JP3128502B2 - Absorption air conditioner - Google Patents

Absorption air conditioner

Info

Publication number
JP3128502B2
JP3128502B2 JP08022347A JP2234796A JP3128502B2 JP 3128502 B2 JP3128502 B2 JP 3128502B2 JP 08022347 A JP08022347 A JP 08022347A JP 2234796 A JP2234796 A JP 2234796A JP 3128502 B2 JP3128502 B2 JP 3128502B2
Authority
JP
Japan
Prior art keywords
temperature
regenerator
cooling
absorber
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08022347A
Other languages
Japanese (ja)
Other versions
JPH09210498A (en
Inventor
克也 大島
徹 福知
薫 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Rinnai Corp
Original Assignee
Osaka Gas Co Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Rinnai Corp filed Critical Osaka Gas Co Ltd
Priority to JP08022347A priority Critical patent/JP3128502B2/en
Publication of JPH09210498A publication Critical patent/JPH09210498A/en
Application granted granted Critical
Publication of JP3128502B2 publication Critical patent/JP3128502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収液を用いる吸
収式空調装置に関する。
The present invention relates to an absorption type air conditioner using an absorption liquid.

【0002】[0002]

【従来の技術】室外ファンを付設した室外熱交換器、吸
収器伝熱管、及び凝縮器伝熱管を順に環状接続してな
り、冷房運転時には冷却水ポンプにより冷却水を循環さ
せる冷却水回路と、送風ファンを付設した室内熱交換
器、蒸発器伝熱管を環状接続してなり、冷温水ポンプに
より冷温水を循環させる冷温水回路と、吸収液が入れら
れ加熱部が加熱源により加熱され冷房運転時には低濃度
吸収液中の冷媒を気化させて高濃度吸収液と蒸気冷媒と
に分離する再生器、前記凝縮器伝熱管を配設し冷房運転
時には再生器から高温の蒸気冷媒が送り込まれる凝縮
器、暖房運転時には前記再生器から高温の吸収液が送り
込まれ冷房運転時には前記凝縮器で液化した液冷媒を蒸
発させる蒸発器、該蒸発器に併設され前記吸収器伝熱管
を配設し冷房運転時には前記蒸発器で蒸発した蒸気冷媒
を前記再生器から送られる高濃度吸収液に吸収させる吸
収器、及び吸収器内の吸収液を前記再生器に戻す溶液ポ
ンプを有する吸収液回路と、冷房運転時には、前記吸収
器伝熱管に供給される前記冷却水の温度が所定温度(例
えば31.5℃)に維持される様に前記室外ファンを回
転数制御し、前記室内熱交換器に供給される前記冷温水
の温度が設定温度(例えば7℃)に維持される様に前記
加熱源の加熱力を比例制御する(例えば、1500kc
al〜4800kcal)制御器とを有し、前記送風フ
ァンにより冷風又は温風を室内に送風して室内冷暖房を
行う、フロンを使用しない吸収式空調装置が近年、注目
されている。
2. Description of the Related Art A cooling water circuit in which an outdoor heat exchanger provided with an outdoor fan, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially annularly connected, and a cooling water pump circulates cooling water during cooling operation. A cooling / heating water circuit that circulates cooling / heating water with a cooling / heating water pump, and a cooling / heating water circuit that circulates cooling / heating water with a cooling / heating water pump. Sometimes a regenerator that vaporizes the refrigerant in the low-concentration absorbing liquid to separate it into high-concentration absorbing liquid and vapor refrigerant, and a condenser in which the condenser heat transfer tube is provided and high-temperature vapor refrigerant is sent from the regenerator during cooling operation In a heating operation, a high-temperature absorbing liquid is sent from the regenerator, and in a cooling operation, an evaporator for evaporating a liquid refrigerant liquefied in the condenser is provided. An absorber for absorbing the vapor refrigerant evaporated by the evaporator into the high-concentration absorbent sent from the regenerator, and an absorbent circuit having a solution pump for returning the absorbent in the absorber to the regenerator; Controlling the number of rotations of the outdoor fan so that the temperature of the cooling water supplied to the absorber heat transfer tube is maintained at a predetermined temperature (for example, 31.5 ° C.), and supplying the cooling water to the indoor heat exchanger. The heating power of the heating source is proportionally controlled so that the temperature of the cold and hot water is maintained at a set temperature (for example, 7 ° C.) (for example, 1500 kc).
In recent years, an absorption type air conditioner that does not use Freon, which has a controller and performs cooling and heating of the room by blowing cool air or warm air into the room by the blower fan, has attracted attention in recent years.

【0003】この吸収式空調装置では、過熱防止の為、
再生器内の温度が175℃以上になると異常停止する、
冷房高温エラー停止処理を行っていた。尚、冷房高温エ
ラー停止すると、電源スイッチを一旦、オフにしてエラ
ー解除した後、再度、冷房運転スイッチをオンにして冷
房運転を再開する必要があり、手間がかかる。
In this absorption type air conditioner, in order to prevent overheating,
Abnormal stop when the temperature inside the regenerator exceeds 175 ℃
Cooling / high temperature error stop processing was being performed. When the cooling high temperature error is stopped, it is necessary to turn off the power switch once to cancel the error, and then turn on the cooling operation switch again to restart the cooling operation, which is troublesome.

【0004】ところで、この吸収式空調装置では、特に
冷えた状態からの冷房運転の立ち上げ(コールドスター
ト)の場合は、各部の温度が定常温度に達するのに時間
がかかり、吸収液を循環させるだけの充分な圧力差が直
ちに生じないので、吸収器に吸収液が到達せず、一時的
に再生器に吸収液を送り込めない状態が発生する(外気
温が高くない場合は更に発生度合が高い)。この場合、
再生器が一時的に空焚き状態となり、再生器内の温度が
175℃以上となる。
Incidentally, in this absorption type air conditioner, especially when the cooling operation is started from a cold state (cold start), it takes time for the temperature of each part to reach a steady temperature, and the absorption liquid is circulated. Pressure does not immediately occur, so that the absorbing liquid does not reach the absorber and the absorbing liquid cannot be sent to the regenerator temporarily. high). in this case,
The regenerator temporarily goes into an idle state, and the temperature inside the regenerator becomes 175 ° C. or higher.

【0005】試験運転を重ねた結果、冷房高温エラー停
止には、上述の様な原因で一時的な空焚き状態になる場
合と、他の異常原因で空焚き状態になる場合とがある事
が判明した。
[0005] As a result of repeated test operations, the cooling high temperature error stop may be caused by a temporary idle state due to the above-described reasons, or an idle state by other abnormal causes. found.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、冷房
高温エラー停止の回数を減らし、冷房運転の立ち上げを
円滑に行う事ができる吸収式空調装置の提供にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an absorption type air conditioner capable of reducing the number of cooling high temperature error stops and smoothly starting up a cooling operation.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、以下の構成を採用した。 (1)室外熱交換器、吸収器伝熱管、及び凝縮器伝熱管
を順に環状接続してなり、冷房運転時には冷却水ポンプ
により冷却水を循環させる冷却水回路と、室内熱交換
器、及び蒸発器伝熱管を環状接続してなり、冷温水ポン
プにより冷温水を循環させる冷温水回路と、吸収液が入
れられ加熱部が加熱源により加熱され冷房運転時には吸
収液中の冷媒を気化させる再生器、前記凝縮器伝熱管を
配設し冷房運転時には前記再生器から高温の蒸気冷媒が
送り込まれる凝縮器、冷房運転時には前記凝縮器で液化
した液冷媒を蒸発させる蒸発器、該蒸発器に併設され前
記吸収器伝熱管を配設し冷房運転時には前記蒸発器で蒸
発した蒸気冷媒を前記再生器から送られる濃縮吸収液に
吸収させる吸収器、及び吸収器内の吸収液を前記再生器
に戻す溶液ポンプを有する吸収液回路と、前記加熱源及
び前記溶液ポンプを制御する制御器とを有する吸収式空
調装置において、再生器内の温度が第1所定温度以上
で、且つ、再生器内の温度上昇速度が所定値以上の場
合、前記制御器は、前記加熱源の作動を一時的に停止
し、その後、前記加熱源の作動を再開する。
In order to solve the above problems, the present invention employs the following constitution. (1) An outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape, and a cooling water circuit for circulating cooling water by a cooling water pump during cooling operation, an indoor heat exchanger, and evaporation. A heat / cooling water circuit in which heat transfer tubes are connected in a loop and a cold / hot water pump circulates cold / hot water, and a regenerator that absorbs the absorption liquid and heats the heating unit by a heating source to vaporize the refrigerant in the absorption liquid during cooling operation A condenser in which high-temperature vapor refrigerant is sent from the regenerator during the cooling operation, and an evaporator that evaporates the liquid refrigerant liquefied by the condenser during the cooling operation; An absorber for arranging the absorber heat transfer tube and absorbing the vapor refrigerant evaporated by the evaporator in the concentrated absorbent sent from the regenerator during cooling operation, and a solution for returning the absorbent in the absorber to the regenerator Pump Absorption air circuit, and a controller for controlling the heating source and the solution pump, wherein the temperature in the regenerator is equal to or higher than a first predetermined temperature, and the rate of temperature rise in the regenerator is If the value is equal to or more than the predetermined value, the controller temporarily stops the operation of the heating source, and then restarts the operation of the heating source.

【0008】(2)室外熱交換器、吸収器伝熱管、及び
凝縮器伝熱管を順に環状接続してなり、冷房運転時には
冷却水ポンプにより冷却水を循環させる冷却水回路と、
室内熱交換器、及び蒸発器伝熱管を環状接続してなり、
冷温水ポンプにより冷温水を循環させる冷温水回路と、
吸収液が入れられ加熱部が加熱源により加熱され冷房運
転時には低濃度吸収液中の冷媒を気化させて中濃度吸収
液と蒸気冷媒とに分離する高温再生器、該高温再生器を
包囲し、冷房運転時には前記中濃度吸収液を高濃度吸収
液と蒸気冷媒とに分離する低温再生器、前記凝縮器伝熱
管を配設し冷房運転時には各再生器から高温の蒸気冷媒
が送り込まれる凝縮器、冷房運転時には前記凝縮器で液
化した液冷媒を蒸発させる蒸発器、該蒸発器に併設され
前記吸収器伝熱管を配設し冷房運転時には前記蒸発器で
蒸発した蒸気冷媒を前記低温再生器から送られる高濃度
吸収液に吸収させる吸収器、及び吸収器内の吸収液を前
記高温再生器に戻す溶液ポンプを有する吸収液回路と、
前記加熱源及び前記溶液ポンプを制御する制御器とを有
する吸収式空調装置において、高温再生器内の温度が第
1所定温度以上で、且つ、高温再生器内の温度上昇速度
が所定値以上の場合、前記制御器は、前記加熱源の作動
を一時的に停止し、その後、前記加熱源の作動を再開す
る。
(2) A cooling water circuit in which an outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in a ring shape, and a cooling water pump circulates cooling water during cooling operation.
An indoor heat exchanger and an evaporator heat transfer tube are connected in a ring,
A cold and hot water circuit that circulates cold and hot water by a cold and hot water pump,
A high-temperature regenerator in which the absorbing liquid is put and the heating unit is heated by a heating source and vaporizes the refrigerant in the low-concentration absorbing liquid during cooling operation to separate the medium-concentration absorbing liquid and the vapor refrigerant, surrounding the high-temperature regenerator, During the cooling operation, a low-temperature regenerator that separates the medium-concentration absorbing liquid into the high-concentration absorbing liquid and the vapor refrigerant, and the condenser in which the condenser heat transfer tubes are disposed and the high-temperature vapor refrigerant is sent from each regenerator during the cooling operation. An evaporator for evaporating the liquid refrigerant liquefied by the condenser during the cooling operation, and the absorber heat transfer tube provided adjacent to the evaporator are provided. During the cooling operation, the vapor refrigerant evaporated by the evaporator is sent from the low-temperature regenerator. An absorbent for absorbing the high-concentration absorbent, and an absorbent circuit having a solution pump for returning the absorbent in the absorber to the high-temperature regenerator,
In the absorption air conditioner having the controller for controlling the heating source and the solution pump, the temperature in the high-temperature regenerator is equal to or higher than a first predetermined temperature, and the temperature rise rate in the high-temperature regenerator is equal to or higher than a predetermined value. In this case, the controller temporarily stops the operation of the heating source, and then restarts the operation of the heating source.

【0009】(3)上記(1) 又は(2) の構成を有し、前
記加熱源の作動再開後において、前記再生器又は高温再
生器内の温度が第1所定温度以上で、且つ、前記再生器
又は高温再生器内の温度上昇速度が所定値以上の場合、
前記制御器は運転を停止する。
(3) The configuration according to (1) or (2) above, wherein after restarting the operation of the heating source, the temperature in the regenerator or the high-temperature regenerator is equal to or higher than a first predetermined temperature, and If the temperature rise rate in the regenerator or high-temperature regenerator is more than a predetermined value,
The controller stops operation.

【0010】(4)上記(1) 又は(2) の構成を有し、前
記再生器又は高温再生器内の温度が第1所定温度以上
で、且つ、その温度上昇速度が所定値以上の場合、前記
再生器又は高温再生器内の温度が、前記第1所定温度よ
り低い第2所定温度に低下する迄、前記制御器が前記加
熱源の作動を一時的に停止する。
(4) When the temperature in the regenerator or the high-temperature regenerator is equal to or higher than a first predetermined temperature and the temperature rise rate is equal to or higher than a predetermined value, having the configuration of (1) or (2) above. The controller temporarily stops the operation of the heating source until the temperature in the regenerator or the high-temperature regenerator decreases to a second predetermined temperature lower than the first predetermined temperature.

【0011】(5)上記(1) 又は(2) の構成を有し、前
記再生器又は高温再生器内の温度が第1所定温度以上
で、且つ、その温度上昇速度が所定値以上の場合、前記
制御器は、一時停止タイマーで設定した所定時間の間、
前記加熱源の作動を一時的に停止する。
(5) When the temperature in the regenerator or the high-temperature regenerator is equal to or higher than a first predetermined temperature and the temperature rise rate is equal to or higher than a predetermined value, having the configuration of (1) or (2) above. The controller is for a predetermined time set by a pause timer,
The operation of the heating source is temporarily stopped.

【0012】(6)上記(1) 乃至(5) の何れかの構成を
有し、前記第1所定温度は、定常運転時の前記加熱源の
加熱量に対応した略平衡状態の温度である。
(6) It has any one of the above constitutions (1) to (5), and the first predetermined temperature is a temperature in a substantially equilibrium state corresponding to a heating amount of the heating source during a steady operation. .

【0013】[0013]

【作用】[Action]

〔請求項1の冷房運転について〕 (正常時)加熱源が加熱部を加熱し、再生器に入れられ
た吸収液の一部は気化して蒸気冷媒となり、凝縮器に送
り込まれる。冷房運転時、凝縮器伝熱管には冷却水が流
れているので蒸気冷媒は液化し、凝縮器内に溜まる。
[About the cooling operation of claim 1] (Normal operation) The heating source heats the heating unit, and a part of the absorbing liquid put in the regenerator is vaporized to be a vapor refrigerant and sent to the condenser. During the cooling operation, since the cooling water flows through the condenser heat transfer tubes, the vapor refrigerant liquefies and accumulates in the condenser.

【0014】冷房運転時、凝縮器から蒸発器内に送り込
まれた液冷媒は、冷温水が流れる蒸発器伝熱管上に散布
され、気化熱を奪って蒸発し冷温水を冷却する。そし
て、冷却された冷温水が室内熱交換器を通過し、室内冷
房が行われる。又、冷房運転時、蒸発器で蒸発して吸収
器に入った蒸気冷媒は、再生器から送られる高濃度の吸
収液に吸収され、低濃度の吸収液となって吸収器内に溜
まる。吸収器内に溜まった低濃度の吸収液は、溶液ポン
プにより再生器に戻される。
During the cooling operation, the liquid refrigerant sent from the condenser into the evaporator is scattered on the evaporator heat transfer tube through which the cold and hot water flows, and takes the heat of vaporization to evaporate and cool the cold and hot water. Then, the cooled cold / hot water passes through the indoor heat exchanger, and indoor cooling is performed. Further, during the cooling operation, the vapor refrigerant evaporated by the evaporator and entering the absorber is absorbed by the high-concentration absorbent sent from the regenerator, and becomes a low-concentration absorbent and accumulates in the absorber. The low-concentration absorbing liquid accumulated in the absorber is returned to the regenerator by the solution pump.

【0015】(循環不良時)冷房運転開始時、特に、再
生器内の吸収液の温度が低く、外気温が低い状態での立
ち上げの場合は、各部の温度が定常温度に達するには時
間がかかり、吸収液を循環させるだけの充分な圧力差が
生じない場合、吸収器に吸収液が到達せず、一時的に再
生器に吸収液を送り込めない状態が発生する。この場
合、再生器が空炊き状態となり、再生器内の温度が第1
所定温度以上の状態で、早い速度(所定値以上)で再生
器内の温度が上昇する。
(Circulation failure) At the start of the cooling operation, especially when starting up in a state where the temperature of the absorbent in the regenerator is low and the outside air temperature is low, it takes time for the temperature of each part to reach the steady temperature. If the pressure difference is not sufficient to circulate the absorbing solution, the absorbing solution does not reach the absorber, and a state occurs in which the absorbing solution cannot be temporarily sent to the regenerator. In this case, the regenerator is in an empty cooking state, and the temperature in the regenerator becomes the first
In a state where the temperature is equal to or higher than the predetermined temperature, the temperature in the regenerator increases at a high speed (above a predetermined value).

【0016】この場合、制御器は、加熱源の作動を一時
的に停止して待機する。待機中に、各部の温度が上昇し
て吸収液を循環させるだけの充分な圧力差が生じるので
吸収器に吸収液が到達し、溶液ポンプにより再生器に吸
収液が移送される。再生器に吸収液が溜まり、空焚き状
態が解消されると、加熱源の作動を再開する。
In this case, the controller temporarily stops the operation of the heating source and waits. During standby, the temperature of each part rises and a sufficient pressure difference is generated to circulate the absorbing liquid, so that the absorbing liquid reaches the absorber and is transferred to the regenerator by the solution pump. When the absorbing liquid accumulates in the regenerator and the empty firing condition is resolved, the operation of the heating source is restarted.

【0017】〔請求項2の冷房運転について〕 (正常時)吸収液が入れられた高温再生器は、加熱部が
加熱源により加熱される。冷房運転時には、低濃度吸収
液中の冷媒が気化して中濃度吸収液と蒸気冷媒とに分離
する。冷房運転時は各再生器から高温の蒸気冷媒が凝縮
器に送り込まれる。
[Cooling Operation of Claim 2] (Normal operation) In the high-temperature regenerator containing the absorbing liquid, the heating section is heated by a heating source. During the cooling operation, the refrigerant in the low-concentration absorbing liquid is vaporized and separated into the medium-concentration absorbing liquid and the vapor refrigerant. During the cooling operation, high-temperature vapor refrigerant is sent from each regenerator to the condenser.

【0018】冷房運転時、凝縮器から蒸発器に送り込ま
れた液冷媒は、冷温水が流れる蒸発器伝熱管上に散布さ
れ、気化熱を奪って蒸発し冷温水を冷却する。そして、
冷却された冷温水が室内熱交換器を通過し、室内冷房が
行われる。又、冷房運転時、蒸発器で蒸発して吸収器に
入った蒸気冷媒は、低温再生器から送られる高濃度の吸
収液に吸収され、低濃度の吸収液となって吸収器内に溜
まる。吸収器内に溜まった低濃度の吸収液は、溶液ポン
プにより高温再生器に戻される。
During the cooling operation, the liquid refrigerant sent from the condenser to the evaporator is scattered on the evaporator heat transfer tube through which the cold and hot water flows, takes away heat of vaporization and evaporates to cool the cold and hot water. And
Cooled hot and cold water passes through the indoor heat exchanger, and indoor cooling is performed. Further, during the cooling operation, the vapor refrigerant evaporated by the evaporator and entering the absorber is absorbed by the high-concentration absorbent sent from the low-temperature regenerator and becomes a low-concentration absorbent and is accumulated in the absorber. The low concentration absorbent collected in the absorber is returned to the high temperature regenerator by the solution pump.

【0019】(循環不良時)冷房運転開始時、特に、高
温再生器内の吸収液の温度が低く、外気温が低い状態で
の立ち上げの場合は、各部の温度が定常温度に達するに
は時間がかかり、吸収液を循環させるだけの充分な圧力
差が生じない場合、吸収器に吸収液が到達せず、一時的
に高温再生器に吸収液を送り込めない状態が発生する。
この場合、高温再生器が空炊き状態となり、高温再生器
内の温度が第1所定温度以上の状態で、早い速度(所定
値以上)で再生器又は高温再生器内の温度が上昇する。
(Circulation failure) At the start of the cooling operation, especially when starting up in a state where the temperature of the absorbent in the high-temperature regenerator is low and the outside air temperature is low, it is necessary for the temperature of each part to reach the steady temperature. If it takes time and the pressure difference is not sufficient to circulate the absorbing liquid, the absorbing liquid does not reach the absorber and a state occurs in which the absorbing liquid cannot be temporarily sent to the high-temperature regenerator.
In this case, the high-temperature regenerator is in an empty state, and the temperature in the regenerator or the high-temperature regenerator increases at a high speed (above a predetermined value) while the temperature in the high-temperature regenerator is equal to or higher than the first predetermined temperature.

【0020】この場合、制御器は、加熱源の作動を一時
的に停止して待機する。待機中に、各部の温度が上昇し
て吸収液を循環させるだけの充分な圧力差が生じるので
吸収器に吸収液が到達し、溶液ポンプにより高温再生器
に吸収液が移送される。高温再生器に吸収液が溜まり、
空焚き状態が解消されると、加熱源の作動を再開する。
In this case, the controller temporarily stops the operation of the heating source and waits. During standby, the temperature of each part rises and a sufficient pressure difference is generated to circulate the absorbing liquid, so that the absorbing liquid reaches the absorber and is transferred to the high-temperature regenerator by the solution pump. Absorbent liquid accumulates in the high temperature regenerator,
When the empty firing condition is resolved, the operation of the heating source is restarted.

【0021】〔請求項3について〕加熱源の作動再開後
において、再生器又は高温再生器内の温度が第1所定温
度以上の状態で、温度上昇が早い(所定値以上)の場合
には、過熱に関し、別の原因が考えられるので運転を停
止する。
[Claim 3] If the temperature inside the regenerator or the high-temperature regenerator is higher than the first predetermined temperature and the temperature rises rapidly (above a predetermined value) after restarting the operation of the heating source, Stop operation because of possible overheating.

【0022】〔請求項4について〕冷房運転開始時、特
に、再生器又は高温再生器内の吸収液の温度が低く、外
気温が低い状態での立ち上げの場合は、各部の温度が定
常温度に達するには時間がかかり、吸収液を循環させる
だけの充分な圧力差が生じない場合、吸収器に吸収液が
到達せず、一時的に再生器又は高温再生器に吸収液を送
り込めない状態が発生する。この場合、再生器又は高温
再生器が空炊き状態となり、再生器又は高温再生器内の
温度が第1所定温度以上の状態で、早い速度(所定値以
上)で再生器又は高温再生器内の温度が上昇する。
[Claim 4] At the time of starting the cooling operation, particularly when starting up in a state in which the temperature of the absorbent in the regenerator or the high-temperature regenerator is low and the outside air temperature is low, the temperature of each part becomes the steady temperature. If it takes time to reach and if there is not enough pressure difference to circulate the absorbing liquid, the absorbing liquid will not reach the absorber and the absorbing liquid cannot be temporarily sent to the regenerator or high temperature regenerator A condition occurs. In this case, the regenerator or the high-temperature regenerator is in an empty state, and the temperature in the regenerator or the high-temperature regenerator is higher than the first predetermined temperature, and the speed in the regenerator or the high-temperature regenerator is higher than the first predetermined temperature. The temperature rises.

【0023】この場合、制御器は、再生器又は高温再生
器内の温度が、第1所定温度より低い第2所定温度に低
下する迄、加熱源の作動を一時的に停止する。一時停止
中に、各部の温度が上昇して吸収液を循環させるだけの
充分な圧力差が生じるので吸収器に吸収液が到達し、溶
液ポンプにより再生器又は高温再生器に吸収液が移送さ
れる。再生器又は高温再生器内の温度が第2所定温度に
低下すると、既に、再生器又は高温再生器に吸収液が溜
まっており、空焚き状態が解消されているので、制御器
は、加熱源の作動を再開する。
In this case, the controller temporarily stops the operation of the heating source until the temperature in the regenerator or the high-temperature regenerator falls to a second predetermined temperature lower than the first predetermined temperature. During the suspension, the temperature of each part rises and a sufficient pressure difference is generated to circulate the absorbing liquid, so that the absorbing liquid reaches the absorber and is transferred to the regenerator or high-temperature regenerator by the solution pump. You. When the temperature in the regenerator or the high-temperature regenerator falls to the second predetermined temperature, the absorbing liquid has already been accumulated in the regenerator or the high-temperature regenerator, and since the empty heating state has been eliminated, the controller determines the heating source. Resumes operation.

【0024】〔請求項5について〕冷房運転開始時、特
に、再生器又は高温再生器内の吸収液の温度が低く、外
気温が低い状態での立ち上げの場合は、各部の温度が定
常温度に達するには時間がかかり、吸収液を循環させる
だけの充分な圧力差が生じない場合、吸収器に吸収液が
到達せず、一時的に再生器又は高温再生器に吸収液を送
り込めない状態が発生する。この場合、再生器又は高温
再生器が空炊き状態となり、再生器又は高温再生器内の
温度が第1所定温度以上の状態で、早い速度(所定値以
上)で再生器又は高温再生器内の温度が上昇する。
[Claim 5] At the start of the cooling operation, especially when starting up in a state in which the temperature of the absorbent in the regenerator or the high-temperature regenerator is low and the outside air temperature is low, the temperature of each part is set to the steady temperature. If it takes time to reach and if there is not enough pressure difference to circulate the absorbing liquid, the absorbing liquid will not reach the absorber and the absorbing liquid cannot be temporarily sent to the regenerator or high temperature regenerator A condition occurs. In this case, the regenerator or the high-temperature regenerator is in an empty state, and the temperature in the regenerator or the high-temperature regenerator is higher than the first predetermined temperature, and the speed in the regenerator or the high-temperature regenerator is higher than the first predetermined temperature. The temperature rises.

【0025】この場合、制御器は、一時停止タイマーで
設定した所定時間の間、加熱源の作動を一時的に停止す
る。一時停止中に、各部の温度が上昇して吸収液を循環
させるだけの充分な圧力差が生じるので吸収器に吸収液
が到達し、溶液ポンプにより再生器又は高温再生器に吸
収液が移送される。一時停止タイマーがタイムアップす
ると、既に、再生器又は高温再生器に吸収液が溜まって
おり、空焚き状態が解消されているので、制御器は、加
熱源の作動を再開する。
In this case, the controller temporarily stops the operation of the heating source for a predetermined time set by the pause timer. During the suspension, the temperature of each part rises and a sufficient pressure difference is generated to circulate the absorbing liquid, so that the absorbing liquid reaches the absorber and is transferred to the regenerator or high-temperature regenerator by the solution pump. You. When the suspension timer expires, the controller resumes the operation of the heating source because the absorbing liquid has already been accumulated in the regenerator or the high-temperature regenerator, and the state of empty heating has been eliminated.

【0026】〔請求項6について〕加熱源の作動を一時
的に停止する、第1所定温度は、定常運転時の加熱源の
加熱量に対応した略平衡状態の温度に設定される。
[Claim 6] The first predetermined temperature at which the operation of the heating source is temporarily stopped is set to a temperature in a substantially equilibrium state corresponding to the heating amount of the heating source during steady operation.

【0027】[0027]

【発明の効果】【The invention's effect】

〔請求項1について〕冷房運転の立ち上げにおいて、再
生器の温度が第1所定温度以上の状態で、再生器内の温
度上昇速度が所定値以上の場合には、空焚き状態と見な
して、制御器が加熱源の作動を一時的に停止する構成で
ある。これにより、再生器内の温度上昇が一時的に収ま
るので、冷房高温エラー停止を回避でき、冷房運転の立
ち上げを円滑に行う事ができる。
[Claim 1] At the start-up of the cooling operation, when the temperature of the regenerator is equal to or higher than the first predetermined temperature and the rate of temperature rise in the regenerator is equal to or higher than a predetermined value, it is regarded as an idling state, The controller temporarily stops the operation of the heating source. As a result, the temperature rise in the regenerator is temporarily stopped, so that the cooling high temperature error stop can be avoided and the cooling operation can be started smoothly.

【0028】〔請求項2について〕冷房運転の立ち上げ
において、高温再生器の温度が第1所定温度以上の状態
で、高温再生器内の温度上昇速度が所定値以上の場合に
は、空焚き状態と見なして、制御器が加熱源の作動を一
時的に停止する構成である。これにより、高温再生器内
の温度上昇が一時的に収まるので、冷房高温エラー停止
を回避でき、冷房運転の立ち上げを円滑に行う事ができ
る。
[Claim 2] At the start of the cooling operation, if the temperature of the high-temperature regenerator is equal to or higher than the first predetermined temperature and the temperature rising rate in the high-temperature regenerator is equal to or higher than a predetermined value, the idle heating is performed. This is a configuration in which the controller temporarily stops the operation of the heating source, considering the state. As a result, the temperature rise in the high-temperature regenerator is temporarily stopped, so that the cooling high-temperature error stop can be avoided, and the cooling operation can be started up smoothly.

【0029】〔請求項3について〕加熱源の作動再開後
において、再生器又は高温再生器内の温度が第1所定温
度以上の状態で、再生器又は高温再生器内の温度上昇速
度が所定値以上の場合には、制御器が運転を停止する構
成であるので、他の原因による、再生器又は高温再生器
の過熱を防止できる。
[Claim 3] After the operation of the heating source is resumed, if the temperature in the regenerator or the high-temperature regenerator is equal to or higher than the first predetermined temperature and the temperature rise rate in the regenerator or the high-temperature regenerator is increased to a predetermined value. In the above case, since the controller stops the operation, overheating of the regenerator or the high-temperature regenerator due to other causes can be prevented.

【0030】〔請求項4について〕冷房運転の立ち上げ
において、再生器又は高温再生器の温度が第1所定温度
以上の状態で、再生器又は高温再生器内の温度上昇速度
が所定値以上の場合には、空焚き状態と見なして、制御
器が、再生器又は高温再生器内の温度が第2所定温度に
低下する迄、加熱源の作動を一時的に停止する構成であ
る。これにより、再生器又は高温再生器内の温度上昇が
一時的に収まるので、冷房高温エラー停止を回避でき、
冷房運転の立ち上げを円滑に行う事ができる。
[Claim 4] At the start of the cooling operation, when the temperature of the regenerator or the high-temperature regenerator is equal to or higher than the first predetermined temperature and the temperature rise rate in the regenerator or the high-temperature regenerator is equal to or higher than a predetermined value. In such a case, the controller is considered to be in the idling state, and the controller temporarily stops the operation of the heating source until the temperature in the regenerator or the high-temperature regenerator falls to the second predetermined temperature. As a result, the temperature rise in the regenerator or the high-temperature regenerator temporarily stops, so that the cooling high-temperature error stop can be avoided,
It is possible to smoothly start up the cooling operation.

【0031】〔請求項5について〕冷房運転の立ち上げ
において、再生器又は高温再生器の温度が第1所定温度
以上の状態で、再生器又は高温再生器内の温度上昇速度
が所定値以上の場合には、空焚き状態と見なして、制御
器が、一時停止タイマーで設定した所定時間の間、加熱
源の作動を一時的に停止する構成である。これにより、
再生器又は高温再生器内の温度上昇が一時的に収まるの
で、冷房高温エラー停止を回避でき、冷房運転の立ち上
げを円滑に行う事ができる。
[Claim 5] In the start-up of the cooling operation, when the temperature of the regenerator or the high-temperature regenerator is equal to or higher than the first predetermined temperature and the temperature rise rate in the regenerator or the high-temperature regenerator is equal to or higher than a predetermined value. In this case, the controller is configured to temporarily stop the operation of the heating source for a predetermined time set by the pause timer, assuming that the heating source is in the idling state. This allows
Since the temperature rise in the regenerator or the high-temperature regenerator is temporarily stopped, it is possible to avoid the stop of the cooling / high-temperature error and to smoothly start the cooling operation.

【0032】〔請求項6について〕第1所定温度を、定
常運転時の加熱源の加熱量に対応した略平衡状態の温度
に設定し、再生器又は高温再生器内の温度が第1所定温
度以上で、且つ、その温度上昇速度が所定値以上の場合
に、空焚き状態と見なす構成であるので、空焚き状態を
確実に検知できる。
[Claim 6] The first predetermined temperature is set to a temperature in a substantially equilibrium state corresponding to a heating amount of the heating source during a steady operation, and the temperature in the regenerator or the high-temperature regenerator is set to the first predetermined temperature. As described above, when the temperature rising speed is equal to or higher than the predetermined value, the configuration is considered to be the idle firing state, so that the idle firing state can be reliably detected.

【0033】[0033]

【発明の実施の形態】本発明の一実施例(請求項2、
3、4、6に対応)を、図1〜図5に基づいて説明す
る。図1〜図4に示す様に、吸収式空調装置Aは、冷房
運転時に冷却水10を循環させる冷却水回路1と、冷房
・暖房運転時に冷温水20を循環させる冷温水回路2
と、高温再生器3、低温再生器4、凝縮器5、蒸発器
6、吸収器7、及び溶液ポンプ80を有する吸収液回路
8と、制御器9とを備える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention (Claim 2,
3, 4 and 6) will be described with reference to FIGS. As shown in FIGS. 1 to 4, the absorption type air conditioner A includes a cooling water circuit 1 for circulating cooling water 10 during cooling operation and a cooling / heating water circuit 2 for circulating cooling water 20 during cooling / heating operation.
A high-temperature regenerator 3, a low-temperature regenerator 4, a condenser 5, an evaporator 6, an absorber 7, an absorbing liquid circuit 8 having a solution pump 80, and a controller 9.

【0034】冷却水回路1は、冷却塔ファン111を付
設した冷却塔11(室外熱交換器)と、冷却水タンク1
2と、冷却水ポンプ13と、吸収器伝熱管14、凝縮器
伝熱管15を順に環状接続して構成され、冷房運転時に
は冷却水ポンプ13(1230リットル/h)を作動さ
せて冷却水10を循環させる。
The cooling water circuit 1 includes a cooling tower 11 (outdoor heat exchanger) provided with a cooling tower fan 111 and a cooling water tank 1.
2, a cooling water pump 13, an absorber heat transfer tube 14, and a condenser heat transfer tube 15 are sequentially connected in a ring shape. During cooling operation, the cooling water pump 13 (1230 liter / h) is operated to cool the cooling water 10. Circulate.

【0035】冷却塔ファン111は、交流コンデンサモ
ータ112により駆動される。尚、交流コンデンサモー
タ112は、トライアック(図示せず)を介してAC-
100Vに接続され、冷却水温センサ91が検出する冷
却水温が31.5℃に維持される様に制御器9により回
転数が制御される。
The cooling tower fan 111 is driven by an AC condenser motor 112. The AC condenser motor 112 is connected to an AC-capacitor via a triac (not shown).
The controller 9 controls the rotation speed so that the cooling water temperature detected by the cooling water temperature sensor 91 is maintained at 31.5 ° C.

【0036】上記冷却水温センサ91は、冷却水ポンプ
13- 吸収器伝熱管14間を接続する冷却水管101中
に配設され、吸収器伝熱管14に供給される冷却水10
の温度を検出する。又、暖房運転時には、冷却水回路1
内の冷却水10は全て抜かれ、交流コンデンサモータ1
12には通電されない。
The cooling water temperature sensor 91 is provided in a cooling water pipe 101 connecting the cooling water pump 13 and the absorber heat transfer pipe 14, and the cooling water 10 supplied to the absorber heat transfer pipe 14.
Detect the temperature of In the heating operation, the cooling water circuit 1
All of the cooling water 10 inside is removed, and the AC condenser motor 1
12 is not energized.

【0037】冷温水回路2は、送風ファン211を付設
した室内熱交換器21、シスターン22、冷温水ポンプ
23(最大能力時620リットル/h)、蒸発器伝熱管
24を環状接続してなり、冷温水ポンプ23により冷温
水20を循環させている。尚、冷房運転時の室内熱交換
器21の吸熱量は4340kcal(最大能力時)であ
り、暖房運転時の室内熱交換器21の放熱量は6200
kcal(最大能力時)である。
The cold / hot water circuit 2 is formed by connecting an indoor heat exchanger 21, a cistern 22, a cold / hot water pump 23 (at a maximum capacity of 620 liter / h) and an evaporator heat transfer tube 24 with a blower fan 211 in an annular manner. The cold / hot water 20 is circulated by a cold / hot water pump 23. The amount of heat absorbed by the indoor heat exchanger 21 during the cooling operation is 4340 kcal (at the maximum capacity), and the amount of heat released from the indoor heat exchanger 21 during the heating operation is 6200.
kcal (at maximum capacity).

【0038】高温再生器3は、ガスバーナ311によっ
て吸収液を加熱する沸騰器31と、沸騰器31から立設
する分離筒32と、捕集容器33とにより構成され、冷
房運転時、沸騰器31内の低濃度吸収液(以下希液30
と呼ぶ;58%臭化リチウム水溶液)中に含まれる冷媒
(水)を蒸発させて中濃度吸収液(以下中液34と呼
ぶ;60%臭化リチウム水溶液)と蒸気冷媒35とに分
離する。
The high-temperature regenerator 3 is composed of a boiler 31 for heating the absorbent by a gas burner 311, a separation tube 32 erected from the boiler 31, and a collecting vessel 33. Low-concentration absorbing solution (hereinafter referred to as diluted solution 30)
Refrigerant (water) contained in a 58% aqueous lithium bromide solution is evaporated to be separated into a medium concentration absorbing liquid (hereinafter referred to as an intermediate liquid 34; a 60% aqueous lithium bromide solution) and a vapor refrigerant 35.

【0039】ガスバーナ311は、ブンゼン式であり、
ガス電磁弁312、313、ガス比例弁314を連設し
たガス管315によりガスが供給され、燃焼用ファン3
16により燃焼用空気が供給されて燃焼する。321は
断熱を図る為の間隙である。又、沸騰器31の適所に
は、高温再生器3の温度(希液30の温度)を検出する
為のHGE温度センサ301が配設されている。
The gas burner 311 is of a Bunsen type,
Gas is supplied by a gas pipe 315 having gas solenoid valves 312 and 313 and a gas proportional valve 314 connected thereto.
The combustion air is supplied by 16 and burns. 321 is a gap for heat insulation. In addition, an HGE temperature sensor 301 for detecting the temperature of the high-temperature regenerator 3 (the temperature of the dilute solution 30) is provided at an appropriate position of the evaporator 31.

【0040】冷温水センサ201は、室内熱交換器21
の入口側の冷温水配管29に配設され、室内熱交換器2
1に供給される冷温水20の温度を検出する。
The cold / hot water sensor 201 is connected to the indoor heat exchanger 21
Is disposed in the cold / hot water pipe 29 on the inlet side of the indoor heat exchanger 2.
The temperature of the cold / hot water 20 supplied to 1 is detected.

【0041】冷房運転時には、制御器9は、冷温水セン
サ201が検出する冷温水20の温度(平均温度)が7
℃になる様に、1500kcal〜4800kcalの
間で、ガスバーナ311のインプットを比例制御(冷房
比例制御)する。又、ターボ冷房運転時はインプットが
6500kcalとされる。
During the cooling operation, the controller 9 controls the temperature (average temperature) of the cold / hot water 20 detected by the cold / hot water sensor 201 to 7
The input of the gas burner 311 is proportionally controlled (cooling proportional control) between 1500 kcal and 4800 kcal so that the temperature becomes ° C. During turbo cooling operation, the input is set to 6500 kcal.

【0042】暖房運転時には、制御器9は、室内熱交換
器21に供給される冷温水20の温度が60℃になる様
に、1500kcal〜8000kcalの間で、ガス
バーナ311のインプットを比例制御(暖房比例制御)
する。
During the heating operation, the controller 9 performs proportional control (heating) on the input of the gas burner 311 between 1500 kcal and 8000 kcal so that the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 becomes 60 ° C. Proportional control)
I do.

【0043】冷房運転時は、冷暖切替弁36が閉弁して
いるので、中液34(165℃)は、中液配管341→
高温熱交換流路342→オリフィス343付きの中液配
管344を経て低温再生器4の上部に送り込まれる。
During the cooling operation, since the cooling / heating switching valve 36 is closed, the intermediate liquid 34 (165 ° C.) is supplied to the intermediate liquid pipe 341 →
The high-temperature heat exchange flow path 342 is sent to the upper part of the low-temperature regenerator 4 via the middle liquid pipe 344 having the orifice 343.

【0044】低温再生器4は、高温再生器3の捕集容器
33を包囲し、冷房運転時には、中液34は、捕集容器
33から受熱して加熱される。これにより、中液34の
一部が気化して高濃度吸収液(以下濃液41と呼ぶ;6
2%臭化リチウム水溶液)と蒸気冷媒42とに分離され
る。又、冷暖切替弁36が開弁する暖房運転時には、中
液配管344はオリフィス343により流路抵抗が生じ
るので、中液34は全て暖房配管361に流れ、低温再
生器4に送り込まれない。
The low-temperature regenerator 4 surrounds the collection container 33 of the high-temperature regenerator 3, and during cooling operation, the intermediate liquid 34 receives heat from the collection container 33 and is heated. As a result, a part of the middle liquid 34 is vaporized and becomes a high concentration absorbing liquid (hereinafter, referred to as a concentrated liquid 41; 6).
(2% lithium bromide aqueous solution) and a vapor refrigerant 42. Further, during the heating operation in which the cooling / heating switching valve 36 is opened, since the flow path resistance is generated in the intermediate liquid pipe 344 by the orifice 343, the entire intermediate liquid 34 flows into the heating pipe 361 and is not sent to the low-temperature regenerator 4.

【0045】凝縮器5には、高温再生器3、低温再生器
4から蒸気冷媒35、42が凝縮器5に送り込まれ、蒸
気冷媒35、42は、コイル状の凝縮器伝熱管15を流
れる冷却水10によって冷却され液化し、液冷媒(水)
52は凝縮器5の底部に溜まる。尚、昇温(37.5
℃)した冷却水10は、冷却塔11で冷却(31.5
℃)される。
The vapor refrigerants 35 and 42 are sent from the high-temperature regenerator 3 and the low-temperature regenerator 4 to the condenser 5, and the vapor refrigerants 35 and 42 are cooled through the coil-shaped condenser heat transfer tubes 15. Liquid refrigerant (water) cooled by water 10
52 accumulates at the bottom of the condenser 5. In addition, temperature rise (37.5)
The cooling water 10 cooled in the cooling tower 11 (31.5 ° C.).
° C).

【0046】蒸発器6は、コイル状の蒸発器伝熱管24
を配設している。暖房運転時には冷暖切替弁36が開弁
するので、分離塔32内の高温の吸収液が、冷暖切替弁
36→暖房配管361を介して蒸発器6に送り込まれ
る。又、冷房運転時には、液冷媒52が、冷媒配管53
→冷媒弁54→散布器55を介して蒸発器伝熱管24上
に散布され、蒸発器6内は略真空(約6.5mmHg)
であるので、液冷媒52は蒸発器伝熱管24内を流れる
冷温水20から気化熱を奪って蒸発する。そして、冷却
された冷温水20は室内に配置された室内熱交換器21
で室内に送風される空気と熱交換(最大能力時、吸熱4
000kcal/h)して昇温し、昇温した冷温水20
は再び蒸発器伝熱管24を通過して冷却される。
The evaporator 6 includes a coil-shaped evaporator heat transfer tube 24.
Is arranged. Since the cooling / heating switching valve 36 is opened during the heating operation, the high-temperature absorbing liquid in the separation tower 32 is sent to the evaporator 6 via the cooling / heating switching valve 36 → the heating pipe 361. During the cooling operation, the liquid refrigerant 52 is
→ refrigerant valve 54 → sprayed on the evaporator heat transfer tube 24 via the sprayer 55, and the inside of the evaporator 6 is substantially vacuum (about 6.5 mmHg)
Therefore, the liquid refrigerant 52 evaporates by taking heat of vaporization from the cold / hot water 20 flowing in the evaporator heat transfer tube 24. Then, the cooled cold / hot water 20 is supplied to the indoor heat exchanger 21 disposed indoors.
Heat exchange with the air blown indoors at the maximum capacity (heat absorption 4
000 kcal / h), and the temperature was raised.
Is again cooled through the evaporator heat transfer tube 24.

【0047】吸収器伝熱管14を配設した吸収器7は、
蒸発器6に併設され、上部が蒸発器6と連通している。
そして、冷房運転時には、蒸発器6で蒸発した蒸気冷媒
は上部から吸収器7内に進入し、低温再生器4→濃液配
管411→低温熱交換流路412→濃液配管413→散
布器70を介して吸収器伝熱管14上に散布される濃液
41に吸収され、低濃度となった希液30は吸収器7の
底部に溜まる。又、暖房運転時には、蒸発器6から高温
の吸収液が送り込まれる。
The absorber 7 provided with the absorber heat transfer tube 14 is
The upper part is connected to the evaporator 6 and communicates with the evaporator 6.
Then, during the cooling operation, the vapor refrigerant evaporated in the evaporator 6 enters the absorber 7 from above, and the low-temperature regenerator 4 → the concentrated liquid pipe 411 → the low-temperature heat exchange channel 412 → the concentrated liquid pipe 413 → the sprayer 70 The diluted liquid 30 which has been absorbed by the concentrated liquid 41 scattered on the absorber heat transfer tube 14 and has become low in concentration accumulates at the bottom of the absorber 7. During the heating operation, a high-temperature absorbing liquid is sent from the evaporator 6.

【0048】溶液ポンプ80は、AC- 100Vで動作
する三相DCブラシレスモータであり、ホール素子(図
示せず)が取り付けられている。この溶液ポンプ80
は、HGE温度- 回転数特性に基づいて回転数制御され
る。尚、冷温水ポンプ23と溶液ポンプ80を一台のタ
ンデムポンプで構成しても良い。
The solution pump 80 is a three-phase DC brushless motor operating at AC-100V, and has a Hall element (not shown). This solution pump 80
Is controlled based on the HGE temperature-rotation speed characteristic. Incidentally, the cold / hot water pump 23 and the solution pump 80 may be constituted by one tandem pump.

【0049】吸収器7の底部に溜まった希液30(暖房
運転時は吸収液)は、希液配管71→溶液ポンプ80→
希液配管72→低温・高温熱交換流路73→希液配管7
4を介して高温再生器3の沸騰器31に送られる。
The diluted liquid 30 (absorbed liquid during the heating operation) accumulated at the bottom of the absorber 7 is diluted with a diluted liquid pipe 71 → a solution pump 80 →
Rare liquid pipe 72 → Low temperature / high temperature heat exchange channel 73 → Rare liquid pipe 7
It is sent to the boiler 31 of the high temperature regenerator 3 via 4.

【0050】制御器9は、運転スイッチ(図示せず)、
各水位センサ、沸騰器31内の吸収液温度を検知するH
GE温度センサ301、室内熱交換器21に供給される
冷温水20の温度を検出する冷温水センサ201、蒸発
器6の内部温度を検出するEVA温度センサ61、及び
吸収器伝熱管14に供給する冷却水10の温度を検出す
る冷却水温センサ91からの信号に基づいて、以下のも
のを制御する。
The controller 9 includes an operation switch (not shown),
Each water level sensor, H for detecting the temperature of the absorbing solution in the boiler 31
The GE temperature sensor 301, the cold / hot water sensor 201 for detecting the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21, the EVA temperature sensor 61 for detecting the internal temperature of the evaporator 6, and the absorber heat transfer tube 14 The following is controlled based on a signal from a cooling water temperature sensor 91 that detects the temperature of the cooling water 10.

【0051】給水弁221、ガス電磁弁312、31
3、ガス比例弁314、溶液ポンプ80、冷却水ポンプ
13、冷却塔ファン111、冷媒弁54、冷暖切替弁3
6、冷温水ポンプ23。
Water supply valve 221, gas solenoid valves 312, 31
3, gas proportional valve 314, solution pump 80, cooling water pump 13, cooling tower fan 111, refrigerant valve 54, cooling / heating switching valve 3
6, cold / hot water pump 23.

【0052】冷房運転又は暖房運転時、吸収式空調装置
Aは、以下の様に作動する。吸収液が入れられた高温再
生器3は、沸騰器31がガスバーナ311により加熱さ
れる。冷房運転時には、希液30中の冷媒が気化して中
液34と蒸気冷媒35とに分離する。冷房運転時(図4
参照)は、高温再生器3、低温再生器4から高温の蒸気
冷媒35、42が凝縮器5に送り込まれる。
During the cooling operation or the heating operation, the absorption air conditioner A operates as follows. In the high-temperature regenerator 3 containing the absorbing liquid, the boiler 31 is heated by the gas burner 311. During the cooling operation, the refrigerant in the diluted liquid 30 is vaporized and separated into the intermediate liquid 34 and the vapor refrigerant 35. During cooling operation (Fig. 4
), High-temperature vapor refrigerants 35 and 42 are sent from the high-temperature regenerator 3 and the low-temperature regenerator 4 to the condenser 5.

【0053】凝縮器5から蒸発器6に送りこまれた液冷
媒52は、冷温水20が流れる蒸発器伝熱管24上に散
布され、気化熱を奪って蒸発し、蒸発した蒸気冷媒は吸
収器7内に進入し、低温再生器4から送られる濃液41
に吸収され希液30となって吸収器7内に溜まり、溶液
ポンプ80により高温再生器3の沸騰器31に戻され
る。
The liquid refrigerant 52 sent from the condenser 5 to the evaporator 6 is sprayed onto the evaporator heat transfer tube 24 through which the cold and hot water 20 flows, evaporates by taking heat of vaporization, and the evaporated vapor refrigerant is absorbed by the absorber 7. And the concentrated liquid 41 sent from the low-temperature regenerator 4
And is collected in the absorber 7 as a dilute liquid 30 and returned to the boiler 31 of the high-temperature regenerator 3 by the solution pump 80.

【0054】液冷媒が、冷温水20が流れる蒸発器伝熱
管24上で蒸発する際に冷温水20を冷却し、冷却され
た冷温水20が室内熱交換器21を通過し、送風ファン
211により冷風が室内に吹き出される事により室内冷
房が行われる。この時、室内制御器25は、室温センサ
26が検出する室温が、室温設定器(図示せず)で設定
した設定室温になる様に、流量調節弁27及び送風ファ
ン211を制御する。
When the liquid refrigerant evaporates on the evaporator heat transfer tube 24 through which the cold / hot water 20 flows, the cold / hot water 20 is cooled, and the cooled cold / hot water 20 passes through the indoor heat exchanger 21 and is blown by the blower fan 211. Cooling air is blown into the room to perform indoor cooling. At this time, the indoor controller 25 controls the flow control valve 27 and the blower fan 211 so that the room temperature detected by the room temperature sensor 26 becomes the set room temperature set by the room temperature setting device (not shown).

【0055】冷房運転時には、制御器9は、室内熱交換
器21に供給される冷温水20の温度が7℃になる様
に、ガスバーナ311のインプットを制御する。暖房運
転の場合は、暖房配管361を介して、高温再生器3か
ら高温の吸収液が蒸発器6に送り込まれ、吸収液は、蒸
発器伝熱管24を流れる冷温水20を加熱し、蒸発器6
内の吸収液は吸収器7内に進入し、吸収器7内に溜ま
る。尚、溜まった吸収液は、溶液ポンプ80により高温
再生器3に戻される。
During the cooling operation, the controller 9 controls the input of the gas burner 311 so that the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 becomes 7 ° C. In the case of the heating operation, the high-temperature absorbent is sent from the high-temperature regenerator 3 to the evaporator 6 through the heating pipe 361, and the absorbent heats the cold and hot water 20 flowing through the evaporator heat transfer pipe 24, 6
The absorbing liquid inside enters the absorber 7 and accumulates in the absorber 7. Note that the collected absorbent is returned to the high-temperature regenerator 3 by the solution pump 80.

【0056】吸収液により加熱されて昇温した冷温水2
0が室内熱交換器21を通過し、送風ファン211によ
り温風が室内に吹き出される事により室内暖房が行われ
る。この時、制御器9は、室内熱交換器21に供給する
冷温水20の温度が60℃になる様に、ガスバーナ31
1のインプット(1500〜8000kcal)を制御
する。又、室内制御器25は、室温センサ26が検出す
る室温が、室温設定器(図示せず)で設定した設定室温
になる様に、流量調節弁27及び送風ファン211を制
御する。
Cold and hot water 2 heated and heated by the absorbing solution
0 passes through the indoor heat exchanger 21 and warm air is blown into the room by the blower fan 211 to perform indoor heating. At this time, the controller 9 controls the gas burner 31 so that the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 becomes 60 ° C.
One input (1500-8000 kcal) is controlled. Further, the indoor controller 25 controls the flow control valve 27 and the blower fan 211 such that the room temperature detected by the room temperature sensor 26 becomes the set room temperature set by the room temperature setting device (not shown).

【0057】つぎに、冷房運転の立ち上げを円滑にでき
る仕組みを、図5のフローチャートに基づいて述べる。
使用者が冷房運転スイッチ(図示せず)をオンすると、
制御器9及び室内制御器25が所定の手順に従って制御
を開始する。
Next, a mechanism for smoothly starting the cooling operation will be described with reference to the flowchart of FIG.
When the user turns on the cooling operation switch (not shown),
The controller 9 and the indoor controller 25 start control according to a predetermined procedure.

【0058】コールド冷房スタート{ステップs1でY
ES;HGE≦50℃;HGEは温度センサ301の検
知温度}の場合は、給水弁221を開弁して、シスター
ン22に水を溜めるクーリングタワー処理(CT処理)
をステップs2で行ない(所要時間約1分)、ステップ
s3に進む。
Cold cooling start: Y in step s1
ES; HGE ≦ 50 ° C .; HGE is a cooling tower process for opening the water supply valve 221 and storing water in the cistern 22 when the temperature detected by the temperature sensor 301 is} (CT process)
Is performed in step s2 (the required time is about 1 minute), and the process proceeds to step s3.

【0059】ホット冷房スタート(ステップs1でN
O;HGE>50℃)の場合は、給水弁221を開弁し
て、シスターン22に水を溜めるクーリングタワー処理
(CT処理)をステップs11で行ない(所要時間約1
分)、ステップs12に進む。
Hot cooling start (N in step s1)
O; HGE> 50 ° C.), the water supply valve 221 is opened, and a cooling tower process (CT process) for storing water in the cistern 22 is performed in step s11 (the required time is about 1 hour).
Minute), and proceeds to step s12.

【0060】ステップs3で溶液ポンプを2400rp
mで回転し、ステップs4で点火動作を行ない、ガスバ
ーナ311が燃焼を開始する。ステップs5で、以下に
示すコールドスタート制御(2回目はホットスタート制
御)を行ない、冷房運転が安定したら、冷房比例制御に
移行する。
In step s3, the solution pump is set to 2400 rpm
m, the ignition operation is performed in step s4, and the gas burner 311 starts combustion. In step s5, the following cold start control (hot start control for the second time) is performed, and when the cooling operation is stabilized, the process proceeds to cooling proportional control.

【0061】(コールドスタート制御)HGE<60℃
の間は、インプットを3500kcalとする。冷温水
>11℃で、60℃≦HGE<150℃となると、ター
ボ冷房運転に移行し、インプットを6500kcalに
する。80℃≦HGEで、溶液ポンプ80を、インプッ
トに比例した回転数で制御する。10℃<冷温水≦11
℃、HGE≧150℃となると、インプット4800k
calに落とす。冷房運転が安定し、冷温水≦10℃と
なる(但し、HGE≧150℃)と、冷房比例制御に移
行する。
(Cold start control) HGE <60 ° C.
During the period, the input is set to 3500 kcal. When cold / hot water> 11 ° C. and 60 ° C. ≦ HGE <150 ° C., the turbo cooling operation is started and the input is set to 6500 kcal. At 80 ° C. ≦ HGE, the solution pump 80 is controlled at a rotation speed proportional to the input. 10 ℃ <cold / hot water ≦ 11
° C, HGE ≧ 150 ° C, input 4800k
drop to cal. When the cooling operation is stabilized and the temperature of the cooling water becomes ≦ 10 ° C. (however, HGE ≧ 150 ° C.), the process shifts to the cooling proportional control.

【0062】(ホットスタート制御)10℃<冷温水で
インプット4800kcalとする。冷房運転が安定
し、冷温水≦10℃となる(但し、HGE≧150℃)
と、冷房比例制御に移行する。
(Hot start control) Input is set to 4800 kcal with cold / hot water at 10 ° C. Cooling operation is stable, and cold / hot water ≤ 10 ° C (however, HGE ≥ 150 ° C)
Then, the process proceeds to the cooling proportional control.

【0063】(冷房比例制御)冷温水20の温度(平均
温度)が7℃になる様に、1500kcal〜4800
kcalの間で、ガスバーナ311のインプットを比例
制御(冷房比例制御)する。
(Cooling proportional control) 1500 kcal to 4800 so that the temperature (average temperature) of the cold / hot water 20 becomes 7 ° C.
During kcal, the input of the gas burner 311 is proportionally controlled (cooling proportional control).

【0064】ステップs5の制御を実施中に、ステップ
s6の条件(HGE≧160℃で、3秒間で2℃以上、
HGE温度が上昇する場合)を満たす場合(ステップs
6でYES)はステップs7に進み、満たさない場合
(ステップs6でNO)はステップs5に戻って、コー
ルドスタート制御(2回目はホットスタート制御)、又
は冷房比例制御を継続する。
During the control of step s5, the condition of step s6 (HGE ≧ 160 ° C., 2 ° C. or more in 3 seconds,
When HGE temperature rises) (Step s)
(YES in 6) proceeds to step s7, and if not satisfied (NO in step s6), returns to step s5 to continue cold start control (hot start control for the second time) or cooling proportional control.

【0065】ステップs6の条件が成立する場合が2回
目である場合(ステップs7でYES)は、冷房高温エ
ラー処理を行った後、冷房高温エラー停止する。又、ス
テップs6の条件が成立する場合が1回目である場合
(ステップs7でNO)は、ステップs8に進む。ステ
ップs8で、制御器9は、ガスバーナ311の消火を指
示する。ステップs9で、制御器9は、溶液ポンプ80
の作動(インプットに比例した回転数)を継続する。
If the condition of step s6 is satisfied for the second time (YES in step s7), the cooling high temperature error processing is performed, and then the cooling high temperature error is stopped. If the condition in step s6 is satisfied for the first time (NO in step s7), the process proceeds to step s8. In step s8, the controller 9 instructs the fire extinguishing of the gas burner 311. In step s9, the controller 9 sets the solution pump 80
Operation (rotational speed proportional to the input) is continued.

【0066】ステップs10で、HGE≦150℃であ
るか否か判別し、HGE>150℃の場合は、ステップ
s9に戻るとともに消火状態を継続する。尚、ステップ
s9→ステップs10でNO→ステップs9のループ中
に各部の温度が上昇していき、吸収液を循環させる為の
充分な圧力差が発生して吸収液が吸収器7に到達する。
HGE≦150℃に低下すると、ステップs4に戻り、
点火動作を実施する。
In step s10, it is determined whether or not HGE ≦ 150 ° C. If HGE> 150 ° C., the flow returns to step s9 and the fire extinguishing state is continued. In addition, the temperature of each part rises during the loop of step s9 → NO in step s10 → step s9, and a sufficient pressure difference for circulating the absorbing liquid is generated, so that the absorbing liquid reaches the absorber 7.
When HGE ≦ 150 ° C., return to step s4,
Perform the ignition operation.

【0067】一方、ホット冷房スタートの場合、ステッ
プs12で点火動作を行ない、ガスバーナ311が燃焼
を開始する。ステップs13で、上述したホットスター
ト制御を行ない、冷房運転が安定したら上述した冷房比
例制御に移行する。
On the other hand, in the case of the start of hot cooling, the ignition operation is performed in step s12, and the gas burner 311 starts combustion. In step s13, the above-described hot start control is performed, and when the cooling operation is stabilized, the process proceeds to the above-described cooling proportional control.

【0068】つぎに、本実施例の吸収式空調装置Aの利
点を述べる。 〔ア〕吸収式空調装置Aは、HGE≦50℃での、冷房
運転のコールド立ち上げの場合において、HGE≧16
0℃で、且つ、HGE温度の上昇が早い(3秒間に2℃
以上)場合には、コールドスタートに伴う循環不良と見
なして、HGE≦150℃に低下する迄、一旦、ガスバ
ーナ311の燃焼を停止する構成である。
Next, advantages of the absorption type air conditioner A of this embodiment will be described. [A] Absorption type air conditioner A has HGE ≧ 16 when cold start of cooling operation at HGE ≦ 50 ° C.
0 ° C. and the HGE temperature rises rapidly (2 ° C. in 3 seconds)
In the above case, the circulation of the gas burner 311 is temporarily stopped until HGE ≦ 150 ° C., assuming that the circulation is defective due to the cold start.

【0069】これにより、循環不良が生じて、高温再生
器3内に吸収液が送られて来ない時には、加熱停止する
為、高温再生器3内の温度は上昇せず、ガスバーナ31
1の燃焼停止中に吸収液が吸収器7内に戻り、加熱が再
開されるで、冷房高温エラー停止を回避でき、冷房運転
のコールド立ち上げを円滑に行う事ができる。尚、特
に、各部の温度が早期に定常状態になり難い外気温が低
い場合の、冷房運転のコールド立ち上げの場合に有効で
ある。
As a result, when the absorption liquid is not sent into the high-temperature regenerator 3 due to a circulation failure, the heating is stopped, so that the temperature in the high-temperature regenerator 3 does not rise and the gas burner 31
The absorption liquid returns into the absorber 7 during the stop of the combustion of 1, and the heating is restarted, so that the cooling high temperature error stop can be avoided and the cold start of the cooling operation can be smoothly performed. It is particularly effective in the case of a cold start of the cooling operation when the outside air temperature at which the temperature of each part does not easily reach a steady state early is low.

【0070】〔イ〕吸収式空調装置Aは、ガスバーナ3
11の再燃焼後における、HGE≧160℃以上の状態
で、HGE温度の上昇が早い(3秒間に2℃以上)場合
には、冷房高温エラー停止(運転停止)する構成であ
る。この為、他の原因による高温再生器3の過熱を確実
に検知でき(コールドスタートに伴う空焚きは1回しか
起きない為)、他の原因による高温再生器3の過熱の場
合には、燃焼の開始/停止を繰り返す事無く、吸収式空
調装置Aを安全に運転停止させる事ができる。
[A] Absorption type air conditioner A is a gas burner 3
When the HGE temperature rises rapidly (2 ° C. or more in 3 seconds) in the state of HGE ≧ 160 ° C. after the reburning of No. 11, the cooling high temperature error stop (operation stop) is performed. For this reason, overheating of the high-temperature regenerator 3 due to other causes can be reliably detected (since only one empty firing occurs due to cold start), and in the case of overheating of the high-temperature regenerator 3 due to other causes, combustion occurs. The operation of the absorption air conditioner A can be safely stopped without repeating the start / stop of the operation.

【0071】〔ウ〕定常運転時の加熱量(インプット)
に対応した平衡状態の温度、つまり160℃に第1所定
温度を設定し、それより若干低い、150℃に第2所定
温度を設定し、HGE温度の早い上昇速度の所定値を、
3秒間に2℃以上であるとしているので、コールドスタ
ートに伴う空焚き状態の判定精度に優れる。又、空焚き
状態が解消され吸収器7に吸収液が戻る時期(150
℃)にガスバーナ311を再燃焼させる事ができ、冷風
を早期に送風する事ができる。
[C] Heating amount during steady operation (input)
The temperature in the equilibrium state corresponding to the above, that is, the first predetermined temperature is set to 160 ° C., and the second predetermined temperature is set to 150 ° C., which is slightly lower than 160 ° C.
Since it is assumed that the temperature is 2 ° C. or more in 3 seconds, the accuracy of determining the state of the empty firing accompanying the cold start is excellent. In addition, the time when the state of the empty firing is canceled and the absorbing liquid returns to the absorber 7 (150)
C), the gas burner 311 can be re-burned, and the cool air can be blown early.

【0072】本発明は、上記実施例以外に、つぎの実施
態様を含む。 a.上記実施例において、吸収液回路8を、吸収液が入
れられ加熱部が加熱源により加熱される再生器、凝縮器
伝熱管を配設し冷房運転時には前記再生器から高温の蒸
気冷媒が送り込まれる凝縮器、冷房運転時には前記凝縮
器で液化した液冷媒を蒸発させる蒸発器、該蒸発器に併
設され前記吸収器伝熱管を配設し冷房運転時には前記蒸
発器で蒸発した蒸気冷媒を前記再生器から送られる高濃
度吸収液に吸収させる吸収器、及び吸収器内の吸収液を
前記再生器に戻す溶液ポンプにより構成しても良い(請
求項1に対応)。この様に、吸収液回路8を一重効用に
すると、二重効用(吸収式空調装置A)のものに比べ冷
房・暖房効率は落ちるが、吸収式空調装置の構造を簡単
にする事ができる。
The present invention includes the following embodiments in addition to the above embodiment. a. In the above embodiment, the absorbent circuit 8 is provided with a regenerator and a condenser heat transfer tube in which the absorbent is filled and the heating unit is heated by the heating source, and a high-temperature vapor refrigerant is sent from the regenerator during the cooling operation. A condenser, an evaporator for evaporating the liquid refrigerant liquefied by the condenser during cooling operation, and an absorber heat transfer tube provided in parallel with the evaporator, and the regenerator for evaporating the vapor refrigerant evaporated by the evaporator during cooling operation. And a solution pump for returning the absorbing solution in the absorber to the regenerator. As described above, when the absorption liquid circuit 8 has a single effect, the cooling / heating efficiency is lower than that of the double effect (absorption air conditioner A), but the structure of the absorption air conditioner can be simplified.

【0073】b.第2所定温度は、第2所定温度<第1
所定温度であれば、他の温度であっても良い。 c.上記実施例において、HGE>50℃のホットスタ
ートの場合も、コールドスタートと同様{HGE≧16
0℃で、且つ、HGE温度の上昇が早い(3秒間に2℃
以上)場合には、循環不良と見なして、HGE≦150
℃に低下する迄、一旦、ガスバーナ311の燃焼を停止
する}の構成を採用しても良い。
B. The second predetermined temperature is the second predetermined temperature <the first temperature
As long as it is a predetermined temperature, another temperature may be used. c. In the above embodiment, also in the case of the hot start of HGE> 50 ° C., as in the case of the cold start, ΔHGE ≧ 16
0 ° C. and the HGE temperature rises rapidly (2 ° C. in 3 seconds)
In the above case, it is considered that the circulation is poor, and HGE ≦ 150.
The configuration of (1) in which the combustion of the gas burner 311 is temporarily stopped until the temperature drops to ° C may be adopted.

【0074】d.加熱源は、ガスバーナ以外に、電気ヒ
ータ等でも良い。 e.一時加熱停止を、一時タイマで設定した所定時間の
間、実施する構成であっても良い(請求項5に対応)。
D. The heating source may be an electric heater or the like in addition to the gas burner. e. The temporary heating stop may be performed for a predetermined time set by a temporary timer (corresponding to claim 5).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る吸収式空調装置の原理
説明図である。
FIG. 1 is a diagram illustrating the principle of an absorption air conditioner according to one embodiment of the present invention.

【図2】その吸収式空調装置のシステム図である。FIG. 2 is a system diagram of the absorption type air conditioner.

【図3】その吸収式空調装置を暖房運転させた場合の作
動説明図である。
FIG. 3 is an operation explanatory diagram when the absorption type air conditioner is operated for heating.

【図4】その吸収式空調装置を冷房運転させた場合の作
動説明図である。
FIG. 4 is an operation explanatory diagram when the absorption type air conditioner is operated for cooling.

【図5】その吸収式空調装置の冷房運転を示すフローチ
ャートである。
FIG. 5 is a flowchart showing a cooling operation of the absorption type air conditioner.

【符号の説明】[Explanation of symbols]

A 吸収式空調装置 1 冷却水回路 2 冷温水回路 3 高温再生器 4 低温再生器 5 凝縮器 6 蒸発器 7 吸収器 8 吸収液回路 9 制御器 10 冷却水 11 冷却塔(室外熱交換器) 13 冷却水ポンプ 14 吸収器伝熱管 15 凝縮器伝熱管 20 冷温水 21 室内熱交換器 23 冷温水ポンプ 24 蒸発器伝熱管 30 希液(低濃度吸収液) 31 沸騰器(加熱部) 34 中液(中濃度吸収液) 35、42 蒸気冷媒 41 濃液(高濃度吸収液) 80 溶液ポンプ 111 冷却塔ファン(室外ファン) 211 送風ファン 311 ガスバーナ(加熱源) A Absorption air conditioner 1 Cooling water circuit 2 Cooling / heating water circuit 3 High temperature regenerator 4 Low temperature regenerator 5 Condenser 6 Evaporator 7 Absorber 8 Absorbing liquid circuit 9 Controller 10 Cooling water 11 Cooling tower (outdoor heat exchanger) 13 Cooling water pump 14 Absorber heat transfer tube 15 Condenser heat transfer tube 20 Cold and hot water 21 Indoor heat exchanger 23 Cold and hot water pump 24 Evaporator heat transfer tube 30 Rare liquid (low-concentration absorbing liquid) 31 Boiler (heating unit) 34 Medium liquid ( Medium concentration absorbing liquid) 35, 42 Steam refrigerant 41 Concentrated liquid (high concentration absorbing liquid) 80 Solution pump 111 Cooling tower fan (outdoor fan) 211 Blowing fan 311 Gas burner (heating source)

フロントページの続き (72)発明者 河本 薫 大阪市中央区平野町四丁目1番2号 大 阪瓦斯株式会社内 (56)参考文献 特開 平3−134442(JP,A) 特開 平3−194368(JP,A) 特開 平8−29000(JP,A) 特開 平9−133426(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 306 Continuation of the front page (72) Inventor Kaoru Kawamoto 4-1-2 Hirano-cho, Chuo-ku, Osaka-shi Inside Osaka Gas Co., Ltd. (56) References JP-A-3-134442 (JP, A) JP-A-3-3 194368 (JP, A) JP-A-8-29000 (JP, A) JP-A-9-133426 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 15/00 306

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 室外熱交換器、吸収器伝熱管、及び凝縮
器伝熱管を順に環状接続してなり、冷房運転時には冷却
水ポンプにより冷却水を循環させる冷却水回路と、 室内熱交換器、及び蒸発器伝熱管を環状接続してなり、
冷温水ポンプにより冷温水を循環させる冷温水回路と、 吸収液が入れられ加熱部が加熱源により加熱され冷房運
転時には吸収液中の冷媒を気化させる再生器、前記凝縮
器伝熱管を配設し冷房運転時には前記再生器から高温の
蒸気冷媒が送り込まれる凝縮器、冷房運転時には前記凝
縮器で液化した液冷媒を蒸発させる蒸発器、該蒸発器に
併設され前記吸収器伝熱管を配設し冷房運転時には前記
蒸発器で蒸発した蒸気冷媒を前記再生器から送られる濃
縮吸収液に吸収させる吸収器、及び吸収器内の吸収液を
前記再生器に戻す溶液ポンプを有する吸収液回路と、 前記加熱源及び前記溶液ポンプを制御する制御器とを有
する吸収式空調装置において、 再生器内の温度が第1所定温度以上で、且つ、再生器内
の温度上昇速度が所定値以上の場合、前記制御器は、前
記加熱源の作動を一時的に停止し、 その後、前記加熱源の作動を再開する事を特徴とする吸
収式空調装置。
An indoor heat exchanger comprising: an outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube, which are sequentially connected in a ring shape, and a cooling water circuit that circulates cooling water by a cooling water pump during a cooling operation; And the evaporator heat transfer tubes are connected in a ring,
A chilled / hot water circuit for circulating chilled / hot water by a chilled / hot water pump, a regenerator containing the absorbing liquid, heating the heating unit by a heating source, and evaporating the refrigerant in the absorbing liquid during cooling operation, and the condenser heat transfer tube are provided. During cooling operation, a condenser into which high-temperature vapor refrigerant is sent from the regenerator, during cooling operation, an evaporator for evaporating the liquid refrigerant liquefied by the condenser, and the absorber heat transfer tube provided alongside the evaporator is provided. During operation, an absorber for absorbing the vapor refrigerant evaporated by the evaporator into the concentrated absorption liquid sent from the regenerator, and an absorption liquid circuit having a solution pump for returning the absorption liquid in the absorber to the regenerator; A source and a controller for controlling the solution pump, wherein the temperature in the regenerator is equal to or higher than a first predetermined temperature, and the temperature rise rate in the regenerator is equal to or higher than a predetermined value, Your vessel, the operation of the heating source temporarily stopped, then, the absorption air conditioning apparatus, characterized in that to resume the operation of the heating source.
【請求項2】 室外熱交換器、吸収器伝熱管、及び凝縮
器伝熱管を順に環状接続してなり、冷房運転時には冷却
水ポンプにより冷却水を循環させる冷却水回路と、 室内熱交換器、及び蒸発器伝熱管を環状接続してなり、
冷温水ポンプにより冷温水を循環させる冷温水回路と、 吸収液が入れられ加熱部が加熱源により加熱され冷房運
転時には低濃度吸収液中の冷媒を気化させて中濃度吸収
液と蒸気冷媒とに分離する高温再生器、該高温再生器を
包囲し、冷房運転時には前記中濃度吸収液を高濃度吸収
液と蒸気冷媒とに分離する低温再生器、前記凝縮器伝熱
管を配設し冷房運転時には各再生器から高温の蒸気冷媒
が送り込まれる凝縮器、冷房運転時には前記凝縮器で液
化した液冷媒を蒸発させる蒸発器、該蒸発器に併設され
前記吸収器伝熱管を配設し冷房運転時には前記蒸発器で
蒸発した蒸気冷媒を前記低温再生器から送られる高濃度
吸収液に吸収させる吸収器、及び吸収器内の吸収液を前
記高温再生器に戻す溶液ポンプを有する吸収液回路と、 前記加熱源及び前記溶液ポンプを制御する制御器とを有
する吸収式空調装置において、 高温再生器内の温度が第1所定温度以上で、且つ、高温
再生器内の温度上昇速度が所定値以上の場合、前記制御
器は、前記加熱源の作動を一時的に停止し、 その後、前記加熱源の作動を再開する事を特徴とする吸
収式空調装置。
2. An indoor heat exchanger comprising: an outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube, which are sequentially connected in a ring shape, and a cooling water circuit that circulates cooling water by a cooling water pump during a cooling operation; And the evaporator heat transfer tubes are connected in a ring,
A chilled / hot water circuit that circulates chilled / hot water with a chilled / hot water pump; A high-temperature regenerator to be separated, a high-temperature regenerator surrounding the high-temperature regenerator, and a low-temperature regenerator that separates the medium-concentration absorbent into a high-concentration absorbent and a vapor refrigerant during cooling operation, A condenser into which high-temperature vapor refrigerant is sent from each regenerator, an evaporator for evaporating the liquid refrigerant liquefied in the condenser during cooling operation, and an absorber heat transfer tube provided in conjunction with the evaporator, and An absorber for absorbing the vapor refrigerant evaporated in the evaporator into the high-concentration absorbent sent from the low-temperature regenerator; and an absorbent circuit having a solution pump for returning the absorbent in the absorber to the high-temperature regenerator; Source and A controller for controlling the solution pump, wherein when the temperature in the high-temperature regenerator is equal to or higher than a first predetermined temperature and the temperature rise rate in the high-temperature regenerator is equal to or higher than a predetermined value, the control is performed. An air conditioner for temporarily stopping the operation of the heating source, and thereafter resuming the operation of the heating source.
【請求項3】 前記加熱源の作動再開後において、前記
再生器又は高温再生器内の温度が第1所定温度以上で、
且つ、前記再生器又は高温再生器内の温度上昇速度が所
定値以上の場合、前記制御器は、運転を停止する事を特
徴とする請求項1又は請求項2記載の吸収式空調装置。
3. After the operation of the heating source is restarted, the temperature in the regenerator or the high-temperature regenerator is equal to or higher than a first predetermined temperature, and
The absorption air conditioner according to claim 1 or 2, wherein the controller stops the operation when a temperature rise rate in the regenerator or the high-temperature regenerator is equal to or higher than a predetermined value.
【請求項4】 請求項1又は請求項2に記載の吸収式空
調装置において、 前記再生器又は高温再生器内の温度が第1所定温度以上
で、且つ、その温度上昇速度が所定値以上の場合、前記
再生器又は高温再生器内の温度が、前記第1所定温度よ
り低い第2所定温度に低下する迄、前記制御器が前記加
熱源の作動を一時的に停止する事を特徴とする吸収式空
調装置。
4. The absorption air conditioner according to claim 1, wherein the temperature in the regenerator or the high-temperature regenerator is equal to or higher than a first predetermined temperature, and the temperature rise rate is equal to or higher than a predetermined value. In this case, the controller temporarily stops the operation of the heating source until the temperature in the regenerator or the high-temperature regenerator falls to a second predetermined temperature lower than the first predetermined temperature. Absorption air conditioner.
【請求項5】 請求項1又は請求項2に記載の吸収式空
調装置において、 前記再生器又は高温再生器内の温度が第1所定温度以上
で、且つ、その温度上昇速度が所定値以上の場合、 前記制御器は、一時停止タイマーで設定した所定時間の
間、前記加熱源の作動を一時的に停止する事を特徴とす
る吸収式空調装置。
5. The absorption type air conditioner according to claim 1, wherein the temperature in the regenerator or the high-temperature regenerator is equal to or higher than a first predetermined temperature, and the temperature rise rate is equal to or higher than a predetermined value. In such a case, the controller temporarily stops the operation of the heating source for a predetermined time set by a pause timer.
【請求項6】 請求項1乃至請求項5の何れかに記載の
吸収式空調装置において、 前記第1所定温度は、定常運転時の前記加熱源の加熱量
に対応した略平衡状態の温度である事を特徴とする吸収
式空調装置。
6. The absorption air conditioner according to claim 1, wherein the first predetermined temperature is a temperature in a substantially equilibrium state corresponding to a heating amount of the heating source during a steady operation. Absorption type air conditioner characterized by a certain thing.
JP08022347A 1996-02-08 1996-02-08 Absorption air conditioner Expired - Fee Related JP3128502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08022347A JP3128502B2 (en) 1996-02-08 1996-02-08 Absorption air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08022347A JP3128502B2 (en) 1996-02-08 1996-02-08 Absorption air conditioner

Publications (2)

Publication Number Publication Date
JPH09210498A JPH09210498A (en) 1997-08-12
JP3128502B2 true JP3128502B2 (en) 2001-01-29

Family

ID=12080146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08022347A Expired - Fee Related JP3128502B2 (en) 1996-02-08 1996-02-08 Absorption air conditioner

Country Status (1)

Country Link
JP (1) JP3128502B2 (en)

Also Published As

Publication number Publication date
JPH09210498A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
JP3128502B2 (en) Absorption air conditioner
JP3128501B2 (en) Absorption air conditioner
JP3056987B2 (en) Absorption cooling system
JP3130465B2 (en) Absorption air conditioner
JP3241623B2 (en) Absorption air conditioner
JP2650654B2 (en) Absorption refrigeration cycle device
JP2954519B2 (en) Absorption air conditioner
JP2954513B2 (en) Absorption air conditioner
JP3057017B2 (en) Absorption air conditioner
JP2994250B2 (en) Absorption air conditioner
JP2839442B2 (en) Absorption refrigeration cycle device
JP3241624B2 (en) Absorption air conditioner
JP3056990B2 (en) Absorption air conditioner
JP3308795B2 (en) Absorption air conditioner
JP3144538B2 (en) Absorption air conditioner
JP3283780B2 (en) Absorption cooling device
JP3372662B2 (en) Absorption refrigeration cycle device
JP3056991B2 (en) Absorption air conditioner
JPH10220901A (en) Absorbing type air conditioner
JP2003042588A (en) Absorption type cooling and heating machine
JP3328164B2 (en) Absorption air conditioner
JP2746323B2 (en) Absorption air conditioner
JPH06147680A (en) Multiple type absorption air conditioning system and absorption tye cold/hot water machine
JPH11211264A (en) Controller for absorption type refrigerating unit
JP2003042589A (en) Absorptive cooling and heating machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees