JP4494624B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4494624B2
JP4494624B2 JP2000388028A JP2000388028A JP4494624B2 JP 4494624 B2 JP4494624 B2 JP 4494624B2 JP 2000388028 A JP2000388028 A JP 2000388028A JP 2000388028 A JP2000388028 A JP 2000388028A JP 4494624 B2 JP4494624 B2 JP 4494624B2
Authority
JP
Japan
Prior art keywords
cold
hot water
refrigerant
liquid
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000388028A
Other languages
Japanese (ja)
Other versions
JP2002195596A (en
Inventor
寿洋 佐藤
紳司 黒田
莉恵 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Rinnai Corp
Original Assignee
Osaka Gas Co Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Rinnai Corp filed Critical Osaka Gas Co Ltd
Priority to JP2000388028A priority Critical patent/JP4494624B2/en
Publication of JP2002195596A publication Critical patent/JP2002195596A/en
Application granted granted Critical
Publication of JP4494624B2 publication Critical patent/JP4494624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、作動流体としての冷温水を循環させて冷房及び暖房を行う空調装置に係り、冷温水ポンプの回転数を手動操作により補正できるように改良した空調装置に関する。
【0002】
【従来の技術】
例えば、吸収サイクルを用いた吸収式空調装置では、冷房運転の際に、再生器でバーナの加熱により沸騰した低濃度吸収液から冷媒蒸気が分離され、この冷媒蒸気は凝縮器により冷却されて冷媒液となって蒸発器に供給される。再生器により冷媒蒸気が分離されて高濃度となった吸収液は、吸収器へ供給される。蒸発器は冷媒液から熱を奪って冷却源を形成し、冷温水配管内を循環する冷温水を冷却し、室内機の空調用熱交換器に循環させることにより室内の冷房を行う。吸収液は、吸収器で冷媒蒸気を吸収し、この時に発生する熱を外部に排出するために熱交換用配管が設けられていて、冷却ポンプにより駆動される冷却水によって排熱が行われる。
【0003】
暖房運転の際に、再生器と蒸発器とを連通する吸収液流路内の冷暖切替え弁を開き、バーナにより加熱された吸収液を蒸発器内に供給することにより、蒸発器内の冷温水配管を通過する冷温水を加熱し、室内機および暖房パネルへ循環させる。
熱源となる室外機と室内機及び床暖房パネルの室内空調用熱交換器との間には、室外機で加熱あるいは冷却された冷温水を循環させるための冷温水循環回路が形成されており、冷房及び暖房運転において蒸発器内で冷却あるいは加熱された冷温水が室内機等に供給されて室内の冷房または暖房を行う。1台の室外機に対して複数の室内機及び床暖房パネル等の端末機器を設置できるマルチエアコンが商品化されている。
【0004】
【発明が解決しようとする課題】
上記従来のものでは、室内機や床暖房パネルの端末台数を考慮して冷温水ポンプの回転数を定格的に設定し、本来の冷暖房性能を発揮できるようにしている。ところが、設置の現場では住居の形状等により施工状態や設置状態が微妙に異なり、特に配管長さが大きく屈曲箇所が多い場合は、圧力損失が大きくなり、冷房運転時の冷温水流量を十分には確保できず、僅かにも冷房不足が生じる虞がある。
【0005】
逆に、配管長さが小さい場合は、暖房運転時の冷温水流量が多くなりすぎて制御性が低下し、所望の暖房温度を保てない不都合がある。また、流量調整バルブを絞る際に通水音が発生し、騒音が問題になる虞がある。
また、使用者の個人的な嗜好や感覚等により冷暖房状態を微妙に修正したいといった要求もある。
【0006】
本発明は上記事情を背景になされたもので、その目的は施工状態や設置状態あるいは個人的な感覚等に応じて冷温水ポンプの回転数を簡易な操作により素早く補正でき、配管長さ等の施工条件を緩和し得るとともに、使用者の感覚や嗜好による快適性を実現でき、サービス性の向上に寄与する空調装置を提供することにある。
【0007】
【課題を解決するための手段】
請求項1によれば、冷媒を含む吸収液を加熱し、吸収液から冷媒蒸気を分離する再生器と、この再生器によって分離した冷媒蒸気を冷却して凝縮する凝縮器と、この凝縮器により生じた冷媒液を低圧下で蒸発させる蒸発器と、前記再生器により冷媒蒸気が分離された吸収液に前記蒸発器により蒸発した冷媒蒸気を吸収させる吸収器と、前記吸収器から前記再生器へ吸収液を戻すための吸収液ポンプとから吸収サイクルを形成し、熱交換により冷温水を加熱および冷却する循環サイクルを有する室外機と、冷温水を遮断する開閉弁をそれぞれ備えた複数台数の室内空調用熱交換器を前記室外機内に配した熱交換用配管に対して並列接続可能に設け、前記熱交換用配管により加熱あるいは冷却された冷温水を冷温水ポンプにより前記室内空調用熱交換器に循環させる冷温水循環回路と、冷房運転と暖房運転との切替えや運転の開始および停止を制御する運転制御手段とを備える空調装置であって、前記冷温水ポンプと前記吸収液ポンプとは別々に駆動され、冷房及び暖房運転時に前記室内空調用熱交換器の運転台数に応じて設定された前記冷温水ポンプのみの回転数を手動操作により補正する制御部を有したことを特徴とする。
【0008】
請求項2によれば、前記制御部は、前記冷温水ポンプの回転数を所定数毎に段階的に変化させる微調整スイッチを備えていることを特徴とする。
【0009】
【発明の作用および効果】
〔請求項1について〕
冷房及び暖房運転時には、設置後に手動操作を行うと、制御部から指示信号が冷温水ポンプの制御部に送られ、冷温水ポンプの回転数が所望の回転数に補正される。このため、施工状態や設置状態あるいは個人的な感覚等に応じて冷温水ポンプの回転数を簡易な操作により素早く補正でき、配管長さ等の施工条件を緩和し得るとともに、使用者の嗜好による快適性を実現できる。
【0010】
〔請求項2について〕
冷温水ポンプの回転数は、微調整スイッチを用いた手動操作により所定数毎に段階的に変化するので、冷温水ポンプの回転数を種々に微調整でき好都合である。
【0011】
【発明の実施の形態】
本発明を吸収式空調装置に適用した一実施例について各図に基づいて説明する。図1は制御装置200により制御される吸収式空調装置を示し、この吸収式空調装置は吸収式熱源機としての室外機100と複数台の室内機RUを備えている。この室外機100は、熱源機本体101と冷却塔CTとから構成されている。
【0012】
室外機100の熱源機本体101は主にステンレスにより形成され、冷媒および吸収液としての臭化リチウム水溶液の冷凍用の吸収サイクルを形成する。Bは加熱手段としてのガスバーナ、1は高温再生器、2は低温再生器、3は吸収器、4は蒸発器、5は凝縮器であり、吸収液内には臭化リチウムのステンレスに対する腐食を抑制するインヒビターが含まれている。
【0013】
高温再生器1では、加熱タンク11の内部に供給された低濃度吸収液をガスバーナBにより加熱し、中濃度吸収液分離筒12と吸収液仕切り容器13との間に形成された筒状の吸収液上昇流路14を加熱された吸収液が上昇すると、低濃度吸収液中の冷媒としての水が蒸発し、冷媒蒸気(水蒸気)として分離する。冷媒蒸気の蒸発により濃化した中濃度吸収液は、吸収液戻し板15により内方に方向転換して吸収液仕切り容器13内に戻される。
【0014】
冷媒が分離されて高濃度化された中濃度吸収液は、吸収液仕切り容器13の側部に開口した中濃度吸収液流路L1を介して低温再生器2へ供給される。分離した冷媒蒸気は、冷媒吸収タンク10により回収されて冷媒流路L5を介して凝縮器5へ供給される。なお、吸収液仕切り容器13の底部には、暖房運転時に加熱された吸収液を蒸発器4内へ供給するための冷暖房用吸収液流路L4の流入口が開口している。
【0015】
冷媒吸収タンク10内の下部内側には、冷媒仕切り筒17が中濃度吸収液分離筒12の外側面部に接合され、中濃度吸収液分離筒12との間に断熱用間隙17aを形成している。このため、中濃度吸収液分離筒12内の熱が遮断され、冷媒吸収タンク10内の冷媒が吸収液上昇流路14内の高温の吸収液により加熱されることがない。冷媒吸収タンク10における冷媒仕切り筒17の外側は、分離された液冷媒を貯留する冷媒貯留部10aとなっており、冷媒貯留部10aに貯留された冷媒は冷媒流路L5を介して凝縮器5へ供給される。
【0016】
低温再生器2では、途中に熱交換器Hを通過する中濃度吸収液流路L1を介して供給される中濃度吸収液が低温再生器ケース20の天井から流入し、冷媒吸収タンク10の外壁を熱源として再加熱され、気液分離部22により冷媒蒸気と高濃度吸収液とに分離される。冷媒蒸気は、冷媒蒸気出口21および間隙5Aから凝縮器ケース50内へ供給され、高濃度吸収液は、高濃度吸収液受け部23に貯留され、高濃度吸収液流路L2を介して吸収器3へ供給される。
【0017】
中濃度吸収液流路L1内には、吸収液仕切り容器13から低温再生器2へ流れる中濃度吸収液の流量を制限するためのオリフィス(図示せず)が設けられており、低温再生器2内へは中濃度吸収液分離筒12との圧力差により中濃度吸収液が供給される。このため、低温再生器ケース20内では約70mmHg、中濃度吸収液分離筒12内では約700mmHgになっている。
