JPH10103808A - Air conditioner using absorption type refrigerator - Google Patents

Air conditioner using absorption type refrigerator

Info

Publication number
JPH10103808A
JPH10103808A JP8257110A JP25711096A JPH10103808A JP H10103808 A JPH10103808 A JP H10103808A JP 8257110 A JP8257110 A JP 8257110A JP 25711096 A JP25711096 A JP 25711096A JP H10103808 A JPH10103808 A JP H10103808A
Authority
JP
Japan
Prior art keywords
regenerator
temperature
pressure
solenoid valve
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8257110A
Other languages
Japanese (ja)
Inventor
Katsuto Ikeda
克人 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP8257110A priority Critical patent/JPH10103808A/en
Publication of JPH10103808A publication Critical patent/JPH10103808A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an air conditioner of a low cost with small size and small power consumption without influence of instantaneous power interruption. SOLUTION: A normally open type heating solenoid valve 6 is provided at a heating absorption liquid channel L4, and opened without energizing at the time of heating. At the time of cooling, the value 6 is energized and forcibly closed while a temperature in a high temperature regenerator 1 is a predetermined temperature or lower, and when it becomes the predetermined temperature or higher, the valve 36 is stopped. A valve disc of the valve 6 is maintained closed by a pressure from the regenerator 1 due to a temperature rise in the regenerator 1, and the valve 6 is not opened. At the time of heating, even if an instantaneous power interruption occurs, the valve 6 is not closed. At the time of cooling, when the interruption occurs, if the temperature in the regenerator 1 is low, even if it is opened due to the power interruptions, since the pressure in the regenerator 1 is low, it can be again closed when the power is recovered. When the temperature is high, the valve is hot opened due to the power interruption, but the closure of the valve is maintained. Since the closing drive force of the valve 6 can be reduce, powder consumption is small with a small size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、臭化リチウムなど
の水溶液を吸収液とする吸収サイクルを形成した吸収式
冷凍装置を用いた空調装置に係り、詳しくは吸収液から
冷媒蒸気を分離させる再生器と、蒸発器との間に電磁弁
を具備した暖房運転用吸収液流路を設けて、電磁弁の開
閉制御によって、冷房運転と暖房運転とを切り換える空
調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using an absorption refrigerating apparatus having an absorption cycle using an aqueous solution of lithium bromide or the like as an absorption liquid, and more particularly to a regeneration apparatus for separating refrigerant vapor from the absorption liquid. The present invention relates to an air conditioner in which a heating operation absorbing liquid flow path provided with an electromagnetic valve is provided between a heater and an evaporator, and switching between a cooling operation and a heating operation is performed by opening and closing control of the electromagnetic valve.

【0002】[0002]

【従来の技術】吸収式冷凍装置を用いた空調装置では、
再生器においてバーナで低濃度吸収液を加熱して沸騰さ
せ、高濃度吸収液と冷媒蒸気とを分離し、冷媒蒸気は凝
縮器で冷却されて冷媒液となる。高濃度吸収液が吸収器
において吸収コイルの表面に散布され、また、冷媒液が
蒸発器において蒸発コイルに散布されると、蒸発コイル
表面では、冷媒液が蒸発コイル内を通過する冷温水から
気化熱を奪って蒸発し、蒸発コイル内で熱が奪われた冷
温水は、ポンプの作動により冷却対象である室内に設け
られた熱交換器を循環して冷却対象における冷却源とな
る。熱交換器で逆に温度が上昇した冷温水は、蒸発コイ
ルで再び冷却される。
2. Description of the Related Art In an air conditioner using an absorption refrigeration system,
In the regenerator, the low-concentration absorbing liquid is heated and boiled by a burner to separate the high-concentration absorbing liquid and the refrigerant vapor, and the refrigerant vapor is cooled by the condenser to become a refrigerant liquid. When the high-concentration absorbing liquid is sprayed on the surface of the absorbing coil in the absorber and the refrigerant liquid is sprayed on the evaporating coil in the evaporator, the refrigerant liquid vaporizes from the cold and hot water passing through the evaporating coil on the evaporating coil surface. The cold and hot water, which has been deprived of heat and evaporated and has been deprived of heat in the evaporating coil, circulates through a heat exchanger provided in a room to be cooled by the operation of the pump and becomes a cooling source in the cooling target. Conversely, the cold / hot water whose temperature has increased in the heat exchanger is cooled again by the evaporating coil.

【0003】他方、吸収コイル表面では、高濃度吸収液
が冷媒蒸気を吸収して発熱する。吸収コイルの表面で吸
収液が冷媒蒸気を吸収する際に発生した熱は、吸収コイ
ル内をポンプの作動により通過する排熱用冷却水によ
り、外部に設けられた冷却塔へ移動し、冷却塔で放出さ
れる。吸収器において冷媒を吸収して低濃度化した吸収
液は、吸収液ポンプによって再生器に戻るように、吸収
サイクルが構成されている。
On the other hand, on the surface of the absorption coil, the high-concentration absorption liquid absorbs refrigerant vapor and generates heat. The heat generated when the absorbing liquid absorbs the refrigerant vapor on the surface of the absorption coil moves to the cooling tower provided outside by the cooling water for exhaust heat passing by the operation of the pump in the absorption coil, and the cooling tower Released at The absorption cycle is configured so that the absorbent, which has absorbed the refrigerant in the absorber and reduced in concentration, returns to the regenerator by the absorbent pump.

【0004】さらに、暖房運転を行うようにした空調装
置では、上記の構成において、再生器と蒸発器との間に
電磁弁を具備した暖房用吸収液流路を設けて冷房運転と
暖房運転との切り換えを可能にし、冷房運転時には、電
磁弁を閉状態に制御して、上記の吸収サイクルにより冷
却を行い、暖房運転時には、電磁弁を開状態に制御し
て、再生器内の高温の吸収液および蒸気を蒸発器内へ供
給して、冷却対象の熱交換器を循環する冷温水を加熱さ
せることによって、室内の加熱を行っている。ここで、
電磁弁に常開電磁弁を用いて、冷房運転時に電磁弁を閉
状態を維持するために通電を行うと、発熱する電磁弁の
コイルの近傍で吸収液が晶析する不具合が生じる恐れが
あるため、従来では通電により開状態に制御される常閉
電磁弁が用いられていて、冷房運転時には、非通電によ
り閉状態に制御され、暖房運転時には通電により開状態
に制御される。なお、暖房運転時は、冷房運転時に比
べ、吸収液濃度が低く、コイルの通電によって晶析は生
じない。
Further, in the air conditioner which performs the heating operation, in the above configuration, a heating absorbent flow path provided with an electromagnetic valve is provided between the regenerator and the evaporator to perform the cooling operation and the heating operation. During cooling operation, the solenoid valve is controlled to be closed to perform cooling by the above absorption cycle, and during heating operation, the solenoid valve is controlled to be opened to absorb high temperature in the regenerator. The heating of the room is performed by supplying the liquid and the vapor into the evaporator and heating the cold / hot water circulating in the heat exchanger to be cooled. here,
If a normally open solenoid valve is used as the solenoid valve and energization is performed to keep the solenoid valve closed during cooling operation, a problem may occur in which the absorbing liquid crystallizes near the coil of the heating solenoid valve. Therefore, conventionally, a normally-closed electromagnetic valve that is controlled to be opened by energization is used, and is controlled to be closed by non-energization during cooling operation, and is controlled to be open by energization during heating operation. In the heating operation, the concentration of the absorbing solution is lower than in the cooling operation, and crystallization does not occur by energizing the coil.

【0005】[0005]

【発明が解決しようとする課題】上記のとおり構成され
た吸収式冷凍装置を用いた空調装置においては、例え
ば、電磁弁を通電した開状態の暖房運転時に瞬間停電が
発生すると、電磁弁への通電が瞬間的に中断されて、電
磁弁が閉状態になる。このとき、再生器内では、加熱に
より高温の吸収液および蒸気の圧力が高くなっており、
閉状態になった電磁弁の弁体を閉弁方向に付勢する。こ
のため、瞬間停電から復電したとき、電磁弁を開状態に
復帰させるには、再生器内の高圧に抗して弁体を駆動さ
せなければならないため、非常に大きな駆動力が必要と
なる。従って、再生器内が高圧ではない暖房運転開始時
には可能であった開弁動作が、瞬間停電の後の復電時に
は再び電磁弁への通電が行われても、不可能となり、こ
のような場合にも対処できるようにするには、非常に大
きな駆動力を有する電磁弁が必要となり、電磁弁の大型
化を招くとともに、低価格化の障害にもなる。
In an air conditioner using an absorption refrigeration system configured as described above, for example, if an instantaneous power failure occurs during a heating operation in an open state in which the solenoid valve is energized, the solenoid valve is connected to the solenoid valve. The energization is momentarily interrupted and the solenoid valve is closed. At this time, in the regenerator, the pressure of the high-temperature absorbing liquid and steam is increased by heating,
The valve body of the solenoid valve in the closed state is urged in the valve closing direction. Therefore, when the power is restored from the momentary power failure, the valve element must be driven against the high pressure in the regenerator to return the solenoid valve to the open state, so that a very large driving force is required. . Therefore, the valve-opening operation that was possible at the start of the heating operation when the inside of the regenerator is not at a high pressure becomes impossible even if the solenoid valve is energized again at the time of power recovery after the momentary power failure. In order to be able to cope with this, an electromagnetic valve having a very large driving force is required, which causes an increase in the size of the electromagnetic valve and an obstacle to cost reduction.

