JPH09210498A - Absorption air conditioner - Google Patents

Absorption air conditioner

Info

Publication number
JPH09210498A
JPH09210498A JP8022347A JP2234796A JPH09210498A JP H09210498 A JPH09210498 A JP H09210498A JP 8022347 A JP8022347 A JP 8022347A JP 2234796 A JP2234796 A JP 2234796A JP H09210498 A JPH09210498 A JP H09210498A
Authority
JP
Japan
Prior art keywords
temperature
regenerator
cooling
high temperature
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8022347A
Other languages
Japanese (ja)
Other versions
JP3128502B2 (en
Inventor
Katsuya Oshima
克也 大島
Toru Fukuchi
徹 福知
Kaoru Kawamoto
薫 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Rinnai Corp
Original Assignee
Osaka Gas Co Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Rinnai Corp filed Critical Osaka Gas Co Ltd
Priority to JP08022347A priority Critical patent/JP3128502B2/en
Publication of JPH09210498A publication Critical patent/JPH09210498A/en
Application granted granted Critical
Publication of JP3128502B2 publication Critical patent/JP3128502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the frequency of error stopping operation in cooling or high temperature heating operation and perform a smooth start-up of a cooling operation by a method wherein in the case when a temperature in a regenerating device is higher than a first predetermined value and a temperature increasing speed is higher than a predetermined value, a control device temporarily stops an operation of a heating source and after this, it restarts the operation. SOLUTION: An absorption air conditioner A is operated such that when a cooling operation is started with a high temperature regenerating device 3 being at most 50 deg.C, the high temperature regenerating device 3 is at least 160 deg.C, for example, and when a fast increasing of temperature of the high temperature regenerator is found, it is deemed that this is a poor circulation caused by cold starting in operation and in turn a combustion at the gas burner 311 is stopped once until a temperature of the high temperature regenerator device is decreased to 150 deg.C or lower. With such an arrangement as above, when poor circulation is generated and no absorbing liquid is fed into the high temperature regenerating device 3, the heating operation is stopped, resulting in that the temperature within the high temperature regenerator device 3 is not increased, but the absorbing liquid returns back into the absorbing device 7 during stopped state of combustion and the heating is started again, and so a stopping in cooling caused by high temperature error can be avoided and a cold raising in cooling operation can be performed smoothly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸収液を用いる吸
収式空調装置に関する。
The present invention relates to an absorption type air conditioner using an absorption liquid.

【0002】[0002]

【従来の技術】室外ファンを付設した室外熱交換器、吸
収器伝熱管、及び凝縮器伝熱管を順に環状接続してな
り、冷房運転時には冷却水ポンプにより冷却水を循環さ
せる冷却水回路と、送風ファンを付設した室内熱交換
器、蒸発器伝熱管を環状接続してなり、冷温水ポンプに
より冷温水を循環させる冷温水回路と、吸収液が入れら
れ加熱部が加熱源により加熱され冷房運転時には低濃度
吸収液中の冷媒を気化させて高濃度吸収液と蒸気冷媒と
に分離する再生器、前記凝縮器伝熱管を配設し冷房運転
時には再生器から高温の蒸気冷媒が送り込まれる凝縮
器、暖房運転時には前記再生器から高温の吸収液が送り
込まれ冷房運転時には前記凝縮器で液化した液冷媒を蒸
発させる蒸発器、該蒸発器に併設され前記吸収器伝熱管
を配設し冷房運転時には前記蒸発器で蒸発した蒸気冷媒
を前記再生器から送られる高濃度吸収液に吸収させる吸
収器、及び吸収器内の吸収液を前記再生器に戻す溶液ポ
ンプを有する吸収液回路と、冷房運転時には、前記吸収
器伝熱管に供給される前記冷却水の温度が所定温度(例
えば31.5℃)に維持される様に前記室外ファンを回
転数制御し、前記室内熱交換器に供給される前記冷温水
の温度が設定温度(例えば7℃)に維持される様に前記
加熱源の加熱力を比例制御する(例えば、1500kc
al〜4800kcal)制御器とを有し、前記送風フ
ァンにより冷風又は温風を室内に送風して室内冷暖房を
行う、フロンを使用しない吸収式空調装置が近年、注目
されている。
2. Description of the Related Art An outdoor heat exchanger provided with an outdoor fan, an absorber heat transfer tube, and a condenser heat transfer tube are annularly connected in order, and a cooling water circuit for circulating cooling water by a cooling water pump during cooling operation, An indoor heat exchanger equipped with a blower fan and an evaporator heat transfer tube are connected in a ring. A hot / cold water circuit that circulates cold / hot water by a cold / hot water pump, an absorption liquid is put in, and the heating section is heated by a heating source to perform cooling operation. Sometimes a regenerator that vaporizes the refrigerant in the low-concentration absorption liquid to separate it into a high-concentration absorption liquid and a vapor refrigerant, the condenser heat transfer tube is arranged, and a condenser into which a high-temperature vapor refrigerant is sent from the regenerator during cooling operation. An evaporator that evaporates the liquid refrigerant liquefied in the condenser during the cooling operation by sending a high-temperature absorption liquid from the regenerator during the heating operation; An absorber that absorbs the vapor refrigerant evaporated in the evaporator into the high-concentration absorption liquid sent from the regenerator, and an absorption liquid circuit having a solution pump that returns the absorption liquid in the absorber to the regenerator, and during cooling operation , The rotation speed of the outdoor fan is controlled so that the temperature of the cooling water supplied to the absorber heat transfer tube is maintained at a predetermined temperature (for example, 31.5 ° C.), and the temperature of the outdoor heat exchanger is supplied to the indoor heat exchanger. The heating power of the heating source is proportionally controlled so that the temperature of cold / hot water is maintained at a set temperature (for example, 7 ° C.) (for example, 1500 kc).
Recently, an absorption air conditioner that does not use chlorofluorocarbon has been attracting attention, which has an air conditioner (al.about.4800 kcal) controller, and cools or warms the room by blowing cold air or warm air into the room by the air blowing fan.

【0003】この吸収式空調装置では、過熱防止の為、
再生器内の温度が175℃以上になると異常停止する、
冷房高温エラー停止処理を行っていた。尚、冷房高温エ
ラー停止すると、電源スイッチを一旦、オフにしてエラ
ー解除した後、再度、冷房運転スイッチをオンにして冷
房運転を再開する必要があり、手間がかかる。
In this absorption type air conditioner, in order to prevent overheating,
When the temperature inside the regenerator becomes 175 ℃ or higher, it will stop abnormally.
The cooling high temperature error stop processing was being performed. When the cooling high temperature error is stopped, it is necessary to turn off the power switch once to release the error and then turn on the cooling operation switch again to restart the cooling operation, which is troublesome.

【0004】ところで、この吸収式空調装置では、特に
冷えた状態からの冷房運転の立ち上げ(コールドスター
ト)の場合は、各部の温度が定常温度に達するのに時間
がかかり、吸収液を循環させるだけの充分な圧力差が直
ちに生じないので、吸収器に吸収液が到達せず、一時的
に再生器に吸収液を送り込めない状態が発生する(外気
温が高くない場合は更に発生度合が高い)。この場合、
再生器が一時的に空焚き状態となり、再生器内の温度が
175℃以上となる。
By the way, in this absorption type air conditioner, especially when the cooling operation is started from a cold state (cold start), it takes time for the temperature of each part to reach a steady temperature, and the absorption liquid is circulated. Since a sufficient pressure difference is not immediately generated, the absorption liquid does not reach the absorber and the absorption liquid cannot be sent to the regenerator temporarily (when the outside temperature is not high, the generation degree is further increased). high). in this case,
The regenerator is temporarily put in an empty state, and the temperature inside the regenerator becomes 175 ° C or higher.

【0005】試験運転を重ねた結果、冷房高温エラー停
止には、上述の様な原因で一時的な空焚き状態になる場
合と、他の異常原因で空焚き状態になる場合とがある事
が判明した。
As a result of repeated test operations, there may be a case where the cooling high temperature error is stopped due to the above-described cause, which causes a temporary dry heating state, and a case where the abnormal heating causes a dry heating state. found.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、冷房
高温エラー停止の回数を減らし、冷房運転の立ち上げを
円滑に行う事ができる吸収式空調装置の提供にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an absorption type air conditioner which can reduce the number of times of cooling high temperature error stop and can smoothly start up the cooling operation.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、以下の構成を採用した。 (1)室外熱交換器、吸収器伝熱管、及び凝縮器伝熱管
を順に環状接続してなり、冷房運転時には冷却水ポンプ
により冷却水を循環させる冷却水回路と、室内熱交換
器、及び蒸発器伝熱管を環状接続してなり、冷温水ポン
プにより冷温水を循環させる冷温水回路と、吸収液が入
れられ加熱部が加熱源により加熱され冷房運転時には吸
収液中の冷媒を気化させる再生器、前記凝縮器伝熱管を
配設し冷房運転時には前記再生器から高温の蒸気冷媒が
送り込まれる凝縮器、冷房運転時には前記凝縮器で液化
した液冷媒を蒸発させる蒸発器、該蒸発器に併設され前
記吸収器伝熱管を配設し冷房運転時には前記蒸発器で蒸
発した蒸気冷媒を前記再生器から送られる濃縮吸収液に
吸収させる吸収器、及び吸収器内の吸収液を前記再生器
に戻す溶液ポンプを有する吸収液回路と、前記加熱源及
び前記溶液ポンプを制御する制御器とを有する吸収式空
調装置において、再生器内の温度が第1所定温度以上
で、且つ、再生器内の温度上昇速度が所定値以上の場
合、前記制御器は、前記加熱源の作動を一時的に停止
し、その後、前記加熱源の作動を再開する。
In order to solve the above problems, the present invention employs the following constitution. (1) An outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in an annular shape, and a cooling water circuit that circulates cooling water by a cooling water pump during cooling operation, an indoor heat exchanger, and evaporation. A hot and cold water circuit in which heat transfer pipes are connected in a ring, and cold and hot water is circulated by a hot and cold water pump, and a regenerator that vaporizes the refrigerant in the absorbing liquid during heating operation by heating the heating unit with the absorption liquid filled with the absorption liquid A condenser to which a high temperature vapor refrigerant is fed from the regenerator during the cooling operation by disposing the condenser heat transfer tube; an evaporator for evaporating the liquid refrigerant liquefied in the condenser during the cooling operation; An absorber for absorbing the vapor refrigerant evaporated in the evaporator in the concentrated absorption liquid sent from the regenerator during the cooling operation by disposing the absorber heat transfer tube, and a solution for returning the absorption liquid in the absorber to the regenerator. Pump In the absorption type air conditioner having an absorbing liquid circuit for controlling the heating source and the solution pump, the temperature in the regenerator is equal to or higher than a first predetermined temperature, and the temperature rising rate in the regenerator is When the value is equal to or larger than the predetermined value, the controller temporarily stops the operation of the heating source and then restarts the operation of the heating source.

【0008】(2)室外熱交換器、吸収器伝熱管、及び
凝縮器伝熱管を順に環状接続してなり、冷房運転時には
冷却水ポンプにより冷却水を循環させる冷却水回路と、
室内熱交換器、及び蒸発器伝熱管を環状接続してなり、
冷温水ポンプにより冷温水を循環させる冷温水回路と、
吸収液が入れられ加熱部が加熱源により加熱され冷房運
転時には低濃度吸収液中の冷媒を気化させて中濃度吸収
液と蒸気冷媒とに分離する高温再生器、該高温再生器を
包囲し、冷房運転時には前記中濃度吸収液を高濃度吸収
液と蒸気冷媒とに分離する低温再生器、前記凝縮器伝熱
管を配設し冷房運転時には各再生器から高温の蒸気冷媒
が送り込まれる凝縮器、冷房運転時には前記凝縮器で液
化した液冷媒を蒸発させる蒸発器、該蒸発器に併設され
前記吸収器伝熱管を配設し冷房運転時には前記蒸発器で
蒸発した蒸気冷媒を前記低温再生器から送られる高濃度
吸収液に吸収させる吸収器、及び吸収器内の吸収液を前
記高温再生器に戻す溶液ポンプを有する吸収液回路と、
前記加熱源及び前記溶液ポンプを制御する制御器とを有
する吸収式空調装置において、高温再生器内の温度が第
1所定温度以上で、且つ、高温再生器内の温度上昇速度
が所定値以上の場合、前記制御器は、前記加熱源の作動
を一時的に停止し、その後、前記加熱源の作動を再開す
る。
(2) A cooling water circuit in which an outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in an annular shape, and cooling water is circulated by a cooling water pump during cooling operation.
The indoor heat exchanger and the evaporator heat transfer pipe are connected in a ring.
A hot and cold water circuit that circulates cold and hot water with a cold and hot water pump,
A high-temperature regenerator that contains the absorbing liquid and is heated by the heating source by the heating source to vaporize the refrigerant in the low-concentration absorbing liquid during cooling operation to separate the medium-concentration absorbing liquid and the vapor refrigerant, surrounding the high-temperature regenerator, A low-temperature regenerator that separates the medium-concentration absorption liquid into a high-concentration absorption liquid and a vapor refrigerant during cooling operation, a condenser into which high-temperature vapor refrigerant is fed from each regenerator when the condenser heat transfer tube is provided and during cooling operation, An evaporator that evaporates the liquid refrigerant liquefied in the condenser during the cooling operation, and the absorber heat transfer tube that is attached to the evaporator is installed, and the vapor refrigerant evaporated in the evaporator is sent from the low temperature regenerator during the cooling operation. An absorber that absorbs a high-concentration absorbent that is absorbed, and an absorbent circuit that has a solution pump that returns the absorbent in the absorber to the high-temperature regenerator;
In an absorption type air conditioner having the heating source and a controller for controlling the solution pump, the temperature inside the high temperature regenerator is equal to or higher than a first predetermined temperature, and the temperature rising rate inside the high temperature regenerator is equal to or higher than a predetermined value. In this case, the controller temporarily stops the operation of the heating source and then restarts the operation of the heating source.

【0009】(3)上記(1) 又は(2) の構成を有し、前
記加熱源の作動再開後において、前記再生器又は高温再
生器内の温度が第1所定温度以上で、且つ、前記再生器
又は高温再生器内の温度上昇速度が所定値以上の場合、
前記制御器は運転を停止する。
(3) In the constitution of (1) or (2) above, after the operation of the heating source is restarted, the temperature inside the regenerator or the high temperature regenerator is equal to or higher than a first predetermined temperature, and If the rate of temperature rise in the regenerator or high temperature regenerator is above a certain value,
The controller stops operation.

【0010】(4)上記(1) 又は(2) の構成を有し、前
記再生器又は高温再生器内の温度が第1所定温度以上
で、且つ、その温度上昇速度が所定値以上の場合、前記
再生器又は高温再生器内の温度が、前記第1所定温度よ
り低い第2所定温度に低下する迄、前記制御器が前記加
熱源の作動を一時的に停止する。
(4) When the temperature of the regenerator or the high temperature regenerator is equal to or higher than a first predetermined temperature and the temperature rising rate is equal to or higher than a predetermined value, which has the configuration of (1) or (2) above. The controller temporarily suspends the operation of the heating source until the temperature in the regenerator or the high temperature regenerator falls to a second predetermined temperature lower than the first predetermined temperature.

【0011】(5)上記(1) 又は(2) の構成を有し、前
記再生器又は高温再生器内の温度が第1所定温度以上
で、且つ、その温度上昇速度が所定値以上の場合、前記
制御器は、一時停止タイマーで設定した所定時間の間、
前記加熱源の作動を一時的に停止する。
(5) When the temperature of the regenerator or the high temperature regenerator is equal to or higher than a first predetermined temperature and the temperature rising rate is equal to or higher than a predetermined value, it has the configuration of (1) or (2) above. , The controller, during a predetermined time set by the pause timer,
The operation of the heating source is temporarily stopped.

【0012】(6)上記(1) 乃至(5) の何れかの構成を
有し、前記第1所定温度は、定常運転時の前記加熱源の
加熱量に対応した略平衡状態の温度である。
(6) In any one of the above (1) to (5), the first predetermined temperature is a temperature in a substantially equilibrium state corresponding to the heating amount of the heating source during steady operation. .

【0013】[0013]

【作用】[Action]

〔請求項1の冷房運転について〕 (正常時)加熱源が加熱部を加熱し、再生器に入れられ
た吸収液の一部は気化して蒸気冷媒となり、凝縮器に送
り込まれる。冷房運転時、凝縮器伝熱管には冷却水が流
れているので蒸気冷媒は液化し、凝縮器内に溜まる。
[Cooling Operation of Claim 1] (Normal) The heating source heats the heating portion, and a part of the absorbing liquid put in the regenerator is vaporized to become a vapor refrigerant, which is sent to the condenser. During the cooling operation, since the cooling water is flowing through the condenser heat transfer tube, the vapor refrigerant is liquefied and accumulated in the condenser.

【0014】冷房運転時、凝縮器から蒸発器内に送り込
まれた液冷媒は、冷温水が流れる蒸発器伝熱管上に散布
され、気化熱を奪って蒸発し冷温水を冷却する。そし
て、冷却された冷温水が室内熱交換器を通過し、室内冷
房が行われる。又、冷房運転時、蒸発器で蒸発して吸収
器に入った蒸気冷媒は、再生器から送られる高濃度の吸
収液に吸収され、低濃度の吸収液となって吸収器内に溜
まる。吸収器内に溜まった低濃度の吸収液は、溶液ポン
プにより再生器に戻される。
During the cooling operation, the liquid refrigerant sent from the condenser into the evaporator is sprayed on the evaporator heat transfer tubes through which the cold and hot water flows, and the heat of vaporization is removed to evaporate to cool the hot and cold water. Then, the cooled cold / hot water passes through the indoor heat exchanger, and indoor cooling is performed. Further, during the cooling operation, the vapor refrigerant evaporated in the evaporator and entering the absorber is absorbed by the high-concentration absorption liquid sent from the regenerator, and becomes the low-concentration absorption liquid and is accumulated in the absorber. The low-concentration absorption liquid accumulated in the absorber is returned to the regenerator by the solution pump.

【0015】(循環不良時)冷房運転開始時、特に、再
生器内の吸収液の温度が低く、外気温が低い状態での立
ち上げの場合は、各部の温度が定常温度に達するには時
間がかかり、吸収液を循環させるだけの充分な圧力差が
生じない場合、吸収器に吸収液が到達せず、一時的に再
生器に吸収液を送り込めない状態が発生する。この場
合、再生器が空炊き状態となり、再生器内の温度が第1
所定温度以上の状態で、早い速度(所定値以上)で再生
器内の温度が上昇する。
(At the time of poor circulation) At the start of the cooling operation, especially when the temperature of the absorbing liquid in the regenerator is low and the startup is performed in a state where the outside air temperature is low, it takes time for the temperature of each part to reach the steady temperature. When the pressure difference is not enough to cause the absorption liquid to circulate, the absorption liquid does not reach the absorber and the state where the absorption liquid cannot be sent to the regenerator temporarily occurs. In this case, the regenerator will be cooked empty and the temperature inside the regenerator will be the first
When the temperature is equal to or higher than the predetermined temperature, the temperature inside the regenerator rises at a high speed (a predetermined value or higher).

【0016】この場合、制御器は、加熱源の作動を一時
的に停止して待機する。待機中に、各部の温度が上昇し
て吸収液を循環させるだけの充分な圧力差が生じるので
吸収器に吸収液が到達し、溶液ポンプにより再生器に吸
収液が移送される。再生器に吸収液が溜まり、空焚き状
態が解消されると、加熱源の作動を再開する。
In this case, the controller temporarily stops the operation of the heating source and waits. During standby, the temperature of each part rises and a sufficient pressure difference is generated to circulate the absorbing liquid, so that the absorbing liquid reaches the absorber and is transferred to the regenerator by the solution pump. When the absorbent is accumulated in the regenerator and the empty heating state is eliminated, the operation of the heating source is restarted.

【0017】〔請求項2の冷房運転について〕 (正常時)吸収液が入れられた高温再生器は、加熱部が
加熱源により加熱される。冷房運転時には、低濃度吸収
液中の冷媒が気化して中濃度吸収液と蒸気冷媒とに分離
する。冷房運転時は各再生器から高温の蒸気冷媒が凝縮
器に送り込まれる。
[Cooling Operation of Claim 2] (Normally) In the high temperature regenerator containing the absorbing liquid, the heating portion is heated by the heating source. During the cooling operation, the refrigerant in the low-concentration absorbent is vaporized and separated into the medium-concentration absorbent and the vapor refrigerant. During the cooling operation, high-temperature vapor refrigerant is sent from each regenerator to the condenser.

【0018】冷房運転時、凝縮器から蒸発器に送り込ま
れた液冷媒は、冷温水が流れる蒸発器伝熱管上に散布さ
れ、気化熱を奪って蒸発し冷温水を冷却する。そして、
冷却された冷温水が室内熱交換器を通過し、室内冷房が
行われる。又、冷房運転時、蒸発器で蒸発して吸収器に
入った蒸気冷媒は、低温再生器から送られる高濃度の吸
収液に吸収され、低濃度の吸収液となって吸収器内に溜
まる。吸収器内に溜まった低濃度の吸収液は、溶液ポン
プにより高温再生器に戻される。
During the cooling operation, the liquid refrigerant sent from the condenser to the evaporator is sprinkled on the evaporator heat transfer tube through which the cold and warm water flows, and the heat of vaporization is removed to evaporate to cool the cold and warm water. And
The cooled cold / hot water passes through the indoor heat exchanger, and indoor cooling is performed. Further, during the cooling operation, the vapor refrigerant evaporated in the evaporator and entering the absorber is absorbed by the high-concentration absorption liquid sent from the low-temperature regenerator, and becomes the low-concentration absorption liquid and accumulates in the absorber. The low-concentration absorption liquid accumulated in the absorber is returned to the high temperature regenerator by the solution pump.

【0019】(循環不良時)冷房運転開始時、特に、高
温再生器内の吸収液の温度が低く、外気温が低い状態で
の立ち上げの場合は、各部の温度が定常温度に達するに
は時間がかかり、吸収液を循環させるだけの充分な圧力
差が生じない場合、吸収器に吸収液が到達せず、一時的
に高温再生器に吸収液を送り込めない状態が発生する。
この場合、高温再生器が空炊き状態となり、高温再生器
内の温度が第1所定温度以上の状態で、早い速度(所定
値以上)で再生器又は高温再生器内の温度が上昇する。
(At the time of poor circulation) At the time of starting the cooling operation, especially when the temperature of the absorbing liquid in the high temperature regenerator is low and the startup is performed in a state where the outside air temperature is low, the temperature of each part reaches the steady temperature. If it takes time and a sufficient pressure difference to circulate the absorbing liquid does not occur, the absorbing liquid does not reach the absorber and the state in which the absorbing liquid cannot be sent to the high temperature regenerator temporarily occurs.
In this case, the high temperature regenerator is cooked in an empty state, and the temperature inside the high temperature regenerator rises at a high speed (above a predetermined value) while the temperature inside the high temperature regenerator is at or above the first predetermined temperature.

【0020】この場合、制御器は、加熱源の作動を一時
的に停止して待機する。待機中に、各部の温度が上昇し
て吸収液を循環させるだけの充分な圧力差が生じるので
吸収器に吸収液が到達し、溶液ポンプにより高温再生器
に吸収液が移送される。高温再生器に吸収液が溜まり、
空焚き状態が解消されると、加熱源の作動を再開する。
In this case, the controller temporarily stops the operation of the heating source and waits. During standby, the temperature of each part rises and a sufficient pressure difference is generated to circulate the absorbing liquid, so that the absorbing liquid reaches the absorber and is transferred to the high temperature regenerator by the solution pump. Absorption liquid accumulates in the high temperature regenerator,
When the empty heating state is eliminated, the operation of the heating source is restarted.

【0021】〔請求項3について〕加熱源の作動再開後
において、再生器又は高温再生器内の温度が第1所定温
度以上の状態で、温度上昇が早い(所定値以上)の場合
には、過熱に関し、別の原因が考えられるので運転を停
止する。
[Claim 3] After the operation of the heating source is restarted, if the temperature inside the regenerator or the high temperature regenerator is equal to or higher than the first predetermined temperature and the temperature rises quickly (above the predetermined value), There are other possible causes for overheating, so operation is stopped.

【0022】〔請求項4について〕冷房運転開始時、特
に、再生器又は高温再生器内の吸収液の温度が低く、外
気温が低い状態での立ち上げの場合は、各部の温度が定
常温度に達するには時間がかかり、吸収液を循環させる
だけの充分な圧力差が生じない場合、吸収器に吸収液が
到達せず、一時的に再生器又は高温再生器に吸収液を送
り込めない状態が発生する。この場合、再生器又は高温
再生器が空炊き状態となり、再生器又は高温再生器内の
温度が第1所定温度以上の状態で、早い速度(所定値以
上)で再生器又は高温再生器内の温度が上昇する。
[Claim 4] At the start of the cooling operation, particularly when the temperature of the absorbing liquid in the regenerator or the high-temperature regenerator is low and the startup is performed in a state where the outside air temperature is low, the temperature of each part is a steady temperature. Takes a long time to reach, and if there is not enough pressure difference to circulate the absorbent, the absorbent does not reach the absorber and cannot be sent to the regenerator or high temperature regenerator temporarily. A condition occurs. In this case, the regenerator or the high-temperature regenerator is in an empty state, the temperature inside the regenerator or the high-temperature regenerator is equal to or higher than the first predetermined temperature, and the regenerator or the high-temperature regenerator The temperature rises.

【0023】この場合、制御器は、再生器又は高温再生
器内の温度が、第1所定温度より低い第2所定温度に低
下する迄、加熱源の作動を一時的に停止する。一時停止
中に、各部の温度が上昇して吸収液を循環させるだけの
充分な圧力差が生じるので吸収器に吸収液が到達し、溶
液ポンプにより再生器又は高温再生器に吸収液が移送さ
れる。再生器又は高温再生器内の温度が第2所定温度に
低下すると、既に、再生器又は高温再生器に吸収液が溜
まっており、空焚き状態が解消されているので、制御器
は、加熱源の作動を再開する。
In this case, the controller temporarily suspends the operation of the heating source until the temperature inside the regenerator or the high temperature regenerator falls to the second predetermined temperature lower than the first predetermined temperature. During the suspension, the temperature of each part rises and a sufficient pressure difference is generated to circulate the absorbent, so the absorbent reaches the absorber and is transferred to the regenerator or high temperature regenerator by the solution pump. It When the temperature inside the regenerator or the high temperature regenerator has dropped to the second predetermined temperature, the absorbent has already accumulated in the regenerator or the high temperature regenerator, and the empty heating state has been resolved. Restart operation.

【0024】〔請求項5について〕冷房運転開始時、特
に、再生器又は高温再生器内の吸収液の温度が低く、外
気温が低い状態での立ち上げの場合は、各部の温度が定
常温度に達するには時間がかかり、吸収液を循環させる
だけの充分な圧力差が生じない場合、吸収器に吸収液が
到達せず、一時的に再生器又は高温再生器に吸収液を送
り込めない状態が発生する。この場合、再生器又は高温
再生器が空炊き状態となり、再生器又は高温再生器内の
温度が第1所定温度以上の状態で、早い速度(所定値以
上)で再生器又は高温再生器内の温度が上昇する。
[Claim 5] At the start of the cooling operation, in particular, when the temperature of the absorbing liquid in the regenerator or the high temperature regenerator is low and the startup is performed in a state where the outside air temperature is low, the temperature of each part is a steady temperature. Takes a long time to reach, and if there is not enough pressure difference to circulate the absorbent, the absorbent does not reach the absorber and cannot be sent to the regenerator or high temperature regenerator temporarily. A condition occurs. In this case, the regenerator or the high temperature regenerator is in an empty state, and the temperature inside the regenerator or the high temperature regenerator is equal to or higher than the first predetermined temperature, and the regenerator or the high temperature regenerator is operated at a high speed (a predetermined value or higher). The temperature rises.

【0025】この場合、制御器は、一時停止タイマーで
設定した所定時間の間、加熱源の作動を一時的に停止す
る。一時停止中に、各部の温度が上昇して吸収液を循環
させるだけの充分な圧力差が生じるので吸収器に吸収液
が到達し、溶液ポンプにより再生器又は高温再生器に吸
収液が移送される。一時停止タイマーがタイムアップす
ると、既に、再生器又は高温再生器に吸収液が溜まって
おり、空焚き状態が解消されているので、制御器は、加
熱源の作動を再開する。
In this case, the controller temporarily stops the operation of the heating source for the predetermined time set by the temporary stop timer. During the suspension, the temperature of each part rises and a sufficient pressure difference is generated to circulate the absorbent, so the absorbent reaches the absorber and is transferred to the regenerator or high temperature regenerator by the solution pump. It When the suspension timer times out, the absorbent has already accumulated in the regenerator or the high-temperature regenerator, and the dry heating state has been resolved. Therefore, the controller restarts the operation of the heating source.

【0026】〔請求項6について〕加熱源の作動を一時
的に停止する、第1所定温度は、定常運転時の加熱源の
加熱量に対応した略平衡状態の温度に設定される。
[Claim 6] The first predetermined temperature at which the operation of the heating source is temporarily stopped is set to a temperature in a substantially equilibrium state corresponding to the heating amount of the heating source during steady operation.

【0027】[0027]

【発明の効果】【The invention's effect】

〔請求項1について〕冷房運転の立ち上げにおいて、再
生器の温度が第1所定温度以上の状態で、再生器内の温
度上昇速度が所定値以上の場合には、空焚き状態と見な
して、制御器が加熱源の作動を一時的に停止する構成で
ある。これにより、再生器内の温度上昇が一時的に収ま
るので、冷房高温エラー停止を回避でき、冷房運転の立
ち上げを円滑に行う事ができる。
[Claim 1] When the temperature of the regenerator is equal to or higher than the first predetermined temperature at the start of the cooling operation, and the rate of temperature increase in the regenerator is equal to or higher than the predetermined value, it is considered that the reheating is in an empty state. The controller temporarily stops the operation of the heating source. As a result, the temperature rise in the regenerator is temporarily suppressed, so that the cooling high temperature error stop can be avoided and the cooling operation can be started up smoothly.

【0028】〔請求項2について〕冷房運転の立ち上げ
において、高温再生器の温度が第1所定温度以上の状態
で、高温再生器内の温度上昇速度が所定値以上の場合に
は、空焚き状態と見なして、制御器が加熱源の作動を一
時的に停止する構成である。これにより、高温再生器内
の温度上昇が一時的に収まるので、冷房高温エラー停止
を回避でき、冷房運転の立ち上げを円滑に行う事ができ
る。
[Claim 2] When the cooling operation is started up, when the temperature of the high temperature regenerator is equal to or higher than the first predetermined temperature and the temperature rising rate in the high temperature regenerator is equal to or higher than a predetermined value, the water heating is not performed. Considering the state, the controller temporarily stops the operation of the heating source. As a result, the temperature rise in the high temperature regenerator is temporarily suppressed, so that the cooling high temperature error stop can be avoided and the cooling operation can be started up smoothly.

