JPH10220901A - Absorbing type air conditioner - Google Patents
Absorbing type air conditionerInfo
- Publication number
- JPH10220901A JPH10220901A JP9018139A JP1813997A JPH10220901A JP H10220901 A JPH10220901 A JP H10220901A JP 9018139 A JP9018139 A JP 9018139A JP 1813997 A JP1813997 A JP 1813997A JP H10220901 A JPH10220901 A JP H10220901A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- cooling
- cooling water
- heat transfer
- during
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、吸収液を用いる吸
収式空調装置に関する。The present invention relates to an absorption type air conditioner using an absorption liquid.
【0002】[0002]
【従来の技術】冷却塔、吸収器伝熱管、及び凝縮器伝熱
管を順に環状接続してなり、冷房運転時には冷却水ポン
プにより冷却水を循環させる冷却水回路と、送風ファン
を付設した室内熱交換器、蒸発器伝熱管を環状接続して
なり、冷温水ポンプにより冷温水を循環させる冷温水回
路と、吸収液が入れられ加熱部がガスバーナにより加熱
され冷房運転時には低濃度吸収液中の冷媒を気化させて
高濃度吸収液と蒸気冷媒とに分離する再生器、前記凝縮
器伝熱管を配設し冷房運転時には再生器から高温の蒸気
冷媒が送り込まれる凝縮器、冷房運転時には前記凝縮器
で液化した液冷媒を低圧下で蒸発させる蒸発器、該蒸発
器に併設され前記吸収器伝熱管を配設し冷房運転時には
前記蒸発器で蒸発した蒸気冷媒を前記再生器から送られ
る高濃度吸収液に吸収させる吸収器、及び吸収器内の吸
収液を前記高温再生器に戻す溶液ポンプを有する吸収液
回路と、冷房運転時には、室内熱交換器に供給される冷
温水の温度が設定温度(例えば7℃)に維持される様に
前記ガスバーナのインプットを比例制御(例えば、15
00kcal/h〜4800kcal/h)する制御器
とを有し、前記送風ファンにより冷風を室内に送風して
室内冷房を行なう、フロンを使用しない吸収式空調装置
が近年、注目されている。2. Description of the Related Art A cooling tower, an absorber heat transfer pipe, and a condenser heat transfer pipe are sequentially connected in a ring shape, and a cooling water circuit for circulating cooling water by a cooling water pump during a cooling operation, and an indoor heat source provided with a blower fan. An exchanger and an evaporator heat transfer tube are connected in a ring, a chilled / hot water circuit that circulates chilled / hot water with a chilled / hot water pump, and a refrigerant in the low-concentration absorbing liquid during cooling operation when the absorbing liquid is put in and the heating section is heated by a gas burner. A regenerator that vaporizes and separates into a high-concentration absorbing liquid and a vapor refrigerant, a condenser in which a high-temperature vapor refrigerant is sent from the regenerator during cooling operation and the condenser heat transfer tube is disposed, and the condenser during cooling operation. An evaporator for evaporating a liquefied liquid refrigerant under a low pressure; a heat transfer tube arranged in parallel with the evaporator; a high-concentration absorbing liquid sent from the regenerator for vapor refrigerant evaporated by the evaporator during cooling operation. To An absorbing liquid circuit having an absorber to be collected and a solution pump for returning the absorbing liquid in the absorber to the high-temperature regenerator; and, during cooling operation, the temperature of the cold and hot water supplied to the indoor heat exchanger is set to a set temperature (for example, 7). ° C), the input of the gas burner is proportionally controlled (for example, 15 ° C).
In recent years, an absorption-type air conditioner that does not use Freon, which has a controller for controlling the air flow rate from 00 kcal / h to 4800 kcal / h) and cools the room by blowing the cool air into the room by the blower fan, has attracted attention in recent years.
【0003】冷房運転中に冷却水の温度が監視温度以上
になると、凝縮器に送り込まれる蒸気冷媒やの液化や、
吸収器における蒸気冷媒の吸収が阻害され、蒸発器にお
いて液冷媒の蒸発が阻害され、冷温水の温度が設定温度
まで下がらなくなり、これに基づいて加熱力が増加する
ため、再生器が過熱する等の不具合を招く。この為、吸
収式空調装置には、冷却水の温度が監視温度以上(例え
ば38℃以上)に昇温するとエラー停止させる冷却水監
視部を通常、設けている。冷却水の温度が監視温度(例
えば38℃)以上になる原因として、冷却水回路の異常
(冷却水量の減少、冷却塔に付設されたファンの故障、
冷却水ポンプの故障等)が考えられる。When the temperature of the cooling water becomes higher than the monitoring temperature during the cooling operation, liquefaction of the vapor refrigerant or the like sent to the condenser,
Absorption of the vapor refrigerant in the absorber is hindered, evaporation of the liquid refrigerant in the evaporator is hindered, the temperature of the cold and hot water does not drop to the set temperature, and the heating power increases based on this, so that the regenerator overheats, etc. Causes a malfunction. For this reason, the absorption-type air conditioner is usually provided with a cooling water monitoring unit that stops an error when the temperature of the cooling water rises above the monitoring temperature (for example, 38 ° C. or more). The causes of the cooling water temperature exceeding the monitoring temperature (for example, 38 ° C.) include abnormalities in the cooling water circuit (decrease in the amount of cooling water, failure of a fan attached to the cooling tower,
Failure of the cooling water pump).
【0004】[0004]
【発明が解決しようとする課題】しかし、冷却水回路に
異常(冷却水量の減少、ファンの故障、冷却水ポンプの
故障等)が無くても、運転停止直後の再運転(ホットス
タート)時や外気温が高い場合に、冷却水の温度が監視
温度(例えば38℃)以上になってエラー停止(誤作
動)する場合があることを発明者らは見い出した。However, even if there is no abnormality in the cooling water circuit (a decrease in the amount of cooling water, a failure in the fan, a failure in the cooling water pump, etc.), there is no problem in restarting immediately after the operation is stopped (hot start). The present inventors have found that when the outside air temperature is high, the temperature of the cooling water becomes higher than the monitoring temperature (for example, 38 ° C.) and an error stop (malfunction) may occur.
【0005】本発明の目的は、ホットスタート時や外気
温が高い場合におけるエラー停止(誤作動)が防止で
き、冷却水回路の異常時のみエラー停止する吸収式空調
装置の提供にある。An object of the present invention is to provide an absorption type air conditioner which can prevent an error stop (malfunction) at a hot start or when the outside air temperature is high, and can stop an error only when a cooling water circuit is abnormal.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するた
め、本発明は、以下の構成を採用した。 (1)ファンを付設した冷却塔、吸収器伝熱管、及び凝
縮器伝熱管を順に環状接続してなり、冷房運転時には冷
却水ポンプにより冷却水を循環させる冷却水回路と、送
風ファンを付設した室内熱交換器、及び蒸発器伝熱管を
環状接続してなり、冷温水ポンプにより冷温水を循環さ
せる冷温水回路と、吸収液が入れられ加熱部が加熱源に
より加熱され冷房運転時には低濃度吸収液中の冷媒を気
化させて高濃度吸収液と蒸気冷媒とに分離する再生器、
前記凝縮器伝熱管を配設し冷房運転時には前記再生器か
ら高温の蒸気冷媒が送り込まれる凝縮器、冷房運転時に
は前記凝縮器で液化した液冷媒を低圧下で蒸発させる蒸
発器、該蒸発器に併設され前記吸収器伝熱管を配設し冷
房運転時には前記蒸発器で蒸発した蒸気冷媒を前記再生
器から送られる高濃度吸収液に吸収させる吸収器、及び
該吸収器内の吸収液を前記再生器に戻す溶液ポンプを有
する吸収液回路と、前記冷却水の温度を検出する冷却水
温検出手段と、前記冷温水の温度を検出する冷温水温検
出手段と、前記冷却水ポンプ、前記冷温水ポンプ、前記
加熱源、及び前記溶液ポンプの制御を司り、冷房運転時
には、前記室内熱交換器に供給される前記冷温水の温度
が設定温度に維持される様に前記加熱源の加熱力を制御
し、監視温度以上の冷却水温が検出されるとエラー停止
を指示する制御器とを備える吸収式空調装置において、
前記冷却水温検出手段が監視温度以上の冷却水温を検出
しても、前記制御器は、冷房運転の立ち上がり初期の前
記所定時間の間、冷却水温に基づくエラー停止を指示し
ない。In order to solve the above problems, the present invention employs the following constitution. (1) A cooling tower provided with a fan, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape, and a cooling water circuit for circulating cooling water by a cooling water pump during cooling operation and a blower fan are provided. An indoor heat exchanger and an evaporator heat transfer tube are connected in a ring, a chilled / hot water circuit that circulates chilled / hot water by a chilled / hot water pump, and an absorbing liquid is put in and the heating unit is heated by a heating source to absorb low concentrations during cooling operation. A regenerator that vaporizes the refrigerant in the liquid and separates it into a high-concentration absorption liquid and a vapor refrigerant,
A condenser in which the condenser heat transfer tube is disposed and a high-temperature vapor refrigerant is sent from the regenerator during a cooling operation, an evaporator that evaporates a liquid refrigerant liquefied by the condenser at a low pressure during a cooling operation, and an evaporator. An absorber that is provided in parallel with the absorber heat transfer tube and absorbs the vapor refrigerant evaporated by the evaporator into a high-concentration absorbent sent from the regenerator during cooling operation, and regenerates the absorbent in the absorber. An absorbing liquid circuit having a solution pump returning to the vessel, a cooling water temperature detecting means for detecting a temperature of the cooling water, a cold / hot water temperature detecting means for detecting a temperature of the cold / hot water, the cooling water pump, the cold / hot water pump, Controls the heating source and the solution pump, and controls the heating power of the heating source so that the temperature of the cold / hot water supplied to the indoor heat exchanger is maintained at a set temperature during a cooling operation. Above the monitoring temperature When the cooling water temperature is detected in the absorption type air conditioning apparatus comprising a controller for instructing the error stop,
Even if the cooling water temperature detecting means detects the cooling water temperature equal to or higher than the monitoring temperature, the controller does not instruct the error stop based on the cooling water temperature during the predetermined time at the beginning of the cooling operation.
【0007】(2)上記(1) の構成を有し、前記冷却水
温検出手段は、冷房運転の立ち上がり初期の前記所定時
間が経過するまでの間、作動停止状態におかれ、前記制
御器がエラー停止を指示できない様にした。(2) The cooling water temperature detecting means having the configuration of the above (1) is in an operation stop state until the predetermined time at the beginning of the cooling operation elapses, and the controller is controlled by the controller. Disabled error stop instruction.
【0008】(3)上記(1) 又は(2) の構成を有し、前
記ファンの始動により前記所定時間の計時を開始する。 (4) 上記(1) 又は(2) の構成を有し、前記冷却水ポンプ
の始動により前記所定時間の計時を開始する。(3) Having the configuration of (1) or (2) above, timing of the predetermined time is started by starting the fan. (4) Having the configuration described in (1) or (2) above, timing of the predetermined time is started by starting the cooling water pump.
【0009】[0009]
【作用】吸収液が入れられた再生器は、加熱部が加熱源
により加熱される。冷房運転時、室内熱交換器に供給さ
れる冷温水の温度が設定温度に維持される様に制御器が
加熱源の加熱力を制御する。冷房運転時には、再生器内
の低濃度吸収液の冷媒が気化して高濃度吸収液と蒸気冷
媒とに分離する。冷房運転時には再生器から高温の蒸気
冷媒が凝縮器に送り込まれる。冷房運転時、凝縮器伝熱
管には冷却水が流れているので、高温の蒸気冷媒は液化
して凝縮器内に溜まる。The heating section of the regenerator containing the absorbing liquid is heated by a heating source. During the cooling operation, the controller controls the heating power of the heating source so that the temperature of the cold / hot water supplied to the indoor heat exchanger is maintained at the set temperature. During the cooling operation, the refrigerant of the low concentration absorbing liquid in the regenerator is vaporized and separated into the high concentration absorbing liquid and the vapor refrigerant. During the cooling operation, high-temperature vapor refrigerant is sent from the regenerator to the condenser. During the cooling operation, since the cooling water flows through the condenser heat transfer tubes, the high-temperature vapor refrigerant is liquefied and accumulated in the condenser.
【0010】冷房運転時、凝縮器から蒸発器内に送り込
まれた液冷媒は、冷温水が流れる蒸発器伝熱管上に散布
され、気化熱を奪って蒸発し、冷温水を冷却する。そし
て、冷却された冷温水が冷温水ポンプにより室内熱交換
器に供給されて送風ファンにより室内冷房が行なわれ
る。[0010] During the cooling operation, the liquid refrigerant sent from the condenser into the evaporator is sprayed on the evaporator heat transfer tube through which the cold and hot water flows, takes away heat of vaporization and evaporates, and cools the cold and hot water. Then, the cooled cold / hot water is supplied to the indoor heat exchanger by the cold / hot water pump, and the indoor cooling is performed by the blower fan.
【0011】冷房運転時、蒸発器で蒸発して吸収器に入
った蒸気冷媒は、再生器から送られる高濃度吸収液に吸
収され、低濃度吸収液となって吸収器内に溜まる。吸収
器内に溜まった吸収液は、溶液ポンプにより再生器に戻
される。ホットスタート(冷房運転停止から時間が余り
経過せずに再運転開始)の場合や、外気温が高い場合
(特に運転開始時)には冷却水温が高い。During the cooling operation, the vapor refrigerant evaporated in the evaporator and entering the absorber is absorbed by the high-concentration absorbing liquid sent from the regenerator, and becomes a low-concentration absorbing liquid and accumulates in the absorber. The absorbent collected in the absorber is returned to the regenerator by the solution pump. The cooling water temperature is high in a hot start (restarting the operation without a long time after the cooling operation is stopped) or when the outside air temperature is high (particularly at the start of the operation).
【0012】(請求項1の場合)『この状態で冷房運転
を開始すると、監視温度以上の冷却水温を冷却水温検出
手段が検出してエラー停止(誤作動)する虞があるの
で、冷却水温検出手段が監視温度以上の冷却水温を検出
しても、制御器は、冷房運転の立ち上がり初期の所定時
間の間、冷却水温に基づくエラー停止を指示しない。冷
房運転の立ち上がりから所定時間が経過すると、制御器
は、監視温度以上の冷却水温が検出されるとエラー停止
を指示する動作を開始する。(Claim 1) If the cooling operation is started in this state, the cooling water temperature detecting means may detect a cooling water temperature higher than the monitoring temperature and cause an error stop (malfunction). Even if the means detects the cooling water temperature equal to or higher than the monitoring temperature, the controller does not instruct the error stop based on the cooling water temperature for a predetermined time at the beginning of the cooling operation. When a predetermined time has elapsed from the start of the cooling operation, the controller starts an operation to instruct an error stop when a cooling water temperature equal to or higher than the monitoring temperature is detected.
【0013】冷却水回路に異常(冷却水量の減少、ファ
ンの故障、冷却水ポンプの故障等)が無い場合には、冷
却塔の作用及び冷却水の循環により冷却水の温度が監視
温度を下回っているのでエラー停止が指示されない。
又、冷却水回路に異常がある場合には、所定時間が経過
しても監視温以上の冷却水温が検知されるのでエラー停
止が指示される。』If there is no abnormality in the cooling water circuit (reduction of the cooling water amount, failure of the fan, failure of the cooling water pump, etc.), the temperature of the cooling water falls below the monitored temperature due to the operation of the cooling tower and the circulation of the cooling water. Error stop is not instructed.
In addition, if there is an abnormality in the cooling water circuit, even if a predetermined time has elapsed, a cooling water temperature higher than the monitoring temperature is detected, and an error stop is instructed. 』
【0014】(請求項2の場合)『この状態で冷房運転
を開始すると、監視温度以上の冷却水温を冷却水温検出
手段が検出してエラー停止(誤作動)する虞があるの
で、冷房運転の立ち上がり初期の所定時間が経過するま
での間、冷却水温検出手段は、冷房運転の立ち上がり初
期の所定時間が経過するまでの間、作動停止状態におか
れる。これにより、冷房運転の立ち上がり初期の所定時
間の間は、冷却水温が監視温度以上であっても、制御器
がエラー停止を指示できない状態におかれる。(Claim 2) "If the cooling operation is started in this state, the cooling water temperature detecting means may detect the cooling water temperature higher than the monitoring temperature and cause an error stop (malfunction). The cooling water temperature detecting means is in an operation stop state until a predetermined time at the beginning of the cooling operation elapses until a predetermined time at the start of the cooling operation elapses. As a result, during the predetermined time period at the beginning of the cooling operation, even if the cooling water temperature is equal to or higher than the monitoring temperature, the controller cannot enter the error stop.
【0015】冷却水回路に異常(冷却水量の減少、ファ
ンの故障、冷却水ポンプの故障等)が無い場合には、所
定時間が経過すると、冷却塔の作用及び冷却水の循環に
より冷却水の温度が監視温度を下回っているので、制御
器はエラー停止を指示しない。又、冷却水回路に異常が
ある場合には、所定時間が経過した時点で冷却水検出手
段が監視温以上の冷却水温を検知するので制御器はエラ
ー停止を指示する。If there is no abnormality in the cooling water circuit (reduction of the cooling water amount, failure of the fan, failure of the cooling water pump, etc.), after a predetermined time has elapsed, the operation of the cooling tower and the circulation of the cooling water cause the cooling water to flow. The controller does not command an error stop because the temperature is below the monitored temperature. If there is an abnormality in the cooling water circuit, the cooling water detecting means detects the cooling water temperature equal to or higher than the monitoring temperature when a predetermined time has elapsed, so that the controller instructs an error stop.
【0016】尚、請求項3の構成では、上記所定時間の
計時をファンの始動により開始している。又、請求項4
の構成では、上記所定時間の計時を冷却水ポンプの始動
により開始している。In the configuration of the third aspect, the timing of the predetermined time is started by starting the fan. Claim 4
In the above configuration, the timing of the predetermined time is started by starting the cooling water pump.
【0017】[0017]
〔請求項1、2、3、4〕冷房運転開始時に冷却水温が
高い場合(ホットスタート時、外気温が高い場合)であ
っても、冷房運転の立ち上げの際にエラー停止(誤作
動)を起こさず、冷房運転を継続することができる。従
って、冷却水回路に異常(冷却水量の減少、ファンの故
障、冷却水ポンプの故障等)が有る場合のみエラー停止
させて、再生器の過熱や、吸収器の晶析を防止できる。[Claims 1, 2, 3, and 4] Even if the cooling water temperature is high at the time of starting the cooling operation (at the time of a hot start or when the outside air temperature is high), an error stop (malfunction) at the start of the cooling operation. And the cooling operation can be continued. Therefore, the error stop is performed only when there is an abnormality in the cooling water circuit (a decrease in the amount of cooling water, a failure in the fan, a failure in the cooling water pump, etc.), thereby preventing overheating of the regenerator and crystallization of the absorber.
【0018】〔請求項3、4〕所定時間の計時開始をフ
ァンの始動や、冷却水ポンプの始動により行っているの
で、冷却水の温度が監視温度を下回る時期(冷却水回路
の正常時)を確実に予測でき、冷房運転の立ち上げの際
にエラー停止(誤作動)を起こさない。[Claims 3 and 4] Since the timing of the predetermined time is started by starting the fan or the cooling water pump, the time when the temperature of the cooling water falls below the monitoring temperature (when the cooling water circuit is normal). Can be reliably predicted, and an error stop (malfunction) does not occur when the cooling operation is started.
【0019】[0019]
【発明の実施の形態】本発明の一実施例(請求項1、
3、4に対応)を図1〜図6に基づいて説明する。 図
に示す様に、吸収式空調装置Aは、冷房運転時に冷却水
10を循環させる冷却水回路1と、冷房・暖房運転時に
冷温水20を循環させる冷温水回路2と、高温再生器
3、低温再生器4、凝縮器5、蒸発器6、吸収器7、及
びタンデムポンプ80の溶液移送部801により構成さ
れる吸収液回路8と、制御器9とを具備する。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention (Claim 1,
3 and 4) will be described with reference to FIGS. As shown in the figure, the absorption type air conditioner A has a cooling water circuit 1 for circulating cooling water 10 during cooling operation, a cooling / heating water circuit 2 for circulating cooling / heating water 20 during cooling / heating operation, a high temperature regenerator 3, The system includes an absorption liquid circuit 8 composed of a low-temperature regenerator 4, a condenser 5, an evaporator 6, an absorber 7, and a solution transfer section 801 of a tandem pump 80, and a controller 9.
【0020】冷却水回路1は、冷却塔ファン111を付
設した冷却塔11と、冷却水タンク12と、冷却水ポン
プ13と、吸収器伝熱管14、凝縮器伝熱管15を順に
環状接続して構成され、冷房運転時には冷却水ポンプ1
3を作動させて冷却水10を循環させる。The cooling water circuit 1 includes a cooling tower 11 provided with a cooling tower fan 111, a cooling water tank 12, a cooling water pump 13, an absorber heat transfer pipe 14, and a condenser heat transfer pipe 15 which are sequentially connected in a ring shape. Cooling water pump 1 during cooling operation.
3 is operated to circulate the cooling water 10.
【0021】冷房運転時、冷却塔ファン111はモータ
112により駆動され、該モータ112は、冷却水温セ
ンサ91が検出する冷却水温が31.5℃に維持される
様に制御器9により回転数が制御される。During the cooling operation, the cooling tower fan 111 is driven by a motor 112, and the number of revolutions of the motor 112 is controlled by the controller 9 so that the cooling water temperature detected by the cooling water temperature sensor 91 is maintained at 31.5 ° C. Controlled.
【0022】上記冷却水温センサ91は、冷却水ポンプ
13- 吸収器伝熱管14間を接続する冷却水管101中
に配設され、吸収器伝熱管14に供給される冷却水10
の温度を検出する。又、暖房運転時(図4参照)には、
冷却水回路1内の冷却水10は全て抜かれ、モータ11
2及び冷却水ポンプ13には通電されない。The cooling water temperature sensor 91 is disposed in a cooling water pipe 101 connecting the cooling water pump 13 and the absorber heat transfer pipe 14, and the cooling water 10 supplied to the absorber heat transfer pipe 14.
Detect the temperature of In the heating operation (see FIG. 4),
All the cooling water 10 in the cooling water circuit 1 is drained, and the motor 11
2 and the cooling water pump 13 are not energized.
【0023】冷温水回路2は、送風ファン211を付設
した室内熱交換器21、水位センサ(図示せず)、シス
ターン22、タンデムポンプ80の冷温水移送部80
2、蒸発器伝熱管24を環状接続してなり、冷温水移送
部802により冷温水20を循環させている。The cold / hot water circuit 2 includes an indoor heat exchanger 21 provided with a blower fan 211, a water level sensor (not shown), a cistern 22, and a cold / hot water transfer section 80 of a tandem pump 80.
2. The evaporator heat transfer tubes 24 are connected in a ring shape, and the cold and hot water 20 is circulated by the cold and hot water transfer unit 802.
【0024】高温再生器3は、ガスバーナ311によっ
て吸収液を加熱する沸騰器31と、沸騰器31から立設
する分離筒32と、捕集容器33とにより構成され、冷
房運転時、沸騰器31内の低濃度吸収液(以下、希液3
0と呼ぶ;58%臭化リチウム水溶液)中に含まれる冷
媒(水)を蒸発させて中濃度吸収液(以下、中液34と
呼ぶ;60%臭化リチウム水溶液)と蒸気冷媒35とに
分離する。The high-temperature regenerator 3 is composed of a boiler 31 for heating the absorbent by a gas burner 311, a separation tube 32 erected from the boiler 31, and a collecting vessel 33. Low-concentration absorbing solution
0; a refrigerant (water) contained in a 58% aqueous lithium bromide solution is evaporated to be separated into a medium concentration absorbing liquid (hereinafter referred to as an intermediate liquid 34; a 60% aqueous lithium bromide solution) and a vapor refrigerant 35. I do.