【0018】
吸収器3は、蒸発・吸収ケース30内に銅管を縦型円筒状に巻設し、内部を排熱用冷却水が流れる吸収管としてコイル状に巻かれた吸収コイル31を有している。この吸収コイル31の上端には、高濃度吸収液流路L2を介して低温再生器2の高濃度吸収液受け部23から供給される高濃度吸収液が圧力差により流入し、高濃度吸収液散布具32により散布される。このように散布された高濃度吸収液は吸収コイル31の表面に薄膜状に付着して重力の作用で流下し、水蒸気を吸収して低濃度吸収液となる。この水蒸気を吸収する際に、吸収コイル31の表面では発熱するが、吸収コイル31内を循環する排熱用冷却水により冷却される。なお、高濃度吸収液に吸収される水蒸気は、後述する蒸発器4で冷媒蒸気として発生したものである。
【0019】
吸収器3内の低濃度吸収液は、吸収液ポンプP1の作動により底部33から熱交換器Hおよび吸収液ポンプP1が設けられた低濃度吸収液流路L3を介して加熱タンク11内に戻る。また、吸収コイル31内には、冷房運転時に冷却塔CTにより冷却された排熱用冷却水が凝縮器5の冷却コイル51内を介して循環する。
【0020】
蒸発器4は、蒸発・吸収ケース30内の吸収コイル31の外周に設けた縦型円筒形で多数の連通口(図示せず)付きの仕切り板40の外周に、内部を冷暖房用の冷温水が流れる銅管からなる縦型円筒形の蒸発コイル41を配設し、その上方に冷媒液散布具42を取り付けてなる。なお、蒸発器4の底部43は、電磁式の冷暖切替え弁6を有する冷暖房用吸収液流路L4により中濃度吸収液分離筒12内の吸収液仕切り容器13の底部と連通している。
【0021】
さて、冷房運転時に蒸発器4では、冷媒液散布具42により液冷媒(水)を蒸発コイル41の上に流下させると、流下した冷媒液は表面張力により蒸発コイル41の表面を濡らして膜状となり、重力の作用で降下しながら低圧(例えば6.5mmHg)となっている蒸発・吸収ケース30内で蒸発コイル41から気化熱を奪って蒸発し、蒸発コイル41内を流れる空調用の冷温水を冷却する。
【0022】
凝縮器5における凝縮器ケース50内には、冷媒蒸気が冷却コイル51に冷却されて液化した冷媒液を凝縮器ケース50の底から離れた位置で受けるための皿状の冷媒液受け部52が設けられている。この冷媒液受け部52は、蒸発器4の冷媒液散布具42の上方に位置し、供給される冷媒液の自己冷却により冷媒液を冷却する冷媒冷却器53と、冷媒液供給路L6により連通するように設けられている。
【0023】
凝縮器5は、冷媒流量を制限するためのオリフィス(図示せず)が設けられた冷媒流路L5により冷媒吸収タンク10の冷媒貯留部10aに連通するとともに、冷媒蒸気出口21および間隙5Aを介して低温再生器2とも連通しており、いずれも圧力差(凝縮器ケース50内では約70mmHg)により冷媒が供給される。冷房運転時に凝縮器ケース50内に供給された冷媒蒸気は、冷却コイル51により冷却されて液化し、冷媒液受け部52から冷媒液供給路L6を介して冷媒冷却器53に供給される。
【0024】
冷媒液受け部52から溢れ出た冷媒液は、凝縮器ケース50の内底部により形成される冷媒液貯留部54に貯留され、冷房運転時に冷房性能を確保すべく吸収サイクルを循環する吸収液の濃度を実質的に高く維持している。この冷媒液貯留部54と冷媒冷却器53とは、冷媒弁7を備えた冷媒液流路L7により連通しており、冷媒液の凍結の虞がある場合に冷媒弁7の開弁制御により冷媒液が蒸発器4に供給され、蒸発器4内の蒸気圧を高くすることにより凍結を防止している。暖房運転の開始時にも冷媒弁7は開弁され、冷房運転時に冷媒液貯留部54内に貯留された冷媒液が全て蒸発器4内に供給され、暖房運転時に加熱されて循環する吸収液の濃度を低く維持して晶析の発生を防止している。
【0025】
冷房運転時における吸収液は、高温再生器1→中濃度吸収液流路L1→高濃度吸収液流路L2→高濃度吸収液散布具32→吸収器3→吸収液ポンプP1→低濃度吸収液流路L3→高温再生器1の順に循環する。また、冷媒は高温再生器1(冷媒蒸気)→冷媒流路L5(冷媒蒸気)または低温再生器2(冷媒蒸気)→凝縮器5(冷媒液)→冷媒液供給路L6(冷媒液)または冷媒液流路L7(冷媒液)→冷媒冷却器53→冷媒液散布具42(冷媒液)→蒸発器4(冷媒蒸気)→吸収器3(吸収液)→吸収液ポンプP1→低濃度吸収液流路L3→高温再生器1の順に循環する。
【0026】
吸収液と熱交換する吸収器3の吸収コイル31と凝縮器5の冷却コイル51とは接続されて連続コイルを形成している。この連続コイルは、冷却水流路34によって冷却塔CTに接続されて冷却水循環路を形成している。この冷却水循環路において、吸収コイル31の入口と冷却塔CTとの間に存する冷却水流路34には、冷却水を連続コイル内へ送り込む冷却水ポンプP2が設けられている。この冷却水ポンプP2の作動により、連続コイルを通過する冷却水は、吸収コイル31で吸収熱を奪い、冷却コイル51で凝縮熱を得て比較的高温となって冷却塔CTに供給される。
【0027】
そして、冷房運転時には、冷却水ポンプP2の作動により冷却塔CT内の冷却水が送風機Sの送風により蒸発を促がされながら、冷却塔CT→冷却水ポンプP2→吸収コイル31→冷却コイル51→冷却塔CTの順で循環する。この冷却塔CTでは、落下する冷却水を大気中に一部蒸発させている。このため、冷却水は大気中に熱を放し、低温度となる排熱サイクルを形成している。また、蒸発器4の蒸発コイル41には、室内機RUに設けられた空調用熱交換器44が冷温水流路47で連結されており、この冷温水流路47には冷温水ポンプP3が設けられている。
【0028】
各室内機RUには、空調用熱交換器44に対して室内空気を通過させて再び室内へ吹き出すためのブロワー46が備えられている。各室内機RUの空調用熱交換器44の下流側の冷温水流路47には、モータ駆動の開閉弁48が備えられており、各室内機RUに備えられたリモートコントローラーの操作信号に応じて運転が指示された室内機RUに備えられた開閉弁48のみが開弁駆動され、他の室内機RUの開閉弁48は閉弁された状態に止まる。また、室内機RUには、空調用熱交換器44の上流で、冷温水流路47内の冷温水の温度を検知するための冷温水入口サーミスター49が備えられている。そして、蒸発コイル41内で低温度となった冷温水は、開閉弁48が開弁駆動された室内機RUについては、蒸発コイル41→冷温水流路47→空調用熱交換器44→冷温水流路47→冷温水ポンプP3→蒸発コイル41の順で循環する。
【0029】
冷暖房用吸収液流路L4および冷暖切替え弁6は暖房用に設けられたもので、暖房運転時には冷暖切替え弁6を開弁し、吸収液ポンプP1を作動させる。これにより、中濃度吸収液分離筒12内の吸収液仕切り容器13内の高温度の中濃度吸収液が蒸発器4内に流入し、中濃度吸収液の高温蒸気(冷媒蒸気)によって蒸発コイル41内の冷温水が加熱される。加熱された蒸発コイル41内の冷温水は、冷温水ポンプP3の作動により冷温水流路47から空調用熱交換器44へ供給され、暖房の熱源となる。蒸発器4内の中濃度吸収液は仕切り板40の連通口から吸収器3側に入り、低濃度吸収液流路L3を経て吸収液ポンプP1により加熱タンク11へ戻る。
【0030】
以上のように構成された本実施例の吸収式空調装置では、吸収サイクルにおいて吸収液を循環させるための吸収液ポンプP1と蒸発コイル41で冷却または加熱された冷温水を冷温水流路47によって室内機RUの空調用熱交換器44へ循環させるための冷温水ポンプP3とは異なるモータにより別々に駆動される。
【0031】
つぎに、吸収式空調装置を制御する制御装置200の制御動作について説明する。制御装置200は、ガスバーナBの燃焼制御、吸収液ポンプP1、冷温水ポンプP3の回転制御、冷却水ポンプP2の回転制御、冷却塔CTの送風機Sの回転制御、吸収サイクル内に設けられた各弁6、7の制御等により吸収式空調装置の冷房運転、暖房運転の各制御を行う。
【0032】
また、室外機100には、図4に示すようにマイクロコンピュータ400が制御部として組み込まれており、操作部材としてのディップスイッチU、V、W、X、、Zの押圧操作により補正回転数の指示信号を制御装置200に送る。押しボタンスイッチ401、402は、後述するように操作回数により補正回転数を段階的に増減調節する。
【0033】
この場合、冷暖房運転時に、室内機RU、すなわち室内空調用熱交換器44の運転台数により表1のように冷温水ポンプP3の通常最大回転数(rpm)およびディップスイッチU〜Zによる補正回転数(rpm)を設定している。
この場合、ディップスイッチU〜Zによる補正回転数(rpm)は、表1に±で示すように固定的な設定値の他に例えば150rpm毎に段階的に増減することができる。このように段階的に刻む回転数は、150rpmに限らず180rpm、210rpm、240rpmあるいは270rpmなど所望に応じて任意に設定できることは勿論である。
【0034】
【表1】

Figure 0004494624
【0035】
[冷房運転]
冷房運転は、使用者により室内機RUが設置された室内に存するリモートコントローラ(図示せず)の冷房運転開始の指示に応じて冷暖切替え弁6を閉弁し、吸収液ポンプP1および冷温水ポンプP3の駆動を開始し、ガスバーナBの燃焼により行われる。
そして、リモートコントローラからの冷房運転の要求信号が送出されると、図3に示すように、室内機RUの運転台数が判別され(ステップ10)、室内機RUの運転台数が1台の場合(ステップ11においてYES)には、冷温水ポンプP3の直流モータを制御するインバータを制御して(ステップ12)、冷温水ポンプP3を最大でも3600rpmの回転数で駆動して必要な揚程・流量を確保する。
この時、配管の施工、設置状態等により冷温水の流量が少なく、冷房不足あるいは使用者の個人的な嗜好や感覚等により快適性の不足を訴えられる場合がある。この場合には、図4のマイクロコンピュータ400のディップスイッチUが操作される。
【0036】
すると、指示信号が制御装置200に送られ、冷温水ポンプP3の回転数が300rpmだけ一律に上昇し、インバータを制御し、冷温水ポンプP3を3900rpmで駆動し、冷房不足を補うとともに使用者の快適度を満足させる。この際、300rpmの回転数の上昇では不足する、あるいは多過ぎる場合には、押しボタンスイッチ401の押し回数操作により、150rpmづつ段階的に上昇させて回転数を増加方向に補正する。又は、押しボタンスイッチ402の押し回数操作により、150rpmづつ段階的に下降させて回転数を減少方向に補正する。
【0037】
室内機RUの運転台数が1台でない場合(ステップ11においてNO)は、室内機RUの運転台数が2台であるかを判別し(ステップ13)、室内機RUの運転台数が2台の場合(ステップ13においてYES)は、冷温水ポンプP3の直流モータを制御するインバータを制御し(ステップ14)、冷温水ポンプP3を最大4350rpmの回転数で駆動する。
この時、配管の施工、設置状態等により冷温水の流量が少なく、冷房不足あるいは使用者の個人的な嗜好や感覚等により快適性の不足を訴えられる場合がある。この場合には、マイクロコンピュータ400のディップスイッチVが操作される。
【0038】
すると、指示信号が制御装置200に送られ、冷温水ポンプP3の回転数が300rpmだけ一律に上昇し、インバータを制御し、冷温水ポンプP3を4650rpmで駆動し、冷房不足を補うとともに使用者の快適度を満足させる。この際、300rpmの回転数の上昇では不足する、あるいは多過ぎる場合には、押しボタンスイッチ401の押し回数操作により、150rpmづつ段階的に上昇させて回転数を増加方向に補正する。又は、押しボタンスイッチ402の押し回数操作により、150rpmづつ段階的に下降させて回転数を減少方向に補正する。
【0039】
室内機RUの運転台数が2台でない場合(ステップ13においてNO)は、室内機RUの運転台数は3台以上であるので、冷温水ポンプP3の直流モータを制御するインバータを制御し(ステップ15)、冷温水ポンプP3を最大4800rpmの回転数で駆動する。
この場合は、最大の回転数に設定して十分な冷温水の流量を確保できるようにしているので、マイクロコンピュータ400のディップスイッチWを操作しても、回転数は変わらない。
しかしながら、この場合でも配管の施工、設置状態により冷温水の流量が少なく、冷房不足あるいは使用者の個人的な嗜好や感覚等により快適性の不足が訴えられると、マイクロコンピュータ400のディップスイッチWに加え、押しボタンスイッチ401が操作される。
【0040】
すると、指示信号が制御装置200に送られ、冷温水ポンプP3の回転数が押しボタンスイッチ401の操作回数に応じて150rpmづつ上昇し、冷温水ポンプP3の直流モータを制御するインバータを押しボタンスイッチ401の操作回数に応じた補正回転数で制御し、冷温水ポンプP3を補正回転数に応じた回転数(rpm)で駆動し、冷房不足を補うとともに使用者の快適度を満足させる。
【0041】
[暖房運転]
暖房運転は、使用者により室内機RUが設置された室内に存するリモートコントローラ(図示せず)の暖房運転開始の指示に応じて冷暖切替え弁6を開弁し、吸収液ポンプP1および冷温水ポンプP3の駆動を開始し、ガスバーナBの燃焼により行われる。なお、この吸収式空調装置では、図6に示すように、室外機100は冷温水を床暖房パネル300にも供給可能に構成されている。このため、制御装置200においては、床暖房パネル300が設置されているか否かを、床暖房パネル300に別途設けられた床暖房パネル用リモートコントローラ(図示せず)からの操作信号の有無によって判別し、その結果に基づいて各制御を行う。
【0042】
そして、リモートコントローラからの暖房運転の要求信号が送出されると、その信号が床暖房パネル用リモートコントローラからの床暖房運転信号であるか否かを判別し、図5に示すように、床暖房運転である場合(ステップ16においてYES)には、床暖房パネル300の台数とは無関係に冷温水ポンプP3の直流モータを制御するインバータを制御し(ステップ17)、冷温水ポンプP3を最大4800rpmの回転数で駆動して大きな揚程・流量を確保する。
【0043】
床暖房運転でない場合(ステップ16においてNO)は、室内機RUの運転台数を判別し(ステップ18)、室内機RUの運転台数が1台の場合(ステップ19においてYES)は、冷温水ポンプP3の直流モータを制御するインバータを制御して(ステップ20)、冷温水ポンプP3を最大3000rpmの回転数で駆動する。
この場合に配管の長さが小さく冷温水の流量が多く制御性の低下、あるいは使用者の個人的な嗜好や感覚等により快適度の不足を訴えられると、マイクロコンピュータ400のディップスイッチXが操作される。
【0044】
すると、指示信号が制御装置200に送られ、冷温水ポンプP3の回転数が300rpmだけ一律に下降し、インバータを制御し、冷温水ポンプP3を2700rpmで駆動し、制御性を回復させるとともに使用者の快適度を満足させる。この際、300rpmの回転数の下降では不足する、あるいは多過ぎる場合には、押しボタンスイッチ402の押し回数操作により、150rpmづつ段階的に下降させて回転数を減少方向に補正する。又は、押しボタンスイッチ401の押し回数操作により、150rpmづつ段階的に上昇させて回転数を増加方向に補正する。
【0045】
室内機RUの運転台数が1台でない場合(ステップ19においてNO)は、ステップ21において、室内機RUの運転台数が2台かを問われる。運転台数が2台の場合(ステップ21においてYES)には、インバータを制御して(ステップ22)、冷温水ポンプP3を最大4200rpmの回転数で駆動する。
この場合も配管の長さが小さく冷温水の流量が多く制御性の低下、あるいは使用者の個人的な嗜好や感覚等により快適度の不足を訴えられると、マイクロコンピュータ400のディップスイッチYが操作される。
【0046】
すると、指示信号が制御装置200に送られ、冷温水ポンプP3の回転数が300rpmだけ一律に下降し、インバータを制御し、冷温水ポンプP3を3900rpmで駆動し、制御性を回復させるとともに使用者の快適度を満足させる。この際、300rpmの回転数の下降では不足する、あるいは多過ぎる場合には、押しボタンスイッチ402の押し回数操作により、150rpmづつ段階的に下降させて回転数を減少方向に補正する。又は、押しボタンスイッチ401の押し回数操作により、150rpmづつ段階的に上昇させて回転数を増加方向に補正する。
【0047】
室内機RUの運転台数が2台でない場合(ステップ21においてNO)は、室内機RUの運転台数は3台以上であるので、冷温水ポンプP3の直流モータを制御するインバータを制御し(ステップ23)、冷温水ポンプP3を最大4800rpmの回転数で駆動する。
この場合も配管の長さが小さく冷温水の流量が多く制御性の低下、あるいは使用者の個人的な嗜好や感覚等により快適度の不足が訴えられると、マイクロコンピュータ400のディップスイッチZが操作される。
【0048】
すると、指示信号が制御装置200に送られ、冷温水ポンプP3の回転数が300rpmだけ一律に下降し、インバータを制御し、冷温水ポンプP3を4500rpmで駆動し、制御性を回復させるとともに使用者の快適度を満足させる。この際、300rpmの回転数の下降では不足する、あるいは多すぎる場合には、押しボタンスイッチ402の押し回数操作により、150rpmづつ段階的に下降させて回転数を減少方向に補正する。又は、押しボタンスイッチ401の押し回数操作により、150rpmづつ段階的に上昇させて回転数を増加方向に補正する。
【0049】
この暖房運転において、ガスバーナBの燃焼量制御は、室内機RUの入口部の冷温水流路47に設けられた冷温水入口サーミスター49に検知される冷温水温度Twに基づいて調節される。この冷温水温度Twが略60℃になるように(3200kcal/h)〜(8000kcal/h)の間でガスバーナBのインプットをガス比例弁によって制御する。この間、室内機RUでは、室内温度に応じてブロワー46の回転数が制御される。この場合、冷却水流路34においては、冷却水ポンプP2および送風機Sをいずれも駆動せず、冷却水流路34内に設けられた排水弁(図示せず)を開弁して冷却水流路34の全ての水を排出する。
【0050】
以上説明したとおり、本発明では冷温水ポンプP3の回転数が室内機RUの運転台数に応じて設定されていながらも、施工状態や設置状態あるいは個人的な感覚等に応じて冷温水ポンプP3の回転数を簡易な操作により素早く補正でき、配管長さ等の施工条件を緩和し得るとともに、使用者の嗜好による快適性を実現できる。
【0051】
なお、本実施例では、指示信号を発生させて送る際にディップスイッチU〜Zを使用したが、これに限らず回転数を補正する指示信号を発生させる操作部材であればよい。
【0052】
また、本実施例では、吸収式空調装置に適用して説明したが、本発明は作動流体として冷温水を循環させて冷暖房を行う空調装置一般に適用できる。
また、上記の実施例では、室内機RUに空調用熱交換器44のみを設けたものを示したが、室内温度を低下させないで除湿運転を行うため、空調用熱交換器44で一旦冷却した空気を加熱する加熱用熱交換器を空調用熱交換器44と並設するようにしてもよい。
【0053】
さらに、本実施例では、2重効用式で説明したが、1重効用式であってもよい。さらに、加熱源としては、ガスバーナの代わりに灯油バーナ、石油バーナあるいは電気ヒータを用いてもよい。
【図面の簡単な説明】
【図1】 本発明の一実施例に係る吸収式空調装置の概略的構成図である。
【図2】 本発明の一実施例に係る室外機の概略的縦断面図である。
【図3】 本発明の一実施例の制御装置における冷房運転時の冷温水ポンプ制御動作の流れ図である。
【図4】 本発明の制御部としてのマイクロコンピュータを示す概略的構成図である。
【図5】 本発明の一実施例の制御装置における暖房運転時の冷温水ポンプ制御動作の流れ図である。
【図6】 本発明の他の実施例に係る吸収式空調装置の概略的構成図である。
【符号の説明】
1 高温再生器(再生器)
2 低温再生器(再生器)
3 吸収器
4 蒸発器
5 凝縮器
6 冷暖切替え弁
41 蒸発コイル(熱交換用配管)
44 空調用熱交換器
47 冷温水流路(冷温水循環回路)
54 冷媒液貯留部
100 室外機
101 熱源機本体(吸収式熱源機)
200 制御装置(運転制御手段)
300 床暖房パネル
400 マイクロコンピュータ(制御部)
401、402 押しボタンスイッチ(微調整スイッチ)
B ガスバーナ(加熱手段)
L4 冷暖房用吸収液流路
P1 吸収液ポンプ
P3 冷温水ポンプ
RU 室内機
U〜Z ディップスイッチ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner that performs cooling and heating by circulating cold / hot water as a working fluid, and relates to an air conditioner improved so that the number of rotations of a cold / hot water pump can be corrected by manual operation.
[0002]
[Prior art]
For example, in an absorption-type air conditioner using an absorption cycle, during the cooling operation, the refrigerant vapor is separated from the low-concentration absorbing liquid boiled by heating of the burner in the regenerator, and the refrigerant vapor is cooled by the condenser and is cooled. Liquid is supplied to the evaporator. The absorption liquid having a high concentration as a result of separation of the refrigerant vapor by the regenerator is supplied to the absorber. The evaporator takes heat from the refrigerant liquid to form a cooling source, cools the cold / hot water circulating in the cold / hot water pipe, and cools the room by circulating it in the heat exchanger for air conditioning of the indoor unit. The absorption liquid absorbs the refrigerant vapor by the absorber, and a heat exchange pipe is provided to discharge the heat generated at this time to the outside, and the heat is exhausted by the cooling water driven by the cooling pump.
[0003]
During the heating operation, the cooling / heating switching valve in the absorption liquid passage communicating the regenerator and the evaporator is opened, and the absorption liquid heated by the burner is supplied into the evaporator, so that the cold / hot water in the evaporator is supplied. The cold / hot water passing through the pipe is heated and circulated to the indoor unit and the heating panel.
A cold / hot water circulation circuit for circulating cold / warm water heated or cooled by the outdoor unit is formed between the outdoor unit serving as a heat source and the indoor unit / air conditioning heat exchanger of the floor heating panel. In the heating operation, cold / hot water cooled or heated in the evaporator is supplied to the indoor unit or the like to cool or heat the room. A multi-air conditioner capable of installing a plurality of indoor units and terminal devices such as a floor heating panel is commercialized for one outdoor unit.
[0004]
[Problems to be solved by the invention]
In the above-mentioned conventional one, the number of rotations of the cold / hot water pump is set in a rating manner in consideration of the number of terminals of the indoor unit and the floor heating panel, so that the original cooling / heating performance can be exhibited. However, in the installation site, the construction state and installation state differ slightly depending on the shape of the house, etc., especially when the pipe length is large and there are many bent parts, the pressure loss increases, and the flow of cold and hot water during cooling operation is sufficient. Can not be secured, and there is a risk that cooling will be slightly insufficient.
[0005]
On the contrary, when the pipe length is small, there is an inconvenience that the flow rate of the cold / hot water at the time of the heating operation becomes too large, the controllability is lowered, and the desired heating temperature cannot be maintained. In addition, when the flow rate adjustment valve is throttled, a water passing sound is generated, and there is a possibility that noise may become a problem.
In addition, there is also a demand for delicately correcting the cooling / heating state according to the user's personal preference and feeling.
[0006]
The present invention has been made against the background of the above circumstances, and its purpose is to quickly correct the number of rotations of the cold / hot water pump according to the construction state, installation state, personal feeling, etc. by a simple operation, such as pipe length. An object of the present invention is to provide an air conditioner that can alleviate the construction conditions and can realize comfort according to the user's senses and preferences and contributes to improvement in serviceability.
[0007]
[Means for Solving the Problems]
According to claim 1, A regenerator that heats the absorbing liquid containing the refrigerant and separates the refrigerant vapor from the absorbing liquid, a condenser that cools and condenses the refrigerant vapor separated by the regenerator, and the refrigerant liquid generated by the condenser under low pressure. An evaporator for evaporating the refrigerant, an absorber for absorbing the refrigerant vapor evaporated by the evaporator into the absorption liquid from which the refrigerant vapor has been separated by the regenerator, and an absorption for returning the absorption liquid from the absorber to the regenerator Forming an absorption cycle from the liquid pump, An outdoor unit having a circulation cycle for heating and cooling cold / hot water by heat exchange and a plurality of indoor air-conditioning heat exchangers each provided with an open / close valve that shuts off cold / hot water are provided in a heat exchange pipe arranged in the outdoor unit. A cold / hot water circulation circuit that circulates the cold / hot water heated or cooled by the heat exchange pipe to the indoor air conditioning heat exchanger by a cold / hot water pump, and switching between the cooling operation and the heating operation. Operation control means for controlling start and stop of operation The cold / hot water pump and the absorption liquid pump are driven separately, The cold / hot water pump set according to the number of operating the heat exchangers for indoor air conditioning during cooling and heating operations only It has the control part which correct | amends the rotation speed of this by manual operation.
[0008]
According to a second aspect of the present invention, the control unit includes a fine adjustment switch that changes the rotational speed of the cold / hot water pump stepwise by a predetermined number.
[0009]
Operation and effect of the invention
[About claim 1]
During the cooling and heating operation, if a manual operation is performed after installation, an instruction signal is sent from the control unit to the control unit of the cold / hot water pump, and the rotation speed of the cold / hot water pump is corrected to a desired rotation number. For this reason, the rotational speed of the cold / hot water pump can be quickly corrected by a simple operation according to the construction state, installation state, personal feeling, etc., and the construction conditions such as the pipe length can be eased, and depending on the user's preference Comfort can be realized.
[0010]
[About claim 2]
The number of rotations of the cold / hot water pump is changed stepwise by a predetermined number by a manual operation using a fine adjustment switch. Therefore, the number of rotations of the cold / hot water pump can be finely adjusted in various ways.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment in which the present invention is applied to an absorption air conditioner will be described with reference to the drawings. FIG. 1 shows an absorption type air conditioner controlled by a control device 200, and this absorption type air conditioner includes an outdoor unit 100 as an absorption type heat source unit and a plurality of indoor units RU. The outdoor unit 100 includes a heat source unit main body 101 and a cooling tower CT.
[0012]
The heat source unit main body 101 of the outdoor unit 100 is mainly made of stainless steel, and forms an absorption cycle for freezing a refrigerant and an aqueous lithium bromide solution as an absorbing solution. B is a gas burner as a heating means, 1 is a high temperature regenerator, 2 is a low temperature regenerator, 3 is an absorber, 4 is an evaporator, and 5 is a condenser. Inhibiting inhibitors are included.
[0013]
In the high-temperature regenerator 1, the low-concentration absorbing liquid supplied to the inside of the heating tank 11 is heated by the gas burner B, and the cylindrical absorption formed between the medium-concentrating absorbing liquid separating cylinder 12 and the absorbing liquid partition container 13. When the absorption liquid heated through the liquid rising channel 14 rises, water as a refrigerant in the low concentration absorption liquid evaporates and is separated as refrigerant vapor (water vapor). The medium concentration absorption liquid concentrated by evaporation of the refrigerant vapor is turned inward by the absorption liquid return plate 15 and returned to the absorption liquid partition container 13.
[0014]
The medium-concentration absorbing liquid whose concentration has been increased by separating the refrigerant is supplied to the low-temperature regenerator 2 through the medium-concentration absorbing liquid channel L1 opened at the side of the absorbing liquid partitioning container 13. The separated refrigerant vapor is collected by the refrigerant absorption tank 10 and supplied to the condenser 5 through the refrigerant flow path L5. In addition, the inlet of the cooling / heating absorption liquid flow path L4 for supplying the absorption liquid heated during the heating operation into the evaporator 4 is opened at the bottom of the absorption liquid partition container 13.
[0015]
A refrigerant partition cylinder 17 is joined to the outer surface of the intermediate concentration absorbent separation cylinder 12 inside the lower part of the refrigerant absorption tank 10, and a heat insulation gap 17 a is formed between the intermediate concentration absorption liquid separation cylinder 12. . For this reason, the heat in the intermediate concentration absorbing liquid separating cylinder 12 is blocked, and the refrigerant in the refrigerant absorbing tank 10 is not heated by the high temperature absorbing liquid in the absorbing liquid ascending channel 14. The outside of the refrigerant partition cylinder 17 in the refrigerant absorption tank 10 serves as a refrigerant storage unit 10a for storing the separated liquid refrigerant, and the refrigerant stored in the refrigerant storage unit 10a passes through the refrigerant flow path L5 to the condenser 5. Supplied to.
[0016]
In the low-temperature regenerator 2, the medium-concentration absorbent supplied through the medium-concentration absorbent channel L <b> 1 that passes through the heat exchanger H in the middle flows from the ceiling of the low-temperature regenerator case 20, and the outer wall of the refrigerant absorption tank 10. Is reheated as a heat source, and is separated into refrigerant vapor and high-concentration absorbing liquid by the gas-liquid separator 22. The refrigerant vapor is supplied into the condenser case 50 from the refrigerant vapor outlet 21 and the gap 5A, and the high-concentration absorbent is stored in the high-concentration absorbent receiver 23, and is absorbed through the high-concentration absorbent channel L2. 3 is supplied.
[0017]
An orifice (not shown) for limiting the flow rate of the intermediate concentration absorbing liquid flowing from the absorbing liquid partition container 13 to the low temperature regenerator 2 is provided in the intermediate concentration absorbing liquid channel L1. The medium concentration absorbing liquid is supplied into the inside due to the pressure difference from the medium concentration absorbing liquid separating cylinder 12. For this reason, it is about 70 mmHg in the low-temperature regenerator case 20 and about 700 mmHg in the intermediate concentration absorbent separation cylinder 12.
[0018]
The absorber 3 has an absorption coil 31 in which a copper tube is wound in a vertical cylindrical shape inside the evaporation / absorption case 30 and the inside is wound in a coil shape as an absorption tube through which cooling water for exhaust heat flows. . The high concentration absorbent supplied from the high concentration absorbent receiver 23 of the low temperature regenerator 2 flows into the upper end of the absorption coil 31 via the high concentration absorbent flow path L2 due to the pressure difference. It is spread by the spreader 32. The high-concentration absorbent dispersed in this manner adheres to the surface of the absorption coil 31 in a thin film and flows down by the action of gravity, absorbs water vapor and becomes a low-concentration absorbent. When absorbing this water vapor, heat is generated on the surface of the absorption coil 31, but it is cooled by the exhaust heat cooling water circulating in the absorption coil 31. Note that the water vapor absorbed by the high-concentration absorbing liquid is generated as refrigerant vapor in the evaporator 4 described later.
[0019]
The low concentration absorbent in the absorber 3 returns from the bottom 33 to the heating tank 11 through the low concentration absorbent channel L3 provided with the heat exchanger H and the absorbent pump P1 by the operation of the absorbent pump P1. . Further, the exhaust heat cooling water cooled by the cooling tower CT during the cooling operation circulates in the absorption coil 31 through the cooling coil 51 of the condenser 5.
[0020]
The evaporator 4 is a vertical cylindrical shape provided on the outer periphery of the absorption coil 31 in the evaporation / absorption case 30, and is provided on the outer periphery of a partition plate 40 with a large number of communication ports (not shown). A vertical cylindrical evaporation coil 41 made of a copper tube through which the refrigerant flows is disposed, and a refrigerant liquid spreader 42 is attached above it. The bottom portion 43 of the evaporator 4 communicates with the bottom portion of the absorbing liquid partition container 13 in the intermediate concentration absorbing liquid separating cylinder 12 by a cooling / heating absorbing liquid flow path L4 having an electromagnetic cooling / heating switching valve 6.
[0021]
Now, in the evaporator 4 during the cooling operation, when the liquid refrigerant (water) is caused to flow down onto the evaporation coil 41 by the refrigerant liquid spreader 42, the refrigerant liquid that has flowed down wets the surface of the evaporation coil 41 by surface tension and forms a film. In the evaporating / absorbing case 30 that is lowered due to the action of gravity and is at a low pressure (for example, 6.5 mmHg), the evaporating coil 41 evaporates from the evaporating coil 41 and evaporates. Cool down.
[0022]
In the condenser case 50 of the condenser 5, there is a dish-shaped refrigerant liquid receiving portion 52 for receiving the refrigerant liquid liquefied by cooling the refrigerant vapor by the cooling coil 51 at a position away from the bottom of the condenser case 50. Is provided. This refrigerant liquid receiving part 52 is located above the refrigerant liquid spreader 42 of the evaporator 4 and communicates with a refrigerant cooler 53 that cools the refrigerant liquid by self-cooling of the supplied refrigerant liquid, and a refrigerant liquid supply path L6. It is provided to do.
[0023]
The condenser 5 communicates with the refrigerant storage portion 10a of the refrigerant absorption tank 10 through a refrigerant flow path L5 provided with an orifice (not shown) for limiting the refrigerant flow rate, and via the refrigerant vapor outlet 21 and the gap 5A. The refrigerant is also in communication with the low-temperature regenerator 2, and both are supplied with a refrigerant by a pressure difference (about 70 mmHg in the condenser case 50). The refrigerant vapor supplied into the condenser case 50 during the cooling operation is cooled and liquefied by the cooling coil 51 and supplied from the refrigerant liquid receiving part 52 to the refrigerant cooler 53 via the refrigerant liquid supply path L6.
[0024]
The refrigerant liquid overflowing from the refrigerant liquid receiving part 52 is stored in the refrigerant liquid storage part 54 formed by the inner bottom part of the condenser case 50, and the absorption liquid that circulates in the absorption cycle to ensure the cooling performance during the cooling operation. Concentration is maintained substantially high. The refrigerant liquid storage section 54 and the refrigerant cooler 53 are communicated with each other by a refrigerant liquid flow path L7 provided with the refrigerant valve 7. When there is a risk of the refrigerant liquid freezing, the refrigerant valve 7 is controlled to open the refrigerant. The liquid is supplied to the evaporator 4 and the freezing is prevented by increasing the vapor pressure in the evaporator 4. The refrigerant valve 7 is also opened at the start of the heating operation, and all the refrigerant liquid stored in the refrigerant liquid storage unit 54 during the cooling operation is supplied into the evaporator 4 and is heated and circulated during the heating operation. The concentration is kept low to prevent crystallization.
[0025]
The absorption liquid during the cooling operation is the high temperature regenerator 1 → the intermediate concentration absorption liquid channel L1 → the high concentration absorption liquid channel L2 → the high concentration absorption liquid sprayer 32 → the absorber 3 → the absorption liquid pump P1 → the low concentration absorption liquid. It circulates in order of flow path L3-> high temperature regenerator 1. Further, the refrigerant is a high temperature regenerator 1 (refrigerant vapor) → refrigerant flow path L5 (refrigerant vapor) or low temperature regenerator 2 (refrigerant vapor) → condenser 5 (refrigerant liquid) → refrigerant liquid supply path L6 (refrigerant liquid) or refrigerant. Liquid flow path L7 (refrigerant liquid) → refrigerant cooler 53 → refrigerant liquid sprayer 42 (refrigerant liquid) → evaporator 4 (refrigerant vapor) → absorber 3 (absorbing liquid) → absorbing liquid pump P1 → low concentration absorbing liquid flow It circulates in order of path L3-> high temperature regenerator 1.
[0026]
The absorption coil 31 of the absorber 3 that exchanges heat with the absorption liquid and the cooling coil 51 of the condenser 5 are connected to form a continuous coil. This continuous coil is connected to the cooling tower CT by a cooling water flow path 34 to form a cooling water circulation path. In this cooling water circulation path, a cooling water flow path 34 existing between the inlet of the absorption coil 31 and the cooling tower CT is provided with a cooling water pump P2 for sending cooling water into the continuous coil. By the operation of the cooling water pump P2, the cooling water passing through the continuous coil takes absorption heat by the absorption coil 31, obtains condensation heat by the cooling coil 51, and is supplied to the cooling tower CT at a relatively high temperature.
[0027]
And at the time of air_conditionaing | cooling operation, while cooling water in the cooling tower CT is urged to evaporate by ventilation of the air blower S by the operation of the cooling water pump P2, the cooling tower CT → the cooling water pump P2 → the absorption coil 31 → the cooling coil 51 → It circulates in order of cooling tower CT. In this cooling tower CT, the falling cooling water is partially evaporated into the atmosphere. For this reason, the cooling water releases heat to the atmosphere, forming a waste heat cycle in which the temperature becomes low. In addition, an air conditioning heat exchanger 44 provided in the indoor unit RU is connected to the evaporation coil 41 of the evaporator 4 by a cold / hot water flow path 47, and a cold / hot water pump P 3 is provided in the cold / hot water flow path 47. ing.
[0028]
Each indoor unit RU is provided with a blower 46 for allowing room air to pass through the air-conditioning heat exchanger 44 and blowing it out into the room again. The cold / hot water flow path 47 on the downstream side of the air conditioner heat exchanger 44 of each indoor unit RU is provided with a motor-driven opening / closing valve 48, and according to an operation signal of a remote controller provided in each indoor unit RU. Only the on-off valve 48 provided in the indoor unit RU instructed to operate is opened, and the on-off valves 48 of the other indoor units RU remain closed. The indoor unit RU is provided with a cold / hot water inlet thermistor 49 for detecting the temperature of the cold / hot water in the cold / hot water flow channel 47 upstream of the air conditioner heat exchanger 44. And the cold / hot water which became low temperature in the evaporation coil 41 is the evaporation coil 41 → cold / hot water channel 47 → air conditioner heat exchanger 44 → cold / warm water channel for the indoor unit RU whose opening / closing valve 48 is driven to open. It circulates in order of 47-> cold / hot water pump P3-> evaporation coil 41.
[0029]
The cooling / heating absorption liquid flow path L4 and the cooling / heating switching valve 6 are provided for heating. During the heating operation, the cooling / heating switching valve 6 is opened to operate the absorption liquid pump P1. As a result, the high-temperature medium-concentration absorption liquid in the absorption liquid partition container 13 in the medium-concentration absorption liquid separation cylinder 12 flows into the evaporator 4, and the evaporation coil 41 is heated by the high-temperature vapor (refrigerant vapor) of the medium-concentration absorption liquid. The cold water inside is heated. The hot / cold water in the heated evaporation coil 41 is supplied from the cold / hot water flow path 47 to the air-conditioning heat exchanger 44 by the operation of the cold / hot water pump P3, and becomes a heat source for heating. The medium concentration absorbing liquid in the evaporator 4 enters the absorber 3 through the communication port of the partition plate 40, and returns to the heating tank 11 by the absorbing liquid pump P1 through the low concentration absorbing liquid channel L3.
[0030]
In the absorption type air conditioner of the present embodiment configured as described above, the cold / hot water cooled or heated by the absorption pump P1 for circulating the absorption liquid and the evaporation coil 41 in the absorption cycle is passed through the cold / hot water flow path 47 in the room. It is separately driven by a motor different from the cold / hot water pump P3 for circulating to the air conditioner heat exchanger 44 of the machine RU.
[0031]
Next, the control operation of the control device 200 that controls the absorption air conditioner will be described. The control device 200 includes a combustion control of the gas burner B, a rotation control of the absorption liquid pump P1 and a cold / hot water pump P3, a rotation control of the cooling water pump P2, a rotation control of the blower S of the cooling tower CT, and an absorption cycle. Each control of the cooling operation and the heating operation of the absorption air conditioner is performed by controlling the valves 6 and 7.
[0032]
Further, in the outdoor unit 100, as shown in FIG. 4, a microcomputer 400 is incorporated as a control unit, and DIP switches U, V, W, X, Y , An instruction signal of the corrected rotation speed is sent to the control device 200 by the pressing operation of Z. As will be described later, the push button switches 401 and 402 increase or decrease the correction rotation speed step by step according to the number of operations.
[0033]
In this case, during the cooling / heating operation, the normal maximum rotation speed (rpm) of the cold / hot water pump P3 and the corrected rotation speed by the dip switches U to Z as shown in Table 1 depending on the number of indoor units RU, that is, the indoor air conditioning heat exchangers 44 are operated. (Rpm) is set.
In this case, the correction rotation speed (rpm) by the dip switches U to Z can be increased or decreased stepwise, for example, every 150 rpm in addition to the fixed set value as shown by ± in Table 1. Of course, the number of rotations to be engraved stepwise is not limited to 150 rpm, but can be arbitrarily set as desired, such as 180 rpm, 210 rpm, 240 rpm, or 270 rpm.
[0034]
[Table 1]
Figure 0004494624
[0035]
[Cooling operation]
In the cooling operation, the cooling / heating switching valve 6 is closed in accordance with an instruction to start the cooling operation by a remote controller (not shown) in the room where the indoor unit RU is installed by the user, and the absorption liquid pump P1 and the cold / hot water pump The driving of P3 is started and combustion is performed by the gas burner B.
Then, when a cooling operation request signal is sent from the remote controller, the number of indoor units RU operated is determined as shown in FIG. 3 (step 10), and the number of indoor units RU operated is one ( In step 11, YES, the inverter that controls the DC motor of the chilled / hot water pump P3 is controlled (step 12), and the chilled / hot water pump P3 is driven at a maximum speed of 3600 rpm to ensure the necessary head and flow rate. To do.
At this time, the flow rate of the cold / hot water is small depending on the construction and installation state of the piping, and there may be cases where the lack of cooling or the lack of comfort is complained due to the user's personal preference and feeling. In this case, the dip switch U of the microcomputer 400 of FIG. 4 is operated.
[0036]
Then, an instruction signal is sent to the control device 200, the number of rotations of the cold / hot water pump P3 is uniformly increased by 300 rpm, the inverter is controlled, and the cold / hot water pump P3 is driven at 3900 rpm to compensate for the lack of cooling and the user's Satisfy comfort. At this time, if the increase in the number of rotations of 300 rpm is insufficient or excessive, the number of presses of the push button switch 401 is increased by 150 rpm stepwise to correct the number of rotations in the increasing direction. Alternatively, the rotational speed is corrected in a decreasing direction by stepping down by 150 rpm stepwise by operating the number of times the push button switch 402 is pressed.
[0037]
When the number of indoor units RU is not one (NO in step 11), it is determined whether the number of indoor units RU is two (step 13), and the number of indoor units RU is two. (YES in step 13) controls the inverter that controls the DC motor of the cold / hot water pump P3 (step 14), and drives the cold / hot water pump P3 at a maximum number of rotations of 4350 rpm.
At this time, the flow rate of the cold / hot water is small depending on the construction and installation state of the piping, and there may be cases where the lack of cooling or the lack of comfort is complained due to the user's personal preference and feeling. In this case, the dip switch V of the microcomputer 400 is operated.
[0038]
Then, an instruction signal is sent to the control device 200, the number of rotations of the cold / hot water pump P3 is uniformly increased by 300 rpm, the inverter is controlled, and the cold / hot water pump P3 is driven at 4650 rpm to compensate for the lack of cooling and the user's Satisfy comfort. At this time, if the increase in the number of rotations of 300 rpm is insufficient or excessive, the number of presses of the push button switch 401 is increased by 150 rpm stepwise to correct the number of rotations in the increasing direction. Alternatively, the rotational speed is corrected in a decreasing direction by stepping down by 150 rpm stepwise by operating the number of times the push button switch 402 is pressed.
[0039]
When the number of operating indoor units RU is not two (NO in step 13), the number of operating indoor units RU is three or more, so the inverter that controls the DC motor of the cold / hot water pump P3 is controlled (step 15). ), The cold / hot water pump P3 is driven at a maximum number of rotations of 4800 rpm.
In this case, since the maximum number of rotations is set so as to ensure a sufficient flow rate of cold / hot water, even if the DIP switch W of the microcomputer 400 is operated, the number of rotations does not change.
However, even in this case, if the flow rate of cold / hot water is small depending on the construction and installation state of the piping, and the lack of cooling or the lack of comfort is complained due to the user's personal preference or feeling, the DIP switch W of the microcomputer 400 In addition, the push button switch 401 is operated.
[0040]
Then, an instruction signal is sent to the control device 200, the number of rotations of the cold / hot water pump P3 is increased by 150 rpm according to the number of operations of the push button switch 401, and the inverter that controls the DC motor of the cold / hot water pump P3 is pushed. The control is performed with the correction rotation speed corresponding to the number of operations 401, and the cold / hot water pump P3 is driven at the rotation speed (rpm) according to the correction rotation speed to compensate for the lack of cooling and satisfy the user's comfort level.
[0041]
[Heating operation]
In the heating operation, the cooling / heating switching valve 6 is opened in response to an instruction to start the heating operation by a remote controller (not shown) in the room where the indoor unit RU is installed by the user, and the absorption liquid pump P1 and the cold / hot water pump The driving of P3 is started and combustion is performed by the gas burner B. In this absorption type air conditioner, as shown in FIG. 6, the outdoor unit 100 is configured to be able to supply cold / hot water to the floor heating panel 300. For this reason, in the control apparatus 200, it is discriminate | determined by the presence or absence of the operation signal from the floor controller remote controller (not shown) separately provided in the floor heating panel 300 whether the floor heating panel 300 is installed. Then, each control is performed based on the result.
[0042]
Then, when the heating operation request signal is sent from the remote controller, it is determined whether or not the signal is a floor heating operation signal from the floor heating panel remote controller. As shown in FIG. In the case of operation (YES in step 16), the inverter that controls the DC motor of the cold / hot water pump P3 is controlled regardless of the number of floor heating panels 300 (step 17), and the cold / hot water pump P3 is controlled at a maximum of 4800 rpm. Drive at the rotational speed to ensure a large head and flow rate.
[0043]
When it is not floor heating operation (NO in step 16), the number of operating indoor units RU is determined (step 18), and when the number of operating indoor units RU is 1 (YES in step 19), the hot / cold water pump P3. The inverter that controls the direct current motor is controlled (step 20), and the cold / hot water pump P3 is driven at a maximum rotation speed of 3000 rpm.
In this case, if the length of the pipe is small and the flow rate of cold / hot water is large, the controllability is reduced, or the user's personal preference or feeling is complaining of lack of comfort, the dip switch X of the microcomputer 400 is operated. Is done.
[0044]
Then, an instruction signal is sent to the control device 200, and the number of rotations of the cold / hot water pump P3 is uniformly lowered by 300 rpm, the inverter is controlled, and the cold / hot water pump P3 is driven at 2700 rpm to restore controllability and the user. Satisfy your comfort level. At this time, if the rotation speed of 300 rpm is insufficient or excessive, the rotation speed is corrected in a decreasing direction by decreasing the rotation speed by 150 rpm stepwise by operating the push button switch 402. Alternatively, the number of presses of the push button switch 401 is increased stepwise by 150 rpm to correct the rotational speed in the increasing direction.
[0045]
If the number of operating indoor units RU is not one (NO in step 19), it is asked in step 21 whether the number of operating indoor units RU is two. When the number of operating units is two (YES in step 21), the inverter is controlled (step 22), and the cold / hot water pump P3 is driven at the maximum number of rotations of 4200 rpm.
Also in this case, if the piping length is small and the flow rate of cold / hot water is large and the controllability is reduced, or if the user's personal preference or feeling is complained of lack of comfort, the dip switch Y of the microcomputer 400 is operated. Is done.
[0046]
Then, an instruction signal is sent to the control device 200, the number of rotations of the cold / hot water pump P3 is uniformly lowered by 300 rpm, the inverter is controlled, and the cold / hot water pump P3 is driven at 3900 rpm to restore controllability and the user. Satisfy your comfort level. At this time, if the rotation speed of 300 rpm is insufficient or excessive, the rotation speed is corrected in a decreasing direction by decreasing the rotation speed by 150 rpm stepwise by operating the push button switch 402. Alternatively, the number of presses of the push button switch 401 is increased stepwise by 150 rpm to correct the rotational speed in the increasing direction.
[0047]
When the number of operating indoor units RU is not two (NO in step 21), the number of operating indoor units RU is three or more, so the inverter that controls the DC motor of the cold / hot water pump P3 is controlled (step 23). ), The cold / hot water pump P3 is driven at a maximum number of rotations of 4800 rpm.
Also in this case, if the piping length is small and the flow rate of cold / hot water is large, the controllability is reduced, or the user's personal preference or feeling is inadequate for comfort, the dip switch Z of the microcomputer 400 is operated. Is done.
[0048]
Then, an instruction signal is sent to the control device 200, the number of rotations of the cold / hot water pump P3 is uniformly lowered by 300 rpm, the inverter is controlled, the cold / hot water pump P3 is driven at 4500 rpm, and controllability is restored and the user is restored. Satisfy your comfort level. At this time, if the rotation speed of 300 rpm is insufficient or too large, the number of depressions of the push button switch 402 is operated to decrease the rotation speed by 150 rpm step by step to correct the rotation speed in a decreasing direction. Alternatively, the number of presses of the push button switch 401 is increased stepwise by 150 rpm to correct the rotational speed in the increasing direction.
[0049]
In this heating operation, the combustion amount control of the gas burner B is adjusted based on the cold / hot water temperature Tw detected by the cold / hot water inlet thermistor 49 provided in the cold / hot water flow path 47 at the inlet of the indoor unit RU. The input of the gas burner B is controlled by a gas proportional valve between (3200 kcal / h) and (8000 kcal / h) so that the cold / hot water temperature Tw becomes approximately 60 ° C. During this time, in the indoor unit RU, the rotation speed of the blower 46 is controlled according to the room temperature. In this case, in the cooling water flow path 34, neither the cooling water pump P2 nor the blower S is driven, and a drain valve (not shown) provided in the cooling water flow path 34 is opened to open the cooling water flow path 34. Drain all water.
[0050]
As described above, in the present invention, while the number of rotations of the cold / hot water pump P3 is set according to the number of operating indoor units RU, the temperature of the cold / hot water pump P3 depends on the construction state, installation state, personal feeling, etc. The rotational speed can be quickly corrected by a simple operation, the construction conditions such as the pipe length can be relaxed, and the comfort according to the user's preference can be realized.
[0051]
In this embodiment, the dip switches U to Z are used when generating and sending the instruction signal. However, the present invention is not limited to this, and any operation member that generates an instruction signal for correcting the rotational speed may be used.
[0052]
In this embodiment, the present invention is applied to an absorption type air conditioner. However, the present invention can be applied to general air conditioners that perform cooling and heating by circulating cold / hot water as a working fluid.
In the above-described embodiment, the indoor unit RU is provided with only the air conditioning heat exchanger 44. However, in order to perform the dehumidifying operation without lowering the indoor temperature, the air conditioning heat exchanger 44 is temporarily cooled. A heating heat exchanger for heating the air may be provided in parallel with the air conditioning heat exchanger 44.
[0053]
Further, in the present embodiment, the double-effect formula has been described, but a single-effect formula may be used. Further, as a heating source, a kerosene burner, an oil burner, or an electric heater may be used instead of the gas burner.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an absorption air conditioner according to an embodiment of the present invention.
FIG. 2 is a schematic longitudinal sectional view of an outdoor unit according to an embodiment of the present invention.
FIG. 3 is a flowchart of a chilled / hot water pump control operation during cooling operation in the control device according to the embodiment of the present invention;
FIG. 4 is a schematic configuration diagram showing a microcomputer as a control unit of the present invention.
FIG. 5 is a flowchart of a cold / hot water pump control operation during a heating operation in the control device according to the embodiment of the present invention.
FIG. 6 is a schematic configuration diagram of an absorption air conditioner according to another embodiment of the present invention.
[Explanation of symbols]
1 High temperature regenerator (regenerator)
2 Low temperature regenerator (regenerator)
3 absorber
4 Evaporator
5 Condenser
6 Cooling / heating switching valve
41 Evaporation coil (Piping for heat exchange)
44 Heat exchanger for air conditioning
47 Cold / hot water flow path (cold / hot water circulation circuit)
54 Refrigerant liquid storage part
100 outdoor unit
101 Heat source machine body (absorption heat source machine)
200 Control device (operation control means)
300 Floor heating panel
400 Microcomputer (control unit)
401, 402 Push button switch (Fine adjustment switch)
B Gas burner (heating means)
L4 Absorption liquid passage for air conditioning
P1 Absorption liquid pump
P3 cold / hot water pump
RU indoor unit
U ~ Z DIP switch

Claims (2)

冷媒を含む吸収液を加熱し、吸収液から冷媒蒸気を分離する再生器と、この再生器によって分離した冷媒蒸気を冷却して凝縮する凝縮器と、この凝縮器により生じた冷媒液を低圧下で蒸発させる蒸発器と、前記再生器により冷媒蒸気が分離された吸収液に前記蒸発器により蒸発した冷媒蒸気を吸収させる吸収器と、前記吸収器から前記再生器へ吸収液を戻すための吸収液ポンプとから吸収サイクルを形成し、熱交換により冷温水を加熱および冷却する循環サイクルを有する室外機と、
冷温水を遮断する開閉弁をそれぞれ備えた複数台数の室内空調用熱交換器を前記室外機内に配した熱交換用配管に対して並列接続可能に設け、前記熱交換用配管により加熱あるいは冷却された冷温水を冷温水ポンプにより前記室内空調用熱交換器に循環させる冷温水循環回路と、
冷房運転と暖房運転との切替えや運転の開始および停止を制御する運転制御手段とを備える空調装置であって、
前記冷温水ポンプと前記吸収液ポンプとは別々に駆動され、
冷房及び暖房運転時に前記室内空調用熱交換器の運転台数に応じて設定された前記冷温水ポンプのみの回転数を手動操作により補正する制御部を有したことを特徴とする空調装置。
A regenerator that heats the absorbing liquid containing the refrigerant and separates the refrigerant vapor from the absorbing liquid, a condenser that cools and condenses the refrigerant vapor separated by the regenerator, and the refrigerant liquid generated by the condenser under low pressure. An evaporator for evaporating the refrigerant, an absorber for absorbing the refrigerant vapor evaporated by the evaporator into the absorption liquid from which the refrigerant vapor has been separated by the regenerator, and an absorption for returning the absorption liquid from the absorber to the regenerator An outdoor unit having a circulation cycle that forms an absorption cycle from the liquid pump and heats and cools the cold / hot water by heat exchange;
A plurality of indoor air-conditioning heat exchangers, each equipped with an open / close valve that shuts off cold / hot water, are provided so that they can be connected in parallel to the heat exchange pipes arranged in the outdoor unit, and are heated or cooled by the heat exchange pipes. A cold / hot water circulation circuit for circulating the cold / hot water to the indoor air conditioning heat exchanger by a cold / hot water pump;
The air conditioning apparatus Ru and a driving control means for controlling the starting and stopping of the switching and driving the heating operation and the cooling operation,
The cold / hot water pump and the absorbent pump are driven separately,
Cooling and air conditioning system, characterized in that the rotational speed of the cold and hot water pump only set according to the number of operating units of the indoor air-conditioning heat exchanger during the heating operation having a control unit for correcting by a manual operation.
前記制御部は、前記冷温水ポンプの回転数を所定数毎に段階的に変化させる微調整スイッチを備えていることを特徴とする請求項1に記載の空調装置。  The air conditioner according to claim 1, wherein the control unit includes a fine adjustment switch that changes the number of rotations of the cold / hot water pump stepwise by a predetermined number.
JP2000388028A 2000-12-21 2000-12-21 Air conditioner Expired - Fee Related JP4494624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000388028A JP4494624B2 (en) 2000-12-21 2000-12-21 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000388028A JP4494624B2 (en) 2000-12-21 2000-12-21 Air conditioner

Publications (2)

Publication Number Publication Date
JP2002195596A JP2002195596A (en) 2002-07-10
JP4494624B2 true JP4494624B2 (en) 2010-06-30

Family

ID=18854838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000388028A Expired - Fee Related JP4494624B2 (en) 2000-12-21 2000-12-21 Air conditioner

Country Status (1)

Country Link
JP (1) JP4494624B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102346787B1 (en) * 2021-05-10 2022-01-04 (주)씨엔에이치엔지니어링 Absorption chiller with integrated pulse control inverter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319083A (en) * 1998-05-08 1999-11-24 Jms Co Ltd Method and device for regulating flow rate of transfusion pump and medium in which program for regulating flow rate of transfusion pump is recorded
JP2000186867A (en) * 1998-12-22 2000-07-04 Rinnai Corp Controller for absorption air conditioning apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319083A (en) * 1998-05-08 1999-11-24 Jms Co Ltd Method and device for regulating flow rate of transfusion pump and medium in which program for regulating flow rate of transfusion pump is recorded
JP2000186867A (en) * 1998-12-22 2000-07-04 Rinnai Corp Controller for absorption air conditioning apparatus

Also Published As

Publication number Publication date
JP2002195596A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
KR100188236B1 (en) Air conditioning apparatus having dehumidifying mode of operation
JP5518812B2 (en) External air conditioner with air conditioning function
JP4494624B2 (en) Air conditioner
JP3728122B2 (en) Absorption air conditioner control device
JP3318505B2 (en) Control device for absorption air conditioner
JP3521101B2 (en) Air conditioner
JP3728121B2 (en) Absorption air conditioner control device
JP2002195628A (en) Controller for air conditioner
JP3920997B2 (en) Absorption air conditioner control device
JP4199643B2 (en) Air conditioner
JP2001099474A (en) Air conditioner
JP3920979B2 (en) Absorption air conditioner control device
JP2650654B2 (en) Absorption refrigeration cycle device
KR100234681B1 (en) Operation control method of absorption type cooler
JP2902305B2 (en) Absorption air conditioner
JP3660493B2 (en) Absorption refrigeration system controller
JPH10103808A (en) Air conditioner using absorption type refrigerator
JP2003042588A (en) Absorption type cooling and heating machine
JP3283780B2 (en) Absorption cooling device
JP3920986B2 (en) Absorption air conditioner
JP3599980B2 (en) Operating method of air conditioner
JP3322994B2 (en) Absorption air conditioner
JP3886641B2 (en) Double-effect absorption refrigeration system
JP4330522B2 (en) Absorption refrigerator operation control method
JP3241624B2 (en) Absorption air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees