JP2009264661A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2009264661A
JP2009264661A JP2008114470A JP2008114470A JP2009264661A JP 2009264661 A JP2009264661 A JP 2009264661A JP 2008114470 A JP2008114470 A JP 2008114470A JP 2008114470 A JP2008114470 A JP 2008114470A JP 2009264661 A JP2009264661 A JP 2009264661A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
outdoor
indoor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008114470A
Other languages
Japanese (ja)
Inventor
Tsutomu Furukawa
勉 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2008114470A priority Critical patent/JP2009264661A/en
Publication of JP2009264661A publication Critical patent/JP2009264661A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioning system that exhibits high heating performance during humidifying heating in a system capable of performing cooling operation and heating operation. <P>SOLUTION: This air conditioning system is equipped with an electric compressor 1, an outdoor capacitor 2, an indoor capacitor 3, a first expansion valve 6, a second expansion valve 7, an indoor evaporator 4, and an outdoor evaporator 5 connected in parallel to the indoor evaporator 4 and exchanging heat between a refrigerant made low in pressure by the second expansion valve 7 and the electric compressor 1. Switching can be performed between: a cooling circulation passage through which a high temperature high pressure refrigerant from the electric compressor 1 is lead to the outdoor capacitor 2, through the first expansion valve 6, and to the indoor evaporator 4; and a dehumidifying heating circulation passage through which the high temperature high pressure refrigerant from the electric compressor 1 is lead to the indoor capacitor 3, through the first expansion valve 6 and the second expansion valve 7, and to the indoor evaporator 4 and the outdoor evaporator 5. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷房運転と暖房運転が可能であり、除湿暖房が可能な空気調和システムに関する。   The present invention relates to an air conditioning system capable of cooling operation and heating operation and capable of dehumidifying heating.

この種の従来の空気調和システムとしては、特許文献1に開示されたものがある。この空気調和システム100は、図11に示すように、冷媒を圧縮して冷媒を高温高圧とするコンプレッサ101と、コンプレッサ101で高温高圧とされた冷媒を外気との間で熱交換させる室外コンデンサ102と、高温高圧の冷媒と室内に導く送風との間で熱交換させる室内コンデンサ103と、室内コンデンサ103で冷却された冷媒を減圧して低圧の冷媒とする第1減圧手段104と、低圧の冷媒と室内に導く送風との間で熱交換させる室内エバポレータ105と、コンプレッサ101で高温高圧とされた冷媒を室外コンデンサ102に供給するか、室外コンデンサ102をバイパスさせるバイパス経路106に導くか否かを選択できる三方弁107とを備えている。   A conventional air conditioning system of this type is disclosed in Patent Document 1. As shown in FIG. 11, the air conditioning system 100 includes a compressor 101 that compresses a refrigerant to make the refrigerant at a high temperature and a high pressure, and an outdoor capacitor 102 that exchanges heat between the refrigerant that has been heated to a high temperature and a high pressure by the compressor 101 with the outside air. And an indoor condenser 103 that exchanges heat between the high-temperature and high-pressure refrigerant and the air blown into the room, a first decompression means 104 that depressurizes the refrigerant cooled by the indoor condenser 103 to form a low-pressure refrigerant, and a low-pressure refrigerant Whether to supply heat to the indoor evaporator 105 that exchanges heat between the air and the air that is led into the room, and to the bypass condenser 106 that bypasses the outdoor condenser 102 or supplies the high-temperature and high-pressure refrigerant in the compressor 101 to the outdoor condenser 102. A three-way valve 107 that can be selected is provided.

冷房運転時には、三方弁107が室外コンデンサ102側を選択し、コンプレッサ101からの高温高圧の冷媒が室外コンデンサ102、室内コンデンサ103及び室内エバポレータ105を通る循環経路に切り替えられる。   During the cooling operation, the three-way valve 107 selects the outdoor condenser 102 side, and the high-temperature and high-pressure refrigerant from the compressor 101 is switched to a circulation path that passes through the outdoor condenser 102, the indoor condenser 103, and the indoor evaporator 105.

暖房運転時には、三方弁107がバイパス経路106側を選択し、コンプレッサ101からの高温高圧の冷媒が室内コンデンサ103と室内エバポレータ105のみを通る循環経路に切り替えられる。   During the heating operation, the three-way valve 107 selects the bypass path 106 side, and the high-temperature and high-pressure refrigerant from the compressor 101 is switched to a circulation path that passes only through the indoor condenser 103 and the indoor evaporator 105.

冷房運転では、室内に導かれる送風は、室内エバポレータ105と必要に応じて室内コンデンサ103を通過し、所望温度の冷風とされて室内に導かれる。そして、冷房運転における冷媒の熱の授受を見ると、冷媒の熱は室内コンデンサ103と室外コンデンサ102の双方で放熱するため、室内エバポレータ105では吸熱量が室内コンデンサ103より大きく、十分な冷房性能が期待できる。   In the cooling operation, the air blown into the room passes through the indoor evaporator 105 and the indoor condenser 103 as necessary, is cooled to a desired temperature, and is led into the room. Looking at the transfer of heat from the refrigerant in the cooling operation, the heat of the refrigerant is dissipated by both the indoor condenser 103 and the outdoor condenser 102. Therefore, the indoor evaporator 105 has a larger amount of heat absorption than the indoor condenser 103, and has sufficient cooling performance. I can expect.

暖房運転では、室内に導かれる送風は、室内エバポレータ105と必要に応じて室内コンデンサ103を通過し、所望温度の温風とされて室内に導かれる。室内に導かれる送風は、室内エバポレータ105を通過する際に凝縮水を発生するため、室内を除湿暖房することができる。   In the heating operation, the air blown into the room passes through the indoor evaporator 105 and the indoor condenser 103 as necessary, and is heated to a desired temperature and led into the room. The air blown into the room generates condensed water when passing through the room evaporator 105, so that the room can be dehumidified and heated.

一方、他の従来例としては、図13に示すものが提案されている。図13に示すように、この空気調和システム110は、冷媒を圧縮して冷媒を高温高圧の冷媒とするコンプレッサ111と、高温高圧の冷媒と室内に導く送風との間で熱交換させる室内コンデンサ112と、室内コンデンサ112の下流側の一方の分岐路に配置され、室内コンデンサ112で冷却された冷媒を減圧して低圧の冷媒とする第1膨張弁113と、第1膨張弁113で低圧とされた冷媒と室内に導く送風との間で熱交換させる室内エバポレータ114と、室内コンデンサ112の下流側の他方の分岐路に配置され、室内コンデンサ112で冷却された冷媒を減圧して低圧の冷媒とする第2膨張弁115と、第2膨張弁115で低圧とされた冷媒と室外空気との間で熱交換させる室外エバポレータ116と、室内エバポレータ114の出口側に介在され、室内エバポレータ114の出口側冷媒圧力が所定未満以下で閉塞し、所定圧力以上で開放する蒸発圧力調整弁117とを備えている。   On the other hand, as another conventional example, the one shown in FIG. 13 has been proposed. As shown in FIG. 13, the air conditioning system 110 includes an indoor condenser 112 that exchanges heat between a compressor 111 that compresses a refrigerant and uses the refrigerant as a high-temperature and high-pressure refrigerant, and a high-temperature and high-pressure refrigerant and air that is led into the room. The first expansion valve 113 is disposed in one branch path on the downstream side of the indoor condenser 112 and depressurizes the refrigerant cooled by the indoor condenser 112 to form a low pressure refrigerant, and the first expansion valve 113 reduces the pressure to a low pressure. The indoor evaporator 114 for exchanging heat between the refrigerant and the air blown into the room, and the other branch on the downstream side of the indoor condenser 112 are decompressed to reduce the pressure of the refrigerant cooled by the indoor condenser 112. The second expansion valve 115, the outdoor evaporator 116 for exchanging heat between the refrigerant whose pressure is reduced by the second expansion valve 115 and the outdoor air, and the indoor evaporator 114. Is interposed on the outlet side, the outlet side refrigerant pressure of the indoor evaporator 114 is closed in the following less than a predetermined, and a evaporation pressure adjusting valve 117 which opens at a predetermined pressure or more.

この空気調和システム110では、システム駆動開始時は、室内エバポレータ114の出口側冷媒温度が所定圧力未満以下であるため、冷媒が室内エバポレータ114側には流れずに、室外エバポレータ116側に流れる。室内に導かれる送風は、室内コンデンサ112を通過して温風とされ、温風が室内に導かれる。   In the air conditioning system 110, when the system is started, the refrigerant temperature on the outlet side of the indoor evaporator 114 is lower than a predetermined pressure, so that the refrigerant does not flow to the indoor evaporator 114 side but flows to the outdoor evaporator 116 side. The air blown into the room passes through the indoor condenser 112 and becomes hot air, and the hot air is led into the room.

システム駆動開始から時間が経過し、室内エバポレータ114の出口側冷媒温度が所定圧力以上となると、蒸発圧力調整弁117が開放し、冷媒が室内エバポレータ114と室外エバポレータ116の双方に流れる。室内に導かれる送風は、室内エバポレータ114と室内コンデンサ112を通過し、所望温度の温風とされて室内に導かれる。室内に導かれる送風は、室内エバポレータ114を通過する際に凝縮水を発生するため、室内を除湿暖房することができる。
特許公報第2745997号 特開平7−266860号公報
When time elapses from the start of system operation and the outlet-side refrigerant temperature of the indoor evaporator 114 becomes equal to or higher than a predetermined pressure, the evaporation pressure adjusting valve 117 is opened, and the refrigerant flows to both the indoor evaporator 114 and the outdoor evaporator 116. The air blown into the room passes through the indoor evaporator 114 and the indoor condenser 112, becomes hot air at a desired temperature, and is led into the room. The air blown into the room generates condensed water when it passes through the room evaporator 114, so that the room can be dehumidified and heated.
Patent Publication No. 2745997 JP-A-7-266860

しかしながら、前者の従来例では、図12に示すように、暖房運転における冷媒の熱の授受を見ると、冷媒の熱は室内コンデンサ103でのみ放熱し、室内エバポレータ105で吸熱するため、コンプレッサ101の動力に相当する熱量だけが暖房熱量となる。従って、除湿暖房できるものの暖房性能が低いという問題がある。   However, in the former conventional example, as shown in FIG. 12, when the heat of the refrigerant in the heating operation is seen, the heat of the refrigerant is radiated only by the indoor condenser 103 and is absorbed by the indoor evaporator 105. Only the amount of heat corresponding to power is the amount of heating heat. Accordingly, there is a problem that although the dehumidifying heating can be performed, the heating performance is low.

後者の従来例では、暖房運転と冷房運転の双方を行うことができず、しかも、暖房運転の初期は、除湿暖房ではないという問題がある。   In the latter conventional example, both the heating operation and the cooling operation cannot be performed, and there is a problem that the initial stage of the heating operation is not dehumidifying heating.

そこで、本発明は、冷房運転と暖房運転ができるシステムにあって、除湿暖房で、しかも、高い暖房性能を発揮する空気調和システムを提供することを目的とする。   Therefore, an object of the present invention is to provide an air-conditioning system that can perform cooling operation and heating operation, and that exhibits high heating performance with dehumidification heating.

上記目的を達成する請求項1の発明は、冷媒を圧縮して冷媒を高温高圧の冷媒とするコンプレッサと、高温高圧の冷媒と外気との間で熱交換させる室外コンデンサと、高温高圧の冷媒と室内に導く送風との間で熱交換させる室内コンデンサと、高圧の冷媒を減圧して低圧の冷媒とする減圧手段と、減圧手段で低圧とされた冷媒と室内に導く送風との間で熱交換させる室内エバポレータと、室内エバポレータと並列に接続され、且つ、減圧手段で低圧とされた冷媒とコンプレッサとの間で熱交換させる室外エバポレータと、コンプレッサからの高温高圧の冷媒が室外コンデンサに導かれた後に減圧手段を通って室内エバポレータに導かれる冷房用循環経路と、コンプレッサからの高温高圧の冷媒が室内コンデンサに導かれた後に減圧手段を通って室内エバポレータ及び室外エバポレータに導かれる除湿暖房用循環経路に切り替えできる第1切替手段とを備えたことを特徴とする。   The invention according to claim 1 that achieves the above object includes a compressor that compresses the refrigerant to make the refrigerant a high-temperature and high-pressure refrigerant, an outdoor condenser that exchanges heat between the high-temperature and high-pressure refrigerant and the outside air, and a high-temperature and high-pressure refrigerant. Heat exchange between the indoor condenser for exchanging heat with the air blown into the room, the pressure reducing means for depressurizing the high-pressure refrigerant into a low-pressure refrigerant, and the air blowing into the room with the refrigerant reduced in pressure by the pressure reducing means The indoor evaporator to be connected, the outdoor evaporator connected in parallel with the indoor evaporator and having a low pressure by the decompression means, and the heat exchange between the compressor and the high-temperature and high-pressure refrigerant from the compressor were led to the outdoor condenser A cooling circulation path that is later guided to the indoor evaporator through the decompression means, and a high-temperature and high-pressure refrigerant from the compressor is guided to the indoor condenser and then passed through the decompression means. Characterized by comprising a first switching means capable of switching to the dehumidification air-heating circulation path is guided to the indoor evaporator and the outdoor evaporator.

請求項2の発明は、請求項1記載の空気調和システムであって、コンプレッサからの高温高圧の冷媒を室外コンデンサに導く熱交換経路と、室外コンデンサを迂回するバイパス通路に導くバイパス経路とに切り替えできる第2切替手段を有することを特徴とする。   A second aspect of the present invention is the air conditioning system according to the first aspect, wherein the system is switched between a heat exchange path that guides the high-temperature and high-pressure refrigerant from the compressor to the outdoor condenser and a bypass path that leads to a bypass passage that bypasses the outdoor condenser. It has the 2nd switching means which can be characterized.

請求項3の発明は、請求項1又は請求項2記載の空気調和システムであって、減圧手段は、室内エバポレータ側の分岐路に設けられた第1減圧手段と、室外エバポレータ側の分岐路に設けられた第2減圧手段とを有することを特徴とする。   Invention of Claim 3 is an air conditioning system of Claim 1 or Claim 2, Comprising: A decompression means is the 1st decompression means provided in the branch path by the side of an indoor evaporator, and the branch path by the side of an outdoor evaporator. And a second decompression means provided.

請求項4の発明は、請求項3記載の空気調和システムであって、第1切替手段は、コンプレッサからの高温高圧の冷媒が室内コンデンサに導かれた後に減圧手段を通って室外エバポレータに導かれ、室内エバポレータに導かない非除湿暖房用循環経路に切り替えできることを特徴とする。   The invention according to claim 4 is the air conditioning system according to claim 3, wherein the first switching means is led to the outdoor evaporator through the pressure reducing means after the high-temperature and high-pressure refrigerant from the compressor is led to the indoor condenser. It is possible to switch to a circulation path for non-dehumidifying heating that is not led to the indoor evaporator.

請求項5の発明は、請求項1〜請求項4のいずれかに記載の空気調和システムであって、室外エバポレータは、コンプレッサに一体化されたことを特徴とする。   A fifth aspect of the present invention is the air conditioning system according to any one of the first to fourth aspects, wherein the outdoor evaporator is integrated with a compressor.

請求項6の発明は、請求項1〜請求項5のいずれかに記載の空気調和システムであって、室外エバポレータは、コンプレッサの外周を冷媒が通るよう構成されたことを特徴とする。   A sixth aspect of the present invention is the air conditioning system according to any one of the first to fifth aspects, wherein the outdoor evaporator is configured such that the refrigerant passes through the outer periphery of the compressor.

請求項7の発明は、請求項1〜請求項5のいずれかに記載の空気調和システムであって、室外エバポレータは、コンプレッサの内部を冷媒が通るよう構成されたことを特徴とする。   A seventh aspect of the present invention is the air conditioning system according to any one of the first to fifth aspects, wherein the outdoor evaporator is configured such that the refrigerant passes through the compressor.

請求項1の発明によれば、冷房運転では第1切替手段によって冷房用循環経路を選択する。すると、コンプレッサからの高温高圧の冷媒は、室外コンデンサに導かれて放熱し、減圧手段で減圧された後に室内エバポレータに導かれて吸熱する。これによって、室内に導かれる送風は、室内エバポレータを通過し、冷風とされて室内に導かれる。   According to the invention of claim 1, in the cooling operation, the cooling circulation path is selected by the first switching means. Then, the high-temperature and high-pressure refrigerant from the compressor is guided to the outdoor condenser to dissipate heat, and after being decompressed by the decompression means, is guided to the indoor evaporator to absorb heat. As a result, the air blown into the room passes through the indoor evaporator, is cooled, and is led into the room.

又、除湿暖房運転では第1切替手段によって除湿暖房用循環経路を選択する。すると、コンプレッサからの高温高圧の冷媒は、室内コンデンサに導かれて放熱し、減圧手段で減圧された後に室内エバポレータと室外エバポレータの双方に導かれて吸熱する。これによって、室内に導かれる送風は、室内エバポレータと室内コンデンサを通過し、温風とされて室内に導かれる。室内に導かれる送風は、室内エバポレータを通過する際に凝縮水を発生するため、室内を除湿暖房することができる。そして、除湿暖房運転では、冷媒は室内エバポレータのみならず室外エバポレータでも吸熱するため、コンプレッサの動力に相当する熱量と室外エバポレータの吸熱量に相当する熱量が暖房用熱量として利用可能である。しかも、室外エバポレータは外気に比べて十分に高温となるコンプレッサから吸熱するため、外気より吸熱させる場合に比べて吸熱性能が高い。以上より、冷房運転と暖房運転ができるシステムにあって、除湿暖房で、しかも、高い暖房性能を発揮することができる。   In the dehumidifying and heating operation, the dehumidifying and heating circulation path is selected by the first switching means. Then, the high-temperature and high-pressure refrigerant from the compressor is guided to the indoor condenser to dissipate heat, and after being decompressed by the decompression means, is guided to both the indoor evaporator and the outdoor evaporator to absorb heat. As a result, the air blown into the room passes through the indoor evaporator and the indoor condenser, becomes warm air, and is led into the room. The air blown into the room generates condensed water when passing through the indoor evaporator, so that the room can be dehumidified and heated. In the dehumidifying heating operation, since the refrigerant absorbs heat not only in the indoor evaporator but also in the outdoor evaporator, the heat amount corresponding to the power of the compressor and the heat amount corresponding to the heat absorption amount of the outdoor evaporator can be used as the heating heat amount. In addition, since the outdoor evaporator absorbs heat from the compressor that is sufficiently hotter than the outside air, the endothermic performance is higher than that when absorbing heat from the outside air. As mentioned above, in the system which can perform air_conditionaing | cooling operation and heating operation, it can demonstrate high heating performance by dehumidification heating.

請求項2の発明によれば、請求項1の発明の効果に加え、暖房運転では第2切替手段によってバイパス経路を選択する。すると、コンプレッサからの高温高圧の冷媒は、室外コンデンサには導かれずに室内コンデンサにのみ導かれ、室内コンデンサの放熱量がアップする。この室内コンデンサによる放熱量のアップ分だけ暖房性能が向上する。   According to the invention of claim 2, in addition to the effect of the invention of claim 1, the bypass path is selected by the second switching means in the heating operation. Then, the high-temperature and high-pressure refrigerant from the compressor is not led to the outdoor condenser but is led only to the indoor condenser, and the heat dissipation amount of the indoor condenser is increased. Heating performance is improved by an increase in the amount of heat released by the indoor condenser.

請求項3の発明によれば、請求項1又は請求項2の発明の効果に加え、第1減圧手段は、車室内温度に応じて室内エバポレータの出口側の冷媒蒸発温度を調整し、第2減圧手段は、冷却用冷媒の温度に応じて室外エバポレータの出口側の冷媒蒸発温度を調整できるため、室内温度と冷却用冷媒の温度が異なる場合でも一定の冷媒過熱度を維持する制御が可能である。   According to the invention of claim 3, in addition to the effect of the invention of claim 1 or 2, the first pressure reducing means adjusts the refrigerant evaporation temperature on the outlet side of the indoor evaporator according to the vehicle compartment temperature, Since the decompression means can adjust the refrigerant evaporation temperature on the outlet side of the outdoor evaporator according to the temperature of the cooling refrigerant, it can be controlled to maintain a constant degree of refrigerant superheat even when the indoor temperature and the temperature of the cooling refrigerant are different. is there.

請求項4の発明によれば、請求項3の発明の効果に加え、非除湿暖房運転では、室内に導かれる送風は、室内エバポレータで冷却されずに室内コンデンサで加熱されるため、暖房性能が大幅に向上する。   According to the invention of claim 4, in addition to the effect of the invention of claim 3, in the non-dehumidifying heating operation, the air blown into the room is heated by the indoor condenser without being cooled by the indoor evaporator. Greatly improved.

請求項5の発明によれば、請求項1〜請求項4の発明の効果に加え、システムの構成部品の増加、これに伴うコストアップを極力抑えることができると共に、車載性にも影響を与えない。   According to the invention of claim 5, in addition to the effects of the inventions of claims 1 to 4, an increase in the number of system components and the accompanying cost increase can be suppressed as much as possible, and the on-vehicle performance is also affected. Absent.

請求項5の発明によれば、請求項1〜請求項4の発明の効果に加え、室外エバポレータのコンプレッサへの組み付けが容易である。   According to the invention of claim 5, in addition to the effects of the inventions of claims 1 to 4, it is easy to assemble the outdoor evaporator to the compressor.

請求項6の発明によれば、請求項1〜請求項4の発明の効果に加え、冷媒がコンプレッサ内部の熱を効率良く吸熱できるため、室外エバポレータの吸熱性能が向上する。   According to the invention of claim 6, in addition to the effects of the inventions of claims 1 to 4, since the refrigerant can efficiently absorb the heat inside the compressor, the endothermic performance of the outdoor evaporator is improved.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態)
図1〜図7は本発明の空気調和システムを車両用空気調和システムに適用した一実施形態を示し、図1は車両用空気調和システムの概略構成図、図2は室外エバポレータを電動コンプレッサの外周に装着した状態を示す斜視図、図3は車両用空気調和システムの要部回路ブロック図、図4は冷房運転時の冷媒の流れを示す図、図5は除湿暖房運転時の冷媒の流れを示す図、図6は非除湿暖房運転時の冷媒の流れを示す図、図7はP−h線上に本実施形態に係る冷凍サイクルの状態を示した図である。
(Embodiment)
1 to 7 show an embodiment in which the air conditioning system of the present invention is applied to an air conditioning system for a vehicle, FIG. 1 is a schematic configuration diagram of the air conditioning system for a vehicle, and FIG. 2 shows an outdoor evaporator as an outer periphery of an electric compressor. FIG. 3 is a main part circuit block diagram of the vehicle air conditioning system, FIG. 4 is a diagram showing a refrigerant flow during cooling operation, and FIG. 5 is a refrigerant flow during dehumidifying heating operation. FIG. 6 is a diagram showing a refrigerant flow during non-dehumidifying heating operation, and FIG. 7 is a diagram showing a state of the refrigeration cycle according to the present embodiment on the Ph line.

図1に示すように、車両用空気調和システムAは、コンプレッサである電動コンプレッサ1と、室外コンデンサ2と、室内コンデンサ3と、室内エバポレータ4と、室外エバポレータ5と、減圧手段である第1膨張弁6及び第2膨張弁7と、第2切替手段である2つの三方弁8a,8bと、冷媒圧力調整手段9及び合流器10とを備えている。   As shown in FIG. 1, the vehicle air conditioning system A includes an electric compressor 1 that is a compressor, an outdoor condenser 2, an indoor condenser 3, an indoor evaporator 4, an outdoor evaporator 5, and a first expansion that is a decompression unit. A valve 6 and a second expansion valve 7, two three-way valves 8a and 8b as second switching means, a refrigerant pressure adjusting means 9 and a merger 10 are provided.

電動コンプレッサ1は、冷媒を圧縮する圧縮機構部とこの圧縮機構部を駆動する電動モータと電動モータを駆動制御するモータ制御部とを内蔵する。そして、吸引した冷媒を圧縮機構部で圧縮し、高温高圧の冷媒として吐出する。冷媒は、二酸化炭素等の超臨界冷媒が使用されている。   The electric compressor 1 includes a compression mechanism unit that compresses the refrigerant, an electric motor that drives the compression mechanism unit, and a motor control unit that drives and controls the electric motor. The sucked refrigerant is compressed by the compression mechanism and discharged as a high-temperature and high-pressure refrigerant. As the refrigerant, a supercritical refrigerant such as carbon dioxide is used.

2つの三方弁8a,8bは、電動コンプレッサ1及び室外コンデンサ2の間と、室外コンデンサ2及び室内コンデンサ3間にそれぞれ配置されている。そして、2つの三方弁8a,8bは、電動コンプレッサ1からの高温高圧の冷媒を室外コンデンサ2に導く熱交換経路と、室外コンデンサ2をバイパスするバイパス通路11に導くバイパス経路とを選択する。2つの三方弁8a,8bは、制御部15によって制御される。   The two three-way valves 8a and 8b are disposed between the electric compressor 1 and the outdoor capacitor 2, and between the outdoor capacitor 2 and the indoor capacitor 3, respectively. The two three-way valves 8a and 8b select a heat exchange path that guides the high-temperature and high-pressure refrigerant from the electric compressor 1 to the outdoor condenser 2 and a bypass path that leads to the bypass passage 11 that bypasses the outdoor condenser 2. The two three-way valves 8a and 8b are controlled by the control unit 15.

室外コンデンサ2は、エンジンルーム内に配置され、高温高圧の冷媒と外気との間で熱交換させる。   The outdoor capacitor | condenser 2 is arrange | positioned in an engine room, and heat-exchanges between a high temperature / high pressure refrigerant | coolant and external air.

室内コンデンサ3は、送風を車室内に導く空調ダクト12内に配置され、高温高圧の冷媒と送風との間で熱交換させる。室内コンデンサ3の下流通路は2つに分岐され、分岐された2つの通路はコンプレッサ1の手前で合流されている。一方の分岐通路に第1膨張弁6及び室内エバポレータ4が、他方の分岐通路に第2膨張弁7及び室外エバポレータ5が設けられている。   The indoor condenser 3 is disposed in the air conditioning duct 12 that guides the ventilation to the vehicle interior, and exchanges heat between the high-temperature and high-pressure refrigerant and the ventilation. The downstream passage of the indoor condenser 3 is branched into two, and the two branched passages are joined before the compressor 1. The first expansion valve 6 and the indoor evaporator 4 are provided in one branch passage, and the second expansion valve 7 and the outdoor evaporator 5 are provided in the other branch passage.

減圧手段は、第1減圧手段である第1膨張弁6と第2減圧手段である第2膨張弁7とから構成されている。第1膨張弁6は、上記したように、室内コンデンサ3の下流の一方の分岐路に配置されている。第1膨張弁6は、室内コンデンサ3より排出された高圧の冷媒を減圧する。   The decompression means comprises a first expansion valve 6 that is a first decompression means and a second expansion valve 7 that is a second decompression means. As described above, the first expansion valve 6 is disposed in one branch path downstream of the indoor condenser 3. The first expansion valve 6 decompresses the high-pressure refrigerant discharged from the indoor condenser 3.

第2膨張弁7は、上記したように、室内コンデンサ3の下流の他方の分岐路に配置されている。第2膨張弁7は、室内コンデンサ3より排出された高温の冷媒を減圧する。   As described above, the second expansion valve 7 is disposed in the other branch path downstream of the indoor condenser 3. The second expansion valve 7 decompresses the high-temperature refrigerant discharged from the indoor condenser 3.

又、第1膨張弁6及び第2膨張弁7は、第1切替手段を兼用している。つまり、第2膨張弁7の全閉位置では、室内コンデンサ3を通過した冷媒が他方の分岐通路に導かれない。又、第1膨張弁6の全閉位置では、室内コンデンサ3を通過した冷媒が一方の分岐通路に導かれない。つまり、第1膨張弁6と第2膨張弁7によって、室内コンデンサ3で冷却された冷媒を、室内エバポレータ4にのみ導く図4の冷房用循環経路と、室内エバポレータ4と室外エバポレータ5の双方に導く図5の除湿暖房用循環経路と、室外エバポレータ5にのみ導く図6の非除湿暖房用循環経路に切り替えできる。第1膨張弁6及び第2膨張弁7は、制御部15によって制御される。   The first expansion valve 6 and the second expansion valve 7 also serve as first switching means. That is, at the fully closed position of the second expansion valve 7, the refrigerant that has passed through the indoor condenser 3 is not guided to the other branch passage. Further, in the fully closed position of the first expansion valve 6, the refrigerant that has passed through the indoor condenser 3 is not guided to one branch passage. That is, the refrigerant cooled by the indoor condenser 3 by the first expansion valve 6 and the second expansion valve 7 is guided to the cooling circulation path of FIG. 4 only to the indoor evaporator 4, and to both the indoor evaporator 4 and the outdoor evaporator 5. It is possible to switch between the dehumidifying and heating circulation path shown in FIG. 5 and the non-dehumidifying and heating circulation path shown in FIG. 6 led only to the outdoor evaporator 5. The first expansion valve 6 and the second expansion valve 7 are controlled by the control unit 15.

室内エバポレータ4は、空調ダクト11内に配置され、第1膨張弁6で減圧された低温低圧の冷媒と送風との間で熱交換させる。空調ダクト11内には、室内コンデンサ3を通過する送風と室内コンデンサ3をバイパスする送風との配風割合を調整できる配風ドア(図示せず)が設けられている。   The indoor evaporator 4 is disposed in the air conditioning duct 11 and exchanges heat between the low-temperature and low-pressure refrigerant decompressed by the first expansion valve 6 and the air. In the air conditioning duct 11, an air distribution door (not shown) capable of adjusting the air distribution ratio between the air passing through the indoor condenser 3 and the air passing through the indoor condenser 3 is provided.

室外エバポレータ5は、空調ダクト11の外部で、且つ、電動コンプレッサ1より吸熱可能に配置されている。具体的には、室外エバポレータ5は、図2に詳しく示すように、電動コンプレッサ1の外周にほぼ密着された螺旋状パイプにて構成され、電動コンプレッサ1の外周に一体化されている。これにより、電動コンプレッサ1の外周を冷媒が通るようになっている。そして、室外エバポレータ5は、第2膨張弁7で減圧された低温低圧の冷媒と電動コンプレッサ1との間で熱交換させる。   The outdoor evaporator 5 is disposed outside the air conditioning duct 11 and capable of absorbing heat from the electric compressor 1. Specifically, as shown in detail in FIG. 2, the outdoor evaporator 5 is configured by a spiral pipe that is substantially in close contact with the outer periphery of the electric compressor 1, and is integrated with the outer periphery of the electric compressor 1. As a result, the refrigerant passes through the outer periphery of the electric compressor 1. The outdoor evaporator 5 exchanges heat between the low-temperature and low-pressure refrigerant decompressed by the second expansion valve 7 and the electric compressor 1.

図1に戻り、冷媒圧力調整手段9は、前記した2つの分岐通路にそれぞれ配置された第1圧力調整弁9aと第2圧力調整弁9bとから構成されている。第1圧力調整弁9aと第2圧力調整弁9bは、2つの分岐通路の合流箇所における冷媒圧力を同じにするよう上流側の圧力が高い方が調整される。又、第1圧力調整弁9aと第2圧力調整弁9bは、制御部15によって弁開度が調整される。   Returning to FIG. 1, the refrigerant pressure adjusting means 9 is composed of a first pressure adjusting valve 9 a and a second pressure adjusting valve 9 b disposed in the two branch passages. The first pressure regulating valve 9a and the second pressure regulating valve 9b are adjusted such that the pressure on the upstream side is higher so that the refrigerant pressure at the junction of the two branch passages is the same. Further, the opening degree of the first pressure regulating valve 9a and the second pressure regulating valve 9b is adjusted by the control unit 15.

制御部15(図3に示す)は、上記したように第1膨張弁6及び第2膨張弁7の弁開度と三方弁8a,8bの切替えを制御することによって、図4に示す冷房用循環経路と、図5に示す暖房用循環経路に切り替える。この詳しい経路内容については、下記の動作で説明する。   As described above, the control unit 15 (shown in FIG. 3) controls the opening degree of the first expansion valve 6 and the second expansion valve 7 and the switching of the three-way valves 8a and 8b, so that the cooling unit shown in FIG. Switching to the circulation path and the heating circulation path shown in FIG. This detailed route content will be described in the following operation.

また、車両用空気調和システムAには、室内エバポレータ4の出口側の冷媒温度を検知する第1冷媒温度センサS1と、室外エバポレータ5の出口側の冷媒温度を検知する第2冷媒温度センサS2と外気温を検知する外気温センサS3と車室内の温度を検知する車室内温度センサS4(図3に示す)、車室内の湿度を検知する湿度センサS5とが設けられている。制御部15は、これらセンサS1,S2,S3,S4,S5の検知温度情報とユーザ指令(冷暖房スイッチのオン・オフ、温度設定など)に基づいて電動コンプレッサ1の駆動、第1膨張弁6及び第2膨張弁7の絞り、電磁弁8、三方弁9等を制御する。具体的な制御内容については、車両用空気調和システムAの動作で説明する。   Further, the vehicle air conditioning system A includes a first refrigerant temperature sensor S1 that detects a refrigerant temperature on the outlet side of the indoor evaporator 4 and a second refrigerant temperature sensor S2 that detects a refrigerant temperature on the outlet side of the outdoor evaporator 5. An outside air temperature sensor S3 for detecting the outside air temperature, a vehicle interior temperature sensor S4 (shown in FIG. 3) for detecting the temperature inside the vehicle interior, and a humidity sensor S5 for detecting the humidity inside the vehicle interior are provided. Based on the detected temperature information of these sensors S1, S2, S3, S4, and S5 and a user command (on / off of an air conditioning switch, temperature setting, etc.), the control unit 15 drives the electric compressor 1, the first expansion valve 6 and The throttle of the second expansion valve 7, the electromagnetic valve 8, the three-way valve 9 and the like are controlled. The specific control contents will be described in the operation of the vehicle air conditioning system A.

また、車両用空気調和システムAには、室内エバポレータ4を通過した冷媒温度を検知する第1冷媒温度センサS1と、室外エバポレータ5を通過した冷媒温度を検知する第2冷媒温度センサS2とエンジン冷却水の温度を検知する冷却水温度センサS3と車室内の温度を検知する車室内温度センサS4(図2に示す)とが設けられている。制御部15は、これらセンサS1,S2,S3,S4の検知温度情報とユーザ指令(冷暖房スイッチのオン・オフ、温度設定など)に基づいてコンプレッサ1の駆動、第1膨張弁6及び第2膨張弁7の絞り、電磁弁8、三方弁9等を制御する。具体的な制御内容については、車両用空気調和システムAの動作で説明する。   The vehicle air conditioning system A includes a first refrigerant temperature sensor S1 that detects the refrigerant temperature that has passed through the indoor evaporator 4, a second refrigerant temperature sensor S2 that detects the refrigerant temperature that has passed through the outdoor evaporator 5, and engine cooling. A cooling water temperature sensor S3 for detecting the temperature of water and a vehicle interior temperature sensor S4 (shown in FIG. 2) for detecting the temperature in the vehicle interior are provided. The control unit 15 drives the compressor 1, the first expansion valve 6 and the second expansion based on the detected temperature information of these sensors S1, S2, S3 and S4 and a user command (ON / OFF of the air conditioning switch, temperature setting, etc.). The throttle of the valve 7, the electromagnetic valve 8, the three-way valve 9 and the like are controlled. The specific control contents will be described in the operation of the vehicle air conditioning system A.

次に、車両用空気調和システムAの動作を説明する。冷房運転が選択されると、制御部15によって3つの三方弁8a,8bが室外コンデンサ2の通路を選択し、第2膨張弁7が全閉位置とされ、図4に示す冷房用循環経路に切り替えられる。   Next, the operation of the vehicle air conditioning system A will be described. When the cooling operation is selected, the control unit 15 causes the three three-way valves 8a and 8b to select the passage of the outdoor condenser 2, the second expansion valve 7 is set to the fully closed position, and the cooling circulation path shown in FIG. Can be switched.

電動コンプレッサ1からの高温高圧の冷媒は、室外コンデンサ2、室内コンデンサ3を通った後に、室内エバポレータ4のみを通ってコンプレッサ1に戻る。第1膨張弁6は、第1冷媒温度センサS1の検知冷媒温度に基づき、室内エバポレータ4の出口の冷媒過熱度を一定に保つよう弁開度が制御される。   The high-temperature and high-pressure refrigerant from the electric compressor 1 passes through the outdoor condenser 2 and the indoor condenser 3 and then returns to the compressor 1 through the indoor evaporator 4 only. The valve opening degree of the first expansion valve 6 is controlled so that the refrigerant superheat degree at the outlet of the indoor evaporator 4 is kept constant based on the refrigerant temperature detected by the first refrigerant temperature sensor S1.

車室内に導かれる送風は、室内エバポレータ4と必要に応じて室内コンデンサ3を通過し(フル冷房では、室内コンデンサ3を通らない)、所望温度の冷風とされて車室内に導かれる。そして、冷房運転における冷媒の熱の授受を見ると、冷媒は室外コンデンサ2と室内コンデンサ3の双方で放熱するため、室内エバポレータ4では吸熱量が室内コンデンサ3より大きく、高い冷房性能を発揮することができる。   The air blown into the vehicle interior passes through the indoor evaporator 4 and the indoor condenser 3 as necessary (in the case of full cooling, it does not pass through the indoor condenser 3), and is cooled to a desired temperature and guided into the vehicle interior. When looking at the heat exchange of the refrigerant in the cooling operation, the refrigerant dissipates heat in both the outdoor condenser 2 and the indoor condenser 3, so that the indoor evaporator 4 has a larger heat absorption than the indoor condenser 3, and exhibits high cooling performance. Can do.

除湿暖房運転が選択されると、制御部15によって2つの三方弁8a,8bがバイパス通路10を選択し、図5に示す除湿暖房用循環経路に切り替えられる。   When the dehumidifying and heating operation is selected, the two three-way valves 8a and 8b select the bypass passage 10 by the control unit 15, and are switched to the dehumidifying and heating circulation path shown in FIG.

コンプレッサ1からの高温高圧の冷媒は、室内コンデンサ3を通った後に分岐され、第1膨張弁6と室内エバポレータ4を通る分岐路と第2膨張弁7及び室外エバポレータ5を通る分岐路を流れ、その後に合流してコンプレッサ1に戻る。第1膨張弁6は、第1冷媒温度センサS1の検知冷媒温度に基づき、室内エバポレータ4の出口の冷媒過熱度を一定に保つよう弁開度が制御される。第2膨張弁7は、第2冷媒温度センサS2の検知冷媒温度に基づき、室外エバポレータ5の出口の冷媒過熱度を一定に保つよう弁開度が制御される。尚、電動コンプレッサ1の起動直後等にあって、電動コンプレッサ1より潜熱による吸熱ができない場合には、第2膨張弁7を全開位置として顕熱によって吸熱する。   The high-temperature and high-pressure refrigerant from the compressor 1 is branched after passing through the indoor condenser 3, and flows through a branch path that passes through the first expansion valve 6 and the indoor evaporator 4, and a branch path that passes through the second expansion valve 7 and the outdoor evaporator 5, After that, it merges and returns to the compressor 1. The valve opening degree of the first expansion valve 6 is controlled so that the refrigerant superheat degree at the outlet of the indoor evaporator 4 is kept constant based on the refrigerant temperature detected by the first refrigerant temperature sensor S1. The valve opening degree of the second expansion valve 7 is controlled so as to keep the refrigerant superheat degree at the outlet of the outdoor evaporator 5 constant based on the refrigerant temperature detected by the second refrigerant temperature sensor S2. Note that when the electric compressor 1 is immediately after the start-up and the like and the heat absorption by the latent heat cannot be performed by the electric compressor 1, the second expansion valve 7 is set to the fully open position to absorb the heat by sensible heat.

室内に導かれる送風は、室内エバポレータ4と必要に応じて室内コンデンサ3を通過し(フル暖房では、室内コンデンサ3を全て通る)、所望温度の温風とされて車室内に導かれる。車室内に導かれる送風は、室内エバポレータ4を通過する際に凝縮水を発生するため、車室内を除湿暖房することができる。そして、除湿暖房運転では、冷媒は室内エバポレータ4のみならず室外エバポレータ5でも吸熱するため、図7に示すように、電動コンプレッサ1の動力に相当する熱量と室外エバポレータ5の吸熱量に相当する熱量が暖房用熱量となる。しかも、室外エバポレータ5は外気に比べて十分に高温となる電動コンプレッサ1から吸熱するため、外気より吸熱させる場合に比べて吸熱性能が高い。以上より、冷房運転と暖房運転ができるシステムにあって、除湿暖房で、しかも、高い暖房性能を発揮することができる。   The air blown into the room passes through the indoor evaporator 4 and the indoor condenser 3 as necessary (in the case of full heating, all of the indoor condenser 3 passes), and is heated to a desired temperature and led into the vehicle interior. The air blown into the vehicle interior generates condensed water when passing through the interior evaporator 4, so that the vehicle interior can be dehumidified and heated. In the dehumidifying heating operation, the refrigerant absorbs heat not only in the indoor evaporator 4 but also in the outdoor evaporator 5, so that the heat amount corresponding to the power of the electric compressor 1 and the heat amount corresponding to the heat absorption amount of the outdoor evaporator 5 are shown in FIG. 7. Is the amount of heat for heating. In addition, since the outdoor evaporator 5 absorbs heat from the electric compressor 1 having a sufficiently high temperature compared to the outside air, the endothermic performance is higher than the case where the outdoor evaporator 5 absorbs heat from the outside air. As mentioned above, in the system which can perform air_conditionaing | cooling operation and heating operation, it can demonstrate high heating performance by dehumidification heating.

又、除湿暖房であるため、「リサーク」でも窓ガラスの曇りを防止できるとともに、「フレッシュ」に対して吸気温度が高いため、その分だけ吹き出し温度も高くできる。   In addition, since it is dehumidifying heating, fogging of the window glass can be prevented even in “Resirk”, and since the intake air temperature is higher than “fresh”, the blowing temperature can be increased accordingly.

内外気温度及び室内の湿度から室内の除湿が必要ない場合には非除湿暖房運転が選択される。非除湿暖房運転が選択されると、制御部15によって2つの三方弁8a,8bがバイパス通路10を選択し、第1膨張弁6が全閉位置に位置され、図6に示す非除湿暖房用循環経路に切り替えられる。   The non-dehumidifying heating operation is selected when indoor dehumidification is not required based on the inside / outside air temperature and the indoor humidity. When the non-dehumidifying heating operation is selected, the control unit 15 causes the two three-way valves 8a and 8b to select the bypass passage 10 and the first expansion valve 6 is located at the fully closed position, and the non-dehumidifying heating operation shown in FIG. Switch to the circulation path.

コンプレッサ1からの高温高圧の冷媒は、室内コンデンサ3を通った後に、第2膨張弁7及び室外エバポレータ5を通る分岐路のみを流れてコンプレッサ1に戻る。第2膨張弁7は、第2冷媒温度センサS2の検知冷媒温度に基づき、室外エバポレータ5の出口の冷媒過熱度を一定に保つよう弁開度が制御される。   The high-temperature and high-pressure refrigerant from the compressor 1 passes through the indoor condenser 3 and then flows only through the branch passage passing through the second expansion valve 7 and the outdoor evaporator 5 and returns to the compressor 1. The valve opening degree of the second expansion valve 7 is controlled so as to keep the refrigerant superheat degree at the outlet of the outdoor evaporator 5 constant based on the refrigerant temperature detected by the second refrigerant temperature sensor S2.

室内に導かれる送風は、室内コンデンサ3を通過し、温風とされて車室内に導かれる。車室内に導かれる送風は、室内エバポレータ4で吸熱されないため、除湿されることはないが冷却もされないことから除湿暖房運転に比べて高温の温風が得られる。   The air blown into the room passes through the indoor condenser 3 and is heated into the passenger compartment. Since the air blown into the passenger compartment is not absorbed by the indoor evaporator 4, it is not dehumidified but is not cooled, so that hot air having a temperature higher than that in the dehumidifying heating operation is obtained.

除湿暖房運転及び非除湿暖房運転では、室外エバポレータ5によって電動コンプレッサ1の熱が吸熱されるため、電動コンプレッサ1(特に、モータ制御部)が冷却され、長寿命化に寄与する。   In the dehumidifying heating operation and the non-dehumidifying heating operation, since the heat of the electric compressor 1 is absorbed by the outdoor evaporator 5, the electric compressor 1 (particularly, the motor control unit) is cooled, which contributes to a longer life.

この第1実施形態では、冷房運転では、コンプレッサ2からの高温高圧の冷媒が室外コンデンサ2を流れた後に室内コンデンサ3を流れるよう構成されているが、室外コンデンサ2を流れた後に、室内コンデンサ3を流れることなく第1膨張弁6を経て室内エバポレータ4に導かれるよう構成しても良い。   In the first embodiment, in the cooling operation, the high-temperature and high-pressure refrigerant from the compressor 2 is configured to flow through the indoor capacitor 3 after flowing through the outdoor capacitor 2, but after flowing through the outdoor capacitor 2, the indoor capacitor 3 It may be configured to be guided to the indoor evaporator 4 through the first expansion valve 6 without flowing through the first expansion valve 6.

この第1実施形態では、コンプレッサ1からの高温高圧の冷媒を室外コンデンサ2に流す熱交換経路と、バイパス通路10に流すバイパス経路に切り替えできる三方弁9を有するので、前記したように非常に高い暖房性能を発揮することができる。   In the first embodiment, since the three-way valve 9 that can be switched between the heat exchange path for flowing the high-temperature and high-pressure refrigerant from the compressor 1 to the outdoor condenser 2 and the bypass path for flowing to the bypass path 10 is very high as described above. Heating performance can be demonstrated.

この第1実施形態では、減圧手段は、室内エバポレータ4への分岐通路に設けられた第1膨張弁6と、室外エバポレータ5への分岐通路に設けられた第2膨張弁7とから構成されている。つまり、室内エバポレータ4と室外エバポレータ5が専用の減圧手段を有するので、第1膨張弁6は、車室内温度等の吸気送風温度に応じて室内エバポレータ4の出口側の冷媒蒸発温度を調整し、第2膨張弁7は、電動コンプレッサ1の温度に応じて室外エバポレータ5の出口側の冷媒蒸発温度を調整できるため、室内エバポレータ4の出口側と室外エバポレータ5の出口側をそれぞれ一定の冷媒過熱度に調整する制御が可能である。例えば、第2膨張弁7によって室内エバポレータ4の冷媒蒸発温度より室外エバポレータ5の冷媒蒸発温度を低く設定できるため、室外エバポレータ5は電動コンプレッサ1の温度が非常に低い時でも電動コンプレッサ1からの吸熱を行うことができ、優れた暖房性能を発揮することができる。特に、この実施形態では、冷媒として超臨界冷媒を使用している。従って、外気温度が超低温(例えばマイナス20℃程度)であり、エンジン21の始動時に電動コンプレッサ1の低く、室外エバポレータ5の冷媒蒸発温度を外気温度より低温に設定しても電動コンプレッサ1の入口側(低圧側)の冷媒圧力が大気圧以下にならないため、外気が超低温でも不具合なく室外エバポレータ5を有効作動できる。   In this first embodiment, the decompression means is composed of a first expansion valve 6 provided in the branch passage to the indoor evaporator 4 and a second expansion valve 7 provided in the branch passage to the outdoor evaporator 5. Yes. That is, since the indoor evaporator 4 and the outdoor evaporator 5 have dedicated decompression means, the first expansion valve 6 adjusts the refrigerant evaporation temperature on the outlet side of the indoor evaporator 4 according to the intake air blowing temperature such as the vehicle interior temperature, Since the second expansion valve 7 can adjust the refrigerant evaporation temperature on the outlet side of the outdoor evaporator 5 according to the temperature of the electric compressor 1, a constant degree of refrigerant superheating is provided on the outlet side of the indoor evaporator 4 and the outlet side of the outdoor evaporator 5. It is possible to control to adjust to. For example, since the refrigerant expansion temperature of the outdoor evaporator 5 can be set lower than the refrigerant evaporation temperature of the indoor evaporator 4 by the second expansion valve 7, the outdoor evaporator 5 absorbs heat from the electric compressor 1 even when the temperature of the electric compressor 1 is very low. And can exhibit excellent heating performance. In particular, in this embodiment, a supercritical refrigerant is used as the refrigerant. Accordingly, the outside air temperature is extremely low (for example, about minus 20 ° C.), the electric compressor 1 is low when the engine 21 is started, and the refrigerant evaporation temperature of the outdoor evaporator 5 is set lower than the outside air temperature. Since the refrigerant pressure on the (low pressure side) does not become lower than the atmospheric pressure, the outdoor evaporator 5 can be effectively operated without any trouble even when the outside air is at a very low temperature.

この実施形態では、室内エバポレータ4側の分岐路と室外エバポレータ5側の分岐路の下流合流点における冷媒圧力を同一圧力に調整する冷媒圧力調整手段9a,9bが設けられている。つまり、冷媒の除湿暖房用循環経路にあって、室内エバポレータ4側の分岐路を通った冷媒と室外熱交換器5側の分岐路を通った冷媒がそれぞれ他の分岐路に逆流することを防止できる。これによって、室内エバポレータ4内を通過する冷媒圧力と室外エバポレータ5を通過する冷媒圧力をそれぞれ所望の圧力に維持できる。   In this embodiment, refrigerant pressure adjusting means 9a and 9b for adjusting the refrigerant pressure at the downstream junction of the branch path on the indoor evaporator 4 side and the branch path on the outdoor evaporator 5 side to the same pressure are provided. That is, in the refrigerant dehumidification heating circulation path, the refrigerant that has passed through the branch path on the indoor evaporator 4 side and the refrigerant that has passed through the branch path on the outdoor heat exchanger 5 side are prevented from flowing back to the other branch paths. it can. Thus, the refrigerant pressure passing through the indoor evaporator 4 and the refrigerant pressure passing through the outdoor evaporator 5 can be maintained at desired pressures, respectively.

又、冷媒圧力調整手段は、室内エバポレータ4と下流合流点との間に介在された第1圧力調整弁9aと、室外エバポレータ5と下流合流点との間に介在された第2圧力調整弁9bとから構成されている。従って、室内温度と電動コンプレッサ1の温度の高低に関わらず双方の冷媒圧力を同じに調整できる。   The refrigerant pressure adjusting means includes a first pressure adjusting valve 9a interposed between the indoor evaporator 4 and the downstream junction, and a second pressure adjusting valve 9b interposed between the outdoor evaporator 5 and the downstream junction. It consists of and. Therefore, the refrigerant pressure of both can be adjusted to be the same regardless of the temperature of the room temperature and the temperature of the electric compressor 1.

この実施形態では、室外エバポレータ5が電動コンプレッサ1に一体化されているので、システムの構成部品の増加、これに伴うコストアップを極力抑えることができると共に、車載性にも影響を与えない。   In this embodiment, since the outdoor evaporator 5 is integrated with the electric compressor 1, an increase in the number of system components and the associated cost increase can be suppressed as much as possible, and the on-vehicle performance is not affected.

この実施形態では、室外エバポレータ5は、電動コンプレッサ1の外周を冷媒が通るよう構成されている。従って、室外エバポレータ5は電動コンプレッサ1の外周に配置すれば良いため、組み付けが容易である。   In this embodiment, the outdoor evaporator 5 is configured such that the refrigerant passes through the outer periphery of the electric compressor 1. Therefore, since the outdoor evaporator 5 should just be arrange | positioned on the outer periphery of the electric compressor 1, an assembly | attachment is easy.

(室外エバポレータの変形例)
図8は第1変形例の室外エバポレータを内蔵した電動コンプレッサの斜視図である。図8に示すように、電動コンプレッサ1は、ハウジング1aによって被われおり、このハウジング1a内に本来の圧縮用とは異なる冷媒通路を設けることによって室外エバポレータ5Aが一体に構成されている。室外エバポレータ5Aは、ハウジング1aの外側にサブ吸入ポート1bとサブ吐出ポート1cを有する。
(Modification of outdoor evaporator)
FIG. 8 is a perspective view of an electric compressor incorporating the outdoor evaporator of the first modification. As shown in FIG. 8, the electric compressor 1 is covered with a housing 1a, and an outdoor evaporator 5A is integrally formed by providing a refrigerant passage different from that for original compression in the housing 1a. The outdoor evaporator 5A has a sub suction port 1b and a sub discharge port 1c outside the housing 1a.

この第1変形例の室外エバポレータ5Aが電動コンプレッサ1に一体化されているので、システムの構成部品の増加、これに伴うコストアップを極力抑えることができると共に、車載性にも影響を与えない。   Since the outdoor evaporator 5A of the first modification is integrated with the electric compressor 1, an increase in the number of system components and the associated cost increase can be suppressed as much as possible, and the on-vehicle performance is not affected.

この第1変形例の室外エバポレータ5Aは、電動コンプレッサ1の内部を冷媒が通るよう構成されているので、冷媒が電動コンプレッサ1の内部の熱を効率良く吸熱できるため、室外エバポレータ5Aの吸熱性能が向上する。   The outdoor evaporator 5A of the first modified example is configured so that the refrigerant passes through the electric compressor 1, so that the refrigerant can efficiently absorb the heat inside the electric compressor 1, and therefore the outdoor evaporator 5A has an endothermic performance. improves.

図9及び図10は室外エバポレータの第2変形例を示し、図9は室外エバポレータを内蔵した電動コンプレッサ1の断面図、図10は図9のD−D線断面図である。   9 and 10 show a second modification of the outdoor evaporator, FIG. 9 is a cross-sectional view of the electric compressor 1 incorporating the outdoor evaporator, and FIG. 10 is a cross-sectional view taken along the line DD of FIG.

図9及び図10に示すように、電動コンプレッサ1は、ハウジング30を有し、ハウジング30に、冷媒を圧縮する圧縮機構部31と、この圧縮機構部31を駆動する電動モータ32と、電動モータ32を駆動制御するモータ制御部33とを内蔵する。電動コンプレッサ1には、冷媒が吸入ポート34から吸入通路35を通って圧縮機構部31に吸引され、圧縮機構部31に圧縮された冷媒が吐出通路36を通り吐出ポート37から外部に排出される。ハウジング30は、モータ制御部33に密着する位置に2枚の密着された補助ハウジング40,41を有する。この補助ハウジング40,41は、吸入通路35とは別の冷媒通路42を設けることによって室外エバポレータ5Bが一体に構成されている。冷媒通路42の一端は、補助ハウジング40,41のサブ吸入ポート43に開口し、冷媒通路42の他端は、電動コンプレッサ1の本来の冷媒吸入通路34に開口されている。   As shown in FIGS. 9 and 10, the electric compressor 1 includes a housing 30, a compression mechanism portion 31 that compresses the refrigerant in the housing 30, an electric motor 32 that drives the compression mechanism portion 31, and an electric motor. A motor control unit 33 that drives and controls the motor 32 is incorporated. In the electric compressor 1, the refrigerant is sucked from the suction port 34 through the suction passage 35 to the compression mechanism 31, and the refrigerant compressed by the compression mechanism 31 is discharged from the discharge port 37 to the outside through the discharge passage 36. . The housing 30 has two auxiliary housings 40 and 41 in close contact with each other at a position in close contact with the motor control unit 33. The auxiliary housings 40 and 41 are configured integrally with the outdoor evaporator 5B by providing a refrigerant passage 42 different from the suction passage 35. One end of the refrigerant passage 42 opens to the sub suction port 43 of the auxiliary housings 40 and 41, and the other end of the refrigerant passage 42 opens to the original refrigerant suction passage 34 of the electric compressor 1.

この第2変形例の室外エバポレータ5Bにあっても、第1変形例のものと同様の効果が得られる。その上、この第2変形例の室外エバポレータ5Bは、モータ制御部33の近傍を冷媒が通るため、電動コンプレッサ1内で最大の発熱体であるモータ制御部33より有効に吸熱でき、吸熱性に優れている。   Even in the outdoor evaporator 5B of the second modification, the same effect as that of the first modification can be obtained. In addition, since the refrigerant passes through the vicinity of the motor control unit 33, the outdoor evaporator 5B of the second modification can absorb heat more effectively than the motor control unit 33, which is the largest heating element in the electric compressor 1, and is endothermic. Are better.

室外エバポレータとしては、熱交換効率が上げるための種々の手段が考えられる。例えば、管内ビードや冷媒の多パス流れ等を適用する手段である。   As the outdoor evaporator, various means for increasing the heat exchange efficiency can be considered. For example, it is a means to apply a multi-pass flow of pipe bead or refrigerant.

(その他)
減圧手段は、室内エバポレータ4側の分岐路と室外エバポレータ5側の分岐路の分岐箇所より上流に設けられた単一の減圧手段としても良い。2つのエバポレータ(室内エバポレータ4と室外エバポレータ5)に対して1つの第1膨張弁6で低圧の冷媒を導くため、部品点数の削減化、コストの低減化、システム構成のシンプル化になる。
(Other)
The pressure reducing means may be a single pressure reducing means provided upstream from the branching point of the branch path on the indoor evaporator 4 side and the branch path on the outdoor evaporator 5 side. Since the low-pressure refrigerant is guided to the two evaporators (the indoor evaporator 4 and the outdoor evaporator 5) by one first expansion valve 6, the number of parts, the cost, and the system configuration are simplified.

第1膨張弁6を温度感知式(圧力感知式)とすると共に、室内エバポレータ4の出口に感温筒を設け、第1膨張弁6が感温筒からの検知温度(検知圧力)に基づき、室内エバポレータ4の出口側の冷媒過熱度を一定に保つよう弁開度を自動調整するよう構成しても良い。第2膨張弁7側も同様である。   The first expansion valve 6 is a temperature sensing type (pressure sensing type), a temperature sensing cylinder is provided at the outlet of the indoor evaporator 4, and the first expansion valve 6 is based on the detected temperature (sensing pressure) from the temperature sensing cylinder, You may comprise so that a valve opening degree may be adjusted automatically so that the refrigerant | coolant superheat degree of the exit side of the indoor evaporator 4 may be kept constant. The same applies to the second expansion valve 7 side.

本発明の一実施形態を示し、車両用空気調和システムの概略構成図である。1 shows an embodiment of the present invention and is a schematic configuration diagram of a vehicle air conditioning system. FIG. 本発明の一実施形態を示し、室外エバポレータを電動コンプレッサの外周に装着した状態を示す斜視図である。It is a perspective view which shows one Embodiment of this invention and shows the state which attached the outdoor evaporator to the outer periphery of an electric compressor. 本発明の一実施形態を示し、車両用空気調和システムの要部回路ブロック図である。1 shows an embodiment of the present invention, and is a principal circuit block diagram of an air conditioning system for a vehicle. FIG. 本発明の一実施形態を示し、冷房運転時の冷媒の流れを示す図である。It is a figure which shows one Embodiment of this invention and shows the flow of the refrigerant | coolant at the time of air_conditionaing | cooling operation. 本発明の一実施形態を示し、除湿暖房運転時の冷媒の流れを示す図である。It is a figure which shows one Embodiment of this invention and shows the flow of the refrigerant | coolant at the time of dehumidification heating operation. 本発明の一実施形態を示し、非除湿暖房運転時の冷媒の流れを示す図である。It is a figure which shows one Embodiment of this invention and shows the flow of the refrigerant | coolant at the time of non-dehumidification heating operation. 本発明の一実施形態を示し、P−h線上に本実施形態に係る冷凍サイクルの状態を示した図である。FIG. 5 is a diagram showing an embodiment of the present invention and showing the state of the refrigeration cycle according to the present embodiment on the Ph line. 第1変形例の室外エバポレータを内蔵した電動コンプレッサの斜視図である。It is a perspective view of the electric compressor which incorporated the outdoor evaporator of the 1st modification. 第2変形例の室外エバポレータを内蔵した電動コンプレッサ1の断面図である。It is sectional drawing of the electric compressor 1 incorporating the outdoor evaporator of the 2nd modification. 図9のD−D線断面図である。FIG. 10 is a sectional view taken along line D-D in FIG. 9. 従来例の空気調和システムの概略構成図である。It is a schematic block diagram of the air conditioning system of a prior art example. P−h線上に従来例に係る冷凍サイクルの状態を示した図である。It is the figure which showed the state of the refrigerating cycle which concerns on a prior art example on Ph line. 他の従来例の空気調和システムの概略構成図である。It is a schematic block diagram of the air conditioning system of another prior art example.

符号の説明Explanation of symbols

A 車両用空気調和システム(空気調和システム)
1 電動コンプレッサ(コンプレッサ)
2 室外コンデンサ
3 室内コンデンサ
4 室内エバポレータ
5,5A,5B 室外エバポレータ
6 第1膨張弁(減圧手段、第1切替手段)
7 第2膨張弁(減圧手段、第1切替手段)
8a,8b 三方弁(第2切替手段)
10 バイパス通路
A Vehicle air conditioning system (air conditioning system)
1 Electric compressor (compressor)
2 Outdoor condenser 3 Indoor condenser 4 Indoor evaporator 5, 5A, 5B Outdoor evaporator 6 First expansion valve (pressure reduction means, first switching means)
7 Second expansion valve (pressure reduction means, first switching means)
8a, 8b Three-way valve (second switching means)
10 Bypass passage

Claims (7)

冷媒を圧縮して冷媒を高温高圧の冷媒とするコンプレッサ(1)と、
高温高圧の冷媒と外気との間で熱交換させる室外コンデンサ(2)と、
高温高圧の冷媒と室内に導く送風との間で熱交換させる室内コンデンサ(3)と、
高圧の冷媒を減圧して低圧の冷媒とする減圧手段(6),(7)と、
前記減圧手段(6)で低圧とされた冷媒と室内に導く送風との間で熱交換させる室内エバポレータ(4)と、
前記室内エバポレータ(4)と並列に接続され、且つ、前記減圧手段(7)で低圧とされた冷媒と前記コンプレッサ(1)との間で熱交換させる室外エバポレータ(5)と、
前記コンプレッサ(1)からの高温高圧の冷媒が前記室外コンデンサ(2)に導かれた後に前記減圧手段(6)を通って前記室内エバポレータ(4)に導かれる冷房用循環経路と、前記コンプレッサ(1)からの高温高圧の冷媒が前記室内コンデンサ(3)に導かれた後に前記減圧手段(6),(7)を通って前記室内エバポレータ(4)及び前記室外エバポレータ(5)に導かれる除湿暖房用循環経路に切り替えできる第1切替手段(8)とを備えたことを特徴とする空気調和システム(A)。
A compressor (1) that compresses the refrigerant and converts the refrigerant into a high-temperature and high-pressure refrigerant;
An outdoor condenser (2) for exchanging heat between the high-temperature and high-pressure refrigerant and the outside air;
An indoor condenser (3) for exchanging heat between the high-temperature and high-pressure refrigerant and the air blown into the room;
Decompression means (6), (7) that decompresses the high-pressure refrigerant into a low-pressure refrigerant;
An indoor evaporator (4) for exchanging heat between the refrigerant whose pressure has been reduced by the decompression means (6) and the air blown into the room;
An outdoor evaporator (5) that is connected in parallel with the indoor evaporator (4) and that exchanges heat between the refrigerant and the compressor (1), the pressure of which is reduced by the pressure reducing means (7).
A high-temperature and high-pressure refrigerant from the compressor (1) is led to the outdoor condenser (2) and then led to the indoor evaporator (4) through the decompression means (6), and the compressor ( Dehumidification in which the high-temperature and high-pressure refrigerant from 1) is guided to the indoor condenser (3) and then to the indoor evaporator (4) and the outdoor evaporator (5) through the decompression means (6) and (7). An air conditioning system (A) comprising a first switching means (8) capable of switching to a heating circulation path.
請求項1記載の空気調和システム(A)であって、
前記コンプレッサ(1)からの高温高圧の冷媒を前記室外コンデンサ(2)に導く熱交換経路と、前記室外コンデンサ(2)を迂回するバイパス通路(10)に導くバイパス経路とに切り替えできる第2切替手段(9)を有することを特徴とする空気調和システム(A)。
The air conditioning system (A) according to claim 1,
A second switching that can be switched between a heat exchange path that guides the high-temperature and high-pressure refrigerant from the compressor (1) to the outdoor condenser (2) and a bypass path that leads to a bypass path (10) that bypasses the outdoor condenser (2). An air conditioning system (A) characterized by comprising means (9).
請求項1又は請求項2記載の空気調和システム(A)であって、
前記減圧手段は、前記室内エバポレータ(4)側の分岐路に設けられた第1減圧手段(6)と、前記室外エバポレータ(5)側の分岐路に設けられた第2減圧手段(7)とを有することを特徴とする空気調和システム(A)。
The air conditioning system (A) according to claim 1 or 2,
The pressure reducing means includes a first pressure reducing means (6) provided in the branch path on the indoor evaporator (4) side, and a second pressure reducing means (7) provided on the branch path on the outdoor evaporator (5) side. The air conditioning system (A) characterized by having.
請求項3記載の空気調和システム(A)であって、
前記第1切替手段(8)は、前記コンプレッサ(1)からの高温高圧の冷媒が前記室内コンデンサ(3)に導かれた後に前記減圧手段(7)を通って前記室外エバポレータ(5)に導かれ、前記室内エバポレータ(4)に導かない非除湿暖房用循環経路に切り替えできることを特徴とする空気調和システム(A)。
The air conditioning system (A) according to claim 3,
The first switching means (8) guides the high-temperature and high-pressure refrigerant from the compressor (1) to the outdoor evaporator (5) through the decompression means (7) after being guided to the indoor condenser (3). The air conditioning system (A) can be switched to a circulation path for non-dehumidifying heating that is not led to the indoor evaporator (4).
請求項1〜請求項4のいずれかに記載の空気調和システム(A)であって、
前記室外エバポレータ(5),(5A),(5B)は、前記コンプレッサ(1)に一体化されたことを特徴とする空気調和システム(A)。
It is an air conditioning system (A) in any one of Claims 1-4,
The outdoor evaporator (5), (5A), (5B) is integrated with the compressor (1), and is an air conditioning system (A).
請求項1〜請求項5のいずれかに記載の空気調和システム(A)であって、
前記室外エバポレータ(5A)は、前記コンプレッサ(1)の外周を冷媒が通るよう構成されたことを特徴とする空気調和システム(A)。
It is an air conditioning system (A) in any one of Claims 1-5,
The outdoor evaporator (5A) is configured to allow refrigerant to pass through the outer periphery of the compressor (1).
請求項1〜請求項5のいずれかに記載の空気調和システム(A)であって、
前記室外エバポレータ(5B)は、前記コンプレッサ(1)の内部を冷媒が通るよう構成されたことを特徴とする空気調和システム(A)。
It is an air conditioning system (A) in any one of Claims 1-5,
The outdoor evaporator (5B) is configured to allow refrigerant to pass through the compressor (1), and is an air conditioning system (A).
JP2008114470A 2008-04-24 2008-04-24 Air conditioning system Pending JP2009264661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114470A JP2009264661A (en) 2008-04-24 2008-04-24 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114470A JP2009264661A (en) 2008-04-24 2008-04-24 Air conditioning system

Publications (1)

Publication Number Publication Date
JP2009264661A true JP2009264661A (en) 2009-11-12

Family

ID=41390722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114470A Pending JP2009264661A (en) 2008-04-24 2008-04-24 Air conditioning system

Country Status (1)

Country Link
JP (1) JP2009264661A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051522A (en) * 2010-09-03 2012-03-15 Tgk Co Ltd Air conditioner for vehicle
WO2012108240A1 (en) * 2011-02-10 2012-08-16 サンデン株式会社 Air conditioning device for vehicle
JP2012166606A (en) * 2011-02-10 2012-09-06 Sanden Corp Vehicle air conditioning device
JP2012176659A (en) * 2011-02-25 2012-09-13 Sanden Corp Air conditioning device for vehicle
KR101186555B1 (en) 2010-08-10 2012-10-08 갑을오토텍(주) A Car Air Conditioning System and controlling method of it
JP2012228945A (en) * 2011-04-26 2012-11-22 Sanden Corp Vehicle air conditioner
CN103017392A (en) * 2013-01-10 2013-04-03 合肥美的荣事达电冰箱有限公司 Refrigerator refrigerating system and refrigerator with same
CN103017404A (en) * 2012-11-28 2013-04-03 姚永明 Heat pump dehumidifier
DE112012001074T5 (en) 2011-03-03 2013-12-05 Sanden Corporation Vehicle air-conditioning device
CN105091383A (en) * 2015-08-18 2015-11-25 合肥华凌股份有限公司 Refrigerating device
CN106705217A (en) * 2016-11-30 2017-05-24 美的集团股份有限公司 Control method and system used for improving heating effect of air conditioner and air conditioner
US9784486B2 (en) 2011-12-09 2017-10-10 Sanden Holdings Corporation Mechanism for controlling refrigerant in a vehicle air conditioning apparatus
CN107990499A (en) * 2017-11-15 2018-05-04 广东美的暖通设备有限公司 Air conditioner system control method and air-conditioning system
CN112032825A (en) * 2020-08-13 2020-12-04 青岛海尔空调电子有限公司 Air conditioning system and compressor waste heat recovery method thereof
CN113790480A (en) * 2021-09-10 2021-12-14 珠海市金品创业共享平台科技有限公司 Single-cooling air conditioning system capable of dehumidifying and not cooling and control method
CN114234469A (en) * 2021-12-25 2022-03-25 珠海格力电器股份有限公司 Air conditioning system and air conditioner

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101186555B1 (en) 2010-08-10 2012-10-08 갑을오토텍(주) A Car Air Conditioning System and controlling method of it
JP2012051522A (en) * 2010-09-03 2012-03-15 Tgk Co Ltd Air conditioner for vehicle
CN103502030A (en) * 2011-02-10 2014-01-08 三电有限公司 Air conditioning device for vehicle
WO2012108240A1 (en) * 2011-02-10 2012-08-16 サンデン株式会社 Air conditioning device for vehicle
JP2012166606A (en) * 2011-02-10 2012-09-06 Sanden Corp Vehicle air conditioning device
US9643470B2 (en) 2011-02-10 2017-05-09 Sanden Holdings Corporation Air conditioning device for vehicle
JP2012176659A (en) * 2011-02-25 2012-09-13 Sanden Corp Air conditioning device for vehicle
DE112012001074T5 (en) 2011-03-03 2013-12-05 Sanden Corporation Vehicle air-conditioning device
US9937771B2 (en) 2011-03-03 2018-04-10 Sanden Holdings Corporation Vehicle air conditioning apparatus
DE112012001074B4 (en) 2011-03-03 2022-02-24 Sanden Holdings Corporation vehicle air conditioning device
CN105020920A (en) * 2011-03-03 2015-11-04 三电有限公司 Air conditioning device for vehicle
US10183551B2 (en) 2011-03-03 2019-01-22 Sanden Holdings Corporation Vehicle air conditioning apparatus
US9517680B2 (en) 2011-03-03 2016-12-13 Sanden Holdings Corporation Vehicle air conditioning apparatus
US9956847B2 (en) 2011-03-03 2018-05-01 Sanden Holdings Corporation Vehicle air conditioning apparatus
US9849752B2 (en) 2011-03-03 2017-12-26 Sanden Holdings Corporation Vehicle air conditioning apparatus
US9855822B2 (en) 2011-03-03 2018-01-02 Sanden Holdings Corporation Vehicle air conditioning apparatus
JP2012228945A (en) * 2011-04-26 2012-11-22 Sanden Corp Vehicle air conditioner
US9784486B2 (en) 2011-12-09 2017-10-10 Sanden Holdings Corporation Mechanism for controlling refrigerant in a vehicle air conditioning apparatus
CN103017404A (en) * 2012-11-28 2013-04-03 姚永明 Heat pump dehumidifier
CN103017392A (en) * 2013-01-10 2013-04-03 合肥美的荣事达电冰箱有限公司 Refrigerator refrigerating system and refrigerator with same
CN103017392B (en) * 2013-01-10 2015-06-17 合肥美的电冰箱有限公司 Refrigerator refrigerating system and refrigerator with same
CN105091383A (en) * 2015-08-18 2015-11-25 合肥华凌股份有限公司 Refrigerating device
CN106705217A (en) * 2016-11-30 2017-05-24 美的集团股份有限公司 Control method and system used for improving heating effect of air conditioner and air conditioner
CN107990499A (en) * 2017-11-15 2018-05-04 广东美的暖通设备有限公司 Air conditioner system control method and air-conditioning system
CN112032825A (en) * 2020-08-13 2020-12-04 青岛海尔空调电子有限公司 Air conditioning system and compressor waste heat recovery method thereof
CN113790480A (en) * 2021-09-10 2021-12-14 珠海市金品创业共享平台科技有限公司 Single-cooling air conditioning system capable of dehumidifying and not cooling and control method
CN114234469A (en) * 2021-12-25 2022-03-25 珠海格力电器股份有限公司 Air conditioning system and air conditioner

Similar Documents

Publication Publication Date Title
JP2009264661A (en) Air conditioning system
JP3966044B2 (en) Air conditioner
JP5646681B2 (en) Refrigerant circuit of air conditioner with heat pump and reheating function
JP3936693B2 (en) Combination of automotive cooling plant and heat pump for cooling, heating and dehumidification
WO2018161907A1 (en) Thermal management system
WO2011132429A1 (en) Vehicle air conditioning device
JP2009274517A (en) Air conditioning system
JP2007327740A (en) Vehicular air-conditioning unit, and its using method
JP3233771B2 (en) Vehicle air conditioner
US20150158365A1 (en) Vehicular air conditioner
JP2000052757A (en) Air-conditioning and heating equipment for automobile
JP5108606B2 (en) Air conditioning system
JPH06143974A (en) Air conditioner
JPH08216667A (en) Air-conditioning and dehumidification device in heat pump for electric vehicle
CN109982877B (en) Vehicle heat pump system
US12065016B2 (en) Heat pump system
JP2004182168A (en) Vehicular air conditioner
JPH07108824A (en) Air conditioner for vehicle
JP5617596B2 (en) Air conditioner for vehicles
KR100954015B1 (en) HVAC for Bus
JP5346528B2 (en) Air conditioning system for vehicles
JP4972022B2 (en) Air conditioning apparatus and control method thereof
CN112543856B (en) Combination valve and vehicle air conditioner using same
CN110207417B (en) Air conditioning system
JP7095845B2 (en) Combined valve and vehicle air conditioner using it