【0025】ガスバーナ311は、ブンゼン式であり、
ガス電磁弁312、313、ガス比例弁314を連設し
たガス管315によりガスが供給され、ガス量に見合っ
た量の燃焼用空気が燃焼用ファン316により供給され
て燃焼する。The gas burner 311 is of a Bunsen type,
Gas is supplied by a gas pipe 315 having gas solenoid valves 312, 313 and a gas proportional valve 314 connected thereto, and combustion air in an amount corresponding to the gas amount is supplied by a combustion fan 316 and burned.
【0026】321は断熱を図る為の間隙である。又、
沸騰器31の適所には、高温再生器3内の希液30の温
度(以下、HGE温度と呼ぶ)を検出する為のHGE温
度センサ301が配設されている。冷温水センサ201
は、室内熱交換器21の入口側の冷温水配管29に配設
され、室内熱交換器21に供給される冷温水20の温度
を検出する。321 is a gap for heat insulation. or,
An HGE temperature sensor 301 for detecting the temperature of the dilute liquid 30 in the high-temperature regenerator 3 (hereinafter, referred to as HGE temperature) is provided at an appropriate position of the evaporator 31. Cold / hot water sensor 201
Is disposed in the cold / hot water pipe 29 on the inlet side of the indoor heat exchanger 21 and detects the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21.
【0027】冷房運転時は、冷暖切替弁36が閉弁して
いるので、中液34(165℃)は、中液配管341→
高温熱交換流路342→オリフィス343付きの中液配
管344を経て低温再生器4の上部に送り込まれる。During the cooling operation, since the cooling / heating switching valve 36 is closed, the intermediate liquid 34 (165 ° C.) is supplied to the intermediate liquid pipe 341 →
The high-temperature heat exchange flow path 342 is sent to the upper part of the low-temperature regenerator 4 via the middle liquid pipe 344 having the orifice 343.
【0028】低温再生器4は、捕集容器33を包囲し、
冷房運転時には、中液34は、捕集容器33から受熱し
て加熱される。これにより、中液34の一部が気化し
て、高濃度吸収液(以下、濃液41と呼ぶ;62%臭化
リチウム水溶液)と蒸気冷媒42とに分離される。The low-temperature regenerator 4 surrounds the collection container 33,
During the cooling operation, the intermediate liquid 34 is heated by receiving heat from the collection container 33. As a result, a part of the middle liquid 34 is vaporized and separated into a high concentration absorbing liquid (hereinafter, referred to as a concentrated liquid 41; a 62% aqueous lithium bromide solution) and a vapor refrigerant 42.
【0029】尚、冷暖切替弁36が開弁する暖房運転時
には、中液配管344はオリフィス343により流路抵
抗が生じるので、中液34は全て暖房配管361に流
れ、低温再生器4に送り込まれない。In the heating operation in which the cooling / heating switching valve 36 is opened, the middle liquid pipe 344 has a flow path resistance caused by the orifice 343, so that all the middle liquid 34 flows into the heating pipe 361 and is sent to the low temperature regenerator 4. Absent.
【0030】凝縮器5には、高温再生器3、低温再生器
4から蒸気冷媒35、42が凝縮器5に送り込まれ、蒸
気冷媒35、42は、コイル状の凝縮器伝熱管15を流
れる冷却水10によって冷却され液化し、液冷媒(水)
52は凝縮器5の底部に溜まる。尚、吸収器伝熱管14
及び凝縮器伝熱管15を通過して昇温(37.5℃)し
た冷却水10は、冷却塔11で冷却(31.5℃)され
る。In the condenser 5, vapor refrigerants 35 and 42 are sent from the high temperature regenerator 3 and the low temperature regenerator 4 to the condenser 5, and the vapor refrigerants 35 and 42 are cooled by flowing through the coil-shaped condenser heat transfer tube 15. Liquid refrigerant (water) cooled by water 10
52 accumulates at the bottom of the condenser 5. The absorber heat transfer tube 14
The cooling water 10 that has passed through the condenser heat transfer tube 15 and has been heated (37.5 ° C.) is cooled (31.5 ° C.) in the cooling tower 11.
【0031】蒸発器6は、コイル状の蒸発器伝熱管24
を配設している。暖房運転時には冷暖切替弁36が開弁
するので、高温再生器3内の高温の吸収液が、冷暖切替
弁36→暖房配管361を介して蒸発器6に送り込まれ
る。又、冷房運転時には、液冷媒52が、冷媒配管53
→散布器55を介して蒸発器伝熱管24上に散布され、
蒸発器6内は略真空(約6.5mmHg)であるので、
液冷媒52は蒸発器伝熱管24内を流れる冷温水20か
ら気化熱を奪って蒸発する。The evaporator 6 includes a coil-shaped evaporator heat transfer tube 24.
Is arranged. Since the cooling / heating switching valve 36 is opened during the heating operation, the high-temperature absorbent in the high-temperature regenerator 3 is sent to the evaporator 6 via the cooling / heating switching valve 36 → the heating pipe 361. During the cooling operation, the liquid refrigerant 52 is
→ sprayed on the evaporator heat transfer tube 24 via the sprayer 55,
Since the inside of the evaporator 6 is substantially vacuum (about 6.5 mmHg),
The liquid refrigerant 52 evaporates by taking heat of vaporization from the cold / hot water 20 flowing in the evaporator heat transfer tube 24.
【0032】そして、冷却された冷温水20は室内に配
置された室内熱交換器21で室内に送風される空気と熱
交換して昇温し、昇温した冷温水20は再び蒸発器伝熱
管24を通過して冷却される。Then, the cooled cold / hot water 20 exchanges heat with the air blown into the room by an indoor heat exchanger 21 disposed inside the room to raise the temperature, and the heated cold / hot water 20 is again supplied to the evaporator heat transfer tube. Cooled through 24.
【0033】吸収器伝熱管14を配設した吸収器7は、
蒸発器6に併設され、上部及び下部が蒸発器6と連通し
ている。そして、冷房運転時には、蒸発器6で蒸発した
蒸気冷媒は上部から吸収器7内に進入し、低温再生器4
→濃液配管411→低温熱交換流路412→濃液配管4
13→散布器70を介して吸収器伝熱管14上に散布さ
れる濃液41に吸収され、低濃度となった希液30は吸
収器7の底部に溜まる。又、暖房運転時、吸収器7に
は、蒸発器6から高温の吸収液が進入する。The absorber 7 provided with the absorber heat transfer tube 14 is:
The upper part and the lower part are connected to the evaporator 6 and are connected to the evaporator 6. Then, during the cooling operation, the vapor refrigerant evaporated in the evaporator 6 enters the absorber 7 from above and enters the low-temperature regenerator 4.
→ Concentrate pipe 411 → Low temperature heat exchange channel 412 → Concentrate pipe 4
13 → The diluted liquid 30 which is absorbed by the concentrated liquid 41 sprayed onto the absorber heat transfer tube 14 via the sprayer 70 and becomes low in concentration accumulates at the bottom of the absorber 7. During the heating operation, high-temperature absorbing liquid enters the absorber 7 from the evaporator 6.
【0034】ホール素子(図示せず)が取り付けられた
タンデムポンプ80は、AC- 100Vで動作する三相
DCブラシレスモータであり、溶液移送部801と冷温
水移送部802とからなる。The tandem pump 80 to which a Hall element (not shown) is attached is a three-phase DC brushless motor operated at AC-100V, and includes a solution transfer unit 801 and a cold / hot water transfer unit 802.
【0035】このタンデムポンプ80は、冷房運転時に
は、HGE温度- 回転数動作線に基づいて回転制御され
る。又、暖房運転時には、インプット- 回転数動作線に
基づいて回転制御される。尚、タンデムポンプ80の替
わりに、冷温水ポンプと溶液ポンプとをそれぞれ設けて
も良い。During the cooling operation, the rotation of the tandem pump 80 is controlled based on the HGE temperature-rotation speed operation line. In the heating operation, the rotation is controlled based on the input-rotation speed operation line. Note that, instead of the tandem pump 80, a cold / hot water pump and a solution pump may be provided.
【0036】吸収器7の底部に溜まった希液30は、希
液配管71→溶液移送部801→希液配管72→低温・
高温熱交換流路73→希液配管74を介して高温再生器
3の沸騰器31に送られる。The diluted liquid 30 accumulated at the bottom of the absorber 7 is diluted with a diluted liquid pipe 71 → a solution transfer section 801 → a diluted liquid pipe 72 → low temperature
The high-temperature heat exchange channel 73 is sent to the boiler 31 of the high-temperature regenerator 3 via the diluted liquid pipe 74.
【0037】制御器9は、運転スイッチ(図示せず)、
シスターン内の水位センサ、沸騰器31内の吸収液温度
を検知するHGE温度センサ301、室内熱交換器21
に供給される冷温水20の温度を検出する冷温水センサ
201、蒸発器6の内部温度を検出するEVA温度セン
サ61、ホール素子、及び吸収器伝熱管14に供給する
冷却水10の温度を検出する冷却水温センサ91からの
信号に基づいて、以下のものを制御する。The controller 9 includes an operation switch (not shown),
A water level sensor in the cistern, an HGE temperature sensor 301 for detecting the temperature of the absorbent in the boiler 31, and the indoor heat exchanger 21
A cold / hot water sensor 201 for detecting the temperature of the cold / hot water 20 supplied to the heater, an EVA temperature sensor 61 for detecting the internal temperature of the evaporator 6, a Hall element, and a temperature of the cooling water 10 to be supplied to the absorber heat transfer tube 14. The following is controlled based on a signal from the cooling water temperature sensor 91.
【0038】給水弁221、ガス電磁弁312、31
3、ガス比例弁314、タンデムポンプ80、冷却水ポ
ンプ13、冷却塔ファン111、燃焼用ファン316、
及び冷暖切替弁36。Water supply valve 221, gas solenoid valves 312, 31
3, gas proportional valve 314, tandem pump 80, cooling water pump 13, cooling tower fan 111, combustion fan 316,
And a cooling / heating switching valve 36.
【0039】冷房運転時の吸収式空調装置Aの作動の概
要を図3等に基づいて説明する。吸収液が入れられた高
温再生器3は、沸騰器31がガスバーナ311により加
熱される。これにより、希液30中の冷媒が気化して中
液34と蒸気冷媒35とに分離する。中液34は、低温
再生器4内で、捕集容器33によって加熱され、濃液4
1と蒸気冷媒42とに分離する。高温再生器3及び低温
再生器4から高温の蒸気冷媒35、42が凝縮器5に送
り込まれる。An outline of the operation of the absorption air conditioner A during the cooling operation will be described with reference to FIG. In the high-temperature regenerator 3 containing the absorbing liquid, the boiler 31 is heated by the gas burner 311. Thereby, the refrigerant in the dilute liquid 30 is vaporized and separated into the intermediate liquid 34 and the vapor refrigerant 35. The middle liquid 34 is heated by the collection container 33 in the low-temperature regenerator 4,
1 and a vapor refrigerant 42. High-temperature vapor refrigerants 35 and 42 are sent from the high-temperature regenerator 3 and the low-temperature regenerator 4 to the condenser 5.
【0040】凝縮器5から蒸発器6に送りこまれた液冷
媒52は、冷温水20が流れる蒸発器伝熱管24上に散
布され、気化熱を奪って蒸発し、蒸発した蒸気冷媒は吸
収器7内に進入し、低温再生器4から送られる濃液41
に吸収され希液30となって吸収器7内に溜まり、タン
デムポンプ80の溶液移送部801により高温再生器3
の沸騰器31内に戻される。The liquid refrigerant 52 sent from the condenser 5 to the evaporator 6 is sprayed on the evaporator heat transfer tube 24 through which the cold and hot water 20 flows, evaporates by taking heat of vaporization, and the evaporated vapor refrigerant is absorbed by the absorber 7. And the concentrated liquid 41 sent from the low-temperature regenerator 4
Is absorbed in the absorber 7 as a dilute solution 30 and accumulated in the absorber 7. The solution transfer unit 801 of the tandem pump 80
Is returned to the boiling unit 31.
【0041】液冷媒が、冷温水20が流れる蒸発器伝熱
管24上で蒸発する際に冷温水20を冷却し、冷却され
た冷温水20がタンデムポンプ80の冷温水移送部80
2により室内熱交換器21に送られて室内熱交換器21
を通過し、送風ファン211により冷風が室内に吹き出
される事により室内冷房が行なわれる。この時、図2に
示す室内制御器25は、室温センサ26により検出され
る室温が、室温設定器(図示せず)で設定した設定室温
になる様に、流量調節弁27及び送風ファン211を制
御する。When the liquid refrigerant evaporates on the evaporator heat transfer tube 24 through which the cold / hot water 20 flows, the cold / hot water 20 is cooled and the cooled cold / hot water 20 is transferred to the cold / hot water transfer section 80 of the tandem pump 80.
2 to the indoor heat exchanger 21 to be sent to the indoor heat exchanger 21
, And cool air is blown into the room by the blower fan 211 to perform indoor cooling. At this time, the indoor controller 25 shown in FIG. 2 operates the flow control valve 27 and the blower fan 211 so that the room temperature detected by the room temperature sensor 26 becomes the set room temperature set by the room temperature setting device (not shown). Control.
【0042】冷房運転が安定する(冷温水≦9℃)と、
制御器9は、冷温水センサ201の出力に基づき、室内
熱交換器21に供給される冷温水20の温度が7℃にな
る様に、ガスバーナ311のインプットを比例制御(冷
房比例制御;1500kcal/h〜4800kcal
/h)する。尚、制御器9は、この冷房比例制御時に、
吸収器伝熱管14へ供給される冷却水10の温度が3
1.5℃に維持される様に冷却塔ファン111を制御す
る。When the cooling operation is stabilized (cold / hot water ≦ 9 ° C.),
The controller 9 performs proportional control of the input of the gas burner 311 based on the output of the cold / hot water sensor 201 so that the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 becomes 7 ° C. (cooling proportional control; 1500 kcal / h ~ 4800kcal
/ H). Note that the controller 9 performs the cooling proportional control at the time of this cooling proportional control.
When the temperature of the cooling water 10 supplied to the absorber heat transfer tube 14 is 3
The cooling tower fan 111 is controlled so as to be maintained at 1.5 ° C.
【0043】つぎに、吸収式空調装置Aの冷房運転時の
作動の詳細を、図3の作動説明図、及び図5、図6のフ
ローチャートに基づいて述べる。使用者が冷房運転スイ
ッチ(図示せず)をオンすると、制御器9のマイクロコ
ンピュータは図5のフローチャートに基づいて作動す
る。Next, the operation of the absorption type air conditioner A during the cooling operation will be described in detail with reference to the operation explanatory diagram of FIG. 3 and the flowcharts of FIGS. When the user turns on the cooling operation switch (not shown), the microcomputer of the controller 9 operates based on the flowchart of FIG.
【0044】給水弁221が開弁する様に指示して、シ
スターン22を介して、冷却水回路1の冷却水管1及び
冷却水タンク12内に水を溜めるクーリングタワー処理
(CT処理)をステップs1で行ない、ステップs2に
進む。ステップs2で、HGE温度センサ301の出力
に基づき、HGE温度が80℃以上であるか否か判別
し、HGE温度が80℃以上である場合(YES;ホッ
トスタート)はステップs3に進み、80℃未満である
場合(NO;コールドスタート)はステップs14に進
む。Instructing the water supply valve 221 to open, a cooling tower process (CT process) for storing water in the cooling water pipe 1 and the cooling water tank 12 of the cooling water circuit 1 via the cistern 22 in step s1. And proceed to step s2. In step s2, based on the output of the HGE temperature sensor 301, it is determined whether or not the HGE temperature is equal to or higher than 80 ° C. If the HGE temperature is equal to or higher than 80 ° C. (YES; hot start), the process proceeds to step s3, If less than (NO; cold start), the process proceeds to step s14.
【0045】ホットスタートの場合、ステップs3で点
火動作を行なう。冷暖切替弁36は閉弁維持する。ステ
ップs4で、インプットを2500kcal/hにして
冷房運転を立ち上げ、冷却水ポンプ13及び冷却塔ファ
ン111に通電を開始すると同時にタイマをスタートさ
せる。そして、HGE温度≧100℃に達するとタンデ
ムンプ80へ通電を開始する。In the case of a hot start, an ignition operation is performed in step s3. The cooling / heating switching valve 36 is kept closed. In step s4, the cooling operation is started by setting the input to 2500 kcal / h, and the timer is started at the same time when the cooling water pump 13 and the cooling tower fan 111 are energized. When the HGE temperature reaches 100 ° C., the power supply to the tandem pump 80 is started.
【0046】冷却水ポンプ13への通電から20秒以降
で、且つ冷却水温≧38℃(監視温度)であるか否かス
テップs5で判別し、NOの場合にはステップs6に進
み、YESの場合にはステップs13に進む。It is determined in step s5 whether or not cooling water temperature ≧ 38 ° C. (monitoring temperature) is satisfied after 20 seconds from energization of the cooling water pump 13, and if NO, proceeds to step s6, and if YES, Goes to step s13.
【0047】ステップs6で、冷温水20が9℃以下に
低下したか否か判別し、冷温水≦9℃である場合(YE
S)はステップs7に進み、冷温水温>9℃である場合
(NO)はステップs4に戻って2500kcal/h
でのインプットを維持する。In step s6, it is determined whether or not the temperature of the cold / hot water 20 has dropped to 9 ° C. or less.
S) proceeds to step s7, and if the cold / hot water temperature is greater than 9 ° C. (NO), returns to step s4 and returns to 2500 kcal / h
Maintain input at.
【0048】ステップs7で、制御器9は、冷温水セン
サ201の出力に基づき、室内熱交換器21に供給され
る冷温水20の温度が7℃になる様に、ガスバーナ31
1のインプットを冷房比例制御(1500kcal/h
〜4800kcal/h)する。In step s7, the controller 9 controls the gas burner 31 based on the output of the cold / hot water sensor 201 so that the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 becomes 7 ° C.
1 input cooling proportional control (1500 kcal / h
44800 kcal / h).
【0049】又、タンデムポンプ80を、HGE温度に
比例した回転数(HGE温度- 回転数動作線)に制御す
る。更に、吸収器伝熱管14に供給される冷却水10の
温度が31.5℃に維持される様に冷却塔ファン111
を制御する。Further, the tandem pump 80 is controlled at a rotation speed proportional to the HGE temperature (HGE temperature-rotation speed operation line). Further, the cooling tower fan 111 is controlled so that the temperature of the cooling water 10 supplied to the absorber heat transfer tube 14 is maintained at 31.5 ° C.
Control.
【0050】冷却水ポンプ13への通電から着火検知か
ら20秒以降で、且つ冷却水温≧38℃であるか否かス
テップs8で判別し、NOの場合にはステップs9に進
み、YESの場合にはステップs13に進む。It is determined in step s8 whether or not the cooling water temperature ≧ 38 ° C. has elapsed from 20 seconds after the ignition of the cooling water pump 13 to the detection of ignition, and if NO, the process proceeds to step s9. Goes to step s13.
【0051】ステップs9で、冷温水<5℃、又は室温
<設定温度が成立する(サーモオフ、冷房オフ)か否か
判別し、何れか成立する場合(YES)はステップs1
0に進み、何れも成立しない場合(NO)はステップs
7に戻って冷房比例制御を継続する。In step s9, it is determined whether or not cold / hot water <5 ° C. or room temperature <set temperature is satisfied (thermo-off, cooling-off). If any of them is satisfied (YES), step s1 is performed.
0, and if none is satisfied (NO), step s
7, the cooling proportional control is continued.
【0052】ステップs10で、ガスバーナ311の消
火を指示する。ステップs11で、後述する、冷房オフ
運転処理又はサーモオフ運転処理を実施し、ステップs
12に進む。At step s10, an instruction to extinguish the gas burner 311 is issued. In step s11, a cooling-off operation process or a thermo-off operation process, which will be described later, is performed.
Proceed to 12.
【0053】〔冷房オフ運転処理〕ガスバーナ311の
消火後、HGE温度が100℃を越える間は、タンデム
ポンプ80を、HGE温度- 回転数動作線に基づいて制
御する。HGE温度が100℃以下に低下すると、タン
デムポンプ80の回転数を900rpmに固定し、冷暖
切替弁36を開弁し冷却水ポンプ13を停止する。 〔サーモオフ運転処理〕ガスバーナ311が消火する
と、10秒後、冷却水ポンプ13を停止する。[Cooling-off operation process] After extinguishing the gas burner 311 and while the HGE temperature exceeds 100 ° C, the tandem pump 80 is controlled based on the HGE temperature-rotation speed operation line. When the HGE temperature falls below 100 ° C., the rotation speed of the tandem pump 80 is fixed at 900 rpm, the cooling / heating switching valve 36 is opened, and the cooling water pump 13 is stopped. [Thermo-off operation process] When the gas burner 311 extinguishes, the cooling water pump 13 is stopped after 10 seconds.
【0054】ステップs12で、冷温水≧7℃以上(冷
房オフの場合)、又は室温≧設定温度(サーモオフの場
合)が成立するか否か判別し、成立する場合(YES)
は、冷房オフ立ち上げ、又はサーモオフ立ち上げを行な
う為にステップs3に戻る。又、成立しない場合(N
O)はステップs11に戻って冷房オフ運転処理又はサ
ーモオフ運転処理を実施する。In step s12, it is determined whether or not cold / hot water ≧ 7 ° C. or more (when cooling is off) or room temperature ≧ set temperature (when thermostat is off). If yes (YES)
Returns to step s3 to perform cooling-off startup or thermo-off startup. In addition, when it does not hold (N
O) returns to step s11 to execute the cooling-off operation process or the thermo-off operation process.
【0055】ステップs13で、冷却水回路1に異常
(冷却水量の減少、冷却塔ファン111の故障、冷却水
ポンプ13の故障等)が発生していると見なし、制御器
9はエラー停止を指示する。In step s13, it is considered that an abnormality (a decrease in the amount of cooling water, a failure in the cooling tower fan 111, a failure in the cooling water pump 13, etc.) has occurred in the cooling water circuit 1, and the controller 9 instructs an error stop. I do.
【0056】コールドスタートの場合、ステップs14
で点火動作を行なう。冷暖切替弁36は閉弁維持する。
ステップs15で、インプットを2500kcal/h
にして冷房運転を立ち上げる。そして、HGE温度≧8
0℃に達すると冷却水ポンプ13及び冷却塔ファン11
1に通電を開始し、タイマーをスタートさせる。更に、
HGE温度≧100℃に達するとタンデムポンプ80へ
通電を開始し、タイマーをスタートさせる。In the case of a cold start, step s14
To perform the ignition operation. The cooling / heating switching valve 36 is kept closed.
In step s15, the input is 2500 kcal / h
And start the cooling operation. And HGE temperature ≧ 8
When the temperature reaches 0 ° C., the cooling water pump 13 and the cooling tower fan 11
1 and the timer is started. Furthermore,
When the HGE temperature ≧ 100 ° C., the power supply to the tandem pump 80 is started, and the timer is started.
【0057】冷却水ポンプ13への通電から20秒以降
で、且つ冷却水温≧38℃であるか否かステップs16
で判別し、NOの場合にはステップs17に進み、YE
Sの場合にはステップs21に進む。Step s16: It is determined whether or not the cooling water temperature is ≧ 38 ° C. after 20 seconds from the energization of the cooling water pump 13.
And if NO, proceed to step s17,
In the case of S, the process proceeds to step s21.
【0058】ステップs17で、HGE温度≧150
℃、又は冷温水≦11℃が成立するか否か判別し、何れ
か成立する場合(YES)はステップs18に進み、何
れも成立しない場合(NO)はステップs15に戻って
2500kcal/hのインプットを維持する。At step s17, HGE temperature ≧ 150
It is determined whether or not ℃ or cold and hot water ≦ 11 ° C. is satisfied. If any of them is satisfied (YES), the process proceeds to step s18. If neither is satisfied (NO), the process returns to step s15 to input 2500 kcal / h. To maintain.
【0059】ステップs18で、インプットを4800
kcal/hに低減し、タンデムポンプ80の回転数も
低減する。ステップs19で、冷温水20が9℃以下に
低下したか否か判別し、冷温水≦9℃である場合(YE
S)はステップs7に進み、冷温水>9℃である場合
(NO)はステップs20に進む。At step s18, the input is 4800
kcal / h, and the rotation speed of the tandem pump 80 is also reduced. In step s19, it is determined whether or not the temperature of the cold / hot water 20 has dropped to 9 ° C. or less.
S) proceeds to step s7, and if cold / hot water> 9 ° C. (NO), proceeds to step s20.
【0060】冷却水ポンプ13への通電から20秒以降
で、且つ冷却水温≧38℃であるか否かステップs20
で判別し、NOの場合にはステップs18に戻り、YE
Sの場合にはステップs21に進む。Step s20: It is determined whether or not the cooling water temperature is equal to or more than 38 ° C. after 20 seconds from the energization of the cooling water pump 13.
, And in the case of NO, the process returns to step s18 and YE
In the case of S, the process proceeds to step s21.
【0061】ステップs21で、冷却水回路1に異常
(冷却水量の減少、冷却塔ファン111の故障、冷却水
ポンプ13の故障等)が発生していると見なし、制御器
9はエラー停止を指示する。In step s21, it is considered that an abnormality (a decrease in the amount of cooling water, a failure in the cooling tower fan 111, a failure in the cooling water pump 13, etc.) has occurred in the cooling water circuit 1, and the controller 9 instructs an error stop. I do.
【0062】つぎに、本実施例の吸収式空調装置Aの利
点を述べる。吸収式空調装置Aは、冷却水ポンプ13へ
の通電から20秒間は、冷却水温に基づくエラー停止を
行なわない構成である。この為、冷房運転開始時に冷却
水温が高い場合{ホットスタート時(冷房オフやサーモ
オフ後の再運転を含む)、外気温が高い場合}に冷房運
転を開始(再開)する際に、不要なエラー停止(誤作
動)を起こさずに冷房運転を継続することができる。よ
って、室内が暑いのに冷房運転が中断されてしまうとい
う不具合が起きず実用性に優れる。又、冷却水回路1に
異常(冷却水量の減少、冷却塔ファン111の故障、冷
却水ポンプ13の故障等)が有る場合には、確実にエラ
ー停止させることができ、吸収液の晶析や高温再生器3
の劣化(過熱による)が防止できる。Next, advantages of the absorption type air conditioner A of this embodiment will be described. The absorption type air conditioner A is configured not to perform the error stop based on the cooling water temperature for 20 seconds after the cooling water pump 13 is energized. For this reason, if the cooling water temperature is high at the time of starting the cooling operation {at hot start (including re-operation after cooling off or thermo-off) or when the outside temperature is high}, an unnecessary error may occur when starting (restarting) the cooling operation. The cooling operation can be continued without stopping (malfunction). Therefore, there is no problem that the cooling operation is interrupted even though the room is hot, and the practicability is excellent. Further, when there is an abnormality in the cooling water circuit 1 (a decrease in the amount of cooling water, a failure in the cooling tower fan 111, a failure in the cooling water pump 13, etc.), the error can be stopped reliably, and the crystallization of the absorbing liquid and the High temperature regenerator 3
Deterioration (due to overheating) can be prevented.
【0063】本発明は、上記実施例以外に、つぎの実施
態様を含む。 a.“所定時間が経過するまでの間、冷却水温検出手段
が作動停止状態におかれる”という請求項2の具体的な
構成は、例えば、(1) 冷却水温検出手段への作動用電力
の供給を停止する方法、(2) バイアス電圧を印加してセ
ンサ出力を無効にする方法等が考えられる。The present invention includes the following embodiments in addition to the above embodiment. a. The specific configuration of claim 2 that “the cooling water temperature detecting means is in an operation stop state until the predetermined time elapses” includes, for example, (1) supply of operating power to the cooling water temperature detecting means. A method of stopping, (2) a method of invalidating the sensor output by applying a bias voltage, and the like can be considered.
【0064】b.“冷却水温検出手段が監視温度以上の
冷却水温を検出しても、制御器は、冷房運転の立ち上が
りの初期の前記所定時間の間、冷却水温に基づくエラー
停止を指示しない”という請求項1の他の構成として、
実施例の方法(ソフト的に行う)以外に、冷却水温検出
手段のセンサ出力を、リレーや半導体素子等を用いて、
ショートや遮断する方法を用いても良い。B. The controller according to claim 1, wherein "even if the cooling water temperature detecting means detects the cooling water temperature equal to or higher than the monitoring temperature, the controller does not instruct an error stop based on the cooling water temperature during the predetermined time at the beginning of the start of the cooling operation." As another configuration,
In addition to the method of the embodiment (performed by software), the sensor output of the cooling water temperature detecting means is output using a relay, a semiconductor element, or the like.
A method of short-circuiting or breaking may be used.
【0065】尚、上記aやb(センサ出力の遮断を除
く)の方法を用いると、冷却水温に基づく冷却塔ファン
111の回転数制御が行えなくなるので、冷却塔ファン
111の回転数を、所定のパターンで制御するか、所定
値に固定する(所定時間の間)方法を併用する。If the method a or b (excluding the interruption of the sensor output) is used, the rotation speed of the cooling tower fan 111 cannot be controlled based on the cooling water temperature. Or a method of fixing at a predetermined value (for a predetermined time) is also used.
【0066】c.制御器9が冷却水温に基づくエラー停
止を制御器9が開始する時期を上記実施例では、冷却水
ポンプ13及び冷却塔ファン111への通電から20秒
後としているが、以下の様にしても良い。 冷却水ポンプ13と冷却塔ファン111は、同時に作
動開始せず、何方かが作動開始してから所定時間が経過
した時点(請求項3、4に対応)。 冷房運転スイッチをオンしてから所定時間が経過した
時点(請求項1、2に対応)。 点火動作から所定時間が経過した時点(請求項1、2
に対応)。C. In the above-described embodiment, the timing at which the controller 9 starts the error stop based on the cooling water temperature is set to 20 seconds after the energization of the cooling water pump 13 and the cooling tower fan 111. good. The cooling water pump 13 and the cooling tower fan 111 do not start operating at the same time, but at a point in time when a predetermined time has elapsed since one of them started operating (corresponding to claims 3 and 4). When a predetermined time has elapsed since the cooling operation switch was turned on (corresponding to claims 1 and 2). When a predetermined time has elapsed from the ignition operation (claims 1 and 2)
Corresponding to).
【0067】d.加熱源は、ガスバーナ以外に、石油バ
ーナや電気ヒータ等でも良い。 e.上記実施例は二重効用式の吸収式空調装置Aである
が、一重効用式であっても良い。D. The heating source may be an oil burner or an electric heater in addition to the gas burner. e. Although the above embodiment is an absorption type air conditioner A of a double effect type, it may be of a single effect type.
【図1】本発明の一実施例に係る吸収式空調装置の原理
説明図である。FIG. 1 is a diagram illustrating the principle of an absorption air conditioner according to one embodiment of the present invention.
【図2】その吸収式空調装置のシステム図である。FIG. 2 is a system diagram of the absorption type air conditioner.
【図3】その吸収式空調装置を冷房運転させた場合の作
動説明図である。FIG. 3 is an operation explanatory diagram when the absorption type air conditioner is operated for cooling.
【図4】その吸収式空調装置を暖房運転させた場合の作
動説明図である。FIG. 4 is an operation explanatory diagram when the absorption type air conditioner is operated for heating.
【図5】その吸収式空調装置の冷房運転時の作動を示す
フローチャートである。FIG. 5 is a flowchart showing an operation of the absorption type air conditioner during a cooling operation.
【図6】その吸収式空調装置の冷房運転時の作動を示す
フローチャートである。FIG. 6 is a flowchart showing an operation of the absorption type air conditioner during a cooling operation.
A 吸収式空調装置 1 冷却水回路 2 冷温水回路 3 高温再生器 4 低温再生器 5 凝縮器 6 蒸発器 7 吸収器 8 吸収液回路 9 制御器 10 冷却水 11 冷却塔 13 冷却水ポンプ 14 吸収器伝熱管 15 凝縮器伝熱管 20 冷温水 21 室内熱交換器 24 蒸発器伝熱管 30 希液(低濃度吸収液) 31 沸騰器(加熱部) 34 中液(中濃度吸収液) 35、42 蒸気冷媒 41 濃液(高濃度吸収液) 91 冷却水温センサ(冷却水温検出手段) 111 室外ファン 201 冷温水センサ(冷温水温検出手段) 211 送風ファン 311 ガスバーナ(加熱源) 801 溶液移送部(溶液ポンプ) 802 冷温水移送部(冷温水ポンプ) A Absorption air conditioner 1 Cooling water circuit 2 Cooling / heating water circuit 3 High temperature regenerator 4 Low temperature regenerator 5 Condenser 6 Evaporator 7 Absorber 8 Absorbing liquid circuit 9 Controller 10 Cooling water 11 Cooling tower 13 Cooling water pump 14 Absorber Heat transfer tube 15 Condenser heat transfer tube 20 Cold and hot water 21 Indoor heat exchanger 24 Evaporator heat transfer tube 30 Rare liquid (low concentration absorption liquid) 31 Boiler (heating unit) 34 Medium liquid (medium concentration absorption liquid) 35, 42 Steam refrigerant 41 Concentrated liquid (high concentration absorbing liquid) 91 Cooling water temperature sensor (cooling water temperature detecting means) 111 Outdoor fan 201 Cold / hot water sensor (cooling / hot water temperature detecting means) 211 Blow fan 311 Gas burner (heating source) 801 Solution transfer unit (solution pump) 802 Cold / hot water transfer section (cold / hot water pump)
Claims (4)
管、及び凝縮器伝熱管を順に環状接続してなり、冷房運
転時には冷却水ポンプにより冷却水を循環させる冷却水
回路と、 送風ファンを付設した室内熱交換器、及び蒸発器伝熱管
を環状接続してなり、冷温水ポンプにより冷温水を循環
させる冷温水回路と、 吸収液が入れられ加熱部が加熱源により加熱され冷房運
転時には低濃度吸収液中の冷媒を気化させて高濃度吸収
液と蒸気冷媒とに分離する再生器、前記凝縮器伝熱管を
配設し冷房運転時には前記再生器から高温の蒸気冷媒が
送り込まれる凝縮器、冷房運転時には前記凝縮器で液化
した液冷媒を低圧下で蒸発させる蒸発器、該蒸発器に併
設され前記吸収器伝熱管を配設し冷房運転時には前記蒸
発器で蒸発した蒸気冷媒を前記再生器から送られる高濃
度吸収液に吸収させる吸収器、及び該吸収器内の吸収液
を前記再生器に戻す溶液ポンプを有する吸収液回路と、 前記冷却水の温度を検出する冷却水温検出手段と、 前記冷温水の温度を検出する冷温水温検出手段と、 前記ファン、前記冷却水ポンプ、前記冷温水ポンプ、前
記加熱源、及び前記溶液ポンプの制御を司り、 冷房運転時には、前記室内熱交換器に供給される前記冷
温水の温度が設定温度に維持される様に前記加熱源の加
熱力を制御し、 監視温度以上の冷却水温が検出されるとエラー停止を指
示する制御器とを備える吸収式空調装置において、 前記冷却水温検出手段が監視温度以上の冷却水温を検出
しても、前記制御器は、冷房運転の立ち上がり初期の前
記所定時間の間、冷却水温に基づくエラー停止を指示し
ないことを特徴とする請求項1記載の吸収式空調装置。1. A cooling water circuit that circulates cooling water by a cooling water pump during cooling operation, comprising a cooling tower provided with a fan, an absorber heat transfer tube, and a condenser heat transfer tube connected in order in a loop, and a blower fan. An indoor heat exchanger and an evaporator heat transfer tube attached are connected in a loop, and a chilled / hot water circuit for circulating chilled / hot water by a chilled / hot water pump. A regenerator that vaporizes the refrigerant in the concentration absorbing liquid and separates it into a high-concentration absorbing liquid and a vapor refrigerant, a condenser in which the condenser heat transfer tube is disposed, and a high-temperature vapor refrigerant is sent from the regenerator during cooling operation, An evaporator for evaporating the liquid refrigerant liquefied in the condenser at a low pressure during the cooling operation, and the absorber heat transfer tube provided adjacent to the evaporator, and the vapor refrigerant evaporated by the evaporator during the cooling operation is supplied to the regenerator. Sent from An absorbent for absorbing the high-concentration absorbent to be absorbed, and an absorbent circuit having a solution pump for returning the absorbent in the absorber to the regenerator; a cooling water temperature detecting means for detecting a temperature of the cooling water; A cooling / heating water temperature detecting unit for detecting a temperature of water; and a control unit for controlling the fan, the cooling water pump, the cooling / heating water pump, the heating source, and the solution pump, and is supplied to the indoor heat exchanger during a cooling operation. A controller that controls the heating power of the heating source so that the temperature of the cold / hot water is maintained at a set temperature, and instructs an error stop when a cooling water temperature equal to or higher than a monitored temperature is detected. In the above, even if the cooling water temperature detection means detects a cooling water temperature equal to or higher than a monitoring temperature, the controller does not instruct an error stop based on the cooling water temperature during the predetermined time at the beginning of the cooling operation. Absorption air conditioning apparatus according to claim 1, wherein.
ち上がり初期の前記所定時間が経過するまでの間、作動
停止状態におかれ、前記制御器がエラー停止を指示でき
ない様にした請求項1記載の吸収式空調装置。2. The cooling water temperature detecting means is in an operation stop state until the predetermined time period at the beginning of cooling operation has elapsed, so that the controller cannot instruct an error stop. The absorption type air conditioner as described.
計時を開始する請求項1又は請求項2記載の吸収式空調
装置。3. The absorption type air conditioner according to claim 1, wherein time measurement of the predetermined time is started by starting the fan.
時間の計時を開始する請求項1又は請求項2記載の吸収
式空調装置。4. The absorption type air conditioner according to claim 1, wherein timing of the predetermined time is started by starting the cooling water pump.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9018139A JPH10220901A (en) | 1997-01-31 | 1997-01-31 | Absorbing type air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9018139A JPH10220901A (en) | 1997-01-31 | 1997-01-31 | Absorbing type air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10220901A true JPH10220901A (en) | 1998-08-21 |
Family
ID=11963281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9018139A Pending JPH10220901A (en) | 1997-01-31 | 1997-01-31 | Absorbing type air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10220901A (en) |
-
1997
- 1997-01-31 JP JP9018139A patent/JPH10220901A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3056987B2 (en) | Absorption cooling system | |
JP3128501B2 (en) | Absorption air conditioner | |
JPH10220901A (en) | Absorbing type air conditioner | |
JP3241623B2 (en) | Absorption air conditioner | |
JP3660413B2 (en) | Absorption air conditioner | |
JP3128502B2 (en) | Absorption air conditioner | |
JP2954513B2 (en) | Absorption air conditioner | |
JP3056990B2 (en) | Absorption air conditioner | |
JP3130465B2 (en) | Absorption air conditioner | |
JP2994250B2 (en) | Absorption air conditioner | |
JP3056991B2 (en) | Absorption air conditioner | |
JP2954519B2 (en) | Absorption air conditioner | |
JP2000186868A (en) | Controller for absorption air conditioning apparatus | |
JP2839442B2 (en) | Absorption refrigeration cycle device | |
JP3241624B2 (en) | Absorption air conditioner | |
JP3057017B2 (en) | Absorption air conditioner | |
JP3323103B2 (en) | Absorption air conditioner | |
JP3144538B2 (en) | Absorption air conditioner | |
JP3328164B2 (en) | Absorption air conditioner | |
JP3308795B2 (en) | Absorption air conditioner | |
JPH10103808A (en) | Air conditioner using absorption type refrigerator | |
JPH10325636A (en) | Absorption type air-conditioning device | |
JP2003042588A (en) | Absorption type cooling and heating machine | |
JPH0875301A (en) | Absorption type refrigeration cycle apparatus | |
JPH09126578A (en) | Absorption air conditioner |