【0006】本発明は、吸収サイクルにおける再生器と
蒸発器との間に電磁弁を具備した暖房用吸収液流路を設
けて、電磁弁の開閉制御により冷房運転と暖房運転とを
切り換える吸収式冷凍装置を用いた空調装置において、
吸収液の晶析が生じることなく、瞬間停電が発生しても
運転に支障を来すことがなく、しかも小型で消費電力が
少なく、安価な装置とすることを目的とする。
According to the present invention, there is provided an absorption type in which a heating absorbent flow path provided with a solenoid valve is provided between a regenerator and an evaporator in an absorption cycle, and a cooling operation and a heating operation are switched by opening and closing control of the solenoid valve. In an air conditioner using a refrigeration system,
It is an object of the present invention to provide an inexpensive device that does not cause crystallization even if an instantaneous power failure occurs without causing crystallization of the absorbing solution, and that is small in size, consumes little power.

【0007】[0007]

【課題を解決するための手段】本発明は、請求項1で
は、冷媒を含む吸収液を加熱して該吸収液から冷媒蒸気
を分離させる再生器と、該再生器によって分離した前記
冷媒蒸気を冷却して凝縮させる凝縮器と、該凝縮器で凝
縮した冷媒を低圧下で蒸発させる蒸発器と、該蒸発器で
蒸発した冷媒蒸気を前記再生器から供給される吸収液に
吸収させる吸収器と、該吸収器から前記再生器へ吸収液
を戻すポンプとから吸収サイクルを形成するとともに、
前記再生器と前記蒸発器との間に電磁弁を具備した暖房
運転用吸収液流路を設け、前記電磁弁を制御手段によっ
て制御して暖房運転と冷房運転とを切り換え、前記蒸発
器を通過する冷温水により空調対象の暖房または冷房を
行う吸収式冷凍装置を用いた空調装置において、前記電
磁弁として、非通電時には開状態が維持され、通電時に
閉状態に切り換えられる常開電磁弁を用いるとともに、
前記制御手段は、前記再生器内の圧力を直接的又は間接
的に判断する圧力判断手段を備え、暖房運転時には、前
記電磁弁を非通電に制御して開状態とし、冷房運転時に
は、前記圧力判断手段の判断圧力が所定圧力以下の場合
に前記電磁弁を閉状態にするために通電し、前記所定圧
力より高い場合に前記電磁弁を非通電に制御することを
技術的手段とする。
According to a first aspect of the present invention, there is provided a regenerator for heating an absorbing liquid containing a refrigerant to separate the refrigerant vapor from the absorbing liquid, and regenerating the refrigerant vapor separated by the regenerator. A condenser for cooling and condensing, an evaporator for evaporating the refrigerant condensed in the condenser under a low pressure, and an absorber for absorbing the refrigerant vapor evaporated in the evaporator into an absorbent supplied from the regenerator. Forming an absorption cycle from a pump that returns the absorbent from the absorber to the regenerator;
A heating operation absorbing liquid flow path including an electromagnetic valve is provided between the regenerator and the evaporator, and the electromagnetic valve is controlled by control means to switch between a heating operation and a cooling operation, and passes through the evaporator. In an air conditioner using an absorption refrigeration system that performs heating or cooling of an object to be air-conditioned by cooling / heating water, a normally-open electromagnetic valve that is kept open when not energized and is switched to a closed state when energized is used as the electromagnetic valve. With
The control unit includes a pressure determination unit that directly or indirectly determines the pressure in the regenerator, controls the solenoid valve to be de-energized to open during a heating operation, and sets the pressure during a cooling operation. Technical means is to energize the solenoid valve to close it when the judgment pressure of the judgment means is equal to or lower than a predetermined pressure, and to de-energize the solenoid valve when the judgment pressure is higher than the predetermined pressure.

【0008】請求項2では、請求項1において、前記圧
力判断手段は、前記再生器内の温度を検知する温度セン
サであり、該温度センサの検知温度が所定温度以上のと
き前記所定圧力以上であつと判断することを技術的手段
とする。請求項3では、請求項1または2において、冷
房運転時には、運転開始から所定時間の間前記電磁弁を
通電し、前記所定時間を経過した後に前記電磁弁を非通
電にすることを技術的手段とする。
According to a second aspect, in the first aspect, the pressure judging means is a temperature sensor for detecting a temperature in the regenerator, and when the temperature detected by the temperature sensor is equal to or higher than a predetermined temperature, the pressure is determined to be higher than the predetermined pressure. Judging as hot is a technical measure. According to a third aspect of the present invention, in the first or second aspect, during cooling operation, the solenoid valve is energized for a predetermined time from the start of operation, and the solenoid valve is de-energized after the predetermined time has elapsed. And

【0009】請求項4では、請求項1、2、3におい
て、前記電磁弁は、前記再生器内の圧力が所定圧力より
高い場合、前記再生器内の圧力によって弁体が閉じる方
向に付勢されて閉状態に維持される前記暖房運転用吸収
液流路に配置されたことを技術的手段とする。請求項5
では、請求項1、2、3、4のいずれかにおいて、前記
制御手段は、冷房運転の終了時に、前記再生器の温度が
前記所定温度以下になったとき通電し、前記所定温度よ
り低い閉弁希釈運転終了温度以下になったとき、前記電
磁弁の通電を停止することを技術的手段とする。
According to a fourth aspect, in the first, second and third aspects, when the pressure in the regenerator is higher than a predetermined pressure, the solenoid valve is urged in a direction in which the valve element is closed by the pressure in the regenerator. It is technical means that the heating means is disposed in the heating operation absorbing liquid flow path which is kept closed. Claim 5
Then, in any one of claims 1, 2, 3, and 4, the control means conducts electricity when the temperature of the regenerator becomes equal to or lower than the predetermined temperature at the end of the cooling operation, and closes the cooling device at a temperature lower than the predetermined temperature. When the temperature becomes equal to or lower than the valve dilution operation end temperature, the energization of the solenoid valve is stopped.

【0010】上記構成により、本発明の吸収式冷凍装置
を用いた空調装置では、再生器内の吸収液が加熱手段に
より加熱される。冷房運転時には、暖房運転用吸収液流
路に設けられた電磁弁は、再生器内の温度が所定温度以
下の間には通電されて閉状態になるため、再生器と蒸発
器との間の暖房運転用吸収液流路は、連通しない。従っ
て、冷房運転時には、再生器内で加熱された吸収液から
冷媒蒸気が分離されると、冷媒流路を通って凝縮器へ供
給される。凝縮器では、冷媒蒸気は冷却されて冷媒液と
なる。蒸発器においては冷媒液が蒸発し、その際、熱を
奪い、冷却源となる。 他方、吸収器においては、蒸発
器で蒸発した冷媒蒸気を再生器から供給される高濃度吸
収液が吸収し、冷媒蒸気を吸収して低濃度化した吸収液
は、ポンプによって再生器に戻る。
With the above configuration, in the air conditioner using the absorption refrigerating apparatus of the present invention, the absorbing liquid in the regenerator is heated by the heating means. During the cooling operation, the solenoid valve provided in the heating operation absorption liquid flow path is energized while the temperature in the regenerator is equal to or lower than a predetermined temperature and is closed, so that the solenoid valve between the regenerator and the evaporator is closed. The heating operation absorbent liquid flow path is not connected. Therefore, during the cooling operation, when the refrigerant vapor is separated from the absorbing liquid heated in the regenerator, it is supplied to the condenser through the refrigerant flow path. In the condenser, the refrigerant vapor is cooled into a refrigerant liquid. In the evaporator, the refrigerant liquid evaporates. At that time, the refrigerant liquid takes heat and serves as a cooling source. On the other hand, in the absorber, the high-density absorbent supplied from the regenerator absorbs the refrigerant vapor evaporated by the evaporator, and the low-concentration absorbent that has absorbed the refrigerant vapor returns to the regenerator by the pump.

【0011】また、冷房運転時に再生器内の圧力が所定
圧力以上になったと判断されると、電磁弁は非通電に制
御される。しかし、再生器内の吸収液がすでに加熱され
ていて、その温度上昇に伴って、再生器内の吸収液およ
び蒸気の圧力が蒸発器内の圧力より高くなっているの
で、電磁弁の通電が停止されても、電磁弁の弁体が開く
ことがなく、電磁弁は閉状態に維持される。この結果、
冷房運転時には、再生器で分離された吸収液と冷媒蒸気
とがそれぞれ吸収器および凝縮器へ供給されて、再生器
から蒸発器へ吸収液が供給されることはない。以上の吸
収サイクルにより、蒸発器では、冷媒液が蒸発する際に
冷温水を冷却し、蒸発器からは、冷却された冷温水が冷
却対象へ送られて、冷房運転における冷却源となる。
When it is determined that the pressure in the regenerator is equal to or higher than the predetermined pressure during the cooling operation, the solenoid valve is controlled to be de-energized. However, since the absorbing liquid in the regenerator has already been heated and the temperature of the absorbing liquid and steam in the regenerator has become higher than the pressure in the evaporator with the temperature rise, the solenoid valve has been turned on. Even if stopped, the valve body of the solenoid valve does not open, and the solenoid valve is maintained in the closed state. As a result,
During the cooling operation, the absorbent and the refrigerant vapor separated by the regenerator are supplied to the absorber and the condenser, respectively, and the absorbent is not supplied from the regenerator to the evaporator. With the above absorption cycle, the evaporator cools the cold and hot water when the refrigerant liquid evaporates, and the cooled cold and hot water is sent from the evaporator to the cooling target and becomes a cooling source in the cooling operation.

【0012】暖房運転時には、暖房用吸収液流路の電磁
弁が非通電に制御されて開状態になるため、再生器で加
熱された吸収液および蒸気が、暖房用吸収液流路を通っ
て、蒸発器へ供給される。蒸発器では、高温の吸収液お
よび蒸気によって冷温水が加熱されて、暖房対象の熱交
換器へ供給され、暖房運転における熱源となる。
During the heating operation, the solenoid valve of the heating absorbent flow path is de-energized and is opened, so that the absorbent and steam heated by the regenerator pass through the heating absorbent flow path. Is supplied to the evaporator. In the evaporator, the cold and hot water is heated by the high-temperature absorbing liquid and the steam and supplied to the heat exchanger to be heated, and serves as a heat source in the heating operation.

【0013】本発明では、暖房運転時には、電磁弁が通
電されないため、瞬間停電が発生した場合でも、暖房運
転用吸収液流路が確保でき、再生器から蒸発器へ加熱さ
れた吸収液および蒸気を継続して供給することができ
る。従って、安定した暖房運転を確保できる。また、冷
房運転時には、再生器内の温度が低い間だけ電磁弁の通
電を行い、再生器内の圧力が高くなった後には、再生器
内の圧力を利用して電磁弁を閉状態に維持する。従っ
て、暖房運転及び冷房運転を通じて、吸収液の晶析が生
じる不具合はなく、また、電磁弁に大きな駆動力が必要
なく、小型で消費電力の小さな安価な電磁弁を用いるこ
とができる。
According to the present invention, since the solenoid valve is not energized during the heating operation, the absorption liquid flow path for the heating operation can be secured even if an instantaneous power failure occurs, and the absorption liquid and vapor heated from the regenerator to the evaporator can be secured. Can be continuously supplied. Therefore, a stable heating operation can be secured. During cooling operation, the solenoid valve is energized only while the temperature inside the regenerator is low, and after the pressure inside the regenerator rises, the solenoid valve is kept closed using the pressure inside the regenerator. I do. Therefore, there is no problem that crystallization of the absorbing solution occurs during the heating operation and the cooling operation, and a large driving force is not required for the solenoid valve, so that a small-sized, low-cost solenoid valve with low power consumption can be used.

【0014】また、冷房運転開始時の通電中に瞬間停電
が発生して電磁弁が開いてしまった場合でも、再生器内
の温度が低く、その圧力が低いため、復電したとき通電
によって発生する駆動力によって、確実に電磁弁を再び
閉じることができる。また、冷房運転時に再生器内の温
度が上昇して、電磁弁を非通電させ再生器内の圧力で閉
状態を維持している場合には、瞬間停電が発生しても電
磁弁が開くことがないため、電磁弁の閉状態を継続させ
たまま、安定した冷房運転を行うことができる。また、
本発明のように、冷房運転の開始時等に一時的に電磁弁
を通電させ、暖房運転時及び冷房運転の定常運転時(再
生器内の温度が所定温度より高いとき)に電磁弁を非通
電に制御すると、電磁弁の通電時間を著しく短くするこ
とができる。これにより、通電消費電力を少なくでき、
運転経費を抑えることができる。
Further, even if an instantaneous power failure occurs during energization at the start of the cooling operation and the solenoid valve is opened, the temperature in the regenerator is low and the pressure is low. With this driving force, the solenoid valve can be reliably closed again. Also, if the temperature inside the regenerator rises during cooling operation and the solenoid valve is de-energized and is kept closed by the pressure inside the regenerator, the solenoid valve may open even if a momentary power failure occurs. Therefore, stable cooling operation can be performed with the solenoid valve kept closed. Also,
As in the present invention, the solenoid valve is temporarily energized at the start of the cooling operation or the like, and the solenoid valve is turned off at the time of the heating operation and the steady operation of the cooling operation (when the temperature in the regenerator is higher than a predetermined temperature). When the current is controlled to be energized, the energization time of the solenoid valve can be significantly reduced. As a result, power consumption can be reduced,
Operating costs can be reduced.

【0015】[0015]

【発明の実施の形態】図1は、本発明に関わる空調装置
を示す。空調装置は、室外機としての吸収式冷凍装置1
00と室内機RUとからなり、吸収式冷凍装置100
は、冷凍機本体101と冷却塔(クーリングタワー)C
Tとから構成される。なお、空調装置は、制御装置10
2により制御される。
FIG. 1 shows an air conditioner according to the present invention. The air conditioner is an absorption refrigeration system 1 as an outdoor unit.
00 and the indoor unit RU, and the absorption refrigeration system 100
Is the refrigerator main body 101 and the cooling tower (cooling tower) C
And T. The air conditioner is controlled by the control device 10
2 is controlled.

【0016】冷凍機本体101は、冷媒及び吸収液とし
ての臭化リチウム水溶液の吸収サイクルを形成するもの
で、加熱源としてのガスバーナBが下方に備えられた高
温再生器1と、この高温再生器1の外側に被さるように
配置された低温再生器2とからなる二重効用型の再生器
と、さらに低温再生器2の外周に向かって二重に配置さ
れた吸収器3および蒸発器4と、低温再生器2の外周で
吸収器3の上方に配置された凝縮器5とを、幾つかの通
路で接続してなる。
The refrigerating machine main body 101 forms an absorption cycle of a refrigerant and an aqueous solution of lithium bromide as an absorbing liquid, and includes a high-temperature regenerator 1 provided with a gas burner B as a heating source below, and a high-temperature regenerator 1 A low-temperature regenerator 2 disposed so as to cover the outside of the low-temperature regenerator 1; and an absorber 3 and an evaporator 4 double disposed toward the outer periphery of the low-temperature regenerator 2. And a condenser 5 disposed on the outer periphery of the low-temperature regenerator 2 and above the absorber 3 through several passages.

【0017】高温再生器1は、ガスバーナBによって加
熱される加熱タンク11の上方に中濃度吸収液分離筒1
2を延長させて設け、中濃度吸収液分離筒12の上方か
らその外周に覆い被さるように縦型円筒形の気密性の冷
媒回収タンク10が設けられている。これにより、高温
再生器1では、加熱タンク11の内部に収容された低濃
度吸収液をガスバーナBによって加熱して、低濃度吸収
液中の冷媒としての水を蒸発させて冷媒蒸気(水蒸気)
として中濃度吸収液分離筒12の外側へ分離させ、冷媒
蒸気の蒸発により濃化した中濃度吸収液を中濃度吸収液
分離筒12の内側の貯留部121に残し、分離した冷媒
蒸気を冷媒回収タンク10で回収する。
A high-temperature regenerator 1 is provided above a heating tank 11 heated by a gas burner B, above a medium-concentration absorbent separating cylinder 1.
2, a vertical cylindrical airtight refrigerant recovery tank 10 is provided so as to cover the outer periphery of the medium-concentration absorbing liquid separation tube 12 from above. Thus, in the high-temperature regenerator 1, the low-concentration absorbing liquid contained in the heating tank 11 is heated by the gas burner B, and water as a refrigerant in the low-concentration absorbing liquid is evaporated to form refrigerant vapor (water vapor).
As a result, the separated medium vapor is separated outside the medium-concentration absorption liquid separation cylinder 12, the medium-concentration absorption liquid concentrated by evaporation of the refrigerant vapor is left in the storage section 121 inside the medium-concentration absorption liquid separation cylinder 12, and the separated refrigerant vapor is collected as refrigerant. Collected in tank 10.

【0018】低温再生器2は、冷媒回収タンク10の外
周に偏心して設置した縦型円筒形の低温再生器ケース2
0を有し、低温再生器ケース20の天井の周囲には冷媒
蒸気出口21が設けられている。低温再生器ケース20
の天井の頂部は、中濃度吸収液流路L1により熱交換器
Hを介して中濃度吸収液分離筒12の貯留部121と連
結されている。
The low-temperature regenerator 2 is a vertical cylindrical low-temperature regenerator case 2 eccentrically installed on the outer periphery of the refrigerant recovery tank 10.
0, a refrigerant vapor outlet 21 is provided around the ceiling of the low-temperature regenerator case 20. Low temperature regenerator case 20
The top of the ceiling is connected to the storage part 121 of the middle-concentration absorbent separation cylinder 12 via the heat exchanger H by the middle-concentration absorbent flow path L1.

【0019】中濃度吸収液流路L1中には、貯留部12
1から低温再生器2へ流れる中濃度吸収液の流量を制限
するためのオリフィス(図示なし)が設けられていて、
低温再生器ケース20内へは中濃度吸収液分離筒12と
の圧力差により中濃度吸収液が供給される。これによ
り、低温再生器2では、低温再生器ケース20内に供給
された中濃度吸収液を、冷媒回収タンク10の外壁を熱
源として再加熱し、中濃度吸収液は低温再生器ケース2
0の上部の気液分離部22で冷媒蒸気と高濃度吸収液と
に分離され、高濃度吸収液は、高濃度吸収液受け部23
で貯留される。
In the medium-concentration absorbent flow path L1, a storage section 12 is provided.
An orifice (not shown) for limiting the flow rate of the medium concentration absorbing liquid flowing from 1 to the low temperature regenerator 2 is provided.
The medium-concentration absorbent is supplied into the low-temperature regenerator case 20 by a pressure difference from the medium-concentration absorbent separation cylinder 12. Thus, the low-temperature regenerator 2 reheats the medium-concentration absorbing liquid supplied into the low-temperature regenerator case 20 using the outer wall of the refrigerant recovery tank 10 as a heat source, and the medium-concentration absorbing liquid is
The high-concentration absorbent is separated into refrigerant vapor and high-concentration absorbent in a gas-liquid separation unit 22 above the high-concentration absorbent.
Is stored at

【0020】低温再生器ケース20の外周下部には、縦
型円筒形で気密性の蒸発・吸収ケース30が、外周上部
には凝縮器ケース50がそれぞれ同心的に配されてお
り、冷媒回収タンク10、低温再生器ケース20、蒸発
・吸収ケース30は、各底板部13で一体に溶接されて
冷凍機本体101を形成している。なお、低温再生器ケ
ース20は、冷媒蒸気出口21および隙間5Aを介して
凝縮器ケース50内と連通している。
A low-temperature regenerator case 20 has a vertical cylindrical air-tight evaporating / absorbing case 30 disposed concentrically at the lower part thereof, and a condenser case 50 concentrically disposed at an upper part thereof. The low-temperature regenerator case 20 and the evaporating / absorbing case 30 are integrally welded to each other at the bottom plate portions 13 to form the refrigerator main body 101. The low-temperature regenerator case 20 communicates with the inside of the condenser case 50 via the refrigerant vapor outlet 21 and the gap 5A.

【0021】吸収器3は、蒸発・吸収ケース30内の内
側部分内に縦型円筒状に巻設され内部を排熱用冷却水が
流れる吸収コイル31が配置され、吸収コイル31の上
方には、高濃度吸収液を吸収コイル31に散布するため
の高濃度吸収液散布具32が配置されている。高濃度吸
収液散布具32は、熱交換器Hを介して低温再生器2の
高濃度吸収液受け部23と連結された高濃度吸収液流路
L2の開口部から吐出する高濃度吸収液を受けて散布
し、吸収コイル31内には、冷房運転時に、冷却塔CT
で冷却された排熱用冷却水が循環する。
The absorber 3 is provided with an absorption coil 31 which is wound in a vertical cylindrical shape inside an evaporating / absorbing case 30 and through which cooling water for exhaust heat flows, and above the absorption coil 31. A high-concentration absorbent spraying device 32 for dispersing the high-concentration absorbent to the absorption coil 31 is provided. The high-concentration absorbent spraying device 32 supplies the high-concentration absorbent discharged from the opening of the high-concentration absorbent flow path L2 connected to the high-concentration absorbent reception part 23 of the low-temperature regenerator 2 via the heat exchanger H. The cooling tower CT is dispersed in the absorption coil 31 during the cooling operation.
The cooling water for exhaust heat cooled in the above is circulated.

【0022】吸収器3では、高濃度吸収液が圧力差によ
り高濃度吸収液流路L2から流入し、流入した高濃度吸
収液は、高濃度吸収液散布具32により吸収コイル31
の上端に散布され、吸収コイル31の表面に付着して薄
膜状になり、重力の作用で下方に流下し、水蒸気を吸収
して低濃度吸収液となる。この水蒸気を吸収する際に吸
収コイル31の表面で発熱するが、吸収コイル31を循
環する排熱用冷却水により冷却される。なお、高濃度吸
収液に吸収される水蒸気は、後述する蒸発器4で冷媒蒸
気として発生したものである。吸収器3の底部33は、
熱交換器Hおよび吸収液ポンプP1が装着された低濃度
吸収液流路L3で加熱タンク11の底部と連結されてお
り、吸収液ポンプP1の作動により吸収器3内の低濃度
吸収液は加熱タンク11内へ供給される。
In the absorber 3, the high-concentration absorbent flows in from the high-concentration absorbent flow path L2 due to the pressure difference, and the high-concentration absorbent flowing in is absorbed by the high-concentration absorbent dispersion device 32 into the absorption coil 31.
At the upper end of the coil 31 and adheres to the surface of the absorption coil 31 to form a thin film, flows downward by the action of gravity, absorbs water vapor, and becomes a low concentration absorbent. When absorbing the water vapor, heat is generated on the surface of the absorption coil 31, but is cooled by cooling water for exhaust heat circulating through the absorption coil 31. Note that the water vapor absorbed by the high-concentration absorbent is generated as refrigerant vapor in an evaporator 4 described later. The bottom 33 of the absorber 3
The low-concentration absorption liquid in the absorber 3 is heated by the operation of the absorption liquid pump P1, which is connected to the bottom of the heating tank 11 by a low-concentration absorption liquid flow path L3 equipped with the heat exchanger H and the absorption liquid pump P1. It is supplied into the tank 11.

【0023】蒸発器4は、蒸発・吸収ケース30内の吸
収コイル31の外周に設けた縦型円筒形で連通口40a
付きの仕切壁40の外周に、内部を冷暖房用の冷温水が
流れる縦型円筒形の蒸発コイル41を配設し、その上方
に冷媒液散布具42を取り付けてなる。なお、蒸発器4
の底部43は、暖房用電磁弁6を有する暖房用吸収液流
路L4により高温再生器1における中濃度吸収液分離筒
12の貯留部121と連通している。
The evaporator 4 is a vertical cylindrical communication port 40a provided on the outer periphery of the absorption coil 31 in the evaporation / absorption case 30.
A vertical cylindrical evaporating coil 41 through which cold and hot water for cooling and heating flows is disposed on the outer periphery of the partition wall 40 provided with a refrigerant liquid dispersing tool 42 above it. The evaporator 4
Is connected to the storage part 121 of the medium-concentration absorbent separation cylinder 12 in the high-temperature regenerator 1 by the heating absorbent flow path L4 having the heating electromagnetic valve 6.

【0024】蒸発器4では、冷房運転時に冷媒液散布具
42より冷媒液(水)を蒸発コイル41の上に滴下させ
ると、滴下された冷媒液は、表面張力で蒸発コイル41
の表面を濡らして膜状となり、重力の作用で下方へ降下
しながら低圧(例えば、6.5mmHg)となっている
蒸発・吸収ケース30内で蒸発コイル41から気化熱を
奪って蒸発し、蒸発コイル41内を流れる空調用の冷温
水を冷却する。
In the evaporator 4, when the refrigerant liquid (water) is dropped on the evaporation coil 41 from the refrigerant liquid sprayer 42 during the cooling operation, the dropped refrigerant liquid is subjected to the surface tension of the evaporation coil 41.
Of the vaporizing coil 41 in the evaporating / absorbing case 30 at a low pressure (for example, 6.5 mmHg) while evaporating by evaporating and evaporating. The air-conditioning cold / hot water flowing in the coil 41 is cooled.

【0025】凝縮器5は、凝縮器ケース50の内部に冷
却塔CTで冷却された排熱用冷却水が内部を循環してい
る冷却コイル51を配設してなる。凝縮器ケース50
は、冷媒回収タンク10から凝縮器ケース50への冷媒
流量を制限するためのオリフィス(図示なし)が設けら
れた冷媒流路L5により冷媒回収タンク10の底部14
と連通するとともに、冷媒蒸気出口21および隙間5A
を介して低温再生器2と連通しており、いずれも圧力差
(凝縮器ケース内では約70mmHg)により冷媒が供
給される。
The condenser 5 is provided with a cooling coil 51 in which cooling water for exhaust heat cooled by the cooling tower CT circulates inside a condenser case 50. Condenser case 50
The bottom portion 14 of the refrigerant recovery tank 10 is provided by a refrigerant flow path L5 provided with an orifice (not shown) for restricting the flow rate of the refrigerant from the refrigerant recovery tank 10 to the condenser case 50.
And the refrigerant vapor outlet 21 and the gap 5A
And the refrigerant is supplied by a pressure difference (about 70 mmHg in the condenser case).

【0026】凝縮器5では、凝縮器ケース50内に供給
された冷媒蒸気は、冷却コイル51により冷却されて液
化する。凝縮器5の下部と蒸発器4の蒸発コイル41の
上方に配置された冷媒液散布具42とは、冷媒液供給路
L6で連通している。液化した冷媒液は、冷媒液供給路
L6に設けられた冷媒冷却器52を経て冷媒液散布具4
2に供給される。
In the condenser 5, the refrigerant vapor supplied into the condenser case 50 is cooled by the cooling coil 51 and liquefied. The lower part of the condenser 5 and the refrigerant liquid disperser 42 disposed above the evaporator coil 41 of the evaporator 4 communicate with each other through a refrigerant liquid supply path L6. The liquefied refrigerant liquid passes through the refrigerant cooler 52 provided in the refrigerant liquid supply passage L6, and is supplied to the refrigerant liquid sprayer 4.
2 is supplied.

【0027】以上の構成からなる吸収サイクルでは、冷
房運転時には、吸収液は、高温再生器1→中濃度吸収液
流路L1→低温再生器2→高濃度吸収液流路L2→吸収
器3→吸収液ポンプP1→低濃度吸収液流路L3→高温
再生器1の順に循環する。また、冷媒は、高温再生器1
(冷媒蒸気)→冷媒流路L5(冷媒蒸気)又は低温再生
器(冷媒蒸気)→凝縮器5(冷媒液)→冷媒供給路L6
(冷媒液)→冷媒冷却器52(冷媒液)→冷媒液散布具
42(冷媒液)→蒸発器4(冷媒蒸気)→吸収器3(吸
収液)→吸収液ポンプP1→低濃度吸収液流路L3→高
温再生器1の順に循環する。
In the absorption cycle having the above configuration, during the cooling operation, the absorption liquid is supplied to the high-temperature regenerator 1 → the medium-concentration absorption liquid channel L1 → the low-temperature regenerator 2 → the high-concentration absorption liquid channel L2 → the absorber 3 → It circulates in the order of the absorbent pump P 1 → the low concentration absorbent flow path L 3 → the high temperature regenerator 1. The refrigerant is a high-temperature regenerator 1
(Refrigerant vapor) → refrigerant flow path L5 (refrigerant vapor) or low-temperature regenerator (refrigerant vapor) → condenser 5 (refrigerant liquid) → refrigerant supply path L6
(Refrigerant liquid) → refrigerant cooler 52 (refrigerant liquid) → refrigerant liquid sprayer 42 (refrigerant liquid) → evaporator 4 (refrigerant vapor) → absorber 3 (absorbent liquid) → absorbent pump P1 → low concentration absorbent flow It circulates in the order of path L3 → high temperature regenerator 1.

【0028】上記、吸収液と熱交換する吸収器3の吸収
コイル31と凝縮器5の冷却コイル51は、接続されて
連続コイルを形成しており、連続コイルは、冷却水流路
34によって冷却塔CTと接続されて冷却水循環路を形
成している。この冷却水循環路において、吸収コイル3
1の入口と冷却塔CTとの間の冷却水流路34には、連
続コイル内へ冷却水を送り込むための冷却水ポンプP2
が装着されており、冷却水ポンプP2の作動により連続
コイルを通過する冷却水は、吸収コイル31で吸収熱
を、冷却コイル51で凝縮熱をそれぞれ吸熱して比較的
高温となって、冷却塔CTに供給される。
The absorption coil 31 of the absorber 3, which exchanges heat with the absorption liquid, and the cooling coil 51 of the condenser 5 are connected to form a continuous coil. The cooling water circulation path is formed by being connected to the CT. In this cooling water circuit, the absorption coil 3
A cooling water pump P2 for sending cooling water into the continuous coil is provided in a cooling water flow path 34 between the inlet of the cooling tower CT and the cooling tower CT.
The cooling water which passes through the continuous coil by the operation of the cooling water pump P2 absorbs the heat of absorption by the absorption coil 31 and the heat of condensation by the cooling coil 51, and becomes relatively high in temperature. Supplied to CT.

【0029】上記の構成により、冷却水循環路では、冷
却水ポンプP2の作動により冷却塔CT内の冷却水が、
冷却塔CT→冷却水ポンプP2→吸収コイル31→冷却
コイル51→冷却塔CTの順に循環する。冷却塔CTで
は、落下する冷却水を大気中に一部蒸発させて、残りの
冷却水を冷却する自己冷却がなされており、冷却水は、
大気中に放熱して低温度になる排熱サイクルを形成して
いる。なお、送風機Sからの送風により、水の蒸発を促
進させている。
With the above configuration, in the cooling water circulation path, the cooling water in the cooling tower CT is operated by the operation of the cooling water pump P2.
It circulates in the order of cooling tower CT → cooling water pump P2 → absorption coil 31 → cooling coil 51 → cooling tower CT. In the cooling tower CT, self-cooling is performed in which the falling cooling water is partially evaporated into the atmosphere to cool the remaining cooling water.
An exhaust heat cycle is formed in which the heat is released into the atmosphere to lower the temperature. Note that the air from the blower S promotes the evaporation of water.

【0030】蒸発器4の蒸発コイル41には、室内機R
Uに設けられた空調熱交換器44が冷温水流路47で連
結されていて、冷温水流路47には、冷温水ポンプP3
が設けられている。以上の構成により、蒸発コイル41
で低温度となった冷温水は、蒸発コイル41→冷温水流
路47→空調熱交換器44→冷温水流路47→冷温水ポ
ンプP3→蒸発コイル41の順で循環する。室内機RU
には、空調熱交換器44が設けられているとともに、こ
の熱交換器44に対して、室内空気を通過させて再び室
内へ吹き出すブロワ46が備えられている。
The evaporator coil 41 of the evaporator 4 includes an indoor unit R
The air-conditioning heat exchanger 44 provided in U is connected by a cold / hot water flow path 47, and the cold / hot water pump P3
Is provided. With the above configuration, the evaporating coil 41
The low temperature hot and cold water circulates in the order of the evaporating coil 41 → the cold and hot water channel 47 → the air conditioning heat exchanger 44 → the cold and hot water channel 47 → the cold and hot water pump P3 → the evaporating coil 41. Indoor unit RU
Is provided with an air-conditioning heat exchanger 44, and a blower 46 that allows room air to pass through the heat exchanger 44 and blows out the room again.

【0031】次に、高温再生器1と蒸発器4との間に設
けられた暖房用吸収液流路L4および暖房用電磁弁6に
ついて説明する。暖房用吸収液流路L4および暖房用電
磁弁6は、暖房運転時に上述の吸収サイクルに代えて、
高温再生器1と蒸発器4とを連通させるために設けられ
たもので、冷房運転時には、吸収サイクルを形成するた
めに暖房用電磁弁6は閉じられる。
Next, the heating absorbent flow path L4 and the heating solenoid valve 6 provided between the high temperature regenerator 1 and the evaporator 4 will be described. The heating absorbent flow path L4 and the heating solenoid valve 6 are replaced with the above-described absorption cycle during the heating operation.
The heating solenoid valve 6 is provided to connect the high-temperature regenerator 1 and the evaporator 4, and during a cooling operation, the heating electromagnetic valve 6 is closed to form an absorption cycle.

【0032】本実施例では、暖房用電磁弁6として、図
4に示す如く、非通電状態では開弁し、通電により閉弁
する常開型の電磁弁が用いられていて、制御装置102
の制御により、冷房運転時には、暖房用電磁弁6は閉弁
制御され、暖房運転時には、暖房用電磁弁6を開弁制御
する。
In this embodiment, as shown in FIG. 4, a normally-open type electromagnetic valve which opens when not energized and closes when energized is used as the heating electromagnetic valve 6 as shown in FIG.
During the cooling operation, the heating electromagnetic valve 6 is controlled to close, and during the heating operation, the heating electromagnetic valve 6 is controlled to open.

【0033】以下、制御装置102による冷房運転時の
暖房用電磁弁6の制御について、図2に基づいて説明す
る。使用者がコントローラ(図示なし)の操作により冷
房運転の開始を指示すると(ステップS1においてYE
S)、暖房用電磁弁6の通電が開始され(ステップS
2)、これにより、暖房用電磁弁6は開弁状態から閉弁
状態に切り替わり、吸収液ポンプP1が駆動されるとと
もにガスバーナBが点火されて、吸収サイクルの運転が
開始される。
The control of the heating solenoid valve 6 during the cooling operation by the control device 102 will be described below with reference to FIG. When the user gives an instruction to start the cooling operation by operating a controller (not shown) (YE in step S1).
S), the energization of the heating solenoid valve 6 is started (step S).
2) As a result, the heating electromagnetic valve 6 is switched from the open state to the closed state, and the absorbent pump P1 is driven, the gas burner B is ignited, and the operation of the absorption cycle is started.

【0034】その後、ガスバーナBの加熱によって高温
再生器1の加熱タンク11内の温度が上昇し、中濃度吸
収液から冷媒蒸気が分離すると、高温再生器1内の圧力
が次第に上昇する。高温再生器1内に備えられた圧力判
断手段としての温度センサTHの検知温度Tが、所定温
度T1(例えば130℃)に達しない間は(ステップS
3においてNO)、暖房用電磁弁6の通電が継続され、
暖房用電磁弁6が強制的に閉弁状態に維持される。
Thereafter, the temperature in the heating tank 11 of the high-temperature regenerator 1 rises due to the heating of the gas burner B, and when the refrigerant vapor is separated from the medium-concentration absorbent, the pressure in the high-temperature regenerator 1 gradually increases. As long as the detected temperature T of the temperature sensor TH as the pressure determining means provided in the high temperature regenerator 1 does not reach the predetermined temperature T1 (for example, 130 ° C.) (Step S
3), the energization of the heating solenoid valve 6 is continued,
The heating electromagnetic valve 6 is forcibly maintained in the closed state.

【0035】温度センサTHの検知温度Tが 所定温度
T1を越えると(ステップS3においてYES)、それ
まで行われていた暖房用電磁弁6の通電が停止される
(ステップS4)。この所定温度T1は、高温再生器1
内の圧力が、蒸発器4内の圧力に対して十分に大きく、
それまで通電により閉弁状態であった暖房用電磁弁6の
弁体が、暖房用吸収液流路L4の高温再生器1側からの
圧力によって閉弁状態を確実に維持できるような圧力に
なる温度である。
When the detected temperature T of the temperature sensor TH exceeds the predetermined temperature T1 (YES in step S3), the energization of the heating electromagnetic valve 6 performed so far is stopped (step S4). This predetermined temperature T1 is the high temperature regenerator 1
Is sufficiently large with respect to the pressure in the evaporator 4,
The valve element of the heating electromagnetic valve 6, which was in the closed state by energization until then, has a pressure that can reliably maintain the closed state by the pressure from the high-temperature regenerator 1 side of the heating absorption liquid flow path L4. Temperature.

【0036】このため、所定温度T1以上になった後に
暖房用電磁弁6への通電が停止されても、弁体が継続し
て閉弁状態となり、高温再生器1と蒸発器4とが暖房用
吸収液流路L4によって連通することがない。この後、
冷房運転が継続されてガスバーナBによる加熱が継続さ
れる間は、暖房用電磁弁6は閉弁状態を維持することに
なる。
Therefore, even if the energization to the heating solenoid valve 6 is stopped after the temperature reaches the predetermined temperature T1 or more, the valve body is continuously closed, and the high temperature regenerator 1 and the evaporator 4 are heated. There is no communication with the use absorption liquid flow path L4. After this,
While the cooling operation is continued and the heating by the gas burner B is continued, the heating electromagnetic valve 6 maintains the closed state.

【0037】使用者の操作により、冷房運転の終了が指
示されると(ステップS5においてYES)、ガスバー
ナBの燃焼が停止され、吸収液ポンプP1は駆動を継続
したまま希釈運転状態になり、高温再生器1内の温度が
次第に低下する。高温再生器1内の温度が、所定温度T
1より高い間は(ステップS6においてNO)、高温再
生器1内の圧力により、暖房用電磁弁6は閉弁状態を確
実に維持する。
When the end of the cooling operation is instructed by a user's operation (YES in step S5), the combustion of the gas burner B is stopped, and the absorbent pump P1 is in the dilution operation state while continuing to operate, and the high temperature is maintained. The temperature inside the regenerator 1 gradually decreases. When the temperature in the high-temperature regenerator 1 reaches a predetermined temperature T
While it is higher than 1 (NO in step S6), the heating electromagnetic valve 6 reliably maintains the closed state due to the pressure in the high-temperature regenerator 1.

【0038】高温再生器1内の温度が、所定温度T1よ
り低くなると(ステップS6においてYES)、上記圧
力による閉弁状態が維持できなくなるため、暖房用電磁
弁6が再び通電され(ステップS7)、暖房用電磁弁6
は強制的に閉弁状態にされる。その後も、吸収液ポンプ
P1は作動して希釈運転が行われ、その間に、高温再生
器1内の温度は次第に低下する。
When the temperature in the high-temperature regenerator 1 becomes lower than the predetermined temperature T1 (YES in step S6), the closed state due to the pressure cannot be maintained, and the heating electromagnetic valve 6 is energized again (step S7). , Heating solenoid valve 6
Is forcibly closed. Thereafter, the absorption liquid pump P1 operates to perform the dilution operation, during which time the temperature inside the high-temperature regenerator 1 gradually decreases.

【0039】高温再生器1への加熱の停止により、温度
センサの検知温度Tが閉弁希釈終了温度T2(例えば1
10℃)より低くなると(ステップS8においてYE
S)、暖房用電磁弁6の通電を停止する(ステップS
9)。これにより、暖房用電磁弁6が開弁状態になり、
この状態で希釈運転を行う。
When the heating of the high-temperature regenerator 1 is stopped, the temperature T detected by the temperature sensor decreases to the valve closing dilution end temperature T2 (for example, 1).
10 ° C.) (YE in step S8).
S), the energization of the heating solenoid valve 6 is stopped (step S).
9). As a result, the heating solenoid valve 6 is opened.
The dilution operation is performed in this state.

【0040】その後、検知温度Tが開弁希釈終了温度T
3(例えば100℃)より低くなると(ステップS10
においてYES)、吸収液ポンプP1を停止して(ステ
ップS11)、冷房運転を終了する。図3に、上記の冷
房運転時における高温再生器1内の温度の変化と、暖房
用電磁弁6の制御との関係を示す。図から明らかな通
り、暖房用電磁弁6の通電時間が、運転時間に対して、
非常に短いことが分かる。
Thereafter, the detected temperature T becomes equal to the valve opening dilution end temperature T.
3 (for example, 100 ° C.) (step S10).
Is YES), the absorption pump P1 is stopped (step S11), and the cooling operation is ended. FIG. 3 shows a relationship between a change in the temperature inside the high-temperature regenerator 1 during the cooling operation and the control of the heating electromagnetic valve 6. As is clear from the figure, the energization time of the heating solenoid valve 6 is
It turns out to be very short.

【0041】一方、暖房運転時には、暖房用電磁弁6の
通電は行われず、暖房用電磁弁6が開弁状態で、吸収液
ポンプP1を作動させると、中濃度吸収液分離筒12内
の高温度の中濃度吸収液が、蒸発器4の底部43から蒸
発器4内へ流入し、蒸発コイル41内の冷温水が加熱さ
れ、加熱された蒸発コイル41内の冷温水は、冷温水ポ
ンプP3の作動により冷温水流路47から空調用熱交換
器44へ供給され、暖房の熱源となる。蒸発器4内の中
濃度吸収液は、仕切板40の連通口40aから吸収器3
側へ入り、低濃度吸収液流路L3を経て、吸収液ポンプ
P1により加熱タンク11へ戻される。
On the other hand, in the heating operation, the heating solenoid valve 6 is not energized, and the heating solution solenoid valve 6 is in the open state. The medium-concentration absorbing liquid having a temperature flows into the evaporator 4 from the bottom 43 of the evaporator 4 to heat the cold and hot water in the evaporator coil 41, and the hot and cold water in the heated evaporator coil 41 is supplied to the cold and hot water pump P3. Is supplied from the cold / hot water flow path 47 to the air-conditioning heat exchanger 44 and becomes a heat source for heating. The medium-concentration absorbing liquid in the evaporator 4 flows from the communication port 40a of the partition plate 40 to the absorber 3
Side, and is returned to the heating tank 11 by the absorbent pump P1 via the low concentration absorbent flow path L3.

【0042】以上のとおり、本実施例では、冷房運転時
には、暖房用吸収液流路L4に設けられた暖房用電磁弁
6は、冷房運転開始時の高温再生器1内の温度が所定温
度T1以下の間には通電されて閉状態になり、高温再生
器1内の温度が所定温度T1以上になると、暖房用電磁
弁6は非通電に制御されるが、高温再生器1内の吸収液
がすでに加熱されていて、その温度上昇に伴って、高温
再生器1内の吸収液および蒸気の圧力が蒸発器4内の圧
力より高くなっているので、暖房用電磁弁6の通電が停
止されても、暖房用電磁弁6の弁体が開くことがなく、
前記圧力により暖房用電磁弁6は閉状態に維持される。
As described above, in the present embodiment, during the cooling operation, the heating solenoid valve 6 provided in the heating absorbent flow path L4 causes the temperature in the high-temperature regenerator 1 at the start of the cooling operation to reach the predetermined temperature T1. During the following period, the heater is closed by being energized, and when the temperature in the high-temperature regenerator 1 becomes equal to or higher than the predetermined temperature T1, the heating solenoid valve 6 is controlled to be de-energized. Has already been heated, and the pressure of the absorbing liquid and steam in the high-temperature regenerator 1 is higher than the pressure in the evaporator 4 with the rise in temperature, so that the energization of the heating electromagnetic valve 6 is stopped. However, the valve body of the heating solenoid valve 6 does not open,
The heating electromagnetic valve 6 is kept closed by the pressure.

【0043】従って、本実施例では、冷房運転時には、
高温再生器1内の温度が低い間だけ暖房用電磁弁6の通
電を行い、高温再生器1内の温度が高くなり圧力が高く
なった後には、高温再生器1内の圧力を利用して暖房用
電磁弁6を閉状態に維持する。従って、暖房運転及び冷
房運転を通じて、吸収液の晶析が生じる不具合はなく、
また、暖房用電磁弁6に大きな駆動力が必要なく、小型
で消費電力の小さな安価な暖房用電磁弁6を用いること
ができる。
Therefore, in this embodiment, during the cooling operation,
The heating solenoid valve 6 is energized only while the temperature in the high-temperature regenerator 1 is low. After the temperature in the high-temperature regenerator 1 increases and the pressure increases, the pressure in the high-temperature regenerator 1 is used. The heating electromagnetic valve 6 is maintained in a closed state. Therefore, there is no problem that the crystallization of the absorbing solution occurs through the heating operation and the cooling operation,
In addition, a large driving force is not required for the heating electromagnetic valve 6, and a small, inexpensive heating electromagnetic valve 6 with small power consumption can be used.

【0044】また、冷房運転開始時の通電中に瞬間停電
が発生して暖房用電磁弁6が開いてしまった場合でも、
高温再生器1内の温度が低く、その圧力が低いため、復
電したとき、通電によって発生する駆動力によって、確
実に暖房用電磁弁6を再び閉じることができる。また、
冷房運転時に高温再生器1内の温度が上昇して、暖房用
電磁弁6を非通電させ高温再生器1内の圧力で閉状態を
維持している場合には、瞬間停電が発生しても暖房用電
磁弁6が開くことがないため、暖房用電磁弁6の閉状態
を継続させたまま、安定した冷房運転を行うことができ
る。
Further, even if a momentary power failure occurs during energization at the start of the cooling operation and the heating solenoid valve 6 is opened,
Since the temperature inside the high-temperature regenerator 1 is low and the pressure is low, when the power is restored, the heating electromagnetic valve 6 can be reliably closed again by the driving force generated by energization. Also,
When the temperature in the high-temperature regenerator 1 rises during the cooling operation and the heating solenoid valve 6 is de-energized and is kept closed by the pressure in the high-temperature regenerator 1, even if an instantaneous power failure occurs, Since the heating electromagnetic valve 6 does not open, a stable cooling operation can be performed while the heating electromagnetic valve 6 is kept closed.

【0045】また、暖房運転時には、暖房用電磁弁6は
通電されないため、瞬間停電が発生した場合でも、暖房
用吸収液流路L4が確保でき、高温再生器1から蒸発器
4へ加熱された吸収液および蒸気を継続して供給するこ
とができる。従って、安定した暖房運転を確保できる。
In the heating operation, the heating solenoid valve 6 is not energized, so that even if a momentary power failure occurs, the heating absorption liquid flow path L4 can be secured, and the heating from the high temperature regenerator 1 to the evaporator 4 is performed. Absorbing liquid and vapor can be continuously supplied. Therefore, a stable heating operation can be secured.

【0046】また、本実施例のように暖房用電磁弁6に
常開電磁弁を用いて、冷房運転の開始時等に一時的に暖
房用電磁弁6を通電させて、暖房運転時及び冷房運転の
定常運転時(再生器内の温度が所定温度T1より高いと
き)に暖房用電磁弁6を非通電に制御すると、暖房用電
磁弁6の通電時間を著しく短くすることができる。これ
により、通電消費電力を少なくでき、運転経費を抑える
ことができる。特に、本実施例では、希釈運転を制御す
るための温度センサTHを用いて、再生器内の圧力を間
接的に判断しているため、圧力を判断するための他のセ
ンサが不要となるため、安価な装置とすることができ
る。
Also, as in the present embodiment, a normally-open solenoid valve is used as the heating solenoid valve 6, and the heating solenoid valve 6 is temporarily energized at the start of the cooling operation or the like, so that the heating solenoid valve 6 is turned on during the heating operation and the cooling operation. When the heating solenoid valve 6 is controlled to be de-energized during steady operation (when the temperature in the regenerator is higher than the predetermined temperature T1), the energization time of the heating solenoid valve 6 can be significantly reduced. As a result, power consumption and power consumption can be reduced, and operating costs can be reduced. In particular, in this embodiment, since the pressure in the regenerator is indirectly determined using the temperature sensor TH for controlling the dilution operation, another sensor for determining the pressure is not required. And an inexpensive device.

【0047】上記実施例では、冷却水流路34の冷却塔
CTを、冷却水の一部を蒸発させて冷却水を自己冷却す
る開放式のものとしたが、冷却水流路34を循環する冷
却水が、大気に開放されていない密閉回路を形成した水
冷装置でもよい。
In the above embodiment, the cooling tower CT of the cooling water flow path 34 is of the open type in which a part of the cooling water is evaporated to self-cool the cooling water. However, a water cooling device that forms a closed circuit that is not open to the atmosphere may be used.

【0048】上記実施例では、室内機RUに空調熱交換
器44のみを設けたものを示したが、室内温度を下げな
いで除湿運転を行うために、空調熱交換器44で一旦冷
却した空気を加熱する加熱用熱交換器を空調熱交換器4
4と並設させるようにしてもよい。
In the above embodiment, the indoor unit RU is provided with only the air conditioning heat exchanger 44. However, in order to perform the dehumidifying operation without lowering the indoor temperature, the air cooled once by the air conditioning heat exchanger 44 is used. Air-conditioning heat exchanger 4
4 may be juxtaposed.

【0049】上記実施例では、二重効用型の吸収式冷凍
装置を説明したが、一重効用型でもよく、加熱手段は、
石油バーナ、電気ヒータでもよい。上記実施例では、圧
力判断手段として温度センサで間接的に圧力を判断した
が、圧力センサを設置して、直接再生器内の圧力を検出
してもよい。また、タイマにより運転開始より所定時間
(例えば3分)は通電し、所定時間経過したら非通電さ
せてもい。この場合、所定時間は、所定圧力(所定温度
T1)に達するのに最も時間がかかるコールドスタート
の場合を基準にして決めればよい。なお、その場合、ホ
ットスタート時には、所定圧力(所定温度T1)に短時
間(0〜2分)で達し、達した後のしばらくの間(最大
3分)通電されていることになるが、晶析が生じる条件
となる通電時間(連続2時間程度)と比較して、十分に
短いため、問題は生じない。
In the above embodiment, the double-effect absorption refrigeration apparatus has been described. However, a single-effect absorption refrigeration apparatus may be used.
Oil burners and electric heaters may be used. In the above embodiment, the pressure is indirectly determined by the temperature sensor as the pressure determining means. However, a pressure sensor may be provided to directly detect the pressure in the regenerator. The timer may be energized for a predetermined time (for example, three minutes) from the start of operation, and may be de-energized after the elapse of the predetermined time. In this case, the predetermined time may be determined based on the case of a cold start that takes the longest time to reach the predetermined pressure (the predetermined temperature T1). In this case, at the time of the hot start, a predetermined pressure (predetermined temperature T1) is reached in a short time (0 to 2 minutes), and power is supplied for a while (maximum 3 minutes) after reaching the predetermined pressure. There is no problem because the current is sufficiently short as compared with the energizing time (about two hours in a row) under which the conditions for the precipitation occur.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す空調装置の概略構成図で
ある。
FIG. 1 is a schematic configuration diagram of an air conditioner showing an embodiment of the present invention.

【図2】本発明の実施例における制御装置の電磁弁制御
を説明するための流れ図である。
FIG. 2 is a flowchart for explaining solenoid valve control of a control device according to an embodiment of the present invention.

【図3】本発明の実施例における冷房運転時の高温再生
器内の温度の変化と暖房用電磁弁の制御との関係を示す
タイムチャートである。
FIG. 3 is a time chart showing a relationship between a change in temperature in a high-temperature regenerator and a control of a heating electromagnetic valve during a cooling operation in the embodiment of the present invention.

【図4】本発明の実施例における暖房用電磁弁を示す断
面図である。
FIG. 4 is a sectional view showing a heating solenoid valve according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 高温再生器(再生器) 2 低温再生器(再生器) 3 吸収器 4 蒸発器 5 凝縮器 6 暖房用電磁弁(電磁弁) 100 吸収式冷凍装置 102 制御装置(制御手段) P1 吸収液ポンプ(ポンプ) L4 暖房用吸収液流路(暖房運転用吸収液流路) RU 室内機(空調対象) TH 温度センサ DESCRIPTION OF SYMBOLS 1 High temperature regenerator (regenerator) 2 Low temperature regenerator (regenerator) 3 Absorber 4 Evaporator 5 Condenser 6 Heating solenoid valve (solenoid valve) 100 Absorption refrigeration apparatus 102 Controller (control means) P1 Absorbing liquid pump (Pump) L4 Heating absorbent flow path (heating absorbent flow path) RU Indoor unit (air conditioning target) TH Temperature sensor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を含む吸収液を加熱して該吸収液か
ら冷媒蒸気を分離させる再生器と、 該再生器によって分離した前記冷媒蒸気を冷却して凝縮
させる凝縮器と、 該凝縮器で凝縮した冷媒を低圧下で蒸発させる蒸発器
と、 該蒸発器で蒸発した冷媒蒸気を前記再生器から供給され
る吸収液に吸収させる吸収器と、 該吸収器から前記再生器へ吸収液を戻すポンプとから吸
収サイクルを形成するとともに、 前記再生器と前記蒸発器との間に電磁弁を具備した暖房
運転用吸収液流路を設け、前記電磁弁を制御手段によっ
て制御して暖房運転と冷房運転とを切り換え、前記蒸発
器を通過する冷温水により空調対象の暖房または冷房を
行う吸収式冷凍装置を用いた空調装置において、 前記電磁弁として、非通電時には開状態が維持され、通
電時に閉状態に切り換えられる常開電磁弁を用いるとと
もに、 前記制御手段は、前記再生器内の圧力を直接的又は間接
的に判断する圧力判断手段を備え、 暖房運転時には、前記電磁弁を非通電に制御して開状態
とし、 冷房運転時には、前記圧力判断手段の判断圧力が所定圧
力以下の場合に前記電磁弁を閉状態にするために通電
し、前記所定圧力より高い場合に前記電磁弁を非通電に
制御することを特徴とする吸収式冷凍装置を用いた空調
装置。
1. A regenerator that heats an absorbent containing a refrigerant to separate refrigerant vapor from the absorbent, a condenser that cools and condenses the refrigerant vapor separated by the regenerator, An evaporator that evaporates the condensed refrigerant under a low pressure; an absorber that absorbs the refrigerant vapor evaporated by the evaporator into an absorbent supplied from the regenerator; and returns the absorbent from the absorber to the regenerator. A pump and an absorption cycle are formed, and a heating operation absorbing liquid flow path including an electromagnetic valve is provided between the regenerator and the evaporator, and the electromagnetic valve is controlled by control means to perform heating operation and cooling. In an air conditioner using an absorption refrigeration system that switches between operation and operation and heats or cools an object to be air-conditioned by cold and hot water passing through the evaporator, the electromagnetic valve is kept open when not energized and closed when energized. The control means includes a pressure determination means for directly or indirectly determining the pressure in the regenerator, and controls the solenoid valve to be non-energized during a heating operation. When the cooling operation is performed, the solenoid valve is energized to close the solenoid valve when the pressure determined by the pressure determination means is equal to or lower than a predetermined pressure, and is deenergized when the pressure is higher than the predetermined pressure. An air conditioner using an absorption refrigeration system, characterized in that the air conditioner is controlled in a controlled manner.
【請求項2】 前記圧力判断手段は、前記再生器内の温
度を検知する温度センサであり、該温度センサの検知温
度が所定温度以上のとき前記所定圧力以上であると判断
することを特徴とする請求項1記載の吸収式冷凍装置を
用いた空調装置。
2. The pressure judging means is a temperature sensor for detecting a temperature inside the regenerator, and judges that the temperature is equal to or higher than the predetermined pressure when the temperature detected by the temperature sensor is equal to or higher than a predetermined temperature. An air conditioner using the absorption refrigeration device according to claim 1.
【請求項3】 冷房運転時には、運転開始から所定時間
の間前記電磁弁を通電し、前記所定時間を経過した後に
前記電磁弁を非通電にすることを特徴とする請求項1ま
たは2に記載の吸収式冷凍装置を用いた空調装置。
3. The cooling device according to claim 1, wherein the solenoid valve is energized for a predetermined time from the start of the cooling operation, and the solenoid valve is de-energized after the predetermined time has elapsed. Air conditioner using an absorption refrigeration system.
【請求項4】 前記電磁弁は、前記再生器内の圧力が所
定圧力より高い場合、前記再生器内の圧力によって弁体
が閉じる方向に付勢されて閉状態に維持される前記暖房
運転用吸収液流路に配置されたことを特徴とする請求項
1、2または3のいずれかに記載の吸収式冷凍装置を用
いた空調装置。
4. When the pressure in the regenerator is higher than a predetermined pressure, the solenoid valve is urged in a direction in which a valve body is closed by the pressure in the regenerator and is maintained in a closed state. The air conditioner using the absorption refrigeration device according to any one of claims 1, 2 and 3, wherein the air conditioner is arranged in the absorption liquid flow path.
【請求項5】 前記制御手段は、冷房運転の終了時に、
前記再生器の温度が前記所定温度以下になったとき通電
し、前記所定温度より低い閉弁希釈運転終了温度以下に
なったとき、前記電磁弁の通電を停止することを特徴と
する請求項2、3または4のいずれかに記載の吸収式冷
凍装置を用いた空調装置。
5. The control means according to claim 1, further comprising:
The power supply to the solenoid valve is stopped when the temperature of the regenerator becomes equal to or lower than the predetermined temperature, and the power supply to the solenoid valve is stopped when the temperature becomes equal to or lower than the valve closing dilution operation end temperature lower than the predetermined temperature. An air conditioner using the absorption refrigeration device according to any one of 3 and 4.
JP8257110A 1996-09-27 1996-09-27 Air conditioner using absorption type refrigerator Pending JPH10103808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8257110A JPH10103808A (en) 1996-09-27 1996-09-27 Air conditioner using absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8257110A JPH10103808A (en) 1996-09-27 1996-09-27 Air conditioner using absorption type refrigerator

Publications (1)

Publication Number Publication Date
JPH10103808A true JPH10103808A (en) 1998-04-24

Family

ID=17301879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8257110A Pending JPH10103808A (en) 1996-09-27 1996-09-27 Air conditioner using absorption type refrigerator

Country Status (1)

Country Link
JP (1) JPH10103808A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098386A (en) * 2000-07-17 2002-04-05 Saginomiya Seisakusho Inc Fluid control valve, control device of air conditioner, and the air conditioner
WO2012108224A1 (en) * 2011-02-10 2012-08-16 アイシン精機株式会社 Engine cooling device
WO2012108225A1 (en) * 2011-02-10 2012-08-16 アイシン精機株式会社 Vehicle cooling device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098386A (en) * 2000-07-17 2002-04-05 Saginomiya Seisakusho Inc Fluid control valve, control device of air conditioner, and the air conditioner
WO2012108224A1 (en) * 2011-02-10 2012-08-16 アイシン精機株式会社 Engine cooling device
WO2012108225A1 (en) * 2011-02-10 2012-08-16 アイシン精機株式会社 Vehicle cooling device
JP2012167573A (en) * 2011-02-10 2012-09-06 Aisin Seiki Co Ltd Cooling device for vehicle
JP2012167572A (en) * 2011-02-10 2012-09-06 Aisin Seiki Co Ltd Engine cooling device
US8967095B2 (en) 2011-02-10 2015-03-03 Aisin Seiki Kabushiki Kaisha Engine cooling apparatus
US9109497B2 (en) 2011-02-10 2015-08-18 Aisin Seiki Kabushiki Kaisha Vehicle cooling device

Similar Documents

Publication Publication Date Title
JP2560550B2 (en) Absorption cooling / heating device and control method thereof
JPH10103808A (en) Air conditioner using absorption type refrigerator
JP3728122B2 (en) Absorption air conditioner control device
JP3318505B2 (en) Control device for absorption air conditioner
JP2650654B2 (en) Absorption refrigeration cycle device
JP2001099474A (en) Air conditioner
JP3660493B2 (en) Absorption refrigeration system controller
JP3920997B2 (en) Absorption air conditioner control device
JP2839442B2 (en) Absorption refrigeration cycle device
JP3728121B2 (en) Absorption air conditioner control device
JP3920986B2 (en) Absorption air conditioner
JP4494624B2 (en) Air conditioner
JP3920979B2 (en) Absorption air conditioner control device
JP2977466B2 (en) Absorption refrigeration cycle device
KR0136049Y1 (en) Absorption room cooler
JPH109707A (en) Absorption type refrigerating device
JP4031548B2 (en) Air conditioning system
JP3251100B2 (en) Absorption refrigerator
KR100306035B1 (en) Absorption air conditioning apparatus
JP3241624B2 (en) Absorption air conditioner
JPH0989313A (en) Air conditioner with absorbing type freezer
JP2003042588A (en) Absorption type cooling and heating machine
JPH09133425A (en) Absorption air conditioner
JP2003065625A (en) Absorption type air conditioning equipment
JPH07190543A (en) Absorption type refrigeration cycle device