【0029】〔請求項3について〕加熱源の作動再開後
において、再生器又は高温再生器内の温度が第1所定温
度以上の状態で、再生器又は高温再生器内の温度上昇速
度が所定値以上の場合には、制御器が運転を停止する構
成であるので、他の原因による、再生器又は高温再生器
の過熱を防止できる。
[Claim 3] After the operation of the heating source is restarted, the temperature rising rate in the regenerator or the high temperature regenerator is a predetermined value when the temperature in the regenerator or the high temperature regenerator is equal to or higher than the first predetermined temperature. In the above case, since the controller is configured to stop the operation, it is possible to prevent overheating of the regenerator or the high temperature regenerator due to other causes.

【0030】〔請求項4について〕冷房運転の立ち上げ
において、再生器又は高温再生器の温度が第1所定温度
以上の状態で、再生器又は高温再生器内の温度上昇速度
が所定値以上の場合には、空焚き状態と見なして、制御
器が、再生器又は高温再生器内の温度が第2所定温度に
低下する迄、加熱源の作動を一時的に停止する構成であ
る。これにより、再生器又は高温再生器内の温度上昇が
一時的に収まるので、冷房高温エラー停止を回避でき、
冷房運転の立ち上げを円滑に行う事ができる。
[Claim 4] When the cooling operation is started, the temperature of the regenerator or the high temperature regenerator is equal to or higher than the first predetermined temperature, and the temperature rising speed in the regenerator or the high temperature regenerator is equal to or higher than a predetermined value. In this case, the controller is considered to be in an empty state, and the controller temporarily suspends the operation of the heating source until the temperature inside the regenerator or the high temperature regenerator falls to the second predetermined temperature. As a result, the temperature rise in the regenerator or the high temperature regenerator is temporarily stopped, so that it is possible to avoid the cooling high temperature error stop,
The cooling operation can be started up smoothly.

【0031】〔請求項5について〕冷房運転の立ち上げ
において、再生器又は高温再生器の温度が第1所定温度
以上の状態で、再生器又は高温再生器内の温度上昇速度
が所定値以上の場合には、空焚き状態と見なして、制御
器が、一時停止タイマーで設定した所定時間の間、加熱
源の作動を一時的に停止する構成である。これにより、
再生器又は高温再生器内の温度上昇が一時的に収まるの
で、冷房高温エラー停止を回避でき、冷房運転の立ち上
げを円滑に行う事ができる。
[Claim 5] When the cooling operation is started, the temperature of the regenerator or the high temperature regenerator is equal to or higher than the first predetermined temperature, and the temperature rising rate in the regenerator or the high temperature regenerator is equal to or higher than a predetermined value. In this case, the controller is considered to be in an empty state, and the controller temporarily suspends the operation of the heating source for a predetermined time set by the suspension timer. This allows
Since the temperature rise in the regenerator or the high temperature regenerator is temporarily stopped, the cooling high temperature error stop can be avoided and the cooling operation can be started up smoothly.

【0032】〔請求項6について〕第1所定温度を、定
常運転時の加熱源の加熱量に対応した略平衡状態の温度
に設定し、再生器又は高温再生器内の温度が第1所定温
度以上で、且つ、その温度上昇速度が所定値以上の場合
に、空焚き状態と見なす構成であるので、空焚き状態を
確実に検知できる。
[Claim 6] The first predetermined temperature is set to a temperature in a substantially equilibrium state corresponding to the heating amount of the heating source during steady operation, and the temperature inside the regenerator or the high temperature regenerator is the first predetermined temperature. When the temperature increase rate is equal to or higher than the predetermined value, the configuration is considered to be the dry heating state, so that the dry heating state can be reliably detected.

【0033】[0033]

【発明の実施の形態】本発明の一実施例(請求項2、
3、4、6に対応)を、図1〜図5に基づいて説明す
る。図1〜図4に示す様に、吸収式空調装置Aは、冷房
運転時に冷却水10を循環させる冷却水回路1と、冷房
・暖房運転時に冷温水20を循環させる冷温水回路2
と、高温再生器3、低温再生器4、凝縮器5、蒸発器
6、吸収器7、及び溶液ポンプ80を有する吸収液回路
8と、制御器9とを備える。
BEST MODE FOR CARRYING OUT THE INVENTION One embodiment of the present invention (claim 2,
(Corresponding to 3, 4, and 6) will be described with reference to FIGS. As shown in FIGS. 1 to 4, an absorption air conditioner A includes a cooling water circuit 1 that circulates cooling water 10 during a cooling operation, and a cooling and hot water circuit 2 that circulates cold and hot water 20 during a cooling / heating operation.
An absorbent liquid circuit 8 having a high temperature regenerator 3, a low temperature regenerator 4, a condenser 5, an evaporator 6, an absorber 7, and a solution pump 80, and a controller 9.

【0034】冷却水回路1は、冷却塔ファン111を付
設した冷却塔11(室外熱交換器)と、冷却水タンク1
2と、冷却水ポンプ13と、吸収器伝熱管14、凝縮器
伝熱管15を順に環状接続して構成され、冷房運転時に
は冷却水ポンプ13(1230リットル/h)を作動さ
せて冷却水10を循環させる。
The cooling water circuit 1 includes a cooling tower 11 (outdoor heat exchanger) provided with a cooling tower fan 111, and a cooling water tank 1.
2, a cooling water pump 13, an absorber heat transfer tube 14, and a condenser heat transfer tube 15 are sequentially connected in an annular shape. During cooling operation, the cooling water pump 13 (1230 liters / h) is operated to remove the cooling water 10. Circulate.

【0035】冷却塔ファン111は、交流コンデンサモ
ータ112により駆動される。尚、交流コンデンサモー
タ112は、トライアック(図示せず)を介してAC-
100Vに接続され、冷却水温センサ91が検出する冷
却水温が31.5℃に維持される様に制御器9により回
転数が制御される。
The cooling tower fan 111 is driven by an AC condenser motor 112. The AC condenser motor 112 is connected to the AC-motor via a triac (not shown).
The rotation speed is controlled by the controller 9 so that the cooling water temperature detected by the cooling water temperature sensor 91 is maintained at 31.5 ° C.

【0036】上記冷却水温センサ91は、冷却水ポンプ
13- 吸収器伝熱管14間を接続する冷却水管101中
に配設され、吸収器伝熱管14に供給される冷却水10
の温度を検出する。又、暖房運転時には、冷却水回路1
内の冷却水10は全て抜かれ、交流コンデンサモータ1
12には通電されない。
The cooling water temperature sensor 91 is provided in the cooling water pipe 101 connecting the cooling water pump 13 and the absorber heat transfer pipe 14, and the cooling water 10 supplied to the absorber heat transfer pipe 14 is connected.
Detect the temperature of Also, during heating operation, the cooling water circuit 1
All the cooling water 10 inside is drained and the AC condenser motor 1
12 is not energized.

【0037】冷温水回路2は、送風ファン211を付設
した室内熱交換器21、シスターン22、冷温水ポンプ
23(最大能力時620リットル/h)、蒸発器伝熱管
24を環状接続してなり、冷温水ポンプ23により冷温
水20を循環させている。尚、冷房運転時の室内熱交換
器21の吸熱量は4340kcal(最大能力時)であ
り、暖房運転時の室内熱交換器21の放熱量は6200
kcal(最大能力時)である。
The cold / hot water circuit 2 is formed by annularly connecting an indoor heat exchanger 21 provided with a blower fan 211, a cistern 22, a cold / hot water pump 23 (620 l / h at maximum capacity), and an evaporator heat transfer tube 24. The cold / hot water 20 is circulated by the cold / hot water pump 23. The heat absorption amount of the indoor heat exchanger 21 during the cooling operation is 4340 kcal (at the maximum capacity), and the heat radiation amount of the indoor heat exchanger 21 during the heating operation is 6200 kcal.
kcal (at maximum capacity).

【0038】高温再生器3は、ガスバーナ311によっ
て吸収液を加熱する沸騰器31と、沸騰器31から立設
する分離筒32と、捕集容器33とにより構成され、冷
房運転時、沸騰器31内の低濃度吸収液(以下希液30
と呼ぶ;58%臭化リチウム水溶液)中に含まれる冷媒
(水)を蒸発させて中濃度吸収液(以下中液34と呼
ぶ;60%臭化リチウム水溶液)と蒸気冷媒35とに分
離する。
The high temperature regenerator 3 is composed of a boiling device 31 for heating the absorbing liquid by the gas burner 311, a separating cylinder 32 standing upright from the boiling device 31, and a collecting container 33. During the cooling operation, the boiling device 31 is provided. Low-concentration absorption liquid (hereinafter dilute liquid 30
The refrigerant (water) contained in the 58% lithium bromide aqueous solution is evaporated to separate the medium-concentration absorbing liquid (hereinafter referred to as medium liquid 34; 60% lithium bromide aqueous solution) and the vapor refrigerant 35.

【0039】ガスバーナ311は、ブンゼン式であり、
ガス電磁弁312、313、ガス比例弁314を連設し
たガス管315によりガスが供給され、燃焼用ファン3
16により燃焼用空気が供給されて燃焼する。321は
断熱を図る為の間隙である。又、沸騰器31の適所に
は、高温再生器3の温度(希液30の温度)を検出する
為のHGE温度センサ301が配設されている。
The gas burner 311 is of the Bunsen type,
Gas is supplied by a gas pipe 315 having gas solenoid valves 312 and 313 and a gas proportional valve 314 connected thereto.
The combustion air is supplied by 16 and burns. 321 is a gap for achieving heat insulation. Further, an HGE temperature sensor 301 for detecting the temperature of the high temperature regenerator 3 (the temperature of the dilute liquid 30) is provided at an appropriate position of the boiling device 31.

【0040】冷温水センサ201は、室内熱交換器21
の入口側の冷温水配管29に配設され、室内熱交換器2
1に供給される冷温水20の温度を検出する。
The cold / hot water sensor 201 is used for the indoor heat exchanger 21.
Is installed in the hot and cold water pipe 29 on the inlet side of the indoor heat exchanger 2
The temperature of the cold / hot water 20 supplied to 1 is detected.

【0041】冷房運転時には、制御器9は、冷温水セン
サ201が検出する冷温水20の温度(平均温度)が7
℃になる様に、1500kcal〜4800kcalの
間で、ガスバーナ311のインプットを比例制御(冷房
比例制御)する。又、ターボ冷房運転時はインプットが
6500kcalとされる。
During the cooling operation, the controller 9 controls the temperature (average temperature) of the cold / hot water 20 detected by the cold / hot water sensor 201 to 7
The input of the gas burner 311 is proportionally controlled (cooling proportional control) between 1500 kcal and 4800 kcal so that the temperature becomes 0 ° C. The input is set to 6500 kcal during turbo cooling operation.

【0042】暖房運転時には、制御器9は、室内熱交換
器21に供給される冷温水20の温度が60℃になる様
に、1500kcal〜8000kcalの間で、ガス
バーナ311のインプットを比例制御(暖房比例制御)
する。
During the heating operation, the controller 9 proportionally controls the input of the gas burner 311 between 1500 kcal and 8000 kcal so that the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 becomes 60 ° C. (heating). (Proportional control)
I do.

【0043】冷房運転時は、冷暖切替弁36が閉弁して
いるので、中液34(165℃)は、中液配管341→
高温熱交換流路342→オリフィス343付きの中液配
管344を経て低温再生器4の上部に送り込まれる。
During the cooling operation, the cooling / heating switching valve 36 is closed, so that the medium liquid 34 (165 ° C.) is discharged from the medium liquid pipe 341 →
The high-temperature heat exchange flow path 342 is sent to the upper part of the low-temperature regenerator 4 via the middle liquid pipe 344 having the orifice 343.

【0044】低温再生器4は、高温再生器3の捕集容器
33を包囲し、冷房運転時には、中液34は、捕集容器
33から受熱して加熱される。これにより、中液34の
一部が気化して高濃度吸収液(以下濃液41と呼ぶ;6
2%臭化リチウム水溶液)と蒸気冷媒42とに分離され
る。又、冷暖切替弁36が開弁する暖房運転時には、中
液配管344はオリフィス343により流路抵抗が生じ
るので、中液34は全て暖房配管361に流れ、低温再
生器4に送り込まれない。
The low-temperature regenerator 4 surrounds the collection container 33 of the high-temperature regenerator 3, and during the cooling operation, the medium liquid 34 receives heat from the collection container 33 and is heated. As a result, a part of the medium liquid 34 is vaporized and the high-concentration absorption liquid (hereinafter referred to as the concentrated liquid 41; 6
2% lithium bromide aqueous solution) and vapor refrigerant 42 are separated. Further, during the heating operation in which the cooling / heating switching valve 36 is opened, flow path resistance is generated in the medium liquid pipe 344 by the orifice 343, so that all the medium liquid 34 flows into the heating pipe 361 and is not sent to the low temperature regenerator 4.

【0045】凝縮器5には、高温再生器3、低温再生器
4から蒸気冷媒35、42が凝縮器5に送り込まれ、蒸
気冷媒35、42は、コイル状の凝縮器伝熱管15を流
れる冷却水10によって冷却され液化し、液冷媒(水)
52は凝縮器5の底部に溜まる。尚、昇温(37.5
℃)した冷却水10は、冷却塔11で冷却(31.5
℃)される。
In the condenser 5, vapor refrigerants 35 and 42 are sent from the high temperature regenerator 3 and the low temperature regenerator 4 to the condenser 5, and the vapor refrigerants 35 and 42 are cooled in the coiled condenser heat transfer tube 15. Liquid refrigerant (water) cooled by water 10 and liquefied
52 accumulates at the bottom of the condenser 5. In addition, temperature rise (37.5)
The cooling water 10 cooled in the cooling tower 11 (31.5 ° C.).
° C).

【0046】蒸発器6は、コイル状の蒸発器伝熱管24
を配設している。暖房運転時には冷暖切替弁36が開弁
するので、分離塔32内の高温の吸収液が、冷暖切替弁
36→暖房配管361を介して蒸発器6に送り込まれ
る。又、冷房運転時には、液冷媒52が、冷媒配管53
→冷媒弁54→散布器55を介して蒸発器伝熱管24上
に散布され、蒸発器6内は略真空(約6.5mmHg)
であるので、液冷媒52は蒸発器伝熱管24内を流れる
冷温水20から気化熱を奪って蒸発する。そして、冷却
された冷温水20は室内に配置された室内熱交換器21
で室内に送風される空気と熱交換(最大能力時、吸熱4
000kcal/h)して昇温し、昇温した冷温水20
は再び蒸発器伝熱管24を通過して冷却される。
The evaporator 6 is a coiled evaporator heat transfer tube 24.
Is arranged. Since the cooling / heating switching valve 36 is opened during the heating operation, the high temperature absorbing liquid in the separation column 32 is sent to the evaporator 6 via the cooling / heating switching valve 36 → heating pipe 361. During the cooling operation, the liquid refrigerant 52 is
→ Refrigerant valve 54 → Sprayed on the evaporator heat transfer tube 24 via the sprayer 55, and the inside of the evaporator 6 is substantially vacuum (about 6.5 mmHg)
Therefore, the liquid refrigerant 52 deprives the heat of vaporization from the cold / hot water 20 flowing in the evaporator heat transfer tube 24 to evaporate. Then, the cooled cold / hot water 20 is supplied to the indoor heat exchanger 21 arranged indoors.
Exchanges heat with the air blown indoors (at maximum capacity, endothermic 4
000 kcal / h) to raise the temperature and raise the temperature of cold / hot water 20
Is again cooled by passing through the evaporator heat transfer tube 24.

【0047】吸収器伝熱管14を配設した吸収器7は、
蒸発器6に併設され、上部が蒸発器6と連通している。
そして、冷房運転時には、蒸発器6で蒸発した蒸気冷媒
は上部から吸収器7内に進入し、低温再生器4→濃液配
管411→低温熱交換流路412→濃液配管413→散
布器70を介して吸収器伝熱管14上に散布される濃液
41に吸収され、低濃度となった希液30は吸収器7の
底部に溜まる。又、暖房運転時には、蒸発器6から高温
の吸収液が送り込まれる。
The absorber 7 provided with the absorber heat transfer tube 14 is
It is attached to the evaporator 6, and the upper part communicates with the evaporator 6.
Then, during the cooling operation, the vapor refrigerant evaporated in the evaporator 6 enters the absorber 7 from above, and the low temperature regenerator 4 → the concentrated liquid pipe 411 → the low temperature heat exchange flow path 412 → the concentrated liquid pipe 413 → the sprinkler 70. The dilute liquid 30 which has been absorbed by the concentrated liquid 41 which has been sprayed onto the absorber heat transfer tube 14 and has a low concentration is collected at the bottom of the absorber 7. Further, during the heating operation, the high temperature absorbing liquid is sent from the evaporator 6.

【0048】溶液ポンプ80は、AC- 100Vで動作
する三相DCブラシレスモータであり、ホール素子(図
示せず)が取り付けられている。この溶液ポンプ80
は、HGE温度- 回転数特性に基づいて回転数制御され
る。尚、冷温水ポンプ23と溶液ポンプ80を一台のタ
ンデムポンプで構成しても良い。
The solution pump 80 is a three-phase DC brushless motor operating at AC-100V, and has a hall element (not shown) attached thereto. This solution pump 80
Is controlled in speed based on the HGE temperature-speed characteristic. The cold / hot water pump 23 and the solution pump 80 may be configured as a single tandem pump.

【0049】吸収器7の底部に溜まった希液30(暖房
運転時は吸収液)は、希液配管71→溶液ポンプ80→
希液配管72→低温・高温熱交換流路73→希液配管7
4を介して高温再生器3の沸騰器31に送られる。
The dilute liquid 30 (absorption liquid during heating operation) accumulated at the bottom of the absorber 7 is diluted liquid pipe 71 → solution pump 80 →
Dilute liquid pipe 72 → Low temperature / high temperature heat exchange flow path 73 → Dilute liquid pipe 7
It is sent to the boiling device 31 of the high temperature regenerator 3 via 4.

【0050】制御器9は、運転スイッチ(図示せず)、
各水位センサ、沸騰器31内の吸収液温度を検知するH
GE温度センサ301、室内熱交換器21に供給される
冷温水20の温度を検出する冷温水センサ201、蒸発
器6の内部温度を検出するEVA温度センサ61、及び
吸収器伝熱管14に供給する冷却水10の温度を検出す
る冷却水温センサ91からの信号に基づいて、以下のも
のを制御する。
The controller 9 includes an operation switch (not shown),
Each water level sensor, H for detecting the temperature of the absorbing liquid in the boiling device 31
The GE temperature sensor 301, the cold / hot water sensor 201 for detecting the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21, the EVA temperature sensor 61 for detecting the internal temperature of the evaporator 6, and the absorber heat transfer tube 14 are supplied. The following is controlled based on the signal from the cooling water temperature sensor 91 that detects the temperature of the cooling water 10.

【0051】給水弁221、ガス電磁弁312、31
3、ガス比例弁314、溶液ポンプ80、冷却水ポンプ
13、冷却塔ファン111、冷媒弁54、冷暖切替弁3
6、冷温水ポンプ23。
Water supply valve 221, gas solenoid valves 312, 31
3, gas proportional valve 314, solution pump 80, cooling water pump 13, cooling tower fan 111, refrigerant valve 54, cooling / heating switching valve 3
6, cold and hot water pump 23.

【0052】冷房運転又は暖房運転時、吸収式空調装置
Aは、以下の様に作動する。吸収液が入れられた高温再
生器3は、沸騰器31がガスバーナ311により加熱さ
れる。冷房運転時には、希液30中の冷媒が気化して中
液34と蒸気冷媒35とに分離する。冷房運転時(図4
参照)は、高温再生器3、低温再生器4から高温の蒸気
冷媒35、42が凝縮器5に送り込まれる。
During the cooling operation or the heating operation, the absorption air conditioner A operates as follows. In the high-temperature regenerator 3 containing the absorbing liquid, the boiler 31 is heated by the gas burner 311. During the cooling operation, the refrigerant in the dilute liquid 30 is vaporized and separated into the medium liquid 34 and the vapor refrigerant 35. During cooling operation (Fig. 4
In reference (1), the high temperature vapor refrigerants 35 and 42 are sent to the condenser 5 from the high temperature regenerator 3 and the low temperature regenerator 4.

【0053】凝縮器5から蒸発器6に送りこまれた液冷
媒52は、冷温水20が流れる蒸発器伝熱管24上に散
布され、気化熱を奪って蒸発し、蒸発した蒸気冷媒は吸
収器7内に進入し、低温再生器4から送られる濃液41
に吸収され希液30となって吸収器7内に溜まり、溶液
ポンプ80により高温再生器3の沸騰器31に戻され
る。
The liquid refrigerant 52 sent from the condenser 5 to the evaporator 6 is sprinkled on the evaporator heat transfer tube 24 through which the cold / hot water 20 flows, takes the vaporization heat and evaporates, and the evaporated vapor refrigerant is absorbed by the absorber 7. The concentrated liquid 41 that enters the inside and is sent from the low temperature regenerator 4
Is absorbed in the absorber 7 and accumulated in the absorber 7 and returned to the boiling device 31 of the high temperature regenerator 3 by the solution pump 80.

【0054】液冷媒が、冷温水20が流れる蒸発器伝熱
管24上で蒸発する際に冷温水20を冷却し、冷却され
た冷温水20が室内熱交換器21を通過し、送風ファン
211により冷風が室内に吹き出される事により室内冷
房が行われる。この時、室内制御器25は、室温センサ
26が検出する室温が、室温設定器(図示せず)で設定
した設定室温になる様に、流量調節弁27及び送風ファ
ン211を制御する。
When the liquid refrigerant evaporates on the evaporator heat transfer tube 24 through which the cold / hot water 20 flows, the cold / hot water 20 is cooled, the cooled cold / hot water 20 passes through the indoor heat exchanger 21, and the blower fan 211 is used. Indoor cooling is performed by blowing cold air into the room. At this time, the indoor controller 25 controls the flow rate adjusting valve 27 and the blower fan 211 so that the room temperature detected by the room temperature sensor 26 becomes the set room temperature set by the room temperature setting device (not shown).

【0055】冷房運転時には、制御器9は、室内熱交換
器21に供給される冷温水20の温度が7℃になる様
に、ガスバーナ311のインプットを制御する。暖房運
転の場合は、暖房配管361を介して、高温再生器3か
ら高温の吸収液が蒸発器6に送り込まれ、吸収液は、蒸
発器伝熱管24を流れる冷温水20を加熱し、蒸発器6
内の吸収液は吸収器7内に進入し、吸収器7内に溜ま
る。尚、溜まった吸収液は、溶液ポンプ80により高温
再生器3に戻される。
During the cooling operation, the controller 9 controls the input of the gas burner 311 so that the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 becomes 7 ° C. In the heating operation, the high-temperature regenerator 3 is sent to the evaporator 6 from the high-temperature regenerator 3 via the heating pipe 361, and the absorption liquid heats the cold / hot water 20 flowing through the evaporator heat transfer pipe 24 to 6
The absorbing liquid therein enters the absorber 7 and accumulates in the absorber 7. The absorbed absorption liquid is returned to the high temperature regenerator 3 by the solution pump 80.

【0056】吸収液により加熱されて昇温した冷温水2
0が室内熱交換器21を通過し、送風ファン211によ
り温風が室内に吹き出される事により室内暖房が行われ
る。この時、制御器9は、室内熱交換器21に供給する
冷温水20の温度が60℃になる様に、ガスバーナ31
1のインプット(1500〜8000kcal)を制御
する。又、室内制御器25は、室温センサ26が検出す
る室温が、室温設定器(図示せず)で設定した設定室温
になる様に、流量調節弁27及び送風ファン211を制
御する。
Cold / hot water 2 heated by the absorbing liquid to raise its temperature
0 passes through the indoor heat exchanger 21, and the blower fan 211 blows warm air into the room to heat the room. At this time, the controller 9 controls the gas burner 31 so that the temperature of the cold / hot water 20 supplied to the indoor heat exchanger 21 becomes 60 ° C.
Control 1 input (1500-8000 kcal). Further, the indoor controller 25 controls the flow rate control valve 27 and the blower fan 211 so that the room temperature detected by the room temperature sensor 26 becomes the set room temperature set by the room temperature setting device (not shown).

【0057】つぎに、冷房運転の立ち上げを円滑にでき
る仕組みを、図5のフローチャートに基づいて述べる。
使用者が冷房運転スイッチ(図示せず)をオンすると、
制御器9及び室内制御器25が所定の手順に従って制御
を開始する。
Next, a mechanism for smoothly starting the cooling operation will be described with reference to the flowchart of FIG.
When the user turns on the cooling operation switch (not shown),
The controller 9 and the indoor controller 25 start the control according to a predetermined procedure.

【0058】コールド冷房スタート{ステップs1でY
ES;HGE≦50℃;HGEは温度センサ301の検
知温度}の場合は、給水弁221を開弁して、シスター
ン22に水を溜めるクーリングタワー処理(CT処理)
をステップs2で行ない(所要時間約1分)、ステップ
s3に進む。
Cold cooling start {Y in step s1
ES; HGE ≦ 50 ° C .; HGE is the temperature detected by the temperature sensor 301}, the water supply valve 221 is opened, and cooling tower processing (CT processing) is performed to store water in the cistern 22.
Is performed in step s2 (required time is about 1 minute), and the process proceeds to step s3.

【0059】ホット冷房スタート(ステップs1でN
O;HGE>50℃)の場合は、給水弁221を開弁し
て、シスターン22に水を溜めるクーリングタワー処理
(CT処理)をステップs11で行ない(所要時間約1
分)、ステップs12に進む。
Start hot cooling (N in step s1)
In the case of O; HGE> 50 ° C.), the water supply valve 221 is opened and the cooling tower process (CT process) for collecting water in the systern 22 is performed in step s11 (the required time is about 1).
Min), and proceeds to step s12.

【0060】ステップs3で溶液ポンプを2400rp
mで回転し、ステップs4で点火動作を行ない、ガスバ
ーナ311が燃焼を開始する。ステップs5で、以下に
示すコールドスタート制御(2回目はホットスタート制
御)を行ない、冷房運転が安定したら、冷房比例制御に
移行する。
At step s3, the solution pump is set to 2400 rp.
It rotates at m, the ignition operation is performed at step s4, and the gas burner 311 starts combustion. In step s5, cold start control (hot start control for the second time) described below is performed, and when the cooling operation is stable, the control proceeds to the cooling proportional control.

【0061】(コールドスタート制御)HGE<60℃
の間は、インプットを3500kcalとする。冷温水
>11℃で、60℃≦HGE<150℃となると、ター
ボ冷房運転に移行し、インプットを6500kcalに
する。80℃≦HGEで、溶液ポンプ80を、インプッ
トに比例した回転数で制御する。10℃<冷温水≦11
℃、HGE≧150℃となると、インプット4800k
calに落とす。冷房運転が安定し、冷温水≦10℃と
なる(但し、HGE≧150℃)と、冷房比例制御に移
行する。
(Cold start control) HGE <60 ° C.
During that period, the input is 3500 kcal. When cold / hot water> 11 ° C. and 60 ° C. ≦ HGE <150 ° C., the turbo cooling operation is started and the input is set to 6500 kcal. When 80 ° C. ≦ HGE, the solution pump 80 is controlled with the rotation speed proportional to the input. 10 ℃ <Cold and hot water ≦ 11
℃, HGE ≧ 150 ℃, input 4800k
drop to cal. When the cooling operation becomes stable and the cold / hot water becomes ≦ 10 ° C. (however, HGE ≧ 150 ° C.), the control proceeds to the cooling proportional control.

【0062】(ホットスタート制御)10℃<冷温水で
インプット4800kcalとする。冷房運転が安定
し、冷温水≦10℃となる(但し、HGE≧150℃)
と、冷房比例制御に移行する。
(Hot start control) 10 ° C. <Cold / warm water input 4800 kcal. Cooling operation is stable, and cold / hot water ≤ 10 ° C (however, HGE ≥ 150 ° C)
Then, the control shifts to the cooling proportional control.

【0063】(冷房比例制御)冷温水20の温度(平均
温度)が7℃になる様に、1500kcal〜4800
kcalの間で、ガスバーナ311のインプットを比例
制御(冷房比例制御)する。
(Cooling proportional control) 1500 kcal to 4800 so that the temperature (average temperature) of the cold / hot water 20 becomes 7 ° C.
During kcal, the input of the gas burner 311 is proportionally controlled (cooling proportional control).

【0064】ステップs5の制御を実施中に、ステップ
s6の条件(HGE≧160℃で、3秒間で2℃以上、
HGE温度が上昇する場合)を満たす場合(ステップs
6でYES)はステップs7に進み、満たさない場合
(ステップs6でNO)はステップs5に戻って、コー
ルドスタート制御(2回目はホットスタート制御)、又
は冷房比例制御を継続する。
During the control of step s5, the conditions of step s6 (HGE ≧ 160 ° C., 2 ° C. or more for 3 seconds,
When the HGE temperature rises) (step s
If YES in step 6, the process proceeds to step s7, and if not satisfied (NO in step s6), the process returns to step s5 to continue cold start control (hot start control for the second time) or cooling proportional control.

【0065】ステップs6の条件が成立する場合が2回
目である場合(ステップs7でYES)は、冷房高温エ
ラー処理を行った後、冷房高温エラー停止する。又、ス
テップs6の条件が成立する場合が1回目である場合
(ステップs7でNO)は、ステップs8に進む。ステ
ップs8で、制御器9は、ガスバーナ311の消火を指
示する。ステップs9で、制御器9は、溶液ポンプ80
の作動(インプットに比例した回転数)を継続する。
If the condition in step s6 is satisfied for the second time (YES in step s7), the cooling high temperature error is stopped after performing the cooling high temperature error processing. If the condition in step s6 is satisfied for the first time (NO in step s7), the process proceeds to step s8. In step s8, the controller 9 gives an instruction to extinguish the gas burner 311. In step s9, the controller 9 causes the solution pump 80
Continue the operation of (rotational speed proportional to the input).

【0066】ステップs10で、HGE≦150℃であ
るか否か判別し、HGE>150℃の場合は、ステップ
s9に戻るとともに消火状態を継続する。尚、ステップ
s9→ステップs10でNO→ステップs9のループ中
に各部の温度が上昇していき、吸収液を循環させる為の
充分な圧力差が発生して吸収液が吸収器7に到達する。
HGE≦150℃に低下すると、ステップs4に戻り、
点火動作を実施する。
In step s10, it is judged whether or not HGE ≦ 150 ° C., and if HGE> 150 ° C., the process returns to step s9 and the extinguishing state is continued. In addition, the temperature of each part rises in the loop of NO → step s9 in step s9 → step s10, and a sufficient pressure difference for circulating the absorbent occurs and the absorbent reaches the absorber 7.
When HGE ≦ 150 ° C., the process returns to step s4,
Carry out the ignition operation.

【0067】一方、ホット冷房スタートの場合、ステッ
プs12で点火動作を行ない、ガスバーナ311が燃焼
を開始する。ステップs13で、上述したホットスター
ト制御を行ない、冷房運転が安定したら上述した冷房比
例制御に移行する。
On the other hand, in the case of hot cooling start, the ignition operation is performed in step s12, and the gas burner 311 starts combustion. In step s13, the hot start control described above is performed, and when the cooling operation is stable, the above-described cooling proportional control is performed.

【0068】つぎに、本実施例の吸収式空調装置Aの利
点を述べる。 〔ア〕吸収式空調装置Aは、HGE≦50℃での、冷房
運転のコールド立ち上げの場合において、HGE≧16
0℃で、且つ、HGE温度の上昇が早い(3秒間に2℃
以上)場合には、コールドスタートに伴う循環不良と見
なして、HGE≦150℃に低下する迄、一旦、ガスバ
ーナ311の燃焼を停止する構成である。
Next, the advantages of the absorption air conditioner A of this embodiment will be described. [A] Absorption type air conditioner A has HGE ≧ 16 in the case of cold startup of cooling operation at HGE ≦ 50 ° C.
At 0 ℃, the HGE temperature rises quickly (2 ℃ in 3 seconds).
In the above case, it is considered that the circulation is defective due to cold start, and the combustion of the gas burner 311 is temporarily stopped until the temperature falls to HGE ≦ 150 ° C.

【0069】これにより、循環不良が生じて、高温再生
器3内に吸収液が送られて来ない時には、加熱停止する
為、高温再生器3内の温度は上昇せず、ガスバーナ31
1の燃焼停止中に吸収液が吸収器7内に戻り、加熱が再
開されるで、冷房高温エラー停止を回避でき、冷房運転
のコールド立ち上げを円滑に行う事ができる。尚、特
に、各部の温度が早期に定常状態になり難い外気温が低
い場合の、冷房運転のコールド立ち上げの場合に有効で
ある。
As a result, when the circulation failure occurs and the absorbing liquid is not sent into the high temperature regenerator 3, the heating is stopped, so that the temperature in the high temperature regenerator 3 does not rise and the gas burner 31
Since the absorbing liquid returns to the inside of the absorber 7 and the heating is restarted while the combustion of No. 1 is stopped, the cooling high temperature error stop can be avoided and the cold start of the cooling operation can be smoothly performed. It is particularly effective for cold start-up of the cooling operation when the outside air temperature is low, where the temperature of each part is unlikely to reach a steady state early.

【0070】〔イ〕吸収式空調装置Aは、ガスバーナ3
11の再燃焼後における、HGE≧160℃以上の状態
で、HGE温度の上昇が早い(3秒間に2℃以上)場合
には、冷房高温エラー停止(運転停止)する構成であ
る。この為、他の原因による高温再生器3の過熱を確実
に検知でき(コールドスタートに伴う空焚きは1回しか
起きない為)、他の原因による高温再生器3の過熱の場
合には、燃焼の開始/停止を繰り返す事無く、吸収式空
調装置Aを安全に運転停止させる事ができる。
[B] Absorption type air conditioner A includes a gas burner 3
After re-combustion of No. 11, in a state of HGE ≧ 160 ° C. or higher, if the HGE temperature rises quickly (2 ° C. or higher in 3 seconds), the cooling high temperature error is stopped (operation is stopped). Therefore, it is possible to reliably detect overheating of the high temperature regenerator 3 due to other causes (because only one heating operation due to cold start occurs), and in the case of overheating of the high temperature regenerator 3 due to other causes, combustion It is possible to safely stop the absorption air conditioner A without repeating the start / stop.

【0071】〔ウ〕定常運転時の加熱量(インプット)
に対応した平衡状態の温度、つまり160℃に第1所定
温度を設定し、それより若干低い、150℃に第2所定
温度を設定し、HGE温度の早い上昇速度の所定値を、
3秒間に2℃以上であるとしているので、コールドスタ
ートに伴う空焚き状態の判定精度に優れる。又、空焚き
状態が解消され吸収器7に吸収液が戻る時期(150
℃)にガスバーナ311を再燃焼させる事ができ、冷風
を早期に送風する事ができる。
[C] Heating amount during steady operation (input)
In the equilibrium temperature corresponding to, that is, the first predetermined temperature is set to 160 ° C., the second predetermined temperature is set to 150 ° C., which is slightly lower than that, and the predetermined value of the fast rising rate of the HGE temperature is set to
Since it is said that the temperature is 2 ° C. or higher in 3 seconds, it is excellent in the accuracy of determination of the dry heating state due to cold start. Also, when the dry heating state is canceled and the absorbing liquid returns to the absorber 7 (150
The gas burner 311 can be reburned at (° C.), and cold air can be blown at an early stage.

【0072】本発明は、上記実施例以外に、つぎの実施
態様を含む。 a.上記実施例において、吸収液回路8を、吸収液が入
れられ加熱部が加熱源により加熱される再生器、凝縮器
伝熱管を配設し冷房運転時には前記再生器から高温の蒸
気冷媒が送り込まれる凝縮器、冷房運転時には前記凝縮
器で液化した液冷媒を蒸発させる蒸発器、該蒸発器に併
設され前記吸収器伝熱管を配設し冷房運転時には前記蒸
発器で蒸発した蒸気冷媒を前記再生器から送られる高濃
度吸収液に吸収させる吸収器、及び吸収器内の吸収液を
前記再生器に戻す溶液ポンプにより構成しても良い(請
求項1に対応)。この様に、吸収液回路8を一重効用に
すると、二重効用(吸収式空調装置A)のものに比べ冷
房・暖房効率は落ちるが、吸収式空調装置の構造を簡単
にする事ができる。
The present invention includes the following embodiments in addition to the above embodiments. a. In the above-described embodiment, the absorbing liquid circuit 8 is provided with a regenerator in which the absorbing liquid is filled and the heating portion is heated by a heating source, and a condenser heat transfer tube is provided, and high-temperature vapor refrigerant is fed from the regenerator during cooling operation. A condenser, an evaporator that evaporates the liquid refrigerant liquefied in the condenser during the cooling operation, the absorber heat transfer tube provided in parallel with the evaporator, and the vapor refrigerant evaporated in the evaporator during the cooling operation is the regenerator. It may be configured by an absorber that absorbs the high-concentration absorption liquid sent from, and a solution pump that returns the absorption liquid in the absorber to the regenerator (corresponding to claim 1). In this way, if the absorbing liquid circuit 8 is made to have a single effect, the cooling and heating efficiency is lower than that of the double effect (absorption type air conditioner A), but the structure of the absorption type air conditioner can be simplified.

【0073】b.第2所定温度は、第2所定温度<第1
所定温度であれば、他の温度であっても良い。 c.上記実施例において、HGE>50℃のホットスタ
ートの場合も、コールドスタートと同様{HGE≧16
0℃で、且つ、HGE温度の上昇が早い(3秒間に2℃
以上)場合には、循環不良と見なして、HGE≦150
℃に低下する迄、一旦、ガスバーナ311の燃焼を停止
する}の構成を採用しても良い。
B. The second predetermined temperature is the second predetermined temperature <the first
Other temperatures may be used as long as they are predetermined temperatures. c. In the above example, also in the case of HGE> 50 ° C. hot start, similar to cold start {HGE ≧ 16.
At 0 ℃, the HGE temperature rises quickly (2 ℃ in 3 seconds).
In the above case, it is considered that the circulation is defective, and HGE ≦ 150.
The composition of once stopping the combustion of the gas burner 311 until the temperature drops to ℃} may be adopted.

【0074】d.加熱源は、ガスバーナ以外に、電気ヒ
ータ等でも良い。 e.一時加熱停止を、一時タイマで設定した所定時間の
間、実施する構成であっても良い(請求項5に対応)。
D. The heating source may be an electric heater or the like other than the gas burner. e. The temporary heating stop may be performed for a predetermined time set by a temporary timer (corresponding to claim 5).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る吸収式空調装置の原理
説明図である。
FIG. 1 is a diagram illustrating the principle of an absorption air conditioner according to one embodiment of the present invention.

【図2】その吸収式空調装置のシステム図である。FIG. 2 is a system diagram of the absorption type air conditioner.

【図3】その吸収式空調装置を暖房運転させた場合の作
動説明図である。
FIG. 3 is an operation explanatory diagram when the absorption type air conditioner is operated for heating.

【図4】その吸収式空調装置を冷房運転させた場合の作
動説明図である。
FIG. 4 is an operation explanatory diagram when the absorption air conditioner is operated in a cooling mode.

【図5】その吸収式空調装置の冷房運転を示すフローチ
ャートである。
FIG. 5 is a flowchart showing a cooling operation of the absorption air conditioner.

【符号の説明】[Explanation of symbols]

A 吸収式空調装置 1 冷却水回路 2 冷温水回路 3 高温再生器 4 低温再生器 5 凝縮器 6 蒸発器 7 吸収器 8 吸収液回路 9 制御器 10 冷却水 11 冷却塔(室外熱交換器) 13 冷却水ポンプ 14 吸収器伝熱管 15 凝縮器伝熱管 20 冷温水 21 室内熱交換器 23 冷温水ポンプ 24 蒸発器伝熱管 30 希液(低濃度吸収液) 31 沸騰器(加熱部) 34 中液(中濃度吸収液) 35、42 蒸気冷媒 41 濃液(高濃度吸収液) 80 溶液ポンプ 111 冷却塔ファン(室外ファン) 211 送風ファン 311 ガスバーナ(加熱源) A Absorption type air conditioner 1 Cooling water circuit 2 Cold / hot water circuit 3 High temperature regenerator 4 Low temperature regenerator 5 Condenser 6 Evaporator 7 Absorber 8 Absorbing liquid circuit 9 Controller 10 Cooling water 11 Cooling tower (outdoor heat exchanger) 13 Cooling water pump 14 Absorber heat transfer tube 15 Condenser heat transfer tube 20 Cold / hot water 21 Indoor heat exchanger 23 Cold / hot water pump 24 Evaporator heat transfer tube 30 Dilute liquid (low concentration absorption liquid) 31 Boiling device (heating part) 34 Medium liquid ( Medium-concentration absorption liquid) 35, 42 Vapor refrigerant 41 Concentrated liquid (high-concentration absorption liquid) 80 Solution pump 111 Cooling tower fan (outdoor fan) 211 Blower fan 311 Gas burner (heating source)

フロントページの続き (72)発明者 河本 薫 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内Front page continuation (72) Inventor Kaoru Kawamoto 4-1-2, Hirano-cho, Chuo-ku, Osaka City Osaka Gas Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 室外熱交換器、吸収器伝熱管、及び凝縮
器伝熱管を順に環状接続してなり、冷房運転時には冷却
水ポンプにより冷却水を循環させる冷却水回路と、 室内熱交換器、及び蒸発器伝熱管を環状接続してなり、
冷温水ポンプにより冷温水を循環させる冷温水回路と、 吸収液が入れられ加熱部が加熱源により加熱され冷房運
転時には吸収液中の冷媒を気化させる再生器、前記凝縮
器伝熱管を配設し冷房運転時には前記再生器から高温の
蒸気冷媒が送り込まれる凝縮器、冷房運転時には前記凝
縮器で液化した液冷媒を蒸発させる蒸発器、該蒸発器に
併設され前記吸収器伝熱管を配設し冷房運転時には前記
蒸発器で蒸発した蒸気冷媒を前記再生器から送られる濃
縮吸収液に吸収させる吸収器、及び吸収器内の吸収液を
前記再生器に戻す溶液ポンプを有する吸収液回路と、 前記加熱源及び前記溶液ポンプを制御する制御器とを有
する吸収式空調装置において、 再生器内の温度が第1所定温度以上で、且つ、再生器内
の温度上昇速度が所定値以上の場合、前記制御器は、前
記加熱源の作動を一時的に停止し、 その後、前記加熱源の作動を再開する事を特徴とする吸
収式空調装置。
1. A cooling water circuit, in which an outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube are annularly connected in sequence, and a cooling water pump circulates cooling water during cooling operation, and an indoor heat exchanger, And the evaporator heat transfer pipes are connected in a ring,
The hot and cold water circuit that circulates the hot and cold water by the hot and cold water pump, the regenerator that puts the absorbing liquid into the heating section and heats the heating part by the heating source, and vaporizes the refrigerant in the absorbing liquid during the cooling operation, and the condenser heat transfer tube are installed. A condenser to which a high-temperature vapor refrigerant is sent from the regenerator during cooling operation, an evaporator that evaporates the liquid refrigerant liquefied in the condenser during cooling operation, and an absorber heat transfer tube that is attached to the evaporator to provide cooling. During operation, an absorber that absorbs the vaporized refrigerant that has evaporated in the evaporator into the concentrated absorption liquid that is sent from the regenerator, and an absorption liquid circuit that has a solution pump that returns the absorption liquid in the absorber to the regenerator; In an absorption air conditioner having a source and a controller for controlling the solution pump, when the temperature in the regenerator is a first predetermined temperature or higher and the temperature rising rate in the regenerator is a predetermined value or higher, Your vessel, the operation of the heating source temporarily stopped, then, the absorption air conditioning apparatus, characterized in that to resume the operation of the heating source.
【請求項2】 室外熱交換器、吸収器伝熱管、及び凝縮
器伝熱管を順に環状接続してなり、冷房運転時には冷却
水ポンプにより冷却水を循環させる冷却水回路と、 室内熱交換器、及び蒸発器伝熱管を環状接続してなり、
冷温水ポンプにより冷温水を循環させる冷温水回路と、 吸収液が入れられ加熱部が加熱源により加熱され冷房運
転時には低濃度吸収液中の冷媒を気化させて中濃度吸収
液と蒸気冷媒とに分離する高温再生器、該高温再生器を
包囲し、冷房運転時には前記中濃度吸収液を高濃度吸収
液と蒸気冷媒とに分離する低温再生器、前記凝縮器伝熱
管を配設し冷房運転時には各再生器から高温の蒸気冷媒
が送り込まれる凝縮器、冷房運転時には前記凝縮器で液
化した液冷媒を蒸発させる蒸発器、該蒸発器に併設され
前記吸収器伝熱管を配設し冷房運転時には前記蒸発器で
蒸発した蒸気冷媒を前記低温再生器から送られる高濃度
吸収液に吸収させる吸収器、及び吸収器内の吸収液を前
記高温再生器に戻す溶液ポンプを有する吸収液回路と、 前記加熱源及び前記溶液ポンプを制御する制御器とを有
する吸収式空調装置において、 高温再生器内の温度が第1所定温度以上で、且つ、高温
再生器内の温度上昇速度が所定値以上の場合、前記制御
器は、前記加熱源の作動を一時的に停止し、 その後、前記加熱源の作動を再開する事を特徴とする吸
収式空調装置。
2. An outdoor heat exchanger, an absorber heat transfer tube, and a condenser heat transfer tube are sequentially connected in an annular shape, and a cooling water circuit for circulating cooling water by a cooling water pump during cooling operation, an indoor heat exchanger, And the evaporator heat transfer pipes are connected in a ring,
A hot / cold water circuit that circulates cold / hot water with a cold / hot water pump, and an absorption liquid is put in the heating part to heat the heating part by a heating source. A high-temperature regenerator to be separated, a low-temperature regenerator that surrounds the high-temperature regenerator, separates the medium-concentration absorption liquid into a high-concentration absorption liquid and a vapor refrigerant during cooling operation, and the condenser heat transfer tube is arranged to perform cooling operation. A condenser into which a high-temperature vapor refrigerant is sent from each regenerator, an evaporator that evaporates the liquid refrigerant liquefied by the condenser during cooling operation, and the absorber heat transfer tube that is attached to the evaporator and is disposed during cooling operation An absorber for absorbing the vapor refrigerant evaporated in the evaporator into the high-concentration absorption liquid sent from the low-temperature regenerator, and an absorption liquid circuit having a solution pump for returning the absorption liquid in the absorber to the high-temperature regenerator, and the heating Source and In the absorption type air conditioner having a controller for controlling the solution pump, when the temperature in the high temperature regenerator is a first predetermined temperature or higher and the temperature rising rate in the high temperature regenerator is a predetermined value or higher, the control is performed. An absorption type air conditioner, wherein the device temporarily stops the operation of the heating source and then restarts the operation of the heating source.
【請求項3】 前記加熱源の作動再開後において、前記
再生器又は高温再生器内の温度が第1所定温度以上で、
且つ、前記再生器又は高温再生器内の温度上昇速度が所
定値以上の場合、前記制御器は、運転を停止する事を特
徴とする請求項1又は請求項2記載の吸収式空調装置。
3. The temperature inside the regenerator or the high temperature regenerator is equal to or higher than a first predetermined temperature after the operation of the heating source is restarted,
The absorption type air conditioner according to claim 1 or 2, wherein when the temperature rising rate in the regenerator or the high temperature regenerator is equal to or higher than a predetermined value, the controller stops the operation.
【請求項4】 請求項1又は請求項2に記載の吸収式空
調装置において、 前記再生器又は高温再生器内の温度が第1所定温度以上
で、且つ、その温度上昇速度が所定値以上の場合、前記
再生器又は高温再生器内の温度が、前記第1所定温度よ
り低い第2所定温度に低下する迄、前記制御器が前記加
熱源の作動を一時的に停止する事を特徴とする吸収式空
調装置。
4. The absorption type air conditioner according to claim 1 or 2, wherein the temperature in the regenerator or the high temperature regenerator is a first predetermined temperature or higher, and the temperature rising rate is a predetermined value or higher. In this case, the controller temporarily suspends the operation of the heating source until the temperature in the regenerator or the high temperature regenerator falls to a second predetermined temperature lower than the first predetermined temperature. Absorption type air conditioner.
【請求項5】 請求項1又は請求項2に記載の吸収式空
調装置において、 前記再生器又は高温再生器内の温度が第1所定温度以上
で、且つ、その温度上昇速度が所定値以上の場合、 前記制御器は、一時停止タイマーで設定した所定時間の
間、前記加熱源の作動を一時的に停止する事を特徴とす
る吸収式空調装置。
5. The absorption air conditioner according to claim 1 or 2, wherein the temperature inside the regenerator or the high temperature regenerator is a first predetermined temperature or higher, and the temperature rising rate is a predetermined value or higher. In this case, the controller temporarily stops the operation of the heating source for a predetermined time set by a temporary stop timer.
【請求項6】 請求項1乃至請求項5の何れかに記載の
吸収式空調装置において、 前記第1所定温度は、定常運転時の前記加熱源の加熱量
に対応した略平衡状態の温度である事を特徴とする吸収
式空調装置。
6. The absorption type air conditioner according to claim 1, wherein the first predetermined temperature is a temperature in a substantially equilibrium state corresponding to the heating amount of the heating source during steady operation. Absorption type air conditioner that is characterized.
JP08022347A 1996-02-08 1996-02-08 Absorption air conditioner Expired - Fee Related JP3128502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08022347A JP3128502B2 (en) 1996-02-08 1996-02-08 Absorption air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08022347A JP3128502B2 (en) 1996-02-08 1996-02-08 Absorption air conditioner

Publications (2)

Publication Number Publication Date
JPH09210498A true JPH09210498A (en) 1997-08-12
JP3128502B2 JP3128502B2 (en) 2001-01-29

Family

ID=12080146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08022347A Expired - Fee Related JP3128502B2 (en) 1996-02-08 1996-02-08 Absorption air conditioner

Country Status (1)

Country Link
JP (1) JP3128502B2 (en)

Also Published As

Publication number Publication date
JP3128502B2 (en) 2001-01-29

Similar Documents

Publication Publication Date Title
JP3056987B2 (en) Absorption cooling system
JP3128501B2 (en) Absorption air conditioner
JPH09210498A (en) Absorption air conditioner
JP3241623B2 (en) Absorption air conditioner
JP3130465B2 (en) Absorption air conditioner
JP2954519B2 (en) Absorption air conditioner
JP3660413B2 (en) Absorption air conditioner
JP3144538B2 (en) Absorption air conditioner
JP2994250B2 (en) Absorption air conditioner
JP2650654B2 (en) Absorption refrigeration cycle device
JP3056990B2 (en) Absorption air conditioner
JP3057017B2 (en) Absorption air conditioner
JP3241624B2 (en) Absorption air conditioner
JP3056991B2 (en) Absorption air conditioner
JP2954513B2 (en) Absorption air conditioner
JP3328164B2 (en) Absorption air conditioner
JP2839442B2 (en) Absorption refrigeration cycle device
JP3308795B2 (en) Absorption air conditioner
JP2977466B2 (en) Absorption refrigeration cycle device
JPH10220901A (en) Absorbing type air conditioner
JP2746323B2 (en) Absorption air conditioner
JP4031548B2 (en) Air conditioning system
JP2003042588A (en) Absorption type cooling and heating machine
JP2002277092A (en) Absorption air conditioning system
JPH10325636A (en) Absorption type air-conditioning device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees