JP4199643B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4199643B2
JP4199643B2 JP2003373549A JP2003373549A JP4199643B2 JP 4199643 B2 JP4199643 B2 JP 4199643B2 JP 2003373549 A JP2003373549 A JP 2003373549A JP 2003373549 A JP2003373549 A JP 2003373549A JP 4199643 B2 JP4199643 B2 JP 4199643B2
Authority
JP
Japan
Prior art keywords
water
flow path
heat source
heat
fan coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003373549A
Other languages
Japanese (ja)
Other versions
JP2005134088A (en
Inventor
隆夫 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2003373549A priority Critical patent/JP4199643B2/en
Publication of JP2005134088A publication Critical patent/JP2005134088A/en
Application granted granted Critical
Publication of JP4199643B2 publication Critical patent/JP4199643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、たとえば蓄熱源から冷水もしくは温水を供給して冷房もしくは暖房を行うファンコイル機能にヒートポンプ式の冷凍サイクルを付加し、冷暖房運転および除湿運転を自由に設定することができる空気調和装置に関する。   The present invention relates to an air conditioner capable of freely setting a cooling / heating operation and a dehumidifying operation by adding a heat pump refrigeration cycle to a fan coil function for cooling or heating by supplying cold water or hot water from a heat storage source, for example. .

たとえば蓄熱源から冷水もしくは温水を供給して冷房もしくは暖房を行うファンコイル機能に、ヒートポンプ式の冷凍サイクルを付加し組合せた技術が、[特許文献1]に開示されている。
特に、[特許文献1]の第4図に示されているように、室内空気を導く風路(ダクト)中に、熱源水を導くファンコイル(水対空気熱交換器)および冷凍サイクルの室内熱交換器に相当する空気熱交換器(冷媒対空気熱交換器)が配置される。冷凍サイクルは、圧縮機、四方弁、減圧装置、上記空気熱交換器の他に、室外熱交換器に相当する水対冷媒熱交換器を備えている。そして、蓄熱源から導かれる熱源水をファンコイルもしくは水対冷媒熱交換器、もしくはその両方に切換え案内する三方弁を備えた回路を備えている。
For example, [Patent Document 1] discloses a technique in which a heat pump type refrigeration cycle is added to a fan coil function for cooling or heating by supplying cold water or hot water from a heat storage source.
In particular, as shown in FIG. 4 of [Patent Document 1], a fan coil (water-to-air heat exchanger) for leading heat source water and a refrigeration cycle room in an air passage (duct) for guiding room air. An air heat exchanger (refrigerant to air heat exchanger) corresponding to the heat exchanger is arranged. The refrigeration cycle includes a water-to-refrigerant heat exchanger corresponding to an outdoor heat exchanger, in addition to a compressor, a four-way valve, a pressure reducing device, and the air heat exchanger. And the circuit provided with the three-way valve which switches and guides the heat source water guide | induced from a heat storage source to a fan coil or a water-to-refrigerant heat exchanger, or both.

通常の冷暖房は、冷凍サイクルを停止し三方弁を切換えて熱源水をファンコイルに導びき、室内空気と熱交換させる。また、三方弁を切換えて冷凍サイクルを駆動し熱源水を水対冷媒熱交換器に循環させれば、熱源水を熱源とするヒートポンプサイクルとなり、空気熱交換器において冷風または温風を得られる。このときファンコイルには熱源水が導かれないので、ここでの熱交換作用はない。
冷凍サイクルによる冷暖房運転時に、さらに冷暖房能力の性能アップが要求されると、三方弁は熱源水をファンコイルおよび水対冷媒熱交換器の両方に同時に流すよう制御される。ファンコイルと空気熱交換器を併用することになり、より大きな熱負荷に対処できる、とある。
特公平6−68392号公報
In normal air conditioning, the refrigeration cycle is stopped and the three-way valve is switched to guide the heat source water to the fan coil to exchange heat with room air. If the three-way valve is switched to drive the refrigeration cycle to circulate the heat source water to the water-to-refrigerant heat exchanger, a heat pump cycle using the heat source water as a heat source is obtained, and cold air or hot air can be obtained in the air heat exchanger. At this time, the heat source water is not led to the fan coil, so there is no heat exchange effect here.
In the cooling / heating operation by the refrigeration cycle, when further improvement in the cooling / heating capacity is required, the three-way valve is controlled so that the heat source water flows simultaneously to both the fan coil and the water-to-refrigerant heat exchanger. A fan coil and an air heat exchanger are used together, and it can cope with a larger heat load.
Japanese Examined Patent Publication No. 6-68392

しかしながら、上記のものは以下のような欠点がある。
蓄熱源から温度の高い温水を供給しているときに、冷凍サイクルでの冷房運転が選択される場合がある。このとき、冷凍サイクルの運転にともなって三方弁が切換ってしまい、温度の高い温水が直接、冷凍サイクルの凝縮器となる水対冷媒熱交換器に導かれ放熱する。したがって、冷凍サイクルの高圧上昇が顕著となり、それによるサイクル効率の低下をきたす。
However, the above has the following drawbacks.
When hot water having a high temperature is supplied from a heat storage source, cooling operation in a refrigeration cycle may be selected. At this time, the three-way valve is switched in accordance with the operation of the refrigeration cycle, and the hot water having a high temperature is directly guided to the water-to-refrigerant heat exchanger serving as the condenser of the refrigeration cycle and dissipates heat. Therefore, the increase in the high pressure of the refrigeration cycle becomes significant, resulting in a decrease in cycle efficiency.

逆に、蓄熱源から温度の低い冷水を導いているときに、冷凍サイクルでの暖房運転が選択される場合がある。このときも、冷凍サイクルの運転にともなって三方弁が切換ってしまい、温度の低い冷水が直接、冷凍サイクルの蒸発器となる水対冷媒熱交換器に導かれ吸熱する。したがって、冷凍サイクルの低圧降下が顕著となり、それによるサイクル効率の低下をきたす。   On the other hand, when cold water having a low temperature is guided from the heat storage source, the heating operation in the refrigeration cycle may be selected. Also at this time, the three-way valve is switched in accordance with the operation of the refrigeration cycle, and cold water having a low temperature is directly guided to the water-to-refrigerant heat exchanger serving as an evaporator of the refrigeration cycle and absorbs heat. Therefore, the low pressure drop of the refrigeration cycle becomes remarkable, resulting in a decrease in cycle efficiency.

そして、ファンコイル機能による冷暖房では、ファンまたは熱源水の通水のオン−オフでしか能力制御ができず、そのため室内の温度変動が大きくなり快適性が損なわれる。三方弁の切換えでファンコイルに通水されない状態が長時間継続すると、ファンコイル内に熱源水が滞留して、内部の腐蝕または冷温水の変質が起き易い。また、必要に応じて、室内温度の変化がない状態で除湿する等温除湿が求められる場合もあるが、上述の技術ではその要望を満たせないでいる。   In the cooling / heating by the fan coil function, capacity control can be performed only by turning on / off the fan or heat source water, and therefore, the temperature fluctuation in the room increases and the comfort is impaired. If the state where water does not pass through the fan coil continues for a long time by switching the three-way valve, the heat source water stays in the fan coil, and internal corrosion or alteration of cold / hot water tends to occur. In addition, if necessary, isothermal dehumidification in which there is no change in room temperature may be required, but the above-described technology cannot satisfy the demand.

本発明は上記課題に着目してなされたもので、その目的とするところは、ファンコイル機能にヒートポンプ式の冷凍サイクルを付加することを前提として、能力可変が可能で、冷暖房運転および除湿運転を自由に選択できる空気調和装置を提供しようとするものである。   The present invention has been made paying attention to the above-mentioned problems, and the purpose of the present invention is to change the capacity on the premise that a heat pump type refrigeration cycle is added to the fan coil function, and to perform cooling / heating operation and dehumidification operation. An object of the present invention is to provide an air conditioner that can be freely selected.

本発明は上述の目的を満足するためになされたものであり、熱源水の導通路を備えたファンコイルおよび冷媒の導通路を備えた空気熱交換器が室内空気の通風路に配置され、ヒートポンプ式の冷凍サイクルとして圧縮機、四方弁、空気熱交換器、減圧装置、熱源水と冷媒の導通路を備えた水/冷媒熱交換器が順次冷媒管を介して連通され、水循環手段として熱源から熱源水を一対の熱源水の導通路を備えた水/水熱交換器に導きさらにファンコイルに導いてから再び水/水熱交換器に導きさらに水/冷媒熱交換器を介して熱源へ戻す第1の流路および、この第1の流路においてファンコイルから導出される熱源水を水/水熱交換器に通さずに直接水/冷媒熱交換器へ導く第2の流路を有し、流路制御手段は熱源水を第1の流路と第2の流路に切換え制御し、運転制御手段は冷凍サイクルおよび流路制御手段を制御する。   The present invention has been made in order to satisfy the above-described object, and a fan coil having a heat source water conduction path and an air heat exchanger having a refrigerant conduction path are arranged in a room air ventilation path, and a heat pump. Compressor, four-way valve, air heat exchanger, pressure reducing device, water / refrigerant heat exchanger with heat source water and refrigerant conduction path are sequentially communicated through the refrigerant pipe as a water refrigeration cycle, and from the heat source as water circulation means The heat source water is led to a water / water heat exchanger having a pair of heat source water passages, further led to a fan coil, then led again to the water / water heat exchanger, and then returned to the heat source via the water / refrigerant heat exchanger. A first flow path and a second flow path for directly leading the heat source water derived from the fan coil to the water / refrigerant heat exchanger without passing through the water / water heat exchanger in the first flow path. The flow path control means supplies the heat source water to the first flow path and the second flow path. And changeover control, operation control means for controlling the refrigeration cycle and the flow path control means.

本発明によれば、ファンコイル機能にヒートポンプ式の冷凍サイクルを付加することを前提として、能力可変が可能で、冷暖房運転および除湿運転を自由に選択できるという効果を奏する。   According to the present invention, on the premise that a heat pump type refrigeration cycle is added to the fan coil function, it is possible to change the capacity, and there is an effect that an air conditioning operation and a dehumidifying operation can be freely selected.

[実施例1]
以下、図面を参照して本発明の実施例に係る空気調和装置について説明する。図1は、空気調和装置の構成を概略的に示す図である。
図中1は、被空調室に連通する通風路(ダクト)であり、この通風路1内における風上側に、熱源水の導通路を備えて熱源水と通風路1に導かれる室内空気とを熱交換できるファンコイル2が配置される。上記通風路1内のファンコイル2風下側には、冷凍サイクルRの室内熱交換器に相当する空気熱交換器3が配置され、冷媒と通風路1に導かれる室内空気とを熱交換できる。さらに、ファンコイル2および空気熱交換器3の風下側には被空調室内の空気を送風する送風機4が設置される。
[Example 1]
Hereinafter, an air conditioner according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically illustrating a configuration of an air conditioner.
In the figure, reference numeral 1 denotes a ventilation path (duct) communicating with the air-conditioned room. On the windward side in the ventilation path 1, a heat source water conduction path is provided, and heat source water and indoor air guided to the ventilation path 1 are provided. A fan coil 2 capable of heat exchange is arranged. An air heat exchanger 3 corresponding to the indoor heat exchanger of the refrigeration cycle R is disposed on the downwind side of the fan coil 2 in the ventilation path 1 so that heat can be exchanged between the refrigerant and the indoor air guided to the ventilation path 1. Further, a blower 4 for blowing air in the air-conditioned room is installed on the leeward side of the fan coil 2 and the air heat exchanger 3.

一方、通風路1内もしくは外部の所定の部位にメインユニットMが配置されていて、このメインユニットMには冷凍サイクルRを構成する、圧縮機13、四方弁12、電子膨張弁(減圧装置)11、室外熱交換器に相当する後述する水/冷媒熱交換器9など上記空気熱交換器3を除いて配置され、これら構成部品は冷媒管Pを介して連通される。上記電子膨張弁11は、上記水/冷媒熱交換器9と空気熱交換器3の中間に配置され、適度な絞りを与えて冷媒の過熱度を制御する。上記水/冷媒熱交換器9は冷媒を導く導通路と、熱源水を導く導通路を備えていて、冷媒と熱源水との熱交換ができる。   On the other hand, a main unit M is disposed in a predetermined part inside or outside the ventilation path 1, and the main unit M constitutes a refrigeration cycle R. The compressor 13, the four-way valve 12, an electronic expansion valve (pressure reduction device). 11 is arranged except for the air heat exchanger 3 such as a water / refrigerant heat exchanger 9 described later corresponding to an outdoor heat exchanger, and these components communicate with each other through a refrigerant pipe P. The electronic expansion valve 11 is disposed between the water / refrigerant heat exchanger 9 and the air heat exchanger 3, and controls the degree of superheat of the refrigerant by providing an appropriate throttle. The water / refrigerant heat exchanger 9 includes a conduction path that guides the refrigerant and a conduction path that leads the heat source water, and can exchange heat between the refrigerant and the heat source water.

さらにメインユニットMには、図示しない蓄熱源から熱源水である冷水または温水を導く熱源水入口部5と、蓄熱源へ熱源水を戻す熱源水出口部10を備えている。これら熱源水入口部5と熱源水出口部10は、メインユニットM内に収容される熱源水循環回路(水循環手段)Nの入口部と出口部を構成している。
熱源水循環回路Nとして、蓄熱源から熱源水入口部5に導かれる熱源水を、後述する水/水熱交換器6を介して上記ファンコイル2に導き、このファンコイル2から導出される熱源水を三方弁(流路制御手段)7の切換え動作にもとづいて再び上記水/水熱交換器6へ導き、さらに上記水/冷媒熱交換器9に導いてから熱源水出口部10を介して蓄熱源へ戻す第1の流路Aを備えている。
Further, the main unit M includes a heat source water inlet portion 5 that guides cold water or hot water that is heat source water from a heat storage source (not shown), and a heat source water outlet portion 10 that returns the heat source water to the heat storage source. The heat source water inlet portion 5 and the heat source water outlet portion 10 constitute an inlet portion and an outlet portion of a heat source water circulation circuit (water circulation means) N accommodated in the main unit M.
As the heat source water circulation circuit N, heat source water led from the heat storage source to the heat source water inlet 5 is led to the fan coil 2 through a water / water heat exchanger 6 described later, and the heat source water led out from the fan coil 2 Is guided again to the water / water heat exchanger 6 based on the switching operation of the three-way valve (flow path control means) 7 and further led to the water / refrigerant heat exchanger 9 and then stored in the heat source water outlet 10. A first flow path A returning to the source is provided.

そして上記熱源水循環回路Nは、上記ファンコイル2から導出される熱源水を上記三方弁7の切換え動作にもとづいて水/水熱交換器6に通さずに直接、上記水/冷媒熱交換器9へ導く第2の流路Bを備えている。
上記水/水熱交換器6には、2本の熱源水導通路が互いに交差して備えられている。上記熱源水入口部5と上記ファンコイル2に連通する熱源水導通路と、三方弁7と水/冷媒熱交換器9導入側とを連通する熱源水導通路であり、これら熱源水導通路を導かれる間に互いの熱源水は熱交換される。
The heat source water circulation circuit N directly connects the water / refrigerant heat exchanger 9 without passing the heat source water derived from the fan coil 2 through the water / water heat exchanger 6 based on the switching operation of the three-way valve 7. The second flow path B leading to is provided.
The water / water heat exchanger 6 is provided with two heat source water conducting paths intersecting each other. A heat source water conduction path communicating with the heat source water inlet section 5 and the fan coil 2, and a heat source water conduction path communicating with the three-way valve 7 and the water / refrigerant heat exchanger 9 introduction side. While being led, each other's heat source water is heat-exchanged.

さらに空気調和装置は、使用者において運転モード・風量・設定温度の指示をなすための遠隔操作盤(リモコン)と、この遠隔操作盤での指示にもとづいて送風機4、圧縮機13、電子膨張弁11および三方弁7などを制御し、最適な運転を実施するための制御部(運転制御手段)15を備えている。
なお、上記電子膨張弁12は固定絞りのキャピラリーチューブ等で代行できる。図中では通風路1中にファンコイル2、空気熱交換器3および送風機4のみ示しているが、他の構成要素も送風径路を確保した状態で通風路1内に収納してもよい。さらに、圧縮機13は回転数変更等の能力を可変できるものでもよい。
Further, the air conditioner includes a remote control panel (remote control) for giving an instruction of an operation mode, an air volume, and a set temperature to the user, and the blower 4, the compressor 13, the electronic expansion valve based on the instructions on the remote control panel. The control part (operation control means) 15 for controlling 11 and the three-way valve 7 etc. and implementing optimal driving | operation is provided.
The electronic expansion valve 12 can be replaced with a capillary tube having a fixed throttle. Although only the fan coil 2, the air heat exchanger 3 and the blower 4 are shown in the ventilation path 1 in the drawing, other components may be housed in the ventilation path 1 in a state in which a ventilation path is secured. Furthermore, the compressor 13 may be capable of changing the ability to change the rotational speed.

つぎに、このようにして構成される空気調和装置の各運転モードでの作用を説明する。運転モードは使用者のリモコンに対する運転モード指示と、設定温度と、現在の被空調空間の温度および、熱源水入口部5における水温により決定される。以下の[表1]は、各運転モードと、それぞれの運転モードに対応する制御条件を示している。

Figure 0004199643
Next, the operation in each operation mode of the air conditioner configured as described above will be described. The operation mode is determined by the operation mode instruction to the user's remote control, the set temperature, the current temperature of the air-conditioned space, and the water temperature at the heat source water inlet 5. [Table 1] below shows each operation mode and control conditions corresponding to each operation mode.
Figure 0004199643

以下、表1の内容を具体的に説明する。
(1)通常冷房運転と通常暖房運転
必要冷暖房能力がそれほど大きくなく、かつ冷房時に25℃未満の冷水が供給され、暖房時に25℃以上の温水が供給されている場合は、制御部15から圧縮機13の停止が指令されて空気熱交換器3は熱交換作用せず、ファンコイル2のみ機能する。
The contents of Table 1 will be specifically described below.
(1) Normal cooling operation and normal heating operation
When the required cooling / heating capacity is not so large and cold water of less than 25 ° C. is supplied during cooling, and hot water of 25 ° C. or more is supplied during heating, the controller 15 instructs the stop of the compressor 13 to generate air heat. The exchanger 3 does not perform heat exchange, and only the fan coil 2 functions.

このとき制御部15は三方弁7を切換えて第2の流路Bに熱源水を循環させ、第1の流路Aには熱源水が流れないように制御する。蓄熱源の熱源水は熱源水入口部5から水/水熱交換器6を介してファンコイル2へ導かれる。ファンコイル2から導出される熱源水は、三方弁7から水/冷媒熱交換器9に導かれ、さらに熱源水出口部10から排出されて蓄熱源に戻される。   At this time, the control unit 15 switches the three-way valve 7 to circulate the heat source water in the second flow path B, and performs control so that the heat source water does not flow in the first flow path A. The heat source water of the heat storage source is led from the heat source water inlet 5 to the fan coil 2 through the water / water heat exchanger 6. The heat source water led out from the fan coil 2 is led from the three-way valve 7 to the water / refrigerant heat exchanger 9, and is further discharged from the heat source water outlet 10 and returned to the heat storage source.

この運転モードでは、上記水/水熱交換器6において熱源水入口部5とファンコイル2に連通する熱源水導通路にのみ熱源水が導かれ、三方弁7と水/冷媒熱交換器9の熱源水導入側を連通する熱源水導通路には熱源水が導かれない。そのため、水/水熱交換器6において熱源水相互の熱交換作用は行われず、かつ冷凍サイクル運転を停止しているため水/冷媒熱交換器9においても熱交換作用はない状態で熱源水が導かれる。   In this operation mode, in the water / water heat exchanger 6, the heat source water is guided only to the heat source water conduction path communicating with the heat source water inlet 5 and the fan coil 2, and the three-way valve 7 and the water / refrigerant heat exchanger 9 The heat source water is not guided to the heat source water conducting path communicating with the heat source water introduction side. Therefore, heat exchange between the heat source waters is not performed in the water / water heat exchanger 6, and since the refrigeration cycle operation is stopped, the water / refrigerant heat exchanger 9 also has no heat exchange action in the state where there is no heat exchange action. Led.

結局、ファンコイル2において通風路1に導かれる室内空気と熱交換するのみであり、熱源水循環回路Nに冷水が導かれていれば室内の冷房作用をなし、熱源水循環回路Nに温水が導かれていれば室内の暖房をなす。このとき、リモコンに対する設定温度と現在室温との差によって行う能力調整は、送風機4の送風量を大とすることで能力大の要求を満足でき、送風機4の送風量を小とすることで能力小の要求を満足できる。   Eventually, the fan coil 2 only exchanges heat with the indoor air guided to the ventilation path 1, and if cold water is guided to the heat source water circulation circuit N, the indoor cooling operation is performed, and hot water is guided to the heat source water circulation circuit N. If so, it will heat the room. At this time, the capacity adjustment performed by the difference between the set temperature for the remote controller and the current room temperature can satisfy the demand for large capacity by increasing the air flow rate of the blower 4, and the capacity adjustment by reducing the air flow rate of the blower 4. Satisfy small requirements.

(2)高能力冷房運転と高能力暖房運転
上記(1)通常冷暖房の運転条件を継続している間に、設定温度と現在室温の差が大きくなりファンコイル機能のみでは能力不足になった場合、冷凍サイクル運転をなして能力を増加させる高能力冷暖房運転を行う。
このとき、熱源水循環回路Nにおける三方弁7の切換え方向に変化がなく先に説明した通常の冷暖房運転と同様であるが、制御部15は冷凍サイクルRを構成する圧縮機13の駆動を開始するとともに、四方弁12の切換え制御をなす。
(2) High capacity cooling operation and high capacity heating operation
(1) If the difference between the set temperature and the current room temperature becomes large and the fan coil function alone becomes insufficient while the normal cooling / heating operation conditions are continued, the refrigeration cycle operation is performed to increase the capacity. Capability air conditioning operation.
At this time, there is no change in the switching direction of the three-way valve 7 in the heat source water circulation circuit N, which is the same as the normal air conditioning operation described above, but the control unit 15 starts driving the compressor 13 constituting the refrigeration cycle R. At the same time, the switching control of the four-way valve 12 is performed.

たとえば、冷水供給中に高能力冷房運転の指示がある場合、蓄熱源から熱源水入口部5に導かれる冷水は水/水熱交換器6の一方の熱源水導通路のみ導通し他方の熱源水導通路には導かれないので、冷水は水/水熱交換器6で温度上昇することなくファンコイル2に導かれ、通風路1の室内空気から吸熱する。すなわち、ファンコイル2は室内空気中に冷熱を放出し、室内空気は温度低下して冷気に変わり、ファンコイル2の風下側に配置される空気熱交換器3に導かれる。   For example, when there is an instruction for high-capacity cooling operation during the supply of cold water, the cold water led from the heat storage source to the heat source water inlet 5 is conducted only in one heat source water passage of the water / water heat exchanger 6 and the other heat source water. Since it is not guided to the conduction path, the cold water is guided to the fan coil 2 by the water / water heat exchanger 6 without increasing its temperature, and absorbs heat from the indoor air in the ventilation path 1. That is, the fan coil 2 emits cold heat into the room air, the temperature of the room air is reduced to cold air, and is led to the air heat exchanger 3 disposed on the leeward side of the fan coil 2.

同時に冷凍サイクル運転が行われて、水/冷媒熱交換器9で冷媒が凝縮し、空気熱交換器3では冷媒が蒸発して、ファンコイル2を流通したあとの冷気から蒸発潜熱を奪う。冷気はさらに温度低下した冷気に変わり、室内へ送風される。したがって、高能力冷房が得られる。
なお、ファンコイル2で吸熱を終了した冷水は三方弁7から第2の流路Bを経由して水/冷媒熱交換器9に導かれる。この水/冷媒熱交換器9では冷媒の凝縮作用が行われているので、冷水は冷媒と熱交換して凝縮熱を吸収する。水/冷媒熱交換器9は水熱交換器として用いられることになり、ここでの吸熱が冷凍サイクルRにおける冷房熱量として利用され、ファンコイル機能のみと比べて利用温度差が取れ効率のよい冷房となる。
At the same time, the refrigeration cycle operation is performed, the refrigerant condenses in the water / refrigerant heat exchanger 9, the refrigerant evaporates in the air heat exchanger 3, and the latent heat of evaporation is taken away from the cold air that has passed through the fan coil 2. The cool air is changed to cool air whose temperature has further decreased, and is blown into the room. Therefore, high capacity cooling is obtained.
The cold water that has finished absorbing heat by the fan coil 2 is guided from the three-way valve 7 to the water / refrigerant heat exchanger 9 via the second flow path B. In this water / refrigerant heat exchanger 9, since the refrigerant condenses, cold water exchanges heat with the refrigerant and absorbs the heat of condensation. The water / refrigerant heat exchanger 9 is used as a water heat exchanger, and the heat absorption here is used as the cooling heat amount in the refrigeration cycle R, and the cooling temperature is high in efficiency by taking a difference in use temperature compared to the fan coil function alone. It becomes.

温水供給中に高能力暖房運転の指示がある場合は、蓄熱源から熱源水入口部5に導かれる温水が水/水熱交換器6で温度低下することなくファンコイル2に導かれ、室内空気へ放熱する。ファンコイル2が室内空気中に温熱を放出することで室内空気は温度上昇して暖気に変わり、空気熱交換器3に導かれる。
同時に冷凍サイクル運転が行われて、水/冷媒熱交換器9で冷媒が蒸発し、空気熱交換器3では冷媒が凝縮して、ファンコイル2から導かれる暖気へ凝縮熱を放出する。暖気はさらに温度上昇した暖気に変わり、室内へ送風される。したがって、高能力暖房が得られる。
When there is an instruction for high-capacity heating operation during the supply of hot water, the hot water led from the heat storage source to the heat source water inlet 5 is led to the fan coil 2 by the water / water heat exchanger 6 without lowering the temperature, and the room air To dissipate heat. As the fan coil 2 releases warm heat into the room air, the room air rises in temperature and changes to warm air, and is led to the air heat exchanger 3.
Simultaneously, the refrigeration cycle operation is performed, the refrigerant evaporates in the water / refrigerant heat exchanger 9, the refrigerant condenses in the air heat exchanger 3, and the condensed heat is released to the warm air led from the fan coil 2. The warm air changes into warm air whose temperature has further increased, and is blown into the room. Therefore, high capacity heating is obtained.

なお、ファンコイル2で放熱を終了した温水は三方弁7から第2の流路Bを経由して水/冷媒熱交換器9に導かれる。冷媒は、水/冷媒熱交換器9で蒸発していて、蒸発潜熱を放出する。すなわち、ファンコイル2で温度低下した温水は水/冷媒熱交換器9でさらに熱を奪われ、ここでの放熱が冷凍サイクルを介して暖房熱量として利用されるので、ファンコイル機能のみと比べて利用温度差が取れ効率のよい暖房となる。   Note that the hot water that has radiated heat by the fan coil 2 is guided from the three-way valve 7 to the water / refrigerant heat exchanger 9 via the second flow path B. The refrigerant is evaporated in the water / refrigerant heat exchanger 9 and releases latent heat of evaporation. That is, the hot water whose temperature has been reduced by the fan coil 2 is further deprived of heat by the water / refrigerant heat exchanger 9, and the heat dissipation here is used as the amount of heating heat through the refrigeration cycle. The temperature difference can be taken and heating is efficient.

このようにして、検知水温が25℃未満の冷水を用いてファンコイル2で冷房をなしていても、設定温度と現在室温の差が大きく、大能力で冷房する要求がある場合は、冷凍サイクルRによる冷房とファンコイル2による冷房を同時に行うことで要求を満たすことができる。さらに、検知水温が25℃以上の温水を用いてファンコイル2で暖房をなしていても、設定温度と現在室温の差が大きく、大能力で暖房する要求がある場合は、冷凍サイクルRによる暖房とファンコイル2による暖房を同時に行うことで要求を満たすことができる。   In this way, even if cooling is performed by the fan coil 2 using cold water having a detected water temperature of less than 25 ° C., if the difference between the set temperature and the current room temperature is large and there is a demand for cooling with high capacity, the refrigeration cycle The requirement can be satisfied by performing the cooling by R and the cooling by the fan coil 2 at the same time. Furthermore, even if the detected water temperature is 25 ° C. or higher and the fan coil 2 is used for heating, if the difference between the set temperature and the current room temperature is large and there is a demand for heating with high capacity, heating by the refrigeration cycle R And the heating by the fan coil 2 can be performed simultaneously to satisfy the requirements.

(3)温水供給時の冷房運転(逆冷房)と冷水供給時の暖房運転(逆暖房)
蓄熱源から25℃以上の温水が供給されているが、被空調室における何らかの事情により冷房運転を強調したい要求がある。また、蓄熱源から25℃未満の冷水が供給されているが、被空調室における何らかの事情により暖房運転を強調したい要求がある。
(3) Cooling operation when supplying hot water (reverse cooling) and heating operation when supplying cold water (reverse heating)
Hot water of 25 ° C. or higher is supplied from the heat storage source, but there is a demand for emphasizing the cooling operation for some reason in the air-conditioned room. Moreover, although cold water below 25 degreeC is supplied from the heat storage source, there exists a request | requirement which wants to emphasize heating operation by a certain situation in an air-conditioned room.

すなわち、ファンコイル機能による冷房と暖房は使用者の指示によって決定されるが、温水の供給中に冷房運転が要求された場合に、温水をそのままファンコイル2に導いては冷房ができないし、冷水の供給中に暖房運転が要求された場合に、冷水をそのままファンコイル2に導いては暖房ができない。そこで、制御部15は三方弁7に対して熱源水の導通方向を第2の流路Bから第1の流路Aに切換え制御したうえで、冷凍サイクル運転を開始する。   That is, cooling and heating by the fan coil function are determined by the user's instruction, but when the cooling operation is requested during the supply of hot water, the hot water cannot be cooled by directing it to the fan coil 2 as it is. When the heating operation is requested during supply of the water, the cooling cannot be performed by guiding the cold water to the fan coil 2 as it is. Therefore, the control unit 15 switches the conduction direction of the heat source water from the second flow path B to the first flow path A with respect to the three-way valve 7 and then starts the refrigeration cycle operation.

温水供給時に冷房運転の指示があると、蓄熱源から熱源水入口部5に導かれる温水は水/水熱交換器6の一方の熱源水導通路を導通してからファンコイル2に導かれる。ファンコイル2で温水は室内空気と熱交換して温度低下し、そのあと三方弁7の切換え方向に応じて第1の流路Aである水/水熱交換器6の他方の熱源水導通路に導かれ、熱源水入口部5を通過した温水と熱交換する。   If there is an instruction for cooling operation during the supply of hot water, the hot water led from the heat storage source to the heat source water inlet 5 is conducted through one heat source water conduction path of the water / water heat exchanger 6 and then led to the fan coil 2. In the fan coil 2, the hot water exchanges heat with room air to lower the temperature, and then the other heat source water conduction path of the water / water heat exchanger 6 that is the first flow path A according to the switching direction of the three-way valve 7. To exchange heat with the hot water that has passed through the heat source water inlet 5.

結局、熱源水入口部5で高温(45〜50℃)であった温水が、水/水熱交換器6で熱交換することにより温度低下(略30℃程度)したあと、ファンコイル2に導かれる。温水は低温の室内空気と熱交換して空気温度(略25℃程度)に近い温度にまで低下し、さらに熱源水入口部5から導かれる温水と水/水熱交換器6で熱交換する。
ファンコイル2での暖房能力が無効化し、その一方で冷凍サイクルRに対する運転が開始される。水/冷媒熱交換器9では冷やされて温度低下した温水と冷媒が熱交換し、冷媒は凝縮して空気熱交換器3に導かれ、ここで蒸発する冷房運転が行われる。空気熱交換器3では、ファンコイル2を流通したあとの空気から蒸発潜熱を奪って冷気に変える、いわゆる“逆冷房”作用を得る。
Eventually, the hot water, which was high in temperature (45 to 50 ° C.) at the heat source water inlet portion 5, is reduced in temperature (approximately 30 ° C.) by heat exchange in the water / water heat exchanger 6, and then introduced into the fan coil 2. It is burned. The hot water exchanges heat with the low-temperature indoor air and falls to a temperature close to the air temperature (about 25 ° C.), and further exchanges heat with the hot water led from the heat source water inlet 5 and the water / water heat exchanger 6.
The heating capacity in the fan coil 2 is invalidated, while the operation for the refrigeration cycle R is started. In the water / refrigerant heat exchanger 9, the hot water and the refrigerant that have been cooled to lower the temperature exchange heat, and the refrigerant is condensed and guided to the air heat exchanger 3, where a cooling operation is performed to evaporate. The air heat exchanger 3 obtains a so-called “reverse cooling” action in which the latent heat of vaporization is removed from the air that has passed through the fan coil 2 and converted into cold air.

このようにして、水/水熱交換器6における2本の熱源水導通路に温水を導いて互いに熱交換させるので、ファンコイル2に導かれる温水が室内空気と熱交換する熱量は、温水が直接ファンコイル2に流入する場合に比べて非常に小さくなる。水/水熱交換器6を介することで高温の温水を低温化でき、ファンコイル2での放熱量を小さくできる。他方、空気熱交換器3では冷媒が蒸発する吸熱器として作用するため、ファンコイル2を通過したあとの未だ熱交換されていない空気を確実に、かつ充分に冷却する。   In this way, since the hot water is guided to the two heat source water passages in the water / water heat exchanger 6 to exchange heat with each other, the amount of heat that the hot water guided to the fan coil 2 exchanges with the indoor air is determined by the hot water. Compared with the case of directly flowing into the fan coil 2, it becomes very small. By passing through the water / water heat exchanger 6, it is possible to lower the temperature of the hot water and to reduce the amount of heat dissipated in the fan coil 2. On the other hand, since the air heat exchanger 3 acts as a heat absorber that evaporates the refrigerant, the air that has not yet been heat-exchanged after passing through the fan coil 2 is reliably and sufficiently cooled.

同様にして、冷水供給時に暖房運転の指示があると、蓄熱源から熱源水入口部5に導かれる冷水は水/水熱交換器6の一方の熱源水導通路を導通してからファンコイル2に導かれる。ファンコイル2で冷水は空気と熱交換して温度上昇し、そのあと三方弁7の切換え方向に応じて第1の流路Aである水/水熱交換器6の他方の熱源水導通路に導かれ、熱源水入口部5を通過した冷水と熱交換する。   Similarly, when there is an instruction for heating operation during the supply of cold water, the cold water led from the heat storage source to the heat source water inlet 5 is conducted through one heat source water passage of the water / water heat exchanger 6 and then the fan coil 2. Led to. In the fan coil 2, the cold water exchanges heat with air and rises in temperature, and then enters the other heat source water conduction path of the water / water heat exchanger 6 as the first flow path A according to the switching direction of the three-way valve 7. It is guided and exchanges heat with cold water that has passed through the heat source water inlet 5.

結局、熱源水入口部5で低温(10℃程度)であった冷水が、水/水熱交換器6で熱交換することにより温度上昇(20℃程度)したあとファンコイル2に導かれる。冷水は室内空気と熱交換して空気温度(25℃程度)に近い温度にまで上昇し、さらに熱源水入口部4から導かれる低温の冷水と水/水熱交換器6で熱交換する。
ファンコイル2での冷房能力が無効化し、その一方で冷凍サイクルRに対する運転が開始される。水/冷媒熱交換器9では温められて温度上昇した冷水と冷媒が熱交換し、冷媒は蒸発して空気熱交換器3に導かれ、ここで凝縮する冷房運転が行われる。空気熱交換器3では、ファンコイル2を流通したあとの空気へ凝縮熱を付与し暖気に変える、いわゆる“逆暖房”作用を得る。
Eventually, the cold water, which has been at a low temperature (about 10 ° C.) at the heat source water inlet portion 5, is led to the fan coil 2 after the temperature rises (about 20 ° C.) by exchanging heat with the water / water heat exchanger 6. The cold water exchanges heat with room air and rises to a temperature close to the air temperature (about 25 ° C.), and further heat exchanges with the low-temperature cold water guided from the heat source water inlet 4 and the water / water heat exchanger 6.
The cooling capacity of the fan coil 2 is invalidated, while the operation for the refrigeration cycle R is started. The water / refrigerant heat exchanger 9 exchanges heat between the cold water that has been warmed and the temperature has increased, and the refrigerant evaporates and is led to the air heat exchanger 3 where the cooling operation is performed. In the air heat exchanger 3, a so-called “reverse heating” effect is obtained, in which condensation heat is applied to the air after flowing through the fan coil 2 to change it into warm air.

このようにして、水/水熱交換器6における2本の熱源水導通路に冷水を導いて互いに熱交換させるので、ファンコイル2に導かれる冷水が室内空気と熱交換する熱量は、冷水が直接ファンコイル2に流入する場合に比べて非常に小さくなる。水/水熱交換器6を介することで低温の冷水を温度上昇化し、ファンコイル2での吸熱量を小さくできる。他方、空気熱交換器3では冷媒が凝縮する放熱器として作用するため、ファンコイル2を通過したあとの未だ熱交換されていない空気を確実に、かつ充分に温める。   In this way, cold water is guided to the two heat source water conducting paths in the water / water heat exchanger 6 to exchange heat with each other. Therefore, the amount of heat exchanged between the cold water guided to the fan coil 2 and the indoor air is determined by cold water. Compared with the case of directly flowing into the fan coil 2, it becomes very small. By passing through the water / water heat exchanger 6, the temperature of the low-temperature cold water is increased, and the amount of heat absorbed by the fan coil 2 can be reduced. On the other hand, since the air heat exchanger 3 acts as a radiator that condenses the refrigerant, the air that has not yet been subjected to heat exchange after passing through the fan coil 2 is reliably and sufficiently warmed.

逆冷房と逆暖房ともに、ファンコイル2を出て水/水熱交換器9に流入する熱源水は、ほとんど室温に近い温度まで加熱(冷却)される。そのあと水/冷媒熱交換器9に導かれ、冷凍サイクルの冷媒と熱交換される。したがって、従来のように水/冷媒熱交換器9に直接冷温水を導入する制御と比較して、冷房時は高圧側を低くして高効率と高圧危険防止を図り、暖房時は低圧側を高くして高効率と凍結防止をなす。   In both the reverse cooling and the reverse heating, the heat source water that leaves the fan coil 2 and flows into the water / water heat exchanger 9 is heated (cooled) to a temperature almost close to room temperature. Thereafter, the water / refrigerant heat exchanger 9 is led to exchange heat with the refrigerant of the refrigeration cycle. Therefore, compared with the conventional control in which cold / hot water is directly introduced into the water / refrigerant heat exchanger 9, the high pressure side is lowered during cooling to achieve high efficiency and prevention of high pressure danger, and the low pressure side is restricted during heating. Higher for higher efficiency and freeze protection.

(4)除湿運転
室内温度を変えることなく、湿度の低下を図る除湿運転が指示される場合がある。このとき制御部15は、熱源水循環回路Nに供給される熱源水である冷水と温水の水温に関わらず、先に説明した通常の冷暖房時と同様に三方弁7を第2の流路B側に切換える。熱源水は、熱源水入口部5から第2の流路Bを構成する水/水熱交換器6、ファンコイル2、三方弁7、水/冷媒熱交換器9を介して熱源水出口部10へ順次導びかれる。
(4) Dehumidifying operation
There is a case where a dehumidifying operation for reducing the humidity is instructed without changing the room temperature. At this time, the control unit 15 sets the three-way valve 7 on the second flow path B side as in the normal air conditioning described above, regardless of the temperature of the cold water and the hot water that are the heat source water supplied to the heat source water circulation circuit N. Switch to. The heat source water is supplied from the heat source water inlet portion 5 through the water / water heat exchanger 6, the fan coil 2, the three-way valve 7, and the water / refrigerant heat exchanger 9 constituting the second flow path B. Sequentially led to.

一方、制御部15は、冷凍サイクルRに対する制御を、熱源水入口部5における熱源水水温に応じて異ならせる。たとえば、熱源水が25℃以上の温水であれば冷房サイクルをなし、熱源水が25℃以下の冷水であれば暖房サイクルをなすよう四方弁12を切換え制御する。
25℃よりも高い温度の温水がファンコイル2に導かれると、室内空気中に放熱して一旦、室内空気を温度上昇させるが、冷凍サイクルRに対して冷房サイクルが選択されているので、空気熱交換器3に導かれる室内空気は冷却される。したがって、空気熱交換器3はファンコイル2を通過した室内空気を露点温度以下に変えて結露を誘発する。ファンコイル2での暖房と、空気熱交換器3での冷房とが相互に動作し、通風路1の出口側においては室内空気の温度を変えず(等温)に除湿ができる。
On the other hand, the control unit 15 varies the control for the refrigeration cycle R according to the heat source water temperature at the heat source water inlet 5. For example, if the heat source water is warm water of 25 ° C. or higher, a cooling cycle is performed, and if the heat source water is cold water of 25 ° C. or lower, the four-way valve 12 is switched and controlled to perform a heating cycle.
When hot water having a temperature higher than 25 ° C. is led to the fan coil 2, the heat is radiated into the room air to temporarily raise the temperature of the room air, but the cooling cycle is selected for the refrigeration cycle R. The room air led to the heat exchanger 3 is cooled. Therefore, the air heat exchanger 3 changes the room air that has passed through the fan coil 2 to a dew point temperature or less to induce condensation. Heating in the fan coil 2 and cooling in the air heat exchanger 3 operate mutually, and dehumidification can be performed without changing the temperature of room air (isothermal) on the outlet side of the ventilation path 1.

25℃よりも低い温度の冷水がファンコイル2に導かれると、室内空気から吸熱して一旦、室内空気を温度低下させるが、冷凍サイクルRに対して暖房サイクルが選択されているので、空気熱交換器3に導かれる室内空気は加熱される。したがって、空気熱交換器3はファンコイル2を通過した室内空気を露点温度以下に変えて結露を誘発する。ファンコイル2での冷房と、空気熱交換器3での暖房とが相互に動作し、通風路1の出口側においては空気温度の温度を変えず(等温)に除湿ができる。   When cold water having a temperature lower than 25 ° C. is led to the fan coil 2, it absorbs heat from the room air and temporarily lowers the temperature of the room air. However, since the heating cycle is selected for the refrigeration cycle R, the air heat The room air led to the exchanger 3 is heated. Therefore, the air heat exchanger 3 changes the room air that has passed through the fan coil 2 to a dew point temperature or less to induce condensation. The cooling in the fan coil 2 and the heating in the air heat exchanger 3 operate mutually, and dehumidification can be performed without changing the temperature of the air temperature (isothermal) on the outlet side of the ventilation path 1.

このようにして本発明によれば、熱源水の温度に応じて冷暖房能力を発揮するファンコイル機能に対して、冷凍サイクルRにおける空気冷却加熱用熱交換器である空気熱交換器3を加えるとともに水/水熱交換器6を備えている。そして、熱源水を略空気温度に近いファンコイル2を導出された熱源水と選択的に熱交換することで、ファンコイル能力を選択的に小さくすることができる。   Thus, according to this invention, while adding the air heat exchanger 3 which is a heat exchanger for the air cooling heating in the refrigerating cycle R with respect to the fan coil function which exhibits air conditioning capability according to the temperature of heat source water. A water / water heat exchanger 6 is provided. Then, the heat capacity of the fan coil 2 can be selectively reduced by selectively exchanging heat of the heat source water with the derived heat source water of the fan coil 2 close to the air temperature.

ファンコイル機能ばかりでなく、冷水供給時の冷凍サイクル冷房運転と、温水供給時の冷凍サイクル暖房運転では、ファンコイル2と冷凍サイクルRの能力をプラスする大能力運転が可能となる。そして、冷水供給時の暖房(逆暖房)では、ファンコイル2に導かれる冷水を事前に温めることで、ファンコイル2の性能を下げつつ冷凍サイクルRで暖房ができる。冷凍サイクルRの吸熱側(水/冷媒熱交換器9)では、室内からの熱を再吸熱することで効率のよい運転ができる。   Not only the fan coil function but also the refrigeration cycle cooling operation at the time of cold water supply and the refrigeration cycle heating operation at the time of hot water supply enable a large-capacity operation that adds the capabilities of the fan coil 2 and the refrigeration cycle R. And in the heating at the time of cold water supply (reverse heating), the cold water guide | induced to the fan coil 2 can be heated in advance, and it can heat by the refrigerating cycle R, reducing the performance of the fan coil 2. FIG. On the heat absorption side (water / refrigerant heat exchanger 9) of the refrigeration cycle R, efficient operation can be performed by re-absorbing heat from the room.

また、温水供給時の冷房(逆冷房)では、ファンコイル2に導かれる温水を事前に冷却することで、ファンコイル2の性能を下げつつ冷凍サイクルRで冷房ができる。冷凍サイクルRの吸熱側(水/冷媒熱交換器9)では、室内からの熱を再放熱することで効率のよい運転ができる。
さらに、ファンコイル2で得られる熱量と、冷凍サイクルRに対する運転を自由に組合せることで、等温除湿などの運転を自由に設定できる。
なお、本実施例では、ファンコイル2を風上側に有しているが、被空調空間の特性により温水(または20℃前後の水)が使用されることが多い条件下で等温除湿要求がある場合には、他の冷暖房性能が若干犠牲にされるが、空気熱交換器3を風上側に設置して、除湿効果を高めるなどの変更も可能である。
In cooling at the time of supplying hot water (reverse cooling), the hot water guided to the fan coil 2 is cooled in advance, so that the cooling of the fan coil 2 can be reduced and the cooling can be performed by the refrigeration cycle R. On the heat absorption side (water / refrigerant heat exchanger 9) of the refrigeration cycle R, efficient operation can be performed by re-radiating heat from the room.
Furthermore, by freely combining the amount of heat obtained by the fan coil 2 and the operation for the refrigeration cycle R, an operation such as isothermal dehumidification can be freely set.
In this embodiment, the fan coil 2 is provided on the windward side, but there is an isothermal dehumidification requirement under conditions where hot water (or water at around 20 ° C.) is often used due to the characteristics of the air-conditioned space. In this case, other air conditioning performance is sacrificed to some extent, but it is possible to make changes such as increasing the dehumidifying effect by installing the air heat exchanger 3 on the windward side.

また、第1の流路Aと第2の流路Bに対する流路制御手段として三方弁7を備えたが、これに限定されるものではなく、第1の流路Aと第2の流路Bにそれぞれ二方弁を備えて、互いに逆の開閉操作をしてもよい。
あるいは、第1の流路Aに流動抵抗の高いキャピラリーチューブ(抵抗手段)を設置し、第2の流路Bに二方弁を設置してもよい。この場合、第2の流路Bに熱源水を流したいときは二方弁を開放し、第1の流路Aに熱源水を流したいときは二方弁を閉成にすることで、水/水熱交換器6に常時熱源水が流れるようにして、錆などによる水/水熱交換器6の詰りを防止するなどの変更は可能である。
Further, although the three-way valve 7 is provided as a flow path control means for the first flow path A and the second flow path B, the present invention is not limited to this, and the first flow path A and the second flow path are provided. Each B may be provided with a two-way valve, and the opening and closing operations may be reversed.
Alternatively, a capillary tube (resistance means) having a high flow resistance may be installed in the first flow path A, and a two-way valve may be installed in the second flow path B. In this case, when it is desired to flow the heat source water through the second flow path B, the two-way valve is opened, and when the heat source water is flowed through the first flow path A, the two-way valve is closed. The water / water heat exchanger 6 can be changed so that the heat source water always flows in the water / water heat exchanger 6 to prevent the water / water heat exchanger 6 from being clogged with rust or the like.

上記圧縮機13を能力制御するため、回転数の変更で対応することのみならず、熱源水の入口部5または出口部10に循環量可変機構(ポンプまたは流量調整弁等)を設けて、熱源水の流量を制御することによる対応であってもよい。さらに、ファンコイル2と空気熱交換器3を横に並べて配置してもよい。
また、本発明は上述の実施例および変形例に限定されるものではなく、本発明の要旨を越えない範囲内でさらに種々変形実施が可能であり、本願発明はこれらの全てを完全に包含するものである。
In order to control the capacity of the compressor 13, not only can it be handled by changing the number of revolutions, but also a circulation amount variable mechanism (such as a pump or a flow rate adjustment valve) is provided at the inlet 5 or outlet 10 of the heat source water, The response | compatibility by controlling the flow volume of water may be sufficient. Further, the fan coil 2 and the air heat exchanger 3 may be arranged side by side.
The present invention is not limited to the above-described embodiments and modifications, and various modifications can be made without departing from the scope of the present invention, and the present invention completely includes all of them. Is.

本発明の実施例を示す空気調和装置の概略の構成と配管図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic structure and piping figure of the air conditioning apparatus which show the Example of this invention.

符号の説明Explanation of symbols

1…通風路、2…ファンコイル、3…空気熱交換器、13…圧縮機、12…四方弁、11…減圧装置(電子膨張弁)、9…水/冷媒熱交換器、R…冷凍サイクル、6…水/水熱交換器、A…第1の流路、B…第2の流路、N…熱源水循環回路(水循環手段)、7…三方弁(流路制御手段)、15…制御部(運転制御手段)。   DESCRIPTION OF SYMBOLS 1 ... Ventilation path, 2 ... Fan coil, 3 ... Air heat exchanger, 13 ... Compressor, 12 ... Four-way valve, 11 ... Pressure-reducing device (electronic expansion valve), 9 ... Water / refrigerant heat exchanger, R ... Refrigeration cycle , 6 ... water / water heat exchanger, A ... first flow path, B ... second flow path, N ... heat source water circulation circuit (water circulation means), 7 ... three-way valve (flow path control means), 15 ... control Part (operation control means).

Claims (6)

室内空気の通風路に配置され、熱源水の導通路を備えたファンコイルおよび冷媒の導通路を備えた空気熱交換器と、
圧縮機、四方弁、上記空気熱交換器、減圧装置、熱源水と冷媒の導通路を備えた水/冷媒熱交換器が順次冷媒管を介して連通されるヒートポンプ式の冷凍サイクルと、
熱源から熱源水を、一対の熱源水の導通路を備えた水/水熱交換器に導き、さらに上記ファンコイルに導いてから再び上記水/水熱交換器に導き、さらに上記水/冷媒熱交換器を介して熱源へ戻す第1の流路および、この第1の流路において上記ファンコイルから導出される熱源水を上記水/水熱交換器に通さずに直接、上記水/冷媒熱交換器へ導く第2の流路を有する水循環手段と、
熱源水を第1の流路と第2の流路に切換え制御する流路制御手段と、
上記冷凍サイクルおよび上記流路制御手段を制御する運転制御手段と
を具備することを特徴とする空気調和装置。
An air heat exchanger provided with a fan coil provided with a conduction path for heat source water and a conduction path for refrigerant, arranged in a ventilation path for indoor air;
A heat pump type refrigeration cycle in which a water / refrigerant heat exchanger having a compressor, a four-way valve, the air heat exchanger, a pressure reducing device, a heat source water and a refrigerant passage is sequentially communicated via a refrigerant pipe;
The heat source water is led from the heat source to a water / water heat exchanger having a pair of heat source water conduction paths, further led to the fan coil, and then led again to the water / water heat exchanger, and further to the water / refrigerant heat. A first flow path that returns to the heat source via the exchanger, and heat source water derived from the fan coil in the first flow path directly without passing through the water / water heat exchanger; Water circulation means having a second flow path leading to the exchanger;
Flow path control means for switching and controlling the heat source water between the first flow path and the second flow path;
An air conditioner comprising: the refrigeration cycle; and an operation control means for controlling the flow path control means.
上記流路制御手段は、三方弁もしくは、上記第1の流路および第2の流路にそれぞれ設けられる二方弁からなり、三方弁もしくは各二方弁は第1の流路と第2の流路のいずれか一方のみに熱源水が流れるように開閉制御されることを特徴とする請求項1記載の空気調和装置。   The flow path control means includes a three-way valve or a two-way valve provided in each of the first flow path and the second flow path, and the three-way valve or each two-way valve includes the first flow path and the second flow path. 2. The air conditioner according to claim 1, wherein the air conditioning apparatus is controlled to open and close so that the heat source water flows only in one of the flow paths. 上記流路制御手段は、上記第1の流路に設けられる抵抗手段および第2の流路に設けられる二方弁からなり、上記第1の流路には上記抵抗手段を介して常時熱源水が流れるように制御されることを特徴とする請求項1記載の空気調和装置。   The flow path control means includes a resistance means provided in the first flow path and a two-way valve provided in the second flow path, and the first flow path is always provided with heat source water via the resistance means. The air conditioner according to claim 1, wherein the air conditioner is controlled to flow. 上記流路制御手段は、熱源水として冷水の供給時に冷凍サイクルによる暖房運転を行うとき、および熱源水として温水の供給時に冷凍サイクルによる冷房運転を行うときは、上記第2の流路を閉じてファンコイルから導出される熱源水を上記第1の流路に導き、
熱源水または熱源水と冷凍サイクルによる冷暖房運転時には、上記第1の流路を閉じてファンコイルから導出される熱源水を上記第2の流路に導くように制御することを特徴とする請求項1および請求項2のいずれかに記載の空気調和装置。
The flow path control means closes the second flow path when performing a heating operation by a refrigeration cycle when supplying cold water as a heat source water, and when performing a cooling operation by a refrigeration cycle when supplying hot water as a heat source water. The heat source water derived from the fan coil is guided to the first flow path,
The heat source water or the heat source water and a cooling / heating operation using the refrigeration cycle are controlled so that the first flow path is closed and the heat source water led out from the fan coil is guided to the second flow path. The air conditioning apparatus according to any one of claims 1 and 2.
上記運転制御手段は、ファンコイルへ冷水を導くとともに冷凍サイクルで暖房運転を行い、もしくはファンコイルへ温水を導くとともに冷凍サイクルで冷房運転を行うように制御して、等温(加熱)除湿運転を切換え可能としたことを特徴とする請求項1ないし請求項4のいずれかに記載の空気調和装置。   The above operation control means switches the isothermal (heating) dehumidifying operation by guiding the cold water to the fan coil and performing the heating operation in the refrigeration cycle, or guiding the hot water to the fan coil and performing the cooling operation in the refrigeration cycle. The air conditioner according to any one of claims 1 to 4, wherein the air conditioner is made possible. 上記ファンコイルは、上記空気熱交換器の風上側に配置されることを特徴とする請求項1ないし請求項5のいずれかに記載の空気調和装置。   The air conditioner according to any one of claims 1 to 5, wherein the fan coil is disposed on the windward side of the air heat exchanger.
JP2003373549A 2003-10-31 2003-10-31 Air conditioner Expired - Fee Related JP4199643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003373549A JP4199643B2 (en) 2003-10-31 2003-10-31 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003373549A JP4199643B2 (en) 2003-10-31 2003-10-31 Air conditioner

Publications (2)

Publication Number Publication Date
JP2005134088A JP2005134088A (en) 2005-05-26
JP4199643B2 true JP4199643B2 (en) 2008-12-17

Family

ID=34649544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003373549A Expired - Fee Related JP4199643B2 (en) 2003-10-31 2003-10-31 Air conditioner

Country Status (1)

Country Link
JP (1) JP4199643B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102705919A (en) * 2012-06-12 2012-10-03 李桂杨 Small-sized central cold and warm air-conditioner capable of supplying hot water
CN104864627A (en) * 2014-02-20 2015-08-26 陈则韶 Double heating, refrigerating, water heating and dehumidifying system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101399821B1 (en) 2012-08-01 2014-05-27 김재휘 waste heat utilizing apparatus of dehumidifier for installation house
JP6653938B2 (en) * 2016-11-30 2020-02-26 日本ピーマック株式会社 Water heater / cooler, air conditioner and air conditioner system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102705919A (en) * 2012-06-12 2012-10-03 李桂杨 Small-sized central cold and warm air-conditioner capable of supplying hot water
CN102705919B (en) * 2012-06-12 2014-06-04 李桂杨 Small-sized central cold and warm air-conditioner capable of supplying hot water
CN104864627A (en) * 2014-02-20 2015-08-26 陈则韶 Double heating, refrigerating, water heating and dehumidifying system
CN104864627B (en) * 2014-02-20 2017-06-06 陈则韶 A kind of pair of heating refrigeration hot water dehumidification system

Also Published As

Publication number Publication date
JP2005134088A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
JP5005122B2 (en) Air conditioner for vehicles
JP3800210B2 (en) Water source heat pump unit
JPH0518630A (en) Air conditioner
JP2009264661A (en) Air conditioning system
JP4182494B2 (en) Large temperature difference air conditioning system
US12065016B2 (en) Heat pump system
WO2010067539A1 (en) Air conditioning system
KR101679574B1 (en) Air conditioner
JP3936345B2 (en) Air conditioner
JP4199643B2 (en) Air conditioner
JP5453795B2 (en) Air conditioning system
JP2005321191A (en) Air conditioner
JP2010243005A (en) Dehumidification system
JP4426824B2 (en) Air conditioner
CN110207417B (en) Air conditioning system
JP3677887B2 (en) Air conditioner
JP2001208401A (en) Air conditioner
JP3885063B2 (en) Air conditioner
JP3297105B2 (en) Air conditioner
JP4612001B2 (en) Air conditioner
JP2002106925A (en) Air conditioner
CN212538045U (en) Room air conditioner
JP3993617B2 (en) Air conditioner
JP5168118B2 (en) Air conditioning system
CN114076349A (en) Room air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060728

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees