 冷却塔(室外熱交換器) 13 冷却水ポンプ 14 吸収器伝熱管 15 凝縮器伝熱管 20 冷温水 21 室内熱交換器 24 蒸発器伝熱管 30 希液(低濃度吸収液) 31 沸騰器(加熱部) 34 中液(中濃度吸収液) 35、42 蒸気冷媒 41 濃液(高濃度吸収液) 211 送風ファン 311 ガスバーナ(加熱源) 801 溶液ポンプ部(溶液ポンプ) 802 冷温水ポンプ部(冷温水ポンプ) A Absorption air conditioner 1 Cooling water circuit 2 Cooling / heating water circuit 3 High temperature regenerator 4 Low temperature regenerator 5 Condenser 6 Evaporator 7 Absorber 8 Absorbing liquid circuit 9 Controller 10 Cooling water 11 Cooling tower (outdoor heat exchanger) 13 Cooling water pump 14 Absorber heat transfer tube 15 Condenser heat transfer tube 20 Cold and hot water 21 Indoor heat exchanger 24 Evaporator heat transfer tube 30 Dilute solution (low concentration absorption solution) 31 Boiler (heating unit) 34 Medium solution (medium concentration absorption solution) 35, 42 vapor refrigerant 41 concentrated liquid (high concentration absorption liquid) 211 blower fan 311 gas burner (heating source) 801 solution pump section (solution pump) 802 cold / hot water pump section (cold / hot water pump)
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 306 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) F25B 15/00 306
Claims (2)
器伝熱管を順に環状接続してなり、冷房運転時には冷却
水ポンプにより冷却水を循環させる冷却水回路と、 送風ファンを付設した室内熱交換器、及び蒸発器伝熱管
を環状接続してなり、冷温水ポンプにより冷温水を循環
させる冷温水回路と、 吸収液が入れられ加熱部が加熱源により加熱される再生
器、前記凝縮器伝熱管を配設し前記再生器から高温の蒸
気冷媒が送り込まれる凝縮器、暖房運転時には高温の吸
収液が送り込まれ冷房運転時には前記凝縮器で液化した
液冷媒を蒸発させる蒸発器、該蒸発器に併設され前記吸
収器伝熱管を配設し冷房運転時には前記蒸発器で蒸発し
た蒸気冷媒を前記再生器から送られる濃縮吸収液に吸収
させる吸収器、及び該吸収器内の吸収液を前記再生器に
戻す溶液ポンプを有する吸収液回路と、 前記冷温水が所定温度を維持する様に前記加熱源の加熱
力を制御する制御器とを有し、前記送風ファンにより冷
風又は温風を室内に送風して室内冷暖房を行う、吸収式
空調装置であって、 再生器内の前記吸収液の温度が低温状態からの運転立ち
上げの場合は、運転が安定するまで前記加熱源の加熱力
を大に固定し、高温状態からの運転立ち上げの場合は、
運転が安定するまで前記加熱源の加熱力を小に固定する
事を特徴とする吸収式空調装置。1. An outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape, and a cooling water circuit for circulating cooling water by a cooling water pump during a cooling operation, and a blower fan are provided. A cooling / heating water circuit in which an indoor heat exchanger and an evaporator heat transfer tube are connected in a ring, and a cooling / heating water pump circulates cooling / heating water; a regenerator in which an absorbing liquid is filled and a heating unit is heated by a heating source; A condenser in which a high-temperature vapor refrigerant is sent from the regenerator and a high-temperature absorbing liquid is sent in a heating operation, and an evaporator evaporates a liquid refrigerant liquefied in the condenser in a cooling operation in a cooling operation. The absorber heat transfer tube is provided in parallel with the heat absorber, and during cooling operation, the vapor refrigerant evaporated by the evaporator is absorbed by the concentrated absorbent sent from the regenerator, and the absorbent in the absorber is absorbed by the absorbent. To regenerator An absorption liquid circuit having a solution pump, and a controller for controlling the heating power of the heating source so that the cold and hot water maintains a predetermined temperature, and blows cold or hot air into the room by the blowing fan. An air conditioner that performs indoor cooling and heating, and when the operation of the absorption liquid in the regenerator is started from a low temperature state, the heating power of the heating source is fixed until the operation becomes stable. When starting operation from high temperature,
An absorption type air conditioner wherein the heating power of the heating source is fixed to a small value until the operation becomes stable.
器伝熱管を順に環状接続してなり、冷房運転時には冷却
水ポンプにより冷却水を循環させる冷却水回路と、 送風ファンを付設した室内熱交換器、及び蒸発器伝熱管
を環状接続してなり、冷温水ポンプにより冷温水を循環
させる冷温水回路と、 吸収液が入れられ加熱部が加熱源により加熱され冷房運
転時には低濃度吸収液中の冷媒を気化させて中濃度吸収
液と蒸気冷媒とに分離する高温再生器、該高温再生器を
包囲し冷房運転時には前記中濃度吸収液を高濃度吸収液
と蒸気冷媒とに分離する低温再生器、前記凝縮器伝熱管
を配設し冷房運転時には各再生器から高温の蒸気冷媒が
送り込まれる凝縮器、暖房運転時には前記高温再生器か
ら高温の吸収液が送り込まれ冷房運転時には前記凝縮器
で液化した液冷媒を蒸発させる蒸発器、該蒸発器に併設
され前記吸収器伝熱管を配設し冷房運転時には前記蒸発
器で蒸発した蒸気冷媒を前記低温再生器から送られる高
濃度吸収液に吸収させる吸収器、及び該吸収器内の吸収
液を前記高温再生器に戻す溶液ポンプを有する吸収液回
路と、 前記冷温水が所定温度を維持する様に前記加熱源の加熱
力を制御する制御器とを有し、前記送風ファンにより冷
風又は温風を室内に送風して室内冷暖房を行う、吸収式
空調装置であって、 高温再生器内の前記吸収液の温度が低温状態からの運転
立ち上げの場合は、運転が安定するまで前記加熱源の加
熱力を大に固定し、高温状態からの運転立ち上げの場合
は、運転が安定するまで前記加熱源の加熱力を小に固定
する事を特徴とする吸収式空調装置。2. An outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape, and a cooling water circuit for circulating cooling water by a cooling water pump during cooling operation, and a blower fan are provided. An indoor heat exchanger and an evaporator heat transfer tube are connected in a ring, a chilled / hot water circuit that circulates chilled / hot water by a chilled / hot water pump, and an absorbing liquid is filled and the heating unit is heated by a heating source to absorb low concentrations during cooling operation. A high-temperature regenerator that vaporizes a refrigerant in a liquid and separates it into a medium-concentration absorbing liquid and a vapor refrigerant; surrounds the high-temperature regenerator and separates the medium-concentration absorbing liquid into a high-concentration absorbing liquid and a vapor refrigerant during cooling operation. A condenser in which a high-temperature vapor refrigerant is sent from each regenerator during cooling operation, and a high-temperature absorbing liquid is sent from the high-temperature regenerator during heating operation, and the condensing is performed during cooling operation. vessel An evaporator that evaporates the liquefied liquid refrigerant, and the absorber heat transfer tube is disposed in parallel with the evaporator, and absorbs the vapor refrigerant evaporated by the evaporator in the high-concentration absorbing liquid sent from the low-temperature regenerator during cooling operation. An absorber, an absorber circuit having a solution pump for returning the absorbing liquid in the absorber to the high-temperature regenerator, and a controller for controlling the heating power of the heating source so that the cold and hot water maintains a predetermined temperature. An air conditioner that blows cold or warm air into the room by the blower fan to perform indoor cooling and heating, wherein the operation of the absorption liquid in a high-temperature regenerator is started from a low temperature state. In the case of, fix the heating power of the heating source to a large value until the operation is stabilized, and in the case of starting operation from a high temperature state, fix the heating power of the heating source to a small value until the operation is stabilized. Characteristic absorption type air conditioner.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08020765A JP3128501B2 (en) | 1996-02-07 | 1996-02-07 | Absorption air conditioner |
KR1019960048009A KR100234681B1 (en) | 1996-02-07 | 1996-10-24 | Operation control method of absorption type cooler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08020765A JP3128501B2 (en) | 1996-02-07 | 1996-02-07 | Absorption air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09210497A JPH09210497A (en) | 1997-08-12 |
JP3128501B2 true JP3128501B2 (en) | 2001-01-29 |
Family
ID=12036283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08020765A Expired - Fee Related JP3128501B2 (en) | 1996-02-07 | 1996-02-07 | Absorption air conditioner |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3128501B2 (en) |
KR (1) | KR100234681B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100587679B1 (en) * | 1998-11-18 | 2006-10-04 | 엘지전자 주식회사 | Operation Method of Absorption System |
EP2156108A1 (en) * | 2007-04-13 | 2010-02-24 | UTC Power Corporation | A method and system for controlling a temperature in an absorption chiller |
KR101392707B1 (en) | 2013-04-17 | 2014-05-08 | 한국에너지기술연구원 | Absorption heating and cooling device |
-
1996
- 1996-02-07 JP JP08020765A patent/JP3128501B2/en not_active Expired - Fee Related
- 1996-10-24 KR KR1019960048009A patent/KR100234681B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JPH09210497A (en) | 1997-08-12 |
KR970062608A (en) | 1997-09-12 |
KR100234681B1 (en) | 1999-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3128501B2 (en) | Absorption air conditioner | |
JP3056987B2 (en) | Absorption cooling system | |
JP2954513B2 (en) | Absorption air conditioner | |
JP3241623B2 (en) | Absorption air conditioner | |
JP3128502B2 (en) | Absorption air conditioner | |
JP3130465B2 (en) | Absorption air conditioner | |
JP3308795B2 (en) | Absorption air conditioner | |
JP2954519B2 (en) | Absorption air conditioner | |
JP3241624B2 (en) | Absorption air conditioner | |
JP2994250B2 (en) | Absorption air conditioner | |
JP3144538B2 (en) | Absorption air conditioner | |
JP2994251B2 (en) | Absorption cooling system | |
JP2650654B2 (en) | Absorption refrigeration cycle device | |
JP3056990B2 (en) | Absorption air conditioner | |
JP3057017B2 (en) | Absorption air conditioner | |
JP3466866B2 (en) | Absorption air conditioner | |
JP3056991B2 (en) | Absorption air conditioner | |
JP3202157B2 (en) | Air conditioner | |
JP3328164B2 (en) | Absorption air conditioner | |
JP2858938B2 (en) | Absorption chiller / heater | |
JPH047494Y2 (en) | ||
JPH10220901A (en) | Absorbing type air conditioner | |
JPS5813967A (en) | Controller for absorption refrigerator | |
JP2003042588A (en) | Absorption type cooling and heating machine | |
JPH10325636A (en) | Absorption type air-conditioning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071110 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081110 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |