JP3056991B2 - Absorption air conditioner - Google Patents

Absorption air conditioner

Info

Publication number
JP3056991B2
JP3056991B2 JP7331707A JP33170795A JP3056991B2 JP 3056991 B2 JP3056991 B2 JP 3056991B2 JP 7331707 A JP7331707 A JP 7331707A JP 33170795 A JP33170795 A JP 33170795A JP 3056991 B2 JP3056991 B2 JP 3056991B2
Authority
JP
Japan
Prior art keywords
temperature
cooling
heating
cooling operation
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7331707A
Other languages
Japanese (ja)
Other versions
JPH09170843A (en
Inventor
寿洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP7331707A priority Critical patent/JP3056991B2/en
Publication of JPH09170843A publication Critical patent/JPH09170843A/en
Application granted granted Critical
Publication of JP3056991B2 publication Critical patent/JP3056991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収液を用いる吸
収式空調装置に関する。
The present invention relates to an absorption type air conditioner using an absorption liquid.

【0002】[0002]

【従来の技術】室外ファンを付設した室外熱交換器、吸
収器伝熱管、及び凝縮器伝熱管を順に環状接続してな
り、冷房運転時には冷却水ポンプにより冷却水を循環さ
せる冷却水回路と、送風ファンを付設した室内熱交換
器、蒸発器伝熱管を環状接続してなり、冷温水ポンプに
より冷温水を循環させる冷温水回路と、吸収液が入れら
れ加熱部が加熱源により加熱され冷房運転時には低濃度
吸収液中の冷媒を気化させて中濃度吸収液と蒸気冷媒と
に分離する高温再生器、該高温再生器を包囲し、冷房運
転時には前記中濃度吸収液を高濃度吸収液と蒸気冷媒と
に分離する低温再生器、前記凝縮器伝熱管を配設し暖房
運転時には高温再生器から蒸気冷媒が送り込まれ冷房運
転時には各再生器から高温の蒸気冷媒が送り込まれる凝
縮器、暖房運転時には前記高温再生器から高温の吸収液
が送り込まれ冷房運転時には前記凝縮器で液化した液冷
媒を蒸発させる蒸発器、該蒸発器に併設され前記吸収器
伝熱管を配設し冷房運転時には前記蒸発器で蒸発した蒸
気冷媒を前記低温再生器から送られる高濃度吸収液に吸
収させる吸収器、及び吸収器内の吸収液を前記高温再生
器に戻す溶液ポンプを有する吸収液回路と、冷房運転時
には、前記吸収器伝熱管に供給される前記冷却水の温度
を、吸収能力が充分に得られる所定温度(例えば31.
5℃)に維持される様に前記室外ファンを回転数制御
し、前記室内熱交換器に供給される前記冷温水の温度
を、冷房能力が充分に得られる設定温度(例えば7℃)
に維持される様に前記加熱源の加熱力を比例制御する
(例えば、1500kcal〜4800kcal)制御
器とを有し、前記送風ファンにより冷風又は温風を室内
に送風して室内冷暖房を行う、フロンを使用しない吸収
式空調装置が近年、注目されている。
2. Description of the Related Art A cooling water circuit in which an outdoor heat exchanger provided with an outdoor fan, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially annularly connected, and a cooling water pump circulates cooling water during cooling operation. A cooling / heating water circuit that circulates cooling / heating water with a cooling / heating water pump, and a cooling / heating water circuit that circulates cooling / heating water with a cooling / heating water pump. Sometimes a high-temperature regenerator that vaporizes the refrigerant in the low-concentration absorbent and separates it into a medium-concentration liquid and a vapor refrigerant, surrounds the high-temperature regenerator, and cools the medium-concentration liquid with the high-concentration liquid and vapor during cooling operation. A low-temperature regenerator separated from the refrigerant, the condenser heat transfer tube is provided, and a steam refrigerant is sent from the high-temperature regenerator during the heating operation and a high-temperature steam refrigerant is sent from each regenerator during the cooling operation during the cooling operation. An evaporator to which a high-temperature absorbent is sent from the high-temperature regenerator to evaporate the liquid refrigerant liquefied by the condenser during the cooling operation, and the absorber heat transfer tube provided alongside the evaporator and the evaporator to be operated during the cooling operation. An absorber for absorbing the vapor refrigerant evaporated in the high-concentration absorbent sent from the low-temperature regenerator, and an absorbent circuit having a solution pump for returning the absorbent in the absorber to the high-temperature regenerator, and during cooling operation, The temperature of the cooling water supplied to the absorber heat transfer tube is adjusted to a predetermined temperature (for example, 31.
The temperature of the cold / hot water supplied to the indoor heat exchanger is controlled to a set temperature (for example, 7 ° C.) at which sufficient cooling capacity can be obtained.
And a controller (for example, 1500 kcal to 4800 kcal) for proportionally controlling the heating power of the heating source so as to be maintained at a constant temperature. In recent years, attention has been paid to an absorption type air conditioner that does not use an air conditioner.

【0003】[0003]

【発明が解決しようとする課題】室外熱交換器により水
分を蒸発させる事により冷却水の温度を低下させるもの
では、外気が高温多湿である時に冷房運転を行うと、室
外ファンの回転数を最大にしても、吸収器伝熱管に供給
する冷却水の温度が所定温度(例えば31.5℃)に下
がらない状態(室外熱交換器の放熱能力が限界に達して
いる)が生じる。尚、冷却水の温度が所定温度に下がら
ない状態は、外気が高温多湿である場合の他、冷房負荷
が大きくなった場合にも生じる事がある。
In the case where the temperature of the cooling water is reduced by evaporating the water by the outdoor heat exchanger, when the cooling operation is performed when the outside air is at high temperature and high humidity, the rotation speed of the outdoor fan is increased. Even so, a state occurs in which the temperature of the cooling water supplied to the absorber heat transfer tube does not drop to a predetermined temperature (for example, 31.5 ° C.) (the heat radiation capacity of the outdoor heat exchanger has reached its limit). The state where the temperature of the cooling water does not drop to the predetermined temperature may occur not only when the outside air is hot and humid, but also when the cooling load becomes large.

【0004】吸収器は、蒸発器によって蒸発した冷媒を
吸収し、蒸発により上昇する管内の圧力を低下させる様
に作用するが、上記の様に冷却水の温度が所定温度(例
えば31.5℃)まで下がらなくなると、発熱する吸収
器の温度を下げる事ができず、吸収能力が低下する。こ
の為、管内の圧力が上昇し、液冷媒を蒸発させる蒸発器
の能力が低下する。又、冷却水の温度が所定温度に下が
らないと、凝縮器の温度を下げる事ができず、再生器に
より生成される蒸気冷媒を液化させる能力が低下する。
[0004] The absorber acts to absorb the refrigerant evaporated by the evaporator and reduce the pressure in the pipe which rises due to evaporation. As described above, the temperature of the cooling water is maintained at a predetermined temperature (for example, 31.5 ° C). ), The temperature of the absorber that generates heat cannot be reduced, and the absorption capacity decreases. For this reason, the pressure in the pipe increases, and the ability of the evaporator to evaporate the liquid refrigerant decreases. If the temperature of the cooling water does not drop to a predetermined temperature, the temperature of the condenser cannot be lowered, and the ability to liquefy the vapor refrigerant generated by the regenerator is reduced.

【0005】そして、再生器を加熱する加熱力を更に上
昇させ、吸収液及び蒸気冷媒を多く生成する事が可能で
あっても、吸収能力の低下及び凝縮能力の低下により蒸
発能力(冷温水の冷却能力)が限界に達していると、加
熱力を幾ら上げても冷房能力の増加に寄与しなくなる。
この様に従来のものは、冷温水の温度が所定温度になる
様に加熱力が制御されるのみであった為、上記の様な冷
房能力を増加させる事ができない状態でも加熱力を最大
加熱力まで上昇させることとなり、エネルギーが無駄に
消費されるとともに、以下の不具合を有する。
[0005] Then, even if it is possible to further increase the heating power for heating the regenerator and generate a large amount of the absorbing liquid and the vapor refrigerant, the evaporation capacity (cold and hot water) is reduced due to the reduction of the absorption capacity and the reduction of the condensation capacity. When the cooling capacity reaches the limit, no matter how much the heating power is increased, it does not contribute to the increase in the cooling capacity.
As described above, in the conventional apparatus, the heating power is only controlled so that the temperature of the cold / hot water becomes a predetermined temperature. Therefore, even if the cooling capacity cannot be increased as described above, the heating power is maximized. Power, which wastes energy and has the following disadvantages:

【0006】高温再生器の温度が冷房高温異常温度(1
75℃)に到達し易く、到達すると、冷房高温エラー停
止するので冷房運転が続けられない。冷却水の温度が上
がるので、冷却水回路の構成部材の劣化を招く。本発明
の目的は、外気が高温多湿である場合でも極力、冷房運
転が行える吸収式空調装置の提供にある。
[0006] The temperature of the high-temperature regenerator becomes the cooling high temperature abnormal temperature (1).
75 ° C.), and when it reaches, the cooling high temperature error is stopped, so that the cooling operation cannot be continued. Since the temperature of the cooling water rises, the components of the cooling water circuit deteriorate. An object of the present invention is to provide an absorption type air conditioner capable of performing a cooling operation as much as possible even when the outside air is hot and humid.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、以下の構成を採用した。 (1)室外ファンを付設した室外熱交換器、吸収器伝熱
管、及び凝縮器伝熱管を順に環状接続してなり、冷房運
転時には冷却水ポンプにより冷却水を循環させる冷却水
回路と、送風ファンを付設した室内熱交換器、蒸発器伝
熱管を環状接続してなり、冷温水ポンプにより冷温水を
循環させる冷温水回路と、吸収液が入れられ加熱部が加
熱源により加熱され冷房運転時には低濃度吸収液中の冷
媒を気化させて中濃度吸収液と蒸気冷媒とに分離する高
温再生器、該高温再生器を包囲し、冷房運転時には前記
中濃度吸収液を高濃度吸収液と蒸気冷媒とに分離する低
温再生器、前記凝縮器伝熱管を配設し冷房運転時には各
再生器から高温の蒸気冷媒が送り込まれる凝縮器、冷房
運転時には前記凝縮器で液化した液冷媒を蒸発させる蒸
発器、該蒸発器に併設され前記吸収器伝熱管を配設し冷
房運転時には前記蒸発器で蒸発した蒸気冷媒を前記低温
再生器から送られる高濃度吸収液に吸収させる吸収器、
及び吸収器内の吸収液を前記高温再生器に戻す溶液ポン
プを有する吸収液回路と、冷房運転時には、前記吸収器
伝熱管に供給される前記冷却水の温度が所定温度に維持
される様に前記室外ファンを回転数制御し、前記室内熱
交換器に供給される前記冷温水の温度が設定温度に維持
される様に前記加熱源の加熱力を比例制御する制御器と
を有する吸収式空調装置において、前記冷温水の温度が
前記設定温度を越え、且つ、前記室外ファンが最大回転
数である場合、前記制御器は、前記加熱力の比例制御を
中止するとともに、前記加熱源の加熱力を中止直前の加
熱力に維持する。
In order to solve the above problems, the present invention employs the following constitution. (1) An outdoor heat exchanger provided with an outdoor fan, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape, and a cooling water circuit for circulating cooling water by a cooling water pump during a cooling operation, and a blowing fan A cold and hot water circuit that circulates cold and hot water by a cold and hot water pump and a heating and cooling unit that is heated by a heating source and has a low temperature during cooling operation. A high-temperature regenerator that vaporizes the refrigerant in the concentration absorbing liquid and separates the medium-concentration absorbing liquid and vapor refrigerant, surrounds the high-temperature regenerator, and cools the medium-concentration absorbing liquid with the high-concentration absorbing liquid and the vapor refrigerant during cooling operation. A low-temperature regenerator to be separated into a condenser, a condenser in which the condenser heat transfer tubes are disposed, and a high-temperature vapor refrigerant is sent from each regenerator during the cooling operation, and an evaporator that evaporates the liquid refrigerant liquefied by the condenser during the cooling operation. To the evaporator Absorber to absorb a high concentration absorption solution to be fed to the vapor refrigerant evaporated by the evaporator from the low-temperature regenerator during setting is provided to the cooling operation the absorber heat transfer tube,
An absorption liquid circuit having a solution pump for returning the absorption liquid in the absorber to the high-temperature regenerator; and, during cooling operation, such that the temperature of the cooling water supplied to the absorber heat transfer tube is maintained at a predetermined temperature. A controller for controlling the number of revolutions of the outdoor fan and proportionally controlling the heating power of the heating source so that the temperature of the cold / hot water supplied to the indoor heat exchanger is maintained at a set temperature. In the device, when the temperature of the cold / hot water exceeds the set temperature and the outdoor fan is at the maximum number of revolutions, the controller stops proportional control of the heating power and heats the heating source. Is maintained at the heating power immediately before discontinuation.

【0008】(2)室外ファンを付設した室外熱交換
器、吸収器伝熱管、及び凝縮器伝熱管を順に環状接続し
てなり、冷房運転時には冷却水ポンプにより冷却水を循
環させる冷却水回路と、送風ファンを付設した室内熱交
換器、蒸発器伝熱管を環状接続してなり、冷温水ポンプ
により冷温水を循環させる冷温水回路と、吸収液が入れ
られ加熱部が加熱源により加熱され冷房運転時には低濃
度吸収液中の冷媒を気化させて中濃度吸収液と蒸気冷媒
とに分離する高温再生器、該高温再生器を包囲し、冷房
運転時には前記中濃度吸収液を高濃度吸収液と蒸気冷媒
とに分離する低温再生器、前記凝縮器伝熱管を配設し冷
房運転時には各再生器から高温の蒸気冷媒が送り込まれ
る凝縮器、冷房運転時には前記凝縮器で液化した液冷媒
を蒸発させる蒸発器、該蒸発器に併設され前記吸収器伝
熱管を配設し冷房運転時には前記蒸発器で蒸発した蒸気
冷媒を前記低温再生器から送られる高濃度吸収液に吸収
させる吸収器、及び吸収器内の吸収液を前記高温再生器
に戻す溶液ポンプを有する吸収液回路と、冷房運転時に
は、前記吸収器伝熱管に供給される前記冷却水の温度が
所定温度に維持される様に前記室外ファンを回転数制御
し、前記室内熱交換器に供給される前記冷温水の温度が
設定温度に維持される様に前記加熱源の加熱力を比例制
御する制御器とを有する吸収式空調装置において、(所
定温度+m℃)を第1の監視温度とし、該第1の監視温
度からm℃毎に、第2〜第nの監視温度を設定し、前記
冷却水の温度が第1の監視温度以上の状態が規定時間以
上続くと、前記制御器は、前記加熱力の比例制御を中止
するとともに、前記加熱源の加熱力を中止直前の加熱力
から規定量だけ低減し、更に、前記冷却水の温度が第2
の監視温度以上の状態が前記規定時間以上続くと、前記
制御器は、前記加熱源の加熱力を更に前記規定量だけ低
減し、この低減動作を第(n−1)の監視温度まで実施
し、前記冷却水の温度が第nの監視温度以上の状態が前
記規定時間以上続くと、前記制御器は、冷房運転停止を
指示する。
(2) An outdoor heat exchanger provided with an outdoor fan, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape, and a cooling water circuit for circulating cooling water by a cooling water pump during cooling operation. A cooling / heating water circuit for circulating cooling / heating water by a cooling / heating water pump, and a cooling / heating water circuit for circulating cooling / heating water by a cooling / heating water pump, and a heating unit heated by a heating source by a heating source. During operation, a high-temperature regenerator that evaporates the refrigerant in the low-concentration absorbent and separates it into medium-concentration liquid and vapor refrigerant, surrounds the high-temperature regenerator, and cools the medium-concentration absorbent with the high-concentration absorbent. A low-temperature regenerator that separates into a vapor refrigerant, a condenser in which the condenser heat transfer tubes are provided and a high-temperature vapor refrigerant is sent from each regenerator during cooling operation, and a liquid refrigerant liquefied by the condenser evaporates during cooling operation. Evaporator An absorber which is provided in parallel with the evaporator and which has the absorber heat transfer tube, and which absorbs the vapor refrigerant evaporated by the evaporator into the high-concentration absorbent sent from the low-temperature regenerator during cooling operation, and absorption in the absorber An absorbing liquid circuit having a solution pump for returning a liquid to the high-temperature regenerator; and, during cooling operation, rotating the outdoor fan so that the temperature of the cooling water supplied to the absorber heat transfer tube is maintained at a predetermined temperature. Controlling the heating power of the heating source proportionally so that the temperature of the cold / hot water supplied to the indoor heat exchanger is maintained at a set temperature. + M ° C.) as the first monitored temperature, and the second to n-th monitored temperatures are set every m ° C. from the first monitored temperature, and the temperature of the cooling water is equal to or higher than the first monitored temperature. If it continues for a specified time or more, the controller As well as stop the proportional control, by a predetermined amount from the heating power of the stop just before the heating power of the heating source is reduced, further, the temperature of the cooling water is second
If the state equal to or higher than the monitored temperature continues for the specified time or more, the controller further reduces the heating power of the heating source by the specified amount, and performs this reduction operation to the (n-1) th monitored temperature. When the temperature of the cooling water is equal to or higher than the n-th monitoring temperature for a predetermined time or longer, the controller instructs the cooling operation to stop.

【0009】(3)上記(1) 又は(2) の構成を有し、前
記吸収液回路は、吸収液が入れられ前記加熱部が前記加
熱源により加熱される再生器、凝縮器伝熱管を配設し冷
房運転時には前記再生器から高温の蒸気冷媒が送り込ま
れる凝縮器、冷房運転時には前記凝縮器で液化した液冷
媒を蒸発させる蒸発器、該蒸発器に併設され前記吸収器
伝熱管を配設し冷房運転時には前記蒸発器で蒸発した蒸
気冷媒を前記再生器から送られる高濃度吸収液に吸収さ
せる吸収器、及び吸収器内の吸収液を前記再生器に戻す
溶液ポンプにより構成される。
(3) The absorbent circuit has the configuration of (1) or (2) above, and the absorbent circuit includes a regenerator and a condenser heat transfer tube in which the absorbent is filled and the heating section is heated by the heating source. A condenser in which high-temperature vapor refrigerant is sent from the regenerator during cooling operation, an evaporator for evaporating liquid refrigerant liquefied in the condenser during cooling operation, and the absorber heat transfer tube attached to the evaporator. During the cooling operation, the apparatus comprises an absorber for absorbing the vapor refrigerant evaporated by the evaporator into the high-concentration absorbent sent from the regenerator, and a solution pump for returning the absorbent in the absorber to the regenerator.

【0010】[0010]

【作用】[Action]

〔請求項1、2を採用した場合の冷房運転について〕吸
収液が入れられた高温再生器は、加熱部が加熱源により
加熱される。冷房運転時には、低濃度吸収液中の冷媒が
気化して中濃度吸収液と蒸気冷媒とに分離する。冷房運
転時は各再生器から高温の蒸気冷媒が凝縮器に送り込ま
れる。
[Cooling Operation When Claims 1 and 2 are Adopted] In the high-temperature regenerator containing the absorbing liquid, the heating section is heated by the heating source. During the cooling operation, the refrigerant in the low-concentration absorbing liquid is vaporized and separated into the medium-concentration absorbing liquid and the vapor refrigerant. During the cooling operation, high-temperature vapor refrigerant is sent from each regenerator to the condenser.

【0011】冷房運転時、凝縮器から蒸発器に送り込ま
れた液冷媒は、冷温水が流れる蒸発器伝熱管に当たって
蒸発し冷温水を冷却する。そして、この冷却された冷温
水が室内熱交換器を通過し、送風ファンにより冷風が室
内へ送風される事により室内冷房が行われる。また、冷
房運転時、蒸発器で蒸発した蒸気冷媒は吸収器内に進入
し、低温再生器から送られる高濃度の吸収液に吸収され
吸収器内に溜まる。吸収器内に溜まった吸収液は、溶液
ポンプにより高温再生器に戻される。
During the cooling operation, the liquid refrigerant sent from the condenser to the evaporator hits the evaporator heat transfer tube through which the cold and hot water flows, and evaporates to cool the cold and hot water. Then, the cooled cold / hot water passes through the indoor heat exchanger, and cool air is blown into the room by the blower fan, thereby performing indoor cooling. Further, during the cooling operation, the vapor refrigerant evaporated by the evaporator enters the absorber, is absorbed by the high-concentration absorbing liquid sent from the low-temperature regenerator, and accumulates in the absorber. The absorbent collected in the absorber is returned to the high-temperature regenerator by the solution pump.

【0012】冷房運転時、制御器は、吸収器伝熱管に供
給される冷却水の温度が所定温度に維持される様に室外
ファンを回転数制御し、室内熱交換器に供給される冷温
水の温度が設定温度に維持される様に加熱源の加熱力を
比例制御する。
During the cooling operation, the controller controls the number of rotations of the outdoor fan so that the temperature of the cooling water supplied to the absorber heat transfer tube is maintained at a predetermined temperature, and controls the number of rotations of the cold and hot water supplied to the indoor heat exchanger. The heating power of the heating source is proportionally controlled so that the temperature is maintained at the set temperature.

【0013】〔請求項3を採用した場合の冷房運転につ
いて〕加熱源が加熱部を加熱し、再生器に入れられた吸
収液の一部は気化して蒸気冷媒となり、凝縮器に送り込
まれる。冷房運転時、凝縮器伝熱管には冷却水が流れて
いるので蒸気冷媒は液化し、凝縮器内に溜まる。
[Cooling operation in case of adopting claim 3] A heating source heats a heating unit, and a part of the absorbing liquid put in the regenerator is vaporized to be a vapor refrigerant and sent to the condenser. During the cooling operation, since the cooling water flows through the condenser heat transfer tubes, the vapor refrigerant liquefies and accumulates in the condenser.

【0014】冷房運転時、凝縮器から蒸発器内に送り込
まれた液冷媒は、冷温水が流れる蒸発器伝熱管に当たっ
て蒸発し冷温水を冷却する。そして、冷却された冷温水
が室内熱交換器を通過し、送風ファンにより冷風が室内
へ送風される事により室内冷房が行われる。また、冷房
運転時、蒸発器で蒸発して吸収器に入った蒸気冷媒は、
再生器から送られる高濃度の吸収液に吸収され吸収器内
に溜まる。吸収器内に溜まった吸収液は、溶液ポンプに
より再生器に戻される。
During the cooling operation, the liquid refrigerant sent from the condenser into the evaporator hits the evaporator heat transfer tube through which the cold and hot water flows, evaporates and cools the cold and hot water. Then, the cooled hot and cold water passes through the indoor heat exchanger, and cool air is blown into the room by the blower fan, thereby performing indoor cooling. During the cooling operation, the vapor refrigerant evaporated by the evaporator and entering the absorber is
It is absorbed by the high concentration absorbing liquid sent from the regenerator and accumulates in the absorber. The absorbent collected in the absorber is returned to the regenerator by the solution pump.

【0015】〔請求項1、2、3共通の冷房運転(悪条
件下)について〕しかし、外気が高温多湿であると、室
外ファンが最大回転数で回転していても、吸収器伝熱管
に供給する冷却水の温度が所定温度に下がらない状態
(室外熱交換器の放熱能力が限界に達している)が生じ
る。この場合、凝縮器及び吸収器の能力が低下するので
蒸発器の能力も低下し、室内熱交換器に供給される冷温
水の温度が設定温度に下がらなくなり、設定温度を越え
る。
[Claims 1, 2, and 3 common cooling operation (bad conditions)] However, if the outside air is hot and humid, even if the outdoor fan rotates at the maximum number of revolutions, the absorber heat transfer tube will A state occurs in which the temperature of the supplied cooling water does not drop to the predetermined temperature (the heat radiation capacity of the outdoor heat exchanger has reached its limit). In this case, since the capacity of the condenser and the absorber is reduced, the capacity of the evaporator is also reduced, and the temperature of the cold and hot water supplied to the indoor heat exchanger does not drop to the set temperature and exceeds the set temperature.

【0016】〔請求項1、3を採用した場合の冷房運転
(悪条件下)について〕外気が高温多湿である時に冷房
運転を行うと、室外ファンの回転数を最大にしても、吸
収器伝熱管に供給する冷却水の温度が所定温度に下がら
ない状態(室外熱交換器の放熱能力が限界に達してい
る)になる場合がある。この場合、凝縮器及び吸収器の
能力が低下するので、蒸発器の能力も低下し、室内熱交
換器に供給される冷温水の温度が所定温度に維持できな
くなり冷温水の温度が設定温度を越える。制御器は、加
熱力の比例制御を中止するとともに、加熱源の加熱力を
中止直前の加熱力に維持する。
[Cooling operation (bad condition) when the first and third aspects are adopted] If the cooling operation is performed when the outside air is hot and humid, even if the number of rotations of the outdoor fan is maximized, the absorber power transmission is performed. There is a case where the temperature of the cooling water supplied to the heat pipe does not drop to the predetermined temperature (the heat radiation capacity of the outdoor heat exchanger has reached the limit). In this case, since the capacity of the condenser and the absorber decreases, the capacity of the evaporator also decreases, and the temperature of the cold and hot water supplied to the indoor heat exchanger cannot be maintained at the predetermined temperature, and the temperature of the cold and hot water falls below the set temperature. Cross over. The controller suspends the proportional control of the heating power and maintains the heating power of the heating source at the heating power immediately before the suspension.

【0017】〔請求項2、3を採用した場合の冷房運転
(悪条件下)について〕外気が高温多湿である時に冷房
運転を行うと、室外ファンの回転数を最大にしても、吸
収器伝熱管に供給する冷却水の温度が所定温度に下がら
ない状態(室外熱交換器の放熱能力が限界に達してい
る)になる場合がある。この場合、凝縮器及び吸収器の
能力が低下するので、蒸発器の能力も低下し、室内熱交
換器に供給される冷温水の温度が所定温度に維持できな
くなり冷温水の温度が設定温度を越える。
[Cooling operation (bad conditions) when the second and third aspects are adopted] If the cooling operation is performed when the outside air is hot and humid, even if the number of rotations of the outdoor fan is maximized, the power transmission to the absorber is performed. There is a case where the temperature of the cooling water supplied to the heat pipe does not drop to the predetermined temperature (the heat radiation capacity of the outdoor heat exchanger has reached the limit). In this case, since the capacity of the condenser and the absorber decreases, the capacity of the evaporator also decreases, and the temperature of the cold and hot water supplied to the indoor heat exchanger cannot be maintained at the predetermined temperature, and the temperature of the cold and hot water falls below the set temperature. Cross over.

【0018】外気が高温多湿で、冷却水の温度が、第1
の監視温度以上となる状態が規定時間以上続くと、制御
器は、加熱力の比例制御を中止するとともに、加熱源の
加熱力を中止直前の加熱力から規定量だけ低減し、更
に、冷却水の温度が第2の監視温度以上の状態が規定時
間以上続くと、制御器は、加熱源の加熱力を更に規定量
だけ低減する。そして、この低減動作を第(n−1)の
監視温度まで実施し、冷却水の温度が第nの監視温度以
上の状態が規定時間以上続くと、制御器は、冷房運転停
止を指示する。
The outside air is hot and humid, and the temperature of the cooling water is
If the state where the temperature becomes equal to or higher than the monitoring temperature continues for a specified time or more, the controller stops the proportional control of the heating power, reduces the heating power of the heating source by a specified amount from the heating power immediately before the stop, and further cools the cooling water. When the temperature of the second monitor temperature is equal to or higher than the second monitoring temperature for a predetermined time or more, the controller further reduces the heating power of the heating source by a predetermined amount. Then, this reducing operation is performed up to the (n-1) th monitoring temperature, and when the temperature of the cooling water is equal to or higher than the nth monitoring temperature for a predetermined time or more, the controller instructs the cooling operation to stop.

【0019】[0019]

【発明の効果】〔請求項1、3について〕外気が高温多
湿で、冷温水の温度が設定温度を越え、室外ファンが最
大回転数で回転している場合、制御器は、冷温水の温度
が設定温度に維持される様に加熱源の加熱力を比例制御
する動作を中止して、加熱源の加熱力を中止直前の加熱
力に維持する構成であるので以下の効果を奏する。冷房
能力に寄与する範囲内に加熱力が制限されるのでエネル
ギーが無駄に消費されない。また、外気が高温多湿の時
に冷房運転を行なっても高温再生器又は再生器の温度が
異常に高くならないので、冷房運転を続ける事ができ
る。
When the outside air is hot and humid, the temperature of the cold and hot water exceeds the set temperature, and the outdoor fan is rotating at the maximum speed, the controller determines the temperature of the cold and hot water. Since the operation of proportionally controlling the heating power of the heating source is stopped so that the heating power is maintained at the set temperature, and the heating power of the heating source is maintained at the heating power immediately before the suspension, the following effects are obtained. Since the heating power is limited to a range that contributes to the cooling capacity, energy is not wasted. Further, even if the cooling operation is performed when the outside air is hot and humid, the temperature of the high-temperature regenerator or the regenerator does not become abnormally high, so that the cooling operation can be continued.

【0020】〔請求項2、3について〕外気が高温多湿
の時に冷房運転を行ない、冷却水の温度が第1の監視温
度以上の状態が規定時間以上続くと、制御器が加熱力の
比例制御を中止するとともに、加熱源の加熱力を中止直
前の加熱力から規定量だけ低減し、更に、冷却水の温度
が第2の監視温度以上の状態が規定時間以上続くと、制
御器が加熱源の加熱力を更に規定量だけ低減し、この低
減動作を第(n−1)の監視温度まで実施し、冷却水の
温度が第nの監視温度以上の状態が規定時間以上続くと
制御器が冷房運転停止を指示する構成であるので以下の
効果を奏する。
According to a second aspect of the present invention, when the cooling operation is performed when the outside air is hot and humid, and the temperature of the cooling water is equal to or higher than the first monitoring temperature for a predetermined time or longer, the controller controls the proportional control of the heating power. Is stopped, the heating power of the heating source is reduced by a specified amount from the heating power immediately before the stop, and further, when the temperature of the cooling water is equal to or higher than the second monitoring temperature for a specified time or longer, the controller turns on the heating source. Is further reduced by a specified amount, and this reducing operation is performed to the (n-1) th monitoring temperature. When the temperature of the cooling water is equal to or higher than the nth monitoring temperature for a predetermined time or longer, the controller Since the configuration is such that the cooling operation is instructed, the following effects can be obtained.

【0021】冷房能力に寄与する範囲内に加熱力が制限
されるのでエネルギーが無駄に消費されない。また、外
気が高温多湿の時に冷房運転を行なっても高温再生器又
は再生器の温度が異常に高くならないので、冷房運転を
極力続ける事ができる。運転環境が非常に過酷な場合
(冷却水の温度が第nの監視温度以上の状態が規定時間
以上続く場合)には、制御器が冷房運転停止を指示して
冷房運転が停止するので安全性に優れる。
Since the heating power is limited within a range contributing to the cooling capacity, energy is not wasted. Further, even if the cooling operation is performed when the outside air is hot and humid, the temperature of the high-temperature regenerator or the regenerator does not become abnormally high, so that the cooling operation can be continued as much as possible. When the operating environment is extremely severe (when the temperature of the cooling water is equal to or higher than the n-th monitoring temperature for a predetermined time or longer), the controller instructs the cooling operation to stop and the cooling operation is stopped. Excellent.

【0022】〔請求項3について〕吸収液回路を一重効
用にすると、二重効用(請求項1、2)に比べて空調効
率は落ちるが構造を簡単にする事ができる。
[Claim 3] When the absorption liquid circuit has a single effect, the air conditioning efficiency is lower than that of the double effect (claims 1 and 2), but the structure can be simplified.

【0023】[0023]

【発明の実施の形態】本発明の第1実施例(請求項1に
対応)を図1〜図5に基づいて説明する。図1〜図4に
示す様に、吸収式空調装置Aは、冷房運転時に冷却水1
0を循環させる冷却水回路1と、冷房・暖房運転時に冷
温水20を循環させる冷温水回路2と、高温再生器3、
低温再生器4、凝縮器5、蒸発器6、吸収器7、及び溶
液ポンプ80を有する吸収液回路8と、制御器9とを備
える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment (corresponding to claim 1) of the present invention will be described with reference to FIGS. As shown in FIGS. 1 to 4, the absorption type air conditioner A has a cooling water 1 during a cooling operation.
0, a cooling / heating water circuit 2 for circulating the cooling / heating water 20 during the cooling / heating operation, a high-temperature regenerator 3,
An absorbent circuit 8 having a low-temperature regenerator 4, a condenser 5, an evaporator 6, an absorber 7, and a solution pump 80, and a controller 9 are provided.

【0024】冷却水回路1は、冷却塔ファン111を付
設した冷却塔11(室外熱交換器)と、冷却水タンク1
2と、冷却水ポンプ13と、吸収器伝熱管14、凝縮器
伝熱管15を順に環状接続して構成され、冷房運転時に
は冷却水ポンプ13(1230リットル/h)を作動さ
せて冷却水10を循環させる。
The cooling water circuit 1 includes a cooling tower 11 (outdoor heat exchanger) provided with a cooling tower fan 111 and a cooling water tank 1.
2, a cooling water pump 13, an absorber heat transfer tube 14, and a condenser heat transfer tube 15 are sequentially connected in a ring shape. During cooling operation, the cooling water pump 13 (1230 liter / h) is operated to cool the cooling water 10. Circulate.

【0025】冷却塔ファン111は、交流コンデンサモ
ータ112(100V- 消費電力80W、8μF、12
00rpm/60Hz)により駆動される。尚、交流コ
ンデンサモータ112は、トライアック(図示せず)を
介してAC- 100Vに接続され、冷却水温センサ91
が検出する冷却水温が31.5℃に維持される様に制御
器9により回転数が制御される。尚、冷却水温センサ9
1は、冷却水ポンプ13- 吸収器伝熱管14間を接続す
る冷却水管101中に配設され、吸収器伝熱管14に供
給される冷却水10の温度を検出する。
The cooling tower fan 111 includes an AC condenser motor 112 (100 V, power consumption 80 W, 8 μF, 12 V).
00 rpm / 60 Hz). The AC condenser motor 112 is connected to AC-100V via a triac (not shown), and a cooling water temperature sensor 91
Is controlled by the controller 9 so that the cooling water temperature detected by the controller 9 is maintained at 31.5 ° C. The cooling water temperature sensor 9
1 is provided in a cooling water pipe 101 connecting between the cooling water pump 13 and the absorber heat transfer pipe 14, and detects the temperature of the cooling water 10 supplied to the absorber heat transfer pipe 14.

【0026】又、暖房運転時には、冷却水回路1内の冷
却水10は全て抜かれ、交流コンデンサモータ112に
は通電されない。
During the heating operation, all the cooling water 10 in the cooling water circuit 1 is drained, and the AC condenser motor 112 is not energized.

【0027】冷温水回路2は、送風ファン211を付設
した室内熱交換器21、シスターン22、冷温水ポンプ
23(最大能力時620リットル/h)、蒸発器伝熱管
24を環状接続してなり、冷温水ポンプ23により冷温
水20を循環させている。尚、冷房運転時の室内熱交換
器21の吸熱量は4340kcal(最大能力時)であ
り、暖房運転時の室内熱交換器21の放熱量は6200
kcal(最大能力時)である。
The cold / hot water circuit 2 comprises an indoor heat exchanger 21, a cistern 22, a cold / hot water pump 23 (at a maximum capacity of 620 liter / h), and an evaporator heat transfer tube 24, which are connected in an annular manner. The cold / hot water 20 is circulated by a cold / hot water pump 23. The amount of heat absorbed by the indoor heat exchanger 21 during the cooling operation is 4340 kcal (at the maximum capacity), and the amount of heat released from the indoor heat exchanger 21 during the heating operation is 6200.
kcal (at maximum capacity).

【0028】高温再生器3は、ガスバーナ311によっ
て吸収液を加熱する沸騰器31と、沸騰器31から立設
する分離筒32と、捕集容器33とにより構成され、冷
房運転時、沸騰器31内の希液30(本実施例では58
%臭化リチウム水溶液)中に含まれる冷媒(水)を蒸発
させて中液34(60%臭化リチウム水溶液)と蒸気冷
媒35とに分離する。
The high-temperature regenerator 3 is composed of a boiler 31 for heating the absorbent by a gas burner 311, a separation tube 32 erected from the boiler 31, and a collecting vessel 33. Liquid 30 (58 in this embodiment).
(Aqueous lithium bromide aqueous solution) is evaporated to separate it into a middle liquid 34 (a 60% aqueous lithium bromide solution) and a vapor refrigerant 35.

【0029】ガスバーナ311は、ブンゼン式であり、
ガス電磁弁312、313、ガス比例弁314を連設し
たガス管315によりガスが供給され、燃焼用ファン3
16により燃焼用空気が供給されて燃焼する。尚、32
1は断熱間隙である。又、沸騰器31の適所には、高温
再生器3の温度(希液30の温度)を検出する為のHG
E温度センサ301が配設されている。冷温水センサ2
01は、室内熱交換器21の入口側の冷温水配管29に
配設され、室内熱交換器21に供給される冷温水20の
温度を検出する。
The gas burner 311 is of a Bunsen type,
Gas is supplied by a gas pipe 315 having gas solenoid valves 312 and 313 and a gas proportional valve 314 connected thereto.
The combustion air is supplied by 16 and burns. Incidentally, 32
1 is an adiabatic gap. An HG for detecting the temperature of the high-temperature regenerator 3 (the temperature of the dilute solution 30) is provided at an appropriate position of the evaporator 31.
An E temperature sensor 301 is provided. Cold / hot water sensor 2
Reference numeral 01 denotes a temperature of the cold / hot water 20 that is provided in the cold / hot water pipe 29 on the inlet side of the indoor heat exchanger 21 and is supplied to the indoor heat exchanger 21.

【0030】冷房運転時、ガスバーナ311は、基本的
には、冷温水センサ201、201、201が検出する
冷温水20の温度(平均温度)が7℃になる様に、イン
プットが1500kcal〜4800kcalの間で、
制御器9により比例制御(冷房比例制御)される(図5
のステップs1)。又、ターボ冷房運転時はインプット
が6500kcalとされる。
During the cooling operation, the gas burner 311 basically has an input of 1500 kcal to 4800 kcal so that the temperature (average temperature) of the cold / hot water 20 detected by the cold / hot water sensors 201, 201 becomes 7 ° C. Between,
The proportional control (cooling proportional control) is performed by the controller 9 (FIG. 5).
Step s1). During turbo cooling operation, the input is set to 6500 kcal.

【0031】暖房運転時、ガスバーナ311は、室内熱
交換器21に供給される冷温水20の温度が60℃にな
る様にインプットが1500kcal〜8000kca
lの間で、制御器9により比例制御(暖房比例制御)さ
れる。冷房運転時は、冷暖切替弁36が閉弁しているの
で、中液34(165℃)は、中液配管341→高温熱
交換流路342→オリフィス343付きの中液配管34
4を経て低温再生器4の上部に送り込まれる。
During the heating operation, the gas burner 311 has an input of 1500 kcal to 8000 kcal so that the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 becomes 60 ° C.
During 1, proportional control (heating proportional control) is performed by the controller 9. During the cooling operation, since the cooling / heating switching valve 36 is closed, the intermediate liquid 34 (165 ° C.) is supplied from the intermediate liquid pipe 341 → the high-temperature heat exchange channel 342 → the intermediate liquid pipe 34 with the orifice 343.
4 and is sent to the upper part of the low-temperature regenerator 4.

【0032】低温再生器4は、高温再生器3の捕集容器
33を包囲し、冷房運転時には、捕集容器33から受熱
して中液34を加熱する。これにより、中液34の一部
が気化して濃液41(62%臭化リチウム水溶液)と蒸
気冷媒42とに分離される。又、冷暖切替弁36が開弁
する暖房運転時には、オリフィス343により流路抵抗
が生じるので、中液34は低温再生器4に送り込まれな
い。
The low-temperature regenerator 4 surrounds the collecting container 33 of the high-temperature regenerator 3 and receives heat from the collecting container 33 to heat the middle liquid 34 during the cooling operation. Thereby, a part of the middle liquid 34 is vaporized and separated into the concentrated liquid 41 (62% aqueous lithium bromide solution) and the vapor refrigerant 42. In the heating operation in which the cooling / heating switching valve 36 is opened, the orifice 343 generates a flow path resistance, so that the intermediate liquid 34 is not sent to the low-temperature regenerator 4.

【0033】凝縮器5には、暖房運転時、オリフィス5
11付きの蒸気冷媒配管51を介して高温再生器3から
高温の蒸気冷媒35が若干、送り込まれるが、冷却水1
0が凝縮器伝熱管15内を流れていないので凝縮しな
い。冷房運転時には高温再生器3、低温再生器4から蒸
気冷媒35、42が凝縮器5に送り込まれ、蒸気冷媒3
5、42は、コイル状の凝縮器伝熱管15を流れる冷却
水10によって冷却され液化し、液冷媒(水)52は凝
縮器5の底部に溜まる。尚、昇温(37.5℃)した冷
却水10は、冷却塔11で冷却(31.5℃)される。
During the heating operation, the condenser 5 has an orifice 5
A small amount of high-temperature vapor refrigerant 35 is sent from the high-temperature regenerator 3 through a vapor refrigerant pipe 51 provided with the cooling water 1.
Since 0 does not flow through the condenser heat transfer tube 15, it does not condense. During the cooling operation, the steam refrigerants 35 and 42 are sent from the high-temperature regenerator 3 and the low-temperature regenerator 4 to the condenser 5, and
5 and 42 are cooled and liquefied by the cooling water 10 flowing through the coil-shaped condenser heat transfer tube 15, and the liquid refrigerant (water) 52 accumulates at the bottom of the condenser 5. The cooling water 10 whose temperature has been raised (37.5 ° C.) is cooled (31.5 ° C.) in the cooling tower 11.

【0034】蒸発器6は、コイル状(溝付き)の蒸発器
伝熱管24を配設している。暖房運転時には冷暖切替弁
36が開弁するので高温の吸収液が、冷暖切替弁36→
暖房配管361を介して蒸発器6に送り込まれる。又、
同時に、凝縮器5からは高温の蒸気冷媒35が、冷媒配
管53→冷媒弁54を介して送り込まれる。又、冷房運
転時には、液冷媒52が、冷媒配管53→冷媒弁54→
散布器55を介して蒸発器伝熱管24に散布され、蒸発
器6内は略真空(約6.5mmHg)であるので、液冷
媒52は蒸発器伝熱管24内を流れる冷温水20から気
化熱を奪って蒸発する。そして、冷却された冷温水20
は室内に配置された室内熱交換器21で室内に送風され
る空気と熱交換(最大能力時、吸熱4340kcal/
h)して昇温し、昇温した冷温水20は再び蒸発器伝熱
管24を通過して冷却される。
The evaporator 6 is provided with a coil-shaped (with groove) evaporator heat transfer tube 24. During the heating operation, the cooling / heating switching valve 36 is opened, so that the high-temperature absorbing liquid is supplied to the cooling / heating switching valve 36 →
It is sent to the evaporator 6 via the heating pipe 361. or,
At the same time, a high-temperature vapor refrigerant 35 is sent from the condenser 5 through the refrigerant pipe 53 → the refrigerant valve 54. Further, during the cooling operation, the liquid refrigerant 52 is changed to a refrigerant pipe 53 → a refrigerant valve 54 →
The liquid refrigerant 52 is sprayed to the evaporator heat transfer tube 24 via the sprayer 55 and the inside of the evaporator 6 is substantially vacuum (about 6.5 mmHg). Take away and evaporate. Then, the cooled hot and cold water 20
Represents heat exchange with the air blown indoors by the indoor heat exchanger 21 disposed indoors (at maximum capacity, heat absorption 4340 kcal /
h) The temperature is raised, and the heated cold / hot water 20 passes through the evaporator heat transfer tube 24 again and is cooled.

【0035】吸収器伝熱管14を配設した吸収器7は、
蒸発器6に併設され、上部が蒸発器6と連絡している。
そして、冷房運転時には、蒸発器6で蒸発した蒸気冷媒
は上部から吸収器7内に進入し、低温再生器4→濃液配
管411→低温熱交換流路412→濃液配管413→散
布器70を介して吸収器伝熱管14上に散布される濃液
41に吸収され、低濃度となった希液30は吸収器7の
底部に溜まる。又、暖房運転時には、蒸発器6から高温
の吸収液が送り込まれる。
The absorber 7 provided with the absorber heat transfer tube 14 is:
The upper part is connected to the evaporator 6 and is connected to the evaporator 6.
Then, during the cooling operation, the vapor refrigerant evaporated in the evaporator 6 enters the absorber 7 from above, and the low-temperature regenerator 4 → the concentrated liquid pipe 411 → the low-temperature heat exchange channel 412 → the concentrated liquid pipe 413 → the sprayer 70 The diluted liquid 30 which has been absorbed by the concentrated liquid 41 scattered on the absorber heat transfer tube 14 and has become low in concentration accumulates at the bottom of the absorber 7. During the heating operation, a high-temperature absorbing liquid is sent from the evaporator 6.

【0036】溶液ポンプ80は、AC- 100Vで動作
する三相DCブラシレスモータ(定格出力200W、消
費電力250W)であり、ホール素子(図示せず)が取
り付けられている。この溶液ポンプ80は、暖房運転時
には、HGE温度- 回転数特性に基づいて回転数制御さ
れる。又、冷房運転時には、インプットに比例した回転
数に制御される。尚、冷温水20の流量制御はラフで良
いので、冷温水ポンプ23と溶液ポンプ80を一台のタ
ンデムポンプで構成しても良い。
The solution pump 80 is a three-phase DC brushless motor (rated output 200 W, power consumption 250 W) operating at AC-100V, and is provided with a Hall element (not shown). During the heating operation, the rotation speed of the solution pump 80 is controlled based on the HGE temperature-rotation speed characteristic. During the cooling operation, the rotation speed is controlled to be proportional to the input. Since the flow control of the cold / hot water 20 may be rough, the cold / hot water pump 23 and the solution pump 80 may be constituted by one tandem pump.

【0037】吸収器7の底部に溜まった希液30(暖房
運転時は吸収液)は、希液配管71→溶液ポンプ80
(最大流量100リットル/h)→希液配管72→低温
・高温熱交換流路73→希液配管74を介して高温再生
器3の沸騰器31に送られる。
The diluted liquid 30 (absorbed liquid during the heating operation) collected at the bottom of the absorber 7 is diluted with a diluted liquid pipe 71 → a solution pump 80.
(Maximum flow rate 100 liter / h) → dilute liquid pipe 72 → low temperature / high temperature heat exchange flow path 73 → sent to boiler 31 of high temperature regenerator 3 via dilute liquid pipe 74.

【0038】制御器9は、運転スイッチ(図示せず)、
各水位センサ、沸騰器31内の吸収液温度を検知するH
GE温度センサ301、室内熱交換器21に供給される
冷温水20の温度を検出する冷温水センサ201、蒸発
器6の内部温度を検出するEVA温度センサ61、及び
吸収器伝熱管14に供給する冷却水10の温度を検出す
る冷却水温センサ91からの信号に基づいて、以下のも
のを制御する。
The controller 9 includes an operation switch (not shown),
Each water level sensor, H for detecting the temperature of the absorbing solution in the boiler 31
The GE temperature sensor 301, the cold / hot water sensor 201 for detecting the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21, the EVA temperature sensor 61 for detecting the internal temperature of the evaporator 6, and the absorber heat transfer tube 14 The following is controlled based on a signal from a cooling water temperature sensor 91 that detects the temperature of the cooling water 10.

【0039】給水弁221、ガス電磁弁312、31
3、ガス比例弁314、溶液ポンプ80、冷却水ポンプ
13、冷却塔ファン111、冷媒弁54、冷暖切替弁3
6、冷温水ポンプ23。
Water supply valve 221, gas solenoid valves 312, 31
3, gas proportional valve 314, solution pump 80, cooling water pump 13, cooling tower fan 111, refrigerant valve 54, cooling / heating switching valve 3
6, cold / hot water pump 23.

【0040】つぎに、吸収式空調装置Aの、冷房運転、
暖房運転について述べる。冷房運転スイッチ、又は暖房
運転スイッチ(図示せず)をオンすると、ガスバーナ3
11が燃焼を開始し、制御器9及び室内制御器25が所
定の手順に従って制御を開始する。
Next, the cooling operation of the absorption type air conditioner A,
The heating operation will be described. When a cooling operation switch or a heating operation switch (not shown) is turned on, the gas burner 3 is turned on.
11 starts combustion, and the controller 9 and the indoor controller 25 start control according to a predetermined procedure.

【0041】吸収液が入れられた高温再生器3は、沸騰
器31がガスバーナ311により加熱される。冷房運転
時には、希液30中の冷媒が気化して中液34と蒸気冷
媒35とに分離する。冷房運転時(図4参照)は、高温
再生器3、低温再生器4から高温の蒸気冷媒35、42
が凝縮器5に送り込まれ、暖房運転時(図3参照)は高
温再生器3から蒸気冷媒35が凝縮器5に送り込まれ
る。
In the high-temperature regenerator 3 containing the absorbing liquid, the boiler 31 is heated by the gas burner 311. During the cooling operation, the refrigerant in the diluted liquid 30 is vaporized and separated into the intermediate liquid 34 and the vapor refrigerant 35. During the cooling operation (see FIG. 4), the high-temperature steam refrigerants 35 and 42 are supplied from the high-temperature regenerator 3 and the low-temperature regenerator 4.
Is sent to the condenser 5, and during the heating operation (see FIG. 3), the steam refrigerant 35 is sent from the high-temperature regenerator 3 to the condenser 5.

【0042】冷房運転時に、凝縮器5から蒸発器6に送
りこまれた液冷媒52は、冷温水20が流れる蒸発器伝
熱管24に当たって蒸発し、蒸発した蒸気冷媒は吸収器
7内に進入し、低温再生器4から送られる濃液41に吸
収され希液30となって吸収器7内に溜まり、溶液ポン
プ80により高温再生器3に戻される。
During the cooling operation, the liquid refrigerant 52 sent from the condenser 5 to the evaporator 6 impinges on the evaporator heat transfer tube 24 through which the cold and hot water 20 flows, and evaporates. The evaporated vapor refrigerant enters the absorber 7. The liquid is absorbed by the concentrated liquid 41 sent from the low-temperature regenerator 4, becomes the dilute liquid 30, accumulates in the absorber 7, and is returned to the high-temperature regenerator 3 by the solution pump 80.

【0043】液冷媒が、冷温水20が流れる蒸発器伝熱
管24に当たって蒸発する際に冷温水20を冷却し、冷
却された冷温水20が室内熱交換器21を通過し、送風
ファン211により冷風が室内に吹き出される事により
室内冷房が行われる。この時、室内制御器25は、室温
センサ26が検出する室温が、室温設定器(図示せず)
で設定した設定室温になる様に、流量調節弁27及び送
風ファン211を制御する。
When the liquid refrigerant strikes the evaporator heat transfer tube 24 through which the cold and hot water 20 flows and evaporates, it cools the cold and hot water 20, and the cooled cold and hot water 20 passes through the indoor heat exchanger 21, Is blown out into the room, thereby performing indoor cooling. At this time, the indoor controller 25 determines that the room temperature detected by the room temperature sensor 26 is a room temperature setting device (not shown).
The flow control valve 27 and the blower fan 211 are controlled so that the set room temperature is set.

【0044】冷房運転時、制御器9は、基本的には、室
内熱交換器21に供給される冷温水20の温度が7℃に
なる様に、ガスバーナ311のインプットを制御すると
ともに、冷却水10の温度が31.5℃になる様に冷却
塔ファン111の回転数を制御する(図5のステップs
1)。
During the cooling operation, the controller 9 basically controls the input of the gas burner 311 so that the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 becomes 7 ° C. The rotation speed of the cooling tower fan 111 is controlled so that the temperature of the cooling fan 10 becomes 31.5 ° C. (Step s in FIG. 5).
1).

【0045】しかし、高温多湿の悪条件下で冷房運転を
行った場合等、上記比例制御中に冷温水20の温度が7
℃以上を検出した際に、冷却塔ファン111が最大回転
数(サイリスタへの印加電圧、回転数センサ、ファン電
流等により検知可能)で回転する冷房能力不足状態(詳
細は後述する)になった場合(図5のステップs2でY
ES→ステップs3でYES)には、制御器9は、ガス
バーナ311のインプットを上昇させようとする比例制
御を中止し、ガスバーナ311のインプットを、比例制
御を中止する直前のインプットに維持する(ステップs
4→ステップs2でYES→ステップs3でYES→ス
テップs4)。尚、冷房能力不足状態が解消された場合
(ステップs2でNO又はステップs3でNO)には、
上記比例制御に戻る。
However, when the cooling operation is performed under bad conditions of high temperature and high humidity, the temperature of the cold and hot water
When the temperature of the cooling tower fan 111 or more is detected, the cooling tower fan 111 is in a state of insufficient cooling capacity (the details will be described later) in which the cooling tower fan 111 rotates at the maximum rotation speed (a voltage can be detected by a thyristor, a rotation speed sensor, a fan current, etc.) Case (Y in step s2 in FIG. 5)
ES → YES in step s3), the controller 9 stops the proportional control for increasing the input of the gas burner 311 and maintains the input of the gas burner 311 at the input immediately before stopping the proportional control (step S3). s
4 → YES in step s2 → YES in step s3 → step s4). If the cooling capacity shortage state is eliminated (NO in step s2 or NO in step s3),
Return to the above proportional control.

【0046】上記の冷房能力不足状態は、冷房負荷が大
きい場合(複数の室内機を動作)や、外気が高温多湿と
いう悪条件下で冷房運転を行なった場合において、冷却
塔ファン111を最大回転数で回転させても、吸収器伝
熱管14に供給する冷却水10の温度が31.5℃に下
がらない状態(冷却塔11の放熱能力が限界に達してい
る)となり、凝縮器5及び吸収器7の能力が低下するの
で、蒸発器6の能力も低下し、ガスバーナ311のイン
プットを上昇させても、室内熱交換器21に供給される
冷温水20の温度が7℃に下がらなくなり、7℃を越え
る事により発生する。
In the above-described state of insufficient cooling capacity, the cooling tower fan 111 rotates at the maximum speed when the cooling load is large (a plurality of indoor units are operated) or when the cooling operation is performed under the bad condition that the outside air is high temperature and high humidity. Even if it is rotated by a number, the temperature of the cooling water 10 supplied to the absorber heat transfer tube 14 does not fall to 31.5 ° C. (the heat radiation capacity of the cooling tower 11 has reached the limit), and the condenser 5 and the absorption Since the capacity of the heat exchanger 7 decreases, the capacity of the evaporator 6 also decreases, and even if the input of the gas burner 311 is increased, the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 does not decrease to 7 ° C. It occurs when the temperature exceeds ℃.

【0047】具体的には、吸収器7へ供給される冷却水
10の温度が高いと、吸収により発熱する吸収器7の温
度を下げる事ができず吸収能力が低下する。この為、蒸
発器6の周囲の圧力が上昇し、液冷媒52を蒸発させる
能力、即ち、冷温水20を冷却する能力が低下する。
又、凝縮器5へ供給する冷却水10の温度も高い為、再
生器により生成された蒸気冷媒35、42を液化させる
能力が低下し、蒸発器6へ送る液冷媒52の量が減る。
この様な状態では、蒸発能力が限界に達しており、ガス
バーナ311の加熱力を上昇させて、中液34及び高温
の蒸気冷媒35、42を多く生成しても冷温水20の温
度が7℃以下に下がらなくなる。
Specifically, when the temperature of the cooling water 10 supplied to the absorber 7 is high, the temperature of the absorber 7 that generates heat by absorption cannot be reduced, and the absorption capacity is reduced. Therefore, the pressure around the evaporator 6 increases, and the ability to evaporate the liquid refrigerant 52, that is, the ability to cool the cold / hot water 20 decreases.
Further, since the temperature of the cooling water 10 supplied to the condenser 5 is also high, the ability to liquefy the vapor refrigerants 35 and 42 generated by the regenerator decreases, and the amount of the liquid refrigerant 52 sent to the evaporator 6 decreases.
In such a state, the evaporating capacity has reached the limit, and the temperature of the cold / hot water 20 is 7 ° C. even if the heating power of the gas burner 311 is increased to generate a large amount of the middle liquid 34 and the high-temperature steam refrigerants 35 and 42. It will not drop below.

【0048】暖房運転の場合は、主に暖房配管361を
介して、高温再生器3から高温の吸収液が蒸発器6に送
り込まれ、蒸発器伝熱管24を流れる冷温水20を加熱
し、蒸発器6内の吸収液は吸収器7内に進入し、吸収器
7内に溜まる。尚、溜まった吸収液は、溶液ポンプ80
により高温再生器3に戻される。
In the heating operation, the high-temperature absorbent is sent from the high-temperature regenerator 3 to the evaporator 6 mainly through the heating pipe 361, and the cold and hot water 20 flowing through the evaporator heat transfer tube 24 is heated to evaporate. The absorbing liquid in the vessel 6 enters the absorber 7 and accumulates in the absorber 7. Incidentally, the collected absorbing liquid is supplied to the solution pump 80.
To return to the high temperature regenerator 3.

【0049】蒸発器伝熱管24を流れる冷温水20を加
熱し、昇温した冷温水20が室内熱交換器21を通過
し、送風ファン211により温風が室内に吹き出される
事により室内暖房が行われる。この時、制御器9は、室
内熱交換器21に供給する冷温水20の温度が60℃に
なる様に、ガスバーナ311のインプット(1500〜
8000kcal)を制御する。又、室内制御器25
は、室温センサ26が検出する室温が、室温設定器(図
示せず)で設定した設定室温になる様に、流量調節弁2
7及び送風ファン211を制御する。
The cold / hot water 20 flowing through the evaporator heat transfer tube 24 is heated, and the heated cold / hot water 20 passes through the indoor heat exchanger 21, and hot air is blown into the room by the blower fan 211 to heat the room. Done. At this time, the controller 9 controls the input (1500 to 1500) of the gas burner 311 so that the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 becomes 60 ° C.
8000 kcal). Also, the indoor controller 25
Is set so that the room temperature detected by the room temperature sensor 26 becomes the set room temperature set by the room temperature setting device (not shown).
7 and the blower fan 211 are controlled.

【0050】つぎに、本実施例の吸収式空調装置Aの利
点を述べる。吸収式空調装置Aは、冷房負荷が大きい場
合や、外気が高温多湿の悪条件下である場合に冷房運転
を行ない、比例制御中(図5のステップs1)に、冷温
水20の温度が7℃を越え、且つ、冷却塔ファン111
が最大回転数で回転する冷房能力不足状態になった場合
には、制御器9は、この比例制御を中止して、ガスバー
ナ311のインプットを、比例制御を中止する直前のイ
ンプットに維持し、冷房能力不足状態が解消されると上
記比例制御に戻る構成であるので以下の効果を奏する。
Next, advantages of the absorption type air conditioner A of this embodiment will be described. The absorption type air conditioner A performs the cooling operation when the cooling load is large or when the outside air is in a bad condition of high temperature and high humidity, and during the proportional control (step s1 in FIG. 5), the temperature of the cold and hot water 20 becomes 7 ℃ and cooling tower fan 111
If the cooling capacity becomes insufficient at which the motor rotates at the maximum rotation speed, the controller 9 stops the proportional control, maintains the input of the gas burner 311 at the input immediately before the stop of the proportional control, and performs cooling. When the insufficiency state is resolved, the control returns to the above-described proportional control, so that the following effects are obtained.

【0051】冷房負荷が大きい場合や、外気が高温多湿
の悪条件下で冷房運転を行なってもHGE温度が容易に
175℃に達しないので、冷房高温エラー停止せずに冷
房運転を続ける事ができ、使い勝手が良い。又、冷却水
10の温度の上昇が防止できるので、冷却水ポンプ13
や冷却塔11等の熱劣化の進行を抑止できる。さらに、
冷房能力に寄与する範囲内にインプットが制限されるの
でガスが無駄に消費されない。
When the cooling load is large or the cooling operation is performed under bad conditions of high temperature and high humidity, the HGE temperature does not easily reach 175 ° C. Therefore, the cooling operation may be continued without stopping the cooling high temperature error. It is easy to use. Further, since the temperature of the cooling water 10 can be prevented from rising, the cooling water pump 13
Progress of thermal degradation of the cooling tower 11 and the like can be suppressed. further,
Gas is not wasted because the input is limited to a range that contributes to the cooling capacity.

【0052】本発明の第2実施例(請求項2に対応)
を、図1〜図4、図6に基づいて説明する。吸収式空調
装置Bは、冷房能力不足状態時の作動(図6のステップ
S1〜S26)が吸収式空調装置Aと異なり、他の構成
は吸収式空調装置Aと同一である。
Second embodiment of the present invention (corresponding to claim 2)
Will be described based on FIGS. 1 to 4 and 6. The operation of the absorption air conditioner B when the cooling capacity is insufficient is different from that of the absorption air conditioner A (steps S1 to S26 in FIG. 6), and the other configuration is the same as that of the absorption air conditioner A.

【0053】制御器9は、31.5℃(所定温度)+2
℃(m℃)、即ち33.5℃を第1の監視温度に設定
し、順次、35.5℃、37.5℃、39.5℃、4
1.5℃を、第2〜第5の監視温度に設定している。
Controller 9 is 31.5 ° C. (predetermined temperature) +2
° C (m ° C), that is, 33.5 ° C is set as the first monitoring temperature, and 35.5 ° C, 37.5 ° C, 39.5 ° C, 4
1.5 ° C. is set as the second to fifth monitoring temperatures.

【0054】冷房運転時、比例制御に移行すると、制御
器9は、室内熱交換器21に供給される冷温水20の温
度が7℃になる様に、ガスバーナ311のインプット
(1500kcal〜4800kcal)を制御する
(図6のステップS1)。
When the operation shifts to the proportional control during the cooling operation, the controller 9 controls the input (1500 kcal to 4800 kcal) of the gas burner 311 so that the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 becomes 7 ° C. Control (step S1 in FIG. 6).

【0055】そして、冷房負荷が大きい場合や、外気が
高温多湿の悪条件下である場合の冷房運転により、冷却
水温が、33.5℃(第1の監視温度)以上となる状態
が3分(規定時間)以上続く(ステップS4でYES)
と、制御器9は、ステップS1の冷房比例制御を中止す
るとともに、インプットを比例制御中止直前のインプッ
トから200kcal(規定量)減らす(ステップS
5)。尚、冷却水温が、33.5℃以上となる状態が3
分未満の場合はステップS1の冷房比例制御に戻る。
When the cooling load is large or when the outside air is in a bad condition of high temperature and high humidity, the cooling water temperature becomes 33.5 ° C. (first monitored temperature) for 3 minutes by the cooling operation. Continue for more than (specified time) (YES in step S4)
Then, the controller 9 stops the cooling proportional control in the step S1, and reduces the input by 200 kcal (specified amount) from the input immediately before the stop of the proportional control (step S1).
5). The condition where the cooling water temperature becomes 33.5 ° C. or more is 3
If it is less than one minute, the process returns to the cooling proportional control in step S1.

【0056】更に、冷却水温が、35.5℃(第2の監
視温度)以上となる状態が3分(規定時間)以上続く
(ステップS9でYES)と、制御器9は、インプット
を更に200kcal(規定量)だけ減らす(ステップ
S10;比例制御中止直前のインプット−400kca
l)。尚、冷却水温が35.5℃以上となる状態が3分
未満の場合はステップS2に戻る。
Further, if the state in which the cooling water temperature becomes 35.5 ° C. (second monitoring temperature) or more continues for 3 minutes (specified time) (YES in step S9), the controller 9 further inputs 200 kcal. Decrease by (specified amount) (Step S10; input-400 kca immediately before stop of proportional control)
l). If the cooling water temperature becomes 35.5 ° C. or more for less than 3 minutes, the process returns to step S2.

【0057】更に、冷却水温が、37.5℃(第3の監
視温度)以上となる状態が3分(規定時間)以上続く
(ステップS14でYES)と、制御器9は、インプッ
トを更に200kcal(規定量)だけ減らす(ステッ
プS15;比例制御中止直前のインプット−600kc
al)。尚、冷却水温が37.5℃以上となる状態が3
分未満の場合はステップS7に戻る。
Further, if the state where the cooling water temperature becomes 37.5 ° C. (third monitoring temperature) or more continues for 3 minutes (specified time) or more (YES in step S14), the controller 9 further inputs 200 kcal. Decrease by (prescribed amount) (Step S15; Input-600 kc immediately before stop of proportional control)
al). The condition where the cooling water temperature becomes 37.5 ° C. or more is 3
If it is less than minutes, the process returns to step S7.

【0058】更に、冷却水温が、39.5℃(第4の監
視温度)以上となる状態が3分(規定時間)以上続く
(ステップS20でYES)と、制御器9は、インプッ
トを更に200kcal(規定量)だけ減らす(ステッ
プS21;比例制御中止直前のインプット−800kc
al)。尚、冷却水温が39.5℃以上となる状態が3
分未満の場合はステップS12に戻る。
Further, if the state in which the cooling water temperature becomes 39.5 ° C. (the fourth monitoring temperature) or more continues for 3 minutes (specified time) (YES in step S20), the controller 9 further inputs 200 kcal. (Step S21; input-800 kc immediately before stop of proportional control)
al). The condition where the cooling water temperature becomes 39.5 ° C. or more is 3
If it is less than minutes, the process returns to step S12.

【0059】そして、冷却水温が、41.5℃(第5の
監視温度)以上となる状態が3分(規定時間)以上続く
と、制御器9は、後述する稀釈運転を行って、冷房運転
を停止する。尚、冷却水温が41.5℃以上となる状態
が3分未満の場合はステップS17に戻る。
When the state in which the cooling water temperature becomes 41.5 ° C. (fifth monitoring temperature) or more continues for 3 minutes (specified time), the controller 9 performs a dilution operation to be described later to perform a cooling operation. To stop. If the cooling water temperature is 41.5 ° C. or more for less than 3 minutes, the process returns to step S17.

【0060】〔稀釈運転〕ガスバーナ311を消火後、
送風ファン211及び冷温水ポンプ23の作動を停止
し、燃焼用ファン316及び溶液ポンプ80の作動を継
続(数分間)して、吸収液の濃度を均一化(晶析防止)
させる。
[Dilution operation] After extinguishing the gas burner 311,
The operations of the blower fan 211 and the cold / hot water pump 23 are stopped, and the operations of the combustion fan 316 and the solution pump 80 are continued (several minutes) to equalize the concentration of the absorbing solution (prevent crystallization).
Let it.

【0061】つぎに、本実施例の吸収式空調装置Bの利
点を述べる。吸収式空調装置Bは、冷房負荷が大きく、
外気が高温多湿の悪条件下である場合に冷房運転を行な
い、冷却水温が上昇して来ると、図6のフローチャート
に従ってインプットを200kcalづつ減らしてい
き、41.5℃以上となる状態が3分以上続く(図6の
ステップS24でYES)と、稀釈運転を行って、冷房
運転を停止する構成であるので、以下の効果を奏する。
Next, advantages of the absorption type air conditioner B of this embodiment will be described. Absorption air conditioner B has a large cooling load,
The cooling operation is performed when the outside air is in a bad condition of high temperature and high humidity. When the cooling water temperature rises, the input is reduced by 200 kcal in accordance with the flowchart of FIG. If the above operation is continued (YES in step S24 in FIG. 6), the dilution operation is performed and the cooling operation is stopped, so that the following effects are obtained.

【0062】冷房負荷が大きい場合や、外気が高温多湿
の悪条件下で冷房運転を行なっても、極力(41.5℃
以上となる状態が3分以上続く迄)、冷房運転を続ける
事ができるので使い勝手が良いとともに、安全性に優れ
る。また、冷房能力に寄与する範囲内にインプットが制
限されるのでガスが無駄に消費されない。
Even if the cooling load is large or the cooling operation is performed under bad conditions in which the outside air is hot and humid,
Until the above condition continues for 3 minutes or more), the cooling operation can be continued, so that the usability is good and the safety is excellent. Further, since the input is limited within a range that contributes to the cooling capacity, gas is not wasted.

【0063】本発明は、上記実施例以外に、つぎの実施
態様を含む。 a.上記第1、第2実施例において、吸収液回路8を、
吸収液が入れられ加熱部が加熱源により加熱される再生
器、凝縮器伝熱管を配設し冷房運転時には前記再生器か
ら高温の蒸気冷媒が送り込まれる凝縮器、冷房運転時に
は前記凝縮器で液化した液冷媒を蒸発させる蒸発器、該
蒸発器に併設され前記吸収器伝熱管を配設し冷房運転時
には前記蒸発器で蒸発した蒸気冷媒を前記再生器から送
られる高濃度吸収液に吸収させる吸収器、及び吸収器内
の吸収液を前記再生器に戻す溶液ポンプにより構成して
も良い(請求項3に対応)。
The present invention includes the following embodiments in addition to the above embodiment. a. In the first and second embodiments, the absorbing liquid circuit 8 is
A regenerator in which the absorbing liquid is filled and the heating unit is heated by a heating source, a condenser heat transfer tube is provided, and a condenser in which high-temperature vapor refrigerant is sent from the regenerator during cooling operation, and liquefied by the condenser during cooling operation. An evaporator that evaporates the liquid refrigerant that has been vaporized, and the absorber heat transfer tube that is provided in parallel with the evaporator, and absorbs the vapor refrigerant evaporated by the evaporator in the high-concentration absorbent sent from the regenerator during cooling operation. It may be constituted by a vessel and a solution pump for returning the absorbent in the absorber to the regenerator (corresponding to claim 3).

【0064】この様に、吸収液回路8を一重効用にする
と、二重効用(吸収式空調装置A、B)のものに比べ冷
房・暖房効率は落ちるが、吸収式空調装置の構造を簡単
にする事ができる。 b.加熱源は、ガスバーナ以外に、電気ヒータ等でも良
い。 c.設定温度(31.5℃)、m℃(2℃)、第nの監
視温度(第5の監視温度)、規定量(200kcal)
は、任意に決めれば良い。 d.吸収式空調装置は、冷房運転専用機であっても良
い。
As described above, when the absorption liquid circuit 8 has a single effect, the cooling / heating efficiency is lower than that of the double effect (absorption air conditioners A and B), but the structure of the absorption air conditioner is simplified. You can do it. b. The heating source may be an electric heater or the like in addition to the gas burner. c. Set temperature (31.5 ° C), m ° C (2 ° C), n-th monitored temperature (fifth monitored temperature), specified amount (200 kcal)
Can be determined arbitrarily. d. The absorption-type air conditioner may be a machine dedicated to cooling operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1、第2実施例に係る吸収式空調装
置の原理説明図である。
FIG. 1 is a diagram illustrating the principle of absorption type air conditioners according to first and second embodiments of the present invention.

【図2】その吸収式空調装置のシステム図である。FIG. 2 is a system diagram of the absorption type air conditioner.

【図3】その吸収式空調装置を暖房運転させた場合の作
動説明図である。
FIG. 3 is an operation explanatory diagram when the absorption type air conditioner is operated for heating.

【図4】その吸収式空調装置を冷房運転させた場合の作
動説明図である。
FIG. 4 is an operation explanatory diagram when the absorption type air conditioner is operated for cooling.

【図5】本発明の第1実施例に係る吸収式空調装置にお
いて、悪条件下で冷房運転を行った場合の作動を示すフ
ローチャートである。
FIG. 5 is a flowchart showing an operation when a cooling operation is performed under a bad condition in the absorption type air conditioner according to the first embodiment of the present invention.

【図6】本発明の第2実施例に係る吸収式空調装置にお
いて、悪条件下で冷房運転を行った場合の作動を示すフ
ローチャートである。
FIG. 6 is a flowchart showing an operation when a cooling operation is performed under a bad condition in the absorption type air conditioner according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A、B 吸収式空調装置 1 冷却水回路 2 冷温水回路 3 高温再生器 4 低温再生器 5 凝縮器 6 蒸発器 7 吸収器 8 吸収液回路 9 制御器 10 冷却水 11 冷却塔(室外熱交換器) 13 冷却水ポンプ 14 吸収器伝熱管 15 凝縮器伝熱管 20 冷温水 21 室内熱交換器 23 冷温水ポンプ 24 蒸発器伝熱管 30 希液(低濃度吸収液) 31 沸騰器(加熱部) 34 中液(中濃度吸収液) 35、42 蒸気冷媒 41 濃液(高濃度吸収液) 80 溶液ポンプ 111 冷却塔ファン(室外ファン) 211 送風ファン A, B Absorption air conditioner 1 Cooling water circuit 2 Cooling / heating water circuit 3 High temperature regenerator 4 Low temperature regenerator 5 Condenser 6 Evaporator 7 Absorber 8 Absorbing liquid circuit 9 Controller 10 Cooling water 11 Cooling tower (outdoor heat exchanger) 13) Cooling water pump 14 Absorber heat transfer tube 15 Condenser heat transfer tube 20 Cold and hot water 21 Indoor heat exchanger 23 Cold and hot water pump 24 Evaporator heat transfer tube 30 Rare liquid (low-concentration absorption liquid) 31 Boiler (heating unit) 34 Medium Liquid (medium concentration absorption liquid) 35, 42 Steam refrigerant 41 Concentrated liquid (high concentration absorption liquid) 80 Solution pump 111 Cooling tower fan (outdoor fan) 211 Blowing fan

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 室外ファンを付設した室外熱交換器、吸
収器伝熱管、及び凝縮器伝熱管を順に環状接続してな
り、冷房運転時には冷却水ポンプにより冷却水を循環さ
せる冷却水回路と、 送風ファンを付設した室内熱交換器、蒸発器伝熱管を環
状接続してなり、冷温水ポンプにより冷温水を循環させ
る冷温水回路と、 吸収液が入れられ加熱部が加熱源により加熱され冷房運
転時には低濃度吸収液中の冷媒を気化させて中濃度吸収
液と蒸気冷媒とに分離する高温再生器、該高温再生器を
包囲し、冷房運転時には前記中濃度吸収液を高濃度吸収
液と蒸気冷媒とに分離する低温再生器、前記凝縮器伝熱
管を配設し冷房運転時には各再生器から高温の蒸気冷媒
が送り込まれる凝縮器、冷房運転時には前記凝縮器で液
化した液冷媒を蒸発させる蒸発器、該蒸発器に併設され
前記吸収器伝熱管を配設し冷房運転時には前記蒸発器で
蒸発した蒸気冷媒を前記低温再生器から送られる高濃度
吸収液に吸収させる吸収器、及び吸収器内の吸収液を前
記高温再生器に戻す溶液ポンプを有する吸収液回路と、 冷房運転時には、前記吸収器伝熱管に供給される前記冷
却水の温度が所定温度に維持される様に前記室外ファン
を回転数制御し、前記室内熱交換器に供給される前記冷
温水の温度が設定温度に維持される様に前記加熱源の加
熱力を比例制御する制御器とを有する吸収式空調装置に
おいて、 前記冷温水の温度が前記設定温度を越え、且つ、前記室
外ファンが最大回転数である場合、前記制御器は、前記
加熱力の比例制御を中止するとともに、前記加熱源の加
熱力を中止直前の加熱力に維持する事を特徴とする吸収
式空調装置。
A cooling water circuit in which an outdoor heat exchanger provided with an outdoor fan, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially annularly connected, and a cooling water pump circulates cooling water during cooling operation; A cooling / heating water circuit in which an indoor heat exchanger equipped with a blower fan and an evaporator heat transfer tube are connected in a loop, and a cooling / heating water pump circulates cooling / heating water, and a heating unit heated by a heating source containing an absorbing liquid and cooling operation Sometimes a high-temperature regenerator that vaporizes the refrigerant in the low-concentration absorbent and separates it into a medium-concentration liquid and a vapor refrigerant, surrounds the high-temperature regenerator, and cools the medium-concentration liquid with the high-concentration liquid and vapor during cooling operation. A low-temperature regenerator that separates the refrigerant from the refrigerant, a condenser in which the condenser heat transfer tubes are provided and high-temperature vapor refrigerant is sent from each regenerator during cooling operation, and evaporation that evaporates the liquid refrigerant liquefied by the condenser during cooling operation. Vessel, An absorber that is provided in parallel with a generator and has the absorber heat transfer tube disposed therein, and in a cooling operation, absorbs the vapor refrigerant evaporated by the evaporator into a high-concentration absorbent sent from the low-temperature regenerator; and an absorbent in the absorber. An absorption liquid circuit having a solution pump for returning the cooling water to the high-temperature regenerator; and controlling the number of rotations of the outdoor fan so that a temperature of the cooling water supplied to the absorber heat transfer tube is maintained at a predetermined temperature during a cooling operation. A controller for proportionally controlling the heating power of the heating source so that the temperature of the cold / hot water supplied to the indoor heat exchanger is maintained at a set temperature. When the temperature exceeds the set temperature and the outdoor fan is at the maximum number of revolutions, the controller stops proportional control of the heating power and reduces the heating power of the heating source to the heating power immediately before the suspension. The feature is to maintain Absorption air conditioner.
【請求項2】 室外ファンを付設した室外熱交換器、吸
収器伝熱管、及び凝縮器伝熱管を順に環状接続してな
り、冷房運転時には冷却水ポンプにより冷却水を循環さ
せる冷却水回路と、 送風ファンを付設した室内熱交換器、蒸発器伝熱管を環
状接続してなり、冷温水ポンプにより冷温水を循環させ
る冷温水回路と、 吸収液が入れられ加熱部が加熱源により加熱され冷房運
転時には低濃度吸収液中の冷媒を気化させて中濃度吸収
液と蒸気冷媒とに分離する高温再生器、該高温再生器を
包囲し、冷房運転時には前記中濃度吸収液を高濃度吸収
液と蒸気冷媒とに分離する低温再生器、前記凝縮器伝熱
管を配設し冷房運転時には各再生器から高温の蒸気冷媒
が送り込まれる凝縮器、冷房運転時には前記凝縮器で液
化した液冷媒を蒸発させる蒸発器、該蒸発器に併設され
前記吸収器伝熱管を配設し冷房運転時には前記蒸発器で
蒸発した蒸気冷媒を前記低温再生器から送られる高濃度
吸収液に吸収させる吸収器、及び吸収器内の吸収液を前
記高温再生器に戻す溶液ポンプを有する吸収液回路と、 冷房運転時には、前記吸収器伝熱管に供給される前記冷
却水の温度が所定温度に維持される様に前記室外ファン
を回転数制御し、前記室内熱交換器に供給される前記冷
温水の温度が設定温度に維持される様に前記加熱源の加
熱力を比例制御する制御器とを有する吸収式空調装置に
おいて、 (所定温度+m℃)を第1の監視温度とし、該第1の監
視温度からm℃毎に、第2〜第nの監視温度を設定し、 前記冷却水の温度が第1の監視温度以上の状態が規定時
間以上続くと、前記制御器は、前記加熱力の比例制御を
中止するとともに、前記加熱源の加熱力を中止直前の加
熱力から規定量だけ低減し、 更に、前記冷却水の温度が第2の監視温度以上の状態が
前記規定時間以上続くと、前記制御器は、前記加熱源の
加熱力を更に前記規定量だけ低減し、 この低減動作を第(n−1)の監視温度まで実施し、 前記冷却水の温度が第nの監視温度以上の状態が前記規
定時間以上続くと、前記制御器は、冷房運転停止を指示
する事を特徴とする吸収式空調装置。
2. A cooling water circuit in which an outdoor heat exchanger provided with an outdoor fan, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a loop, and a cooling water pump circulates cooling water during cooling operation. A cooling / heating water circuit in which an indoor heat exchanger equipped with a blower fan and an evaporator heat transfer tube are connected in a loop, and a cooling / heating water pump circulates cooling / heating water, and a heating unit heated by a heating source containing an absorbing liquid and cooling operation Sometimes a high-temperature regenerator that vaporizes the refrigerant in the low-concentration absorbent and separates it into a medium-concentration liquid and a vapor refrigerant, surrounds the high-temperature regenerator, and cools the medium-concentration liquid with the high-concentration liquid and vapor during cooling operation. A low-temperature regenerator that separates the refrigerant from the refrigerant, a condenser in which the condenser heat transfer tubes are provided and high-temperature vapor refrigerant is sent from each regenerator during cooling operation, and evaporation that evaporates the liquid refrigerant liquefied by the condenser during cooling operation. Vessel, An absorber that is provided in parallel with a generator and has the absorber heat transfer tube disposed therein, and in a cooling operation, absorbs the vapor refrigerant evaporated by the evaporator into a high-concentration absorbent sent from the low-temperature regenerator; and an absorbent in the absorber. An absorption liquid circuit having a solution pump for returning the cooling water to the high-temperature regenerator; and controlling the number of rotations of the outdoor fan during cooling operation so that the temperature of the cooling water supplied to the absorber heat transfer tube is maintained at a predetermined temperature. And a controller for proportionally controlling the heating power of the heating source so that the temperature of the cold and hot water supplied to the indoor heat exchanger is maintained at a set temperature. ° C) as the first monitored temperature, the second to n-th monitored temperatures are set every m ° C from the first monitored temperature, and the condition that the temperature of the cooling water is equal to or higher than the first monitored temperature is defined. After more than an hour, the controller will control the heating power. Example While stopping the control, the heating power of the heating source is reduced by a specified amount from the heating power immediately before the stop, and further, when the temperature of the cooling water is equal to or higher than the second monitoring temperature for the specified time or longer, The controller further reduces the heating power of the heating source by the specified amount, performs the reducing operation up to the (n-1) th monitoring temperature, and the temperature of the cooling water is equal to or higher than the nth monitoring temperature. When the state continues for the specified time or longer, the controller instructs the cooling operation to stop.
【請求項3】 前記吸収液回路は、吸収液が入れられ前
記加熱部が前記加熱源により加熱される再生器、凝縮器
伝熱管を配設し冷房運転時には前記再生器から高温の蒸
気冷媒が送り込まれる凝縮器、冷房運転時には前記凝縮
器で液化した液冷媒を蒸発させる蒸発器、該蒸発器に併
設され前記吸収器伝熱管を配設し冷房運転時には前記蒸
発器で蒸発した蒸気冷媒を前記再生器から送られる高濃
度吸収液に吸収させる吸収器、及び吸収器内の吸収液を
前記再生器に戻す溶液ポンプにより構成される請求項1
又は請求項2記載の吸収式空調装置。
3. The absorbing liquid circuit is provided with a regenerator and a condenser heat transfer tube in which the absorbing liquid is filled and the heating unit is heated by the heating source, and a high-temperature vapor refrigerant is supplied from the regenerator during the cooling operation. The condenser to be sent in, the evaporator for evaporating the liquid refrigerant liquefied in the condenser during the cooling operation, the absorber heat transfer tube is provided in parallel with the evaporator, and the vapor refrigerant evaporated in the evaporator is used for the cooling operation. 2. An absorber configured to absorb the high-concentration absorbing solution sent from the regenerator, and a solution pump returning the absorbing solution in the absorber to the regenerator.
Or the absorption type air conditioner according to claim 2.
JP7331707A 1995-12-20 1995-12-20 Absorption air conditioner Expired - Fee Related JP3056991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7331707A JP3056991B2 (en) 1995-12-20 1995-12-20 Absorption air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7331707A JP3056991B2 (en) 1995-12-20 1995-12-20 Absorption air conditioner

Publications (2)

Publication Number Publication Date
JPH09170843A JPH09170843A (en) 1997-06-30
JP3056991B2 true JP3056991B2 (en) 2000-06-26

Family

ID=18246695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7331707A Expired - Fee Related JP3056991B2 (en) 1995-12-20 1995-12-20 Absorption air conditioner

Country Status (1)

Country Link
JP (1) JP3056991B2 (en)

Also Published As

Publication number Publication date
JPH09170843A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
JP3056987B2 (en) Absorption cooling system
JP3056991B2 (en) Absorption air conditioner
JP3057017B2 (en) Absorption air conditioner
JP3128501B2 (en) Absorption air conditioner
JP2994250B2 (en) Absorption air conditioner
JP3056990B2 (en) Absorption air conditioner
JP2954519B2 (en) Absorption air conditioner
JP2994251B2 (en) Absorption cooling system
JP3241623B2 (en) Absorption air conditioner
JP3130465B2 (en) Absorption air conditioner
JP2954513B2 (en) Absorption air conditioner
JP2839442B2 (en) Absorption refrigeration cycle device
JP3660413B2 (en) Absorption air conditioner
JP3144538B2 (en) Absorption air conditioner
JP3202157B2 (en) Air conditioner
JP3308795B2 (en) Absorption air conditioner
JP3128502B2 (en) Absorption air conditioner
JP3241624B2 (en) Absorption air conditioner
JP2005300069A (en) Absorption refrigerating machine
JP3372662B2 (en) Absorption refrigeration cycle device
JP3086594B2 (en) Single double effect absorption refrigerator
KR0136049Y1 (en) Absorption room cooler
JP2000274861A (en) Method for operating exhaust heat utilizing absorption chilled and warm water generator
JP3328164B2 (en) Absorption air conditioner
JPH10220901A (en) Absorbing type air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080414

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees