JP5108606B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP5108606B2
JP5108606B2 JP2008112878A JP2008112878A JP5108606B2 JP 5108606 B2 JP5108606 B2 JP 5108606B2 JP 2008112878 A JP2008112878 A JP 2008112878A JP 2008112878 A JP2008112878 A JP 2008112878A JP 5108606 B2 JP5108606 B2 JP 5108606B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
heat exchanger
temperature
air conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008112878A
Other languages
Japanese (ja)
Other versions
JP2009264633A (en
Inventor
敏雄 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calsonic Kansei Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2008112878A priority Critical patent/JP5108606B2/en
Publication of JP2009264633A publication Critical patent/JP2009264633A/en
Application granted granted Critical
Publication of JP5108606B2 publication Critical patent/JP5108606B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、冷房運転と暖房運転が可能であり、暖房運転では除湿暖房となる空気調和システムに関する。   The present invention relates to an air conditioning system that is capable of cooling operation and heating operation, and that is dehumidifying and heating in the heating operation.

この種の従来の空気調和システムとしては、特許文献1に開示されたものがある。この空気調和システム100は、図13に示すように、冷媒を圧縮して冷媒を高温高圧とするコンプレッサ101と、コンプレッサ101で高温高圧とされた冷媒を外気との間で熱交換させる室外コンデンサ102と、高温高圧の冷媒と室内に導く送風との間で熱交換させる室内コンデンサ103と、室内コンデンサ103で冷却された冷媒を減圧して低圧の冷媒とする第1減圧手段104と、低圧の冷媒と室内に導く送風との間で熱交換させる室内エバポレータ105と、コンプレッサ101で高温高圧とされた冷媒を室外コンデンサ102に供給するか、室外コンデンサ102をバイパスさせるバイパス経路106に導くか否かを選択できる三方弁107とを備えている。   A conventional air conditioning system of this type is disclosed in Patent Document 1. As shown in FIG. 13, the air conditioning system 100 includes a compressor 101 that compresses a refrigerant to make the refrigerant at a high temperature and a high pressure, and an outdoor capacitor 102 that exchanges heat between the refrigerant that has been heated to a high temperature and a high pressure by the compressor 101 with the outside air. And an indoor condenser 103 that exchanges heat between the high-temperature and high-pressure refrigerant and the air blown into the room, a first decompression means 104 that depressurizes the refrigerant cooled by the indoor condenser 103 to form a low-pressure refrigerant, and a low-pressure refrigerant Whether to supply heat to the indoor evaporator 105 that exchanges heat between the air and the air that is led into the room, and to the bypass condenser 106 that bypasses the outdoor condenser 102 or supplies the high-temperature and high-pressure refrigerant in the compressor 101 to the outdoor condenser 102. A three-way valve 107 that can be selected is provided.

冷房運転時には、三方弁107が室外コンデンサ102側を選択し、コンプレッサ101からの高温高圧の冷媒が室外コンデンサ102、室内コンデンサ103及び室内エバポレータ105を通る循環経路に切り替えられる。   During the cooling operation, the three-way valve 107 selects the outdoor condenser 102 side, and the high-temperature and high-pressure refrigerant from the compressor 101 is switched to a circulation path that passes through the outdoor condenser 102, the indoor condenser 103, and the indoor evaporator 105.

暖房運転時には、三方弁107がバイパス経路106側を選択し、コンプレッサ101からの高温高圧の冷媒が室内コンデンサ103と室内エバポレータ105のみを通る循環経路に切り替えられる。   During the heating operation, the three-way valve 107 selects the bypass path 106 side, and the high-temperature and high-pressure refrigerant from the compressor 101 is switched to a circulation path that passes only through the indoor condenser 103 and the indoor evaporator 105.

冷房運転では、室内に導かれる送風は、室内エバポレータ105と必要に応じて室内コンデンサ103を通過し、所望温度の冷風とされて室内に導かれる。そして、冷房運転における冷媒の熱の授受を見ると、冷媒の熱は室内コンデンサ103と室外コンデンサ102の双方で放熱するため、室内エバポレータ105では吸熱量が室内コンデンサ103より大きく、十分な冷房性能が期待できる。   In the cooling operation, the air blown into the room passes through the indoor evaporator 105 and the indoor condenser 103 as necessary, is cooled to a desired temperature, and is led into the room. Looking at the transfer of heat from the refrigerant in the cooling operation, the heat of the refrigerant is dissipated by both the indoor condenser 103 and the outdoor condenser 102. Therefore, the indoor evaporator 105 has a larger amount of heat absorption than the indoor condenser 103, and has sufficient cooling performance. I can expect.

暖房運転では、室内に導かれる送風は、室内エバポレータ105と必要に応じて室内コンデンサ103を通過し、所望温度の温風とされて室内に導かれる。室内に導かれる送風は、室内エバポレータ105を通過する際に凝縮水を発生するため、室内を除湿暖房することができる。   In the heating operation, the air blown into the room passes through the indoor evaporator 105 and the indoor condenser 103 as necessary, and is heated to a desired temperature and led into the room. The air blown into the room generates condensed water when passing through the room evaporator 105, so that the room can be dehumidified and heated.

一方、他の従来例としては、図15に示すものが提案されている。図15に示すように、この空気調和システム110は、冷媒を圧縮して冷媒を高温高圧の冷媒とするコンプレッサ111と、高温高圧の冷媒と室内に導く送風との間で熱交換させる室内コンデンサ112と、室内コンデンサ112の下流側の一方の分岐路に配置され、室内コンデンサ112で冷却された冷媒を減圧して低圧の冷媒とする第1膨張弁113と、第1膨張弁113で低圧とされた冷媒と室内に導く送風との間で熱交換させる室内エバポレータ114と、室内コンデンサ112の下流側の他方の分岐路に配置され、室内コンデンサ112で冷却された冷媒を減圧して低圧の冷媒とする第2膨張弁115と、第2膨張弁115で低圧とされた冷媒と室外空気との間で熱交換させる室外エバポレータ116と、室内エバポレータ114の出口側に介在され、室内エバポレータ114の出口側冷媒圧力が所定未満以下で閉塞し、所定圧力以上で開放する蒸発圧力調整弁117とを備えている。   On the other hand, as another conventional example, the one shown in FIG. 15 has been proposed. As shown in FIG. 15, the air conditioning system 110 includes an indoor condenser 112 that exchanges heat between a compressor 111 that compresses a refrigerant to convert the refrigerant into a high-temperature and high-pressure refrigerant, and a high-temperature and high-pressure refrigerant and air that is led into the room. The first expansion valve 113 is disposed in one branch path on the downstream side of the indoor condenser 112 and depressurizes the refrigerant cooled by the indoor condenser 112 to form a low pressure refrigerant, and the first expansion valve 113 reduces the pressure to a low pressure. The indoor evaporator 114 for exchanging heat between the refrigerant and the air blown into the room, and the other branch on the downstream side of the indoor condenser 112 are decompressed to reduce the pressure of the refrigerant cooled by the indoor condenser 112. The second expansion valve 115, the outdoor evaporator 116 for exchanging heat between the refrigerant whose pressure is reduced by the second expansion valve 115 and the outdoor air, and the indoor evaporator 114. Is interposed on the outlet side, the outlet side refrigerant pressure of the indoor evaporator 114 is closed in the following less than a predetermined, and a evaporation pressure adjusting valve 117 which opens at a predetermined pressure or more.

この空気調和システム110では、システム駆動開始時は、室内エバポレータ114の出口側冷媒温度が所定圧力未満以下であるため、冷媒が室内エバポレータ114側には流れずに、室外エバポレータ116側に流れる。室内に導かれる送風は、室内コンデンサ112を通過して温風とされ、温風が室内に導かれる。   In the air conditioning system 110, when the system is started, the refrigerant temperature on the outlet side of the indoor evaporator 114 is lower than a predetermined pressure, so that the refrigerant does not flow to the indoor evaporator 114 side but flows to the outdoor evaporator 116 side. The air blown into the room passes through the indoor condenser 112 and becomes hot air, and the hot air is led into the room.

システム駆動開始から時間が経過し、室内エバポレータ114の出口側冷媒温度が所定圧力以上となると、蒸発圧力調整弁117が開放し、冷媒が室内エバポレータ114と室外エバポレータ116の双方に流れる。室内に導かれる送風は、室内エバポレータ114と室内コンデンサ112を通過し、所望温度の温風とされて室内に導かれる。室内に導かれる送風は、室内エバポレータ114を通過する際に凝縮水を発生するため、室内を除湿暖房することができる。
特許公報第2745997号 特開平7−266860号公報
When time elapses from the start of system operation and the outlet-side refrigerant temperature of the indoor evaporator 114 becomes equal to or higher than a predetermined pressure, the evaporation pressure adjusting valve 117 is opened, and the refrigerant flows to both the indoor evaporator 114 and the outdoor evaporator 116. The air blown into the room passes through the indoor evaporator 114 and the indoor condenser 112, becomes hot air at a desired temperature, and is led into the room. The air blown into the room generates condensed water when it passes through the room evaporator 114, so that the room can be dehumidified and heated.
Japanese Patent Publication No. 2745997 JP-A-7-266860

しかしながら、前者の従来例では、図14に示すように、暖房運転における冷媒の熱の授受を見ると、冷媒の熱は室内コンデンサ103でのみ放熱し、室内エバポレータ105で吸熱するため、コンプレッサ101の動力に相当する熱量だけが暖房熱量となる。従って、除湿暖房できるものの暖房性能が低いという問題がある。   However, in the former conventional example, as shown in FIG. 14, since the heat of the refrigerant in the heating operation is seen, the heat of the refrigerant is radiated only by the indoor condenser 103 and absorbed by the indoor evaporator 105. Only the amount of heat corresponding to power is the amount of heating heat. Accordingly, there is a problem that although the dehumidifying heating can be performed, the heating performance is low.

後者の従来例では、暖房運転と冷房運転の双方を行うことができず、しかも、暖房運転の初期は、除湿暖房ではないという問題がある。   In the latter conventional example, both the heating operation and the cooling operation cannot be performed, and there is a problem that the initial stage of the heating operation is not dehumidifying heating.

そこで、本発明は、冷房運転と暖房運転ができるシステムにあって、暖房運転では常に除湿暖房でき、しかも、高い暖房性能を発揮する空気調和システムを提供することを目的とする。   Therefore, an object of the present invention is to provide an air conditioning system that can perform cooling operation and heating operation, and can always perform dehumidification heating in the heating operation and exhibits high heating performance.

上記目的を達成する請求項1の発明は、冷媒を圧縮して冷媒を高温高圧の冷媒とするコンプレッサと、高温高圧の冷媒と室内に導く送風との間で熱交換させる室内コンデンサと、冷媒を減圧して低圧の冷媒とする減圧手段と、低圧の冷媒と室内に導く送風との間で熱交換させる室内エバポレータと、冷媒と外気との間で熱交換させる室外熱交換器とを備えた空気調和システムであって、前記コンプレッサからの高温高圧の冷媒が前記室外熱交換器に導かれた後に前記減圧手段を通って前記室内エバポレータに導かれる冷房用循環経路と、前記コンプレッサからの高温高圧の冷媒が前記室内コンデンサに導かれた後に前記減圧手段を通って、互いに並列に接続される前記室内エバポレータと前記室外熱交換器に導かれる暖房用循環経路とに切り替えでき、前記減圧手段は、冷媒の暖房用循環経路で、前記室内エバポレータ側の分岐路に設けられた第1減圧手段と、前記室外熱交換器側の分岐路に設けられた第2減圧手段とを有し、前記室内エバポレータ側の分岐路と前記室外熱交換器側の分岐路の下流合流点における冷媒圧力を同一圧力に調整する冷媒圧力調整手段が設けられ、前記冷媒圧力調整手段は、室内エバポレータと下流合流点との間に介在された第1圧力調整弁と、前記室外熱交換器と下流合流点との間に介在された第2圧力調整弁とを有し、暖房運転では、前記室内エバポレータ(4)を通過した冷媒が所定の冷媒過熱度になるよう前記第1減圧手段(6)を、前記室外熱交換器(5)を通過した冷媒が所定の冷媒過熱度になるよう前記第2減圧手段(7)を制御すると共に、下流合流点における冷媒圧力が同一圧力になるよう前記第1圧力調整弁及び前記第2圧力調整弁を制御する制御部を備えたことを特徴とする。 The invention according to claim 1 that achieves the above object includes: a compressor that compresses the refrigerant to make the refrigerant a high-temperature and high-pressure refrigerant; an indoor condenser that exchanges heat between the high-temperature and high-pressure refrigerant and the air that is led into the room; Air having decompression means for depressurizing into a low-pressure refrigerant, an indoor evaporator for exchanging heat between the low-pressure refrigerant and the air blown into the room, and an outdoor heat exchanger for exchanging heat between the refrigerant and the outside air A conditioning system, wherein a high-temperature and high-pressure refrigerant from the compressor is led to the outdoor heat exchanger and then led to the indoor evaporator through the decompression means; and a high-temperature and high-pressure refrigerant from the compressor After the refrigerant is guided to the indoor condenser, the refrigerant passes through the pressure reducing means and is divided into the indoor evaporator connected in parallel to each other and the heating circulation path guided to the outdoor heat exchanger. Edeki, the decompression means, a circulating path for refrigerant heating, and the first pressure reducing means provided on the branch of the indoor evaporator side, second pressure reducing means provided on the branch of the outdoor heat exchanger-side A refrigerant pressure adjusting means for adjusting the refrigerant pressure at the downstream junction of the branch path on the indoor evaporator side and the branch path on the outdoor heat exchanger side to the same pressure, and the refrigerant pressure adjusting means, A first pressure regulating valve interposed between the indoor evaporator and the downstream junction; and a second pressure regulating valve interposed between the outdoor heat exchanger and the downstream junction. The first pressure reducing means (6) is set so that the refrigerant that has passed through the indoor evaporator (4) has a predetermined refrigerant superheat degree, and the refrigerant that has passed through the outdoor heat exchanger (5) is set to have a predetermined refrigerant superheat degree. When the second decompression means (7) is controlled In, wherein the refrigerant pressure is provided with a control unit for controlling the first pressure regulating valve and the second pressure regulating valve to be the same pressure at the downstream confluence.

請求項2の発明は、請求項1記載の空気調和システムであって、前記室内エバポレータを通過した冷媒の温度を検知する第1冷媒温度センサと、前記室外熱交換器を通過した冷媒の温度を検知する第2冷媒温度センサと、外気温度を検知する外気温度検知センサとを備え、前記制御部は、前記第1冷媒温度センサ、前記第2冷媒温度センサ、前記外気温度センサの検知温度情報に基づいて前記第1減圧手段及び前記第2減圧手段を制御することを特徴とする。 Invention of Claim 2 is an air conditioning system of Claim 1, Comprising: The 1st refrigerant | coolant temperature sensor which detects the temperature of the refrigerant | coolant which passed the said indoor evaporator, and the temperature of the refrigerant | coolant which passed the said outdoor heat exchanger are used. A second refrigerant temperature sensor for detecting and an outside air temperature detection sensor for detecting an outside air temperature, wherein the control unit includes the detected temperature information of the first refrigerant temperature sensor, the second refrigerant temperature sensor, and the outside air temperature sensor. Based on this, the first pressure reducing means and the second pressure reducing means are controlled .

請求項3の発明は、請求項2記載の空気調和システムであって、前記制御部は、前記室外熱交換器の出口側の冷媒蒸発温度を外気温より低温に設定する制御を行うことを特徴とする。 Invention of Claim 3 is an air conditioning system of Claim 2, Comprising: The said control part performs control which sets the refrigerant | coolant evaporation temperature of the exit side of the said outdoor heat exchanger to lower temperature than external temperature. And

請求項4の発明は、請求項1〜請求項3のいずれかに記載の空気調和システムであって、前記前記冷媒圧力調整手段は、下流合流点に配置されたエジェクタにて構成されたことを特徴とする。 Invention of Claim 4 is an air conditioning system in any one of Claims 1-3, Comprising: The said refrigerant | coolant pressure adjustment means was comprised with the ejector arrange | positioned in a downstream junction. Features.

請求項5の発明は、請求項1〜請求項4のいずれかに記載の空気調和システムであって、冷媒の暖房用循環経路には、室内コンデンサと減圧手段の間を通過する冷媒と、室外熱交換器と下流合流点の間を通過する冷媒間で熱交換させる内部熱交換部が設けられたことを特徴とする。   Invention of Claim 5 is an air conditioning system in any one of Claims 1-4, Comprising: In the circulation path for heating of a refrigerant | coolant, the refrigerant | coolant which passes between an indoor capacitor | condenser and a pressure reduction means, and outdoor An internal heat exchanging section for exchanging heat between the refrigerant passing between the heat exchanger and the downstream junction is provided.

請求項6の発明は、請求項5記載の空気調和システムであって、内部熱交換部は、ペアーチューブで構成されたことを特徴とする。   A sixth aspect of the present invention is the air conditioning system according to the fifth aspect of the present invention, wherein the internal heat exchanging portion is composed of a pair tube.

請求項7の発明は、請求項1〜請求項6のいずれかに記載の空気調和システムであって、室外熱交換器は、冷媒が循環されない位置に切り替えできることを特徴とする。   A seventh aspect of the present invention is the air conditioning system according to any one of the first to sixth aspects, wherein the outdoor heat exchanger can be switched to a position where the refrigerant is not circulated.

請求項8の発明は、請求項1〜請求項7のいずれかに記載の空気調和システムであって、冷媒の暖房用循環経路は、室外熱交換器に替えて熱回収熱交換器が室内エバポレータに並列に接続される経路とされたことを特徴とする。   Invention of Claim 8 is an air conditioning system in any one of Claims 1-7, Comprising: The circulation path for the heating of a refrigerant | coolant is replaced with an outdoor heat exchanger, and a heat recovery heat exchanger is an indoor evaporator. It is characterized by the fact that the path is connected in parallel.

請求項1の発明によれば、冷房運転ではコンプレッサからの高温高圧の冷媒が室外熱交換器に導かれ、減圧手段で減圧された低圧の冷媒が室内エバポレータに導かれる冷房用循環経路とする。これによって、室内に導かれる送風は、室内エバポレータを通過し、冷風とされて室内に導かれる。   According to the first aspect of the present invention, in the cooling operation, the high-temperature and high-pressure refrigerant from the compressor is led to the outdoor heat exchanger, and the low-pressure refrigerant depressurized by the decompression means is used as the cooling circulation path. As a result, the air blown into the room passes through the indoor evaporator, is cooled, and is led into the room.

又、暖房運転では、コンプレッサからの高温高圧の冷媒が室内コンデンサに導かれ、減圧手段で減圧された冷媒が並列接続された室内エバポレータと室外熱交換器にそれぞれ導かれる暖房用循環経路とする。これによって、室内に導かれる送風は、室内エバポレータと室内コンデンサを通過し、所望温度の温風とされて室内に導かれる。室内に導かれる送風は、室内エバポレータを通過する際に凝縮水を発生するため、室内を除湿暖房することができる。そして、暖房運転における冷媒の熱の授受を見ると、冷媒は室内コンデンサでのみ放熱し、室内エバポレータと室外熱交換器の双方で吸熱するため、コンプレッサの動力に相当する熱量と室外熱交換器の吸熱に相当する熱量が暖房用熱量となる。以上より、冷房運転と暖房運転ができるシステムにあって、暖房運転では常に除湿暖房ができ、しかも、高い暖房性能を発揮することができる。   In the heating operation, the high-temperature and high-pressure refrigerant from the compressor is led to the indoor condenser, and the refrigerant decompressed by the decompression means is used as a heating circulation path led to the indoor evaporator and the outdoor heat exchanger connected in parallel. As a result, the air blown into the room passes through the indoor evaporator and the indoor condenser, becomes hot air at a desired temperature, and is led into the room. The air blown into the room generates condensed water when passing through the indoor evaporator, so that the room can be dehumidified and heated. Looking at the transfer of heat from the refrigerant in the heating operation, the refrigerant radiates heat only in the indoor condenser and absorbs heat in both the indoor evaporator and the outdoor heat exchanger, so the amount of heat corresponding to the power of the compressor and the outdoor heat exchanger The amount of heat corresponding to the endotherm is the amount of heat for heating. As described above, in a system capable of cooling operation and heating operation, dehumidification heating can always be performed in the heating operation, and high heating performance can be exhibited.

又、減圧手段として第1減圧手段と第2減圧手段を有し、暖房運転時には第1減圧手段と第2減圧手段を制御するため、暖房運転にあって、室内エバポレータの出口側の冷媒蒸発温度と室外熱交換器の出口側の冷媒蒸発温度をそれぞれ別個に設定できる。従って、第2減圧手段によって室内エバポレータの冷媒蒸発温度より室外熱交換器の冷媒蒸発温度を低く設定できるため、室外熱交換器は外気温度が低い時でも外気からの吸熱を行うことができ、外気が低温でも優れた暖房性能を発揮することができる。 Further, the first and second decompression means are provided as decompression means. During the heating operation, the first decompression means and the second decompression means are controlled. Therefore, in the heating operation , the refrigerant evaporation temperature on the outlet side of the indoor evaporator. And the refrigerant evaporation temperature on the outlet side of the outdoor heat exchanger can be set separately. Therefore, since the refrigerant evaporation temperature of the outdoor heat exchanger can be set lower than the refrigerant evaporation temperature of the indoor evaporator by the second decompression means, the outdoor heat exchanger can absorb heat from the outdoor air even when the outdoor air temperature is low. Can exhibit excellent heating performance even at low temperatures.

又、冷媒圧力調整手段を設けたため、冷媒の暖房用循環経路にあって、室内エバポレータ側の分岐路を通った冷媒と室外熱交換器側の分通路を通った冷媒がそれぞれ他の分岐路に逆流することを防止できる。これによって、室内エバポレータ内を通過する冷媒圧力と室外熱交換器を通過する冷媒圧力をそれぞれ所望の圧力に維持できる。 In addition, since the refrigerant pressure adjusting means is provided, the refrigerant passing through the branch path on the indoor evaporator side and the refrigerant passing through the branch path on the outdoor heat exchanger side in the refrigerant heating circulation path respectively enter the other branch paths. Backflow can be prevented. As a result, the refrigerant pressure passing through the indoor evaporator and the refrigerant pressure passing through the outdoor heat exchanger can be maintained at desired pressures.

又、冷媒圧力調整手段として第1圧力調整弁と第2圧力調整弁を有するため、室内温度が外気温度よりも高い場合のみならず低い場合にも双方の冷媒圧力を同一に調整できるため、外気温度と室内温度の高低に関わらず除湿暖房が可能である。
請求項2の明によれば、請求項1の発明の効果に加え、暖房運転時にあって、第1減圧手段及び第2減圧手段を第1冷媒温度センサ、第2冷媒温度センサ、外気温度センサの検知情報に基づいて制御できるため、確実な制御が可能である。
請求項3の発明によれば、請求項1又は請求項2の発明の効果に加え、室外熱交換器は外気温度が低い時でも外気からの吸熱を行うことができる。
請求項4の発明によれば、請求項1〜請求項3の発明と同様の効果が得られる。
Further, since the first pressure regulating valve and the second pressure regulating valve are provided as the refrigerant pressure adjusting means, both refrigerant pressures can be adjusted not only when the room temperature is higher than the outside air temperature but also when the room temperature is lower than the outside air temperature. Dehumidification heating is possible regardless of the temperature and indoor temperature.
According to the second aspect of the present invention, in addition to the effect of the first aspect of the invention, the first decompression means and the second decompression means are the first refrigerant temperature sensor, the second refrigerant temperature sensor, and the outside air temperature sensor during the heating operation. Since control can be performed based on the detected information, reliable control is possible.
According to the invention of claim 3, in addition to the effect of the invention of claim 1 or 2, the outdoor heat exchanger can absorb heat from the outside air even when the outside air temperature is low.
According to the invention of claim 4, the same effects as those of the inventions of claims 1 to 3 can be obtained.

請求項5の発明によれば、請求項1〜請求項4の発明の効果に加え、内部熱交換部によって外部熱交換器の性能が向上すると共に、室内コンデンサで室内に利用できなかった熱量を回収できる。   According to the invention of claim 5, in addition to the effects of the inventions of claims 1 to 4, the performance of the external heat exchanger is improved by the internal heat exchange part, and the amount of heat that cannot be used indoors by the indoor condenser is reduced. Can be recovered.

請求項6の発明によれば、請求項5の発明の効果に加え、内部熱交換部を簡単に構成できる。   According to the invention of claim 6, in addition to the effect of the invention of claim 5, the internal heat exchange part can be simply configured.

請求項7の発明によれば、請求項1〜請求項6の発明の効果に加え、除湿を主目的とした除湿暖房運転では、コンプレッサからの高温高圧の冷媒が室内コンデンサに導かれ、低圧の冷媒が室外熱交換器に導かれる除湿暖房用循環経路とする。これによって、室内に導かれる送風は、室内エバポレータと必要に応じて室内コンデンサを通過し、所望温度の温風とされて室内に導かれる。室内に導かれる送風は、室内エバポレータを通過する際に凝縮水を発生するため、室内を除湿暖房することができる。そして、除湿暖房運転における冷媒の熱の授受を見ると、冷媒の熱は室内コンデンサで放熱し、室内エバポレータで吸熱するため、コンプレッサの動力に相当する熱量だけが暖房熱量となる。以上より、除湿を主目的とした除湿暖房運転が可能である。   According to the invention of claim 7, in addition to the effects of the inventions of claims 1 to 6, in the dehumidifying heating operation mainly for dehumidification, the high-temperature and high-pressure refrigerant from the compressor is led to the indoor condenser, A circulation path for dehumidifying heating in which the refrigerant is led to the outdoor heat exchanger is used. As a result, the air blown into the room passes through the indoor evaporator and the indoor condenser as necessary, and is heated to a desired temperature and led into the room. The air blown into the room generates condensed water when passing through the indoor evaporator, so that the room can be dehumidified and heated. When looking at the transfer of the heat of the refrigerant in the dehumidifying heating operation, the heat of the refrigerant is radiated by the indoor condenser and absorbed by the indoor evaporator, so only the amount of heat corresponding to the power of the compressor becomes the amount of heating heat. From the above, dehumidifying heating operation mainly for dehumidification is possible.

請求項8の発明によれば、請求項1〜請求項7の発明の効果に加え、回収熱交換器は冷房運転時には使用されないため、室外空気への放熱を配慮せずに室外空気からの吸熱のみを配慮した位置に設置することができ、設置位置の自由度が増す。又、室外空気からの吸熱に適した位置(例えば車室の換気空気を利用する位置)に設置できるため、暖房性能の向上を図ることができる。   According to the invention of claim 8, in addition to the effects of the inventions of claims 1 to 7, since the recovery heat exchanger is not used during cooling operation, the heat absorption from the outdoor air without considering the heat radiation to the outdoor air. It can be installed at a position that takes into account only, increasing the degree of freedom of the installation position. Moreover, since it can install in the position (for example, position which uses the ventilation air of a vehicle interior) suitable for the heat absorption from outdoor air, the improvement of heating performance can be aimed at.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1〜図8は本発明の空気調和システムを車両用空気調和システムに適用した第1実施形態を示し、図1は車両用空気調和システムの概略構成図、図2は車両用空気調和システムの要部回路ブロック図、図3(a)は車両用空気調和システムの概略動作フローチャート、図3(b)は暖房が選択された場合の動作フローチャート、図4(a)は除湿暖房運転時の動作フローチャート、図4(b)は暖房運転時の動作フローチャート、図5は冷房運転時の冷媒の流れを示す図、図6は除湿暖房運転時の冷媒の流れを示す図、図7は暖房運転時の冷媒の流れを示す図、図8はP−h線上に本実施形態に係る冷凍サイクルの状態を示した図である。
(First embodiment)
FIGS. 1-8 shows 1st Embodiment which applied the air conditioning system of this invention to the air conditioning system for vehicles, FIG. 1 is a schematic block diagram of a vehicle air conditioning system, FIG. 2 is the air conditioning system for vehicles. FIG. 3A is a schematic operation flowchart of the vehicle air conditioning system, FIG. 3B is an operation flowchart when heating is selected, and FIG. 4A is an operation during dehumidifying heating operation. FIG. 4B is an operation flowchart during heating operation, FIG. 5 is a diagram illustrating a refrigerant flow during cooling operation, FIG. 6 is a diagram illustrating a refrigerant flow during dehumidification heating operation, and FIG. 7 is during heating operation. FIG. 8 is a diagram showing the state of the refrigeration cycle according to the present embodiment on the Ph line.

図1に示すように、車両用空気調和システム1Aは、コンプレッサ2と、室内コンデンサ3と、室内エバポレータ4と、室外熱交換器5と、減圧手段である第1膨張弁6及び第2膨張弁7と、冷媒圧力調整手段8と、合流器9と、2つの三方弁10a,10bとを備え、三方弁10a,10bの切り替えと第2膨張弁7及び第1圧力調整弁8aの開閉によって、図5〜図7に示す3つの循環経路に切り替えできるように構成されている。つまり、図5に示す冷房用循環経路と、図6に示す除湿暖房用循環経路と、図7に示す暖房用循環経路に切り替えできる。   As shown in FIG. 1, a vehicle air conditioning system 1A includes a compressor 2, an indoor condenser 3, an indoor evaporator 4, an outdoor heat exchanger 5, a first expansion valve 6 and a second expansion valve that are decompression means. 7, refrigerant pressure adjusting means 8, merger 9, and two three-way valves 10 a, 10 b, by switching the three-way valves 10 a, 10 b and opening / closing the second expansion valve 7 and the first pressure adjustment valve 8 a, It is comprised so that it can switch to the three circulation paths shown in FIGS. That is, it is possible to switch to the cooling circulation path shown in FIG. 5, the dehumidifying and heating circulation path shown in FIG. 6, and the heating circulation path shown in FIG.

冷房用循環経路では、室外熱交換器5が室内コンデンサ3と共に冷凍サイクルの高圧側に接続され、室内エバポレータ4が冷凍サイクルの例圧側に接続される。   In the cooling circulation path, the outdoor heat exchanger 5 is connected to the high-pressure side of the refrigeration cycle together with the indoor condenser 3, and the indoor evaporator 4 is connected to the normal-pressure side of the refrigeration cycle.

除湿暖房用循環経路では、室外熱交換器5が循環経路外に配置され、室内コンデンサ3が冷凍サイクルの高圧側に、室内エバポレータ4が冷凍サイクルの低圧側に接続される。   In the dehumidifying and heating circulation path, the outdoor heat exchanger 5 is disposed outside the circulation path, the indoor condenser 3 is connected to the high-pressure side of the refrigeration cycle, and the indoor evaporator 4 is connected to the low-pressure side of the refrigeration cycle.

暖房用循環経路では、室内コンデンサ3が冷凍サイクルの高圧側に接続され、室内エバポレータ4と室外熱交換器5が共に冷凍サイクルの低圧側に並列接続される。つまり、暖房用循環経路では、室内コンデンサ3の下流で2つの分岐路に分かれ、一方の分岐路に第1膨張弁6及び室内エバポレータ4が、他方の分岐路に第2膨張弁7及び室外熱交換器5接続され、双方の冷媒が合流器9で合流される。   In the heating circulation path, the indoor condenser 3 is connected to the high pressure side of the refrigeration cycle, and the indoor evaporator 4 and the outdoor heat exchanger 5 are both connected in parallel to the low pressure side of the refrigeration cycle. In other words, the heating circulation path is divided into two branch paths downstream of the indoor condenser 3, the first expansion valve 6 and the indoor evaporator 4 are in one branch path, and the second expansion valve 7 and the outdoor heat are in the other branch path. The exchanger 5 is connected, and both refrigerants are merged by the merger 9.

図1に戻り、コンプレッサ2は、冷媒を圧縮し、高温高圧の冷媒として吐出する。冷媒は、二酸化炭素等の超臨界冷媒が使用されている。   Returning to FIG. 1, the compressor 2 compresses the refrigerant and discharges it as a high-temperature and high-pressure refrigerant. As the refrigerant, a supercritical refrigerant such as carbon dioxide is used.

室内コンデンサ3は、送風を車室内に導く空調ダクト11内に配置され、高温高圧の冷媒と送風との間で熱交換させる。   The indoor capacitor | condenser 3 is arrange | positioned in the air conditioning duct 11 which guides ventilation to a vehicle interior, and heat-exchanges between a high temperature / high pressure refrigerant | coolant and ventilation.

室内エバポレータ4は、同じく空調ダクト11内に配置され、第1膨張弁6で減圧された低温低圧の冷媒と送風との間で熱交換させる。空調ダクト11内には、室内コンデンサ3を通過する送風と室内コンデンサ3をバイパスする送風との配風割合を調整できる配風ドア(図示せず)が設けられている。   The indoor evaporator 4 is also disposed in the air conditioning duct 11 and exchanges heat between the low-temperature and low-pressure refrigerant decompressed by the first expansion valve 6 and the air. In the air conditioning duct 11, an air distribution door (not shown) capable of adjusting the air distribution ratio between the air passing through the indoor condenser 3 and the air passing through the indoor condenser 3 is provided.

室外熱交換器5は、車室外(例えばエンジンルーム内)に配置され、冷媒と外気との間で熱交換させる。   The outdoor heat exchanger 5 is disposed outside the passenger compartment (for example, in the engine room) and exchanges heat between the refrigerant and the outside air.

減圧手段は、第1減圧手段である第1膨張弁6と、第2減圧手段である第2膨張弁7とから構成されている、
第1膨張弁6は、図7の暖房用循環経路にあって、室内コンデンサ3の下流の一方の分岐路に配置され、室内コンデンサ3より排出された冷媒を減圧する。
The decompression means comprises a first expansion valve 6 that is a first decompression means and a second expansion valve 7 that is a second decompression means.
The first expansion valve 6 is in the heating circulation path of FIG. 7 and is disposed in one branch path downstream of the indoor condenser 3 to depressurize the refrigerant discharged from the indoor condenser 3.

第2膨張弁7は、図7の暖房用循環経路にあって、室内コンデンサ3の下流の他方の分岐路に配置され、室内コンデンサ3より排出された冷媒を減圧する。   The second expansion valve 7 is in the heating circulation path of FIG. 7 and is disposed in the other branch path downstream of the indoor condenser 3, and decompresses the refrigerant discharged from the indoor condenser 3.

冷媒圧力調整手段8は、図7の暖房用循環経路にあって、室内エバポレータ4と合流点である合流器9との間に介在された第1圧力調整弁8aと、室外熱交換器5と合流点である合流器9との間に介在された第2圧力調整弁8bとから構成されている。第1圧力調整弁8aと第2圧力調整弁8bは、合流器9に導かれる双方の冷媒を同一圧力にするよう制御部12(図2に示す)によって制御される。   The refrigerant pressure adjusting means 8 is in the heating circulation path of FIG. 7, and includes a first pressure adjusting valve 8 a interposed between the indoor evaporator 4 and the confluencer 9 that is the confluence, the outdoor heat exchanger 5, and the like. It is comprised from the 2nd pressure regulation valve 8b interposed between the junctions 9 which are a junction. The first pressure regulating valve 8a and the second pressure regulating valve 8b are controlled by the control unit 12 (shown in FIG. 2) so that both refrigerants led to the merger 9 have the same pressure.

また、車両用空気調和システム1Aには、室内エバポレータ4を通過した冷媒温度を検知する第1冷媒温度センサS1と、室外熱交換器5を通過した冷媒温度を検知する第2冷媒温度センサS2と外気温度を検知する外気温度センサS3と車室内の温度を検知する車室内温度センサS4とが設けられている。制御部12は、これらセンサS1,S2,S3,S4の検知温度情報とユーザ指令(冷暖房スイッチのオン・オフ、温度設定など)に基づいてコンプレッサ2の駆動、第1膨張弁6及び第2膨張弁7の絞り、第1圧力調整弁8a及び第2圧力調整弁8b、三方弁10a,10b等を制御する。具体的には、制御部12は、図3(a)、(b)及び図4(a)、(b)に示す各フローに基づいて制御する。図3(a)、(b)及び図4(a)、(b)の各フローの内容は、車両用空気調和システム1Aの動作で説明する。   The vehicle air conditioning system 1 </ b> A includes a first refrigerant temperature sensor S <b> 1 that detects the refrigerant temperature that has passed through the indoor evaporator 4, and a second refrigerant temperature sensor S <b> 2 that detects the refrigerant temperature that has passed through the outdoor heat exchanger 5. An outside air temperature sensor S3 that detects the outside air temperature and a vehicle interior temperature sensor S4 that detects the temperature inside the vehicle interior are provided. The control unit 12 drives the compressor 2, the first expansion valve 6 and the second expansion based on the detected temperature information of these sensors S1, S2, S3 and S4 and a user command (on / off of the air conditioning switch, temperature setting, etc.). The throttle of the valve 7, the first pressure regulating valve 8a and the second pressure regulating valve 8b, the three-way valves 10a and 10b, and the like are controlled. Specifically, the control unit 12 performs control based on the flows shown in FIGS. 3A and 3B and FIGS. 4A and 4B. The contents of each flow in FIGS. 3A, 3B and 4A, 4B will be described in the operation of the vehicle air conditioning system 1A.

次に、車両用空気調和システム1Aの動作を説明する。   Next, the operation of the vehicle air conditioning system 1A will be described.

図3(a)に示すように、車両用空気調和システム1Aが駆動され、冷暖房スイッチで冷房が選択されると(ステップS1)、冷房運転が選択される(ステップS2)。又、冷房が選択されない、つまり、暖房が選択されると(ステップS1)、暖房(除湿暖房運転と暖房運転の総称)が選択される(ステップS3)。   As shown in FIG. 3A, when the vehicle air conditioning system 1A is driven and cooling is selected by the cooling / heating switch (step S1), the cooling operation is selected (step S2). When cooling is not selected, that is, when heating is selected (step S1), heating (a general term for dehumidifying heating operation and heating operation) is selected (step S3).

冷房運転では、図5に示す冷房用循環経路に切り替えられる。コンプレッサ2からの高温高圧の冷媒は、室外熱交換器5、室内コンデンサ3、第1膨張弁6、室内エバポレータ4を通ってコンプレッサ2に戻る。室外熱交換器5は、冷凍サイクルの高圧側に配置され、コンデンサ(放熱器)として機能する。これによって、車室内に導かれる送風は、室内エバポレータ4と必要に応じて室内コンデンサ3を通過し、所望温度の冷風とされて車室内に導かれる。そして、冷房運転における冷媒の熱の授受を見ると、冷媒は室内コンデンサ3と室外熱交換器5の双方で放熱するため、室内エバポレータ4では吸熱量が室内コンデンサ3より大きく、高い冷房性能を発揮することができる。   In the cooling operation, the operation is switched to the cooling circulation path shown in FIG. The high-temperature and high-pressure refrigerant from the compressor 2 returns to the compressor 2 through the outdoor heat exchanger 5, the indoor condenser 3, the first expansion valve 6, and the indoor evaporator 4. The outdoor heat exchanger 5 is disposed on the high-pressure side of the refrigeration cycle and functions as a condenser (heat radiator). As a result, the air blown into the vehicle interior passes through the indoor evaporator 4 and the indoor condenser 3 as necessary, and is guided into the vehicle interior as cold air at a desired temperature. When looking at the heat exchange of the refrigerant in the cooling operation, the refrigerant dissipates heat in both the indoor condenser 3 and the outdoor heat exchanger 5, and therefore the indoor evaporator 4 has a larger heat absorption than the indoor condenser 3 and exhibits high cooling performance. can do.

暖房が選択されると、図3(b)に示すように、コンプレッサ2からの冷媒が室内コンデンサ3に入る暖房側経路に2つの三方弁10a,10bを切り替える(ステップS10)。次に、車室内温度センサS4の検知データを読み込む(ステップS11)。この読み込んだ車室内温度Tambと暖房用モード切替温度TMとを比較し(ステップS12)、車室内温度Tambが暖房用モード切替温度TMより高ければ、除湿暖房運転が選択される(ステップS13)。車室内温度Tambが暖房用モード切替温度TMより低ければ、暖房運転が選択される(ステップS14)。   When heating is selected, as shown in FIG. 3B, the two three-way valves 10a and 10b are switched to the heating side path where the refrigerant from the compressor 2 enters the indoor condenser 3 (step S10). Next, the detection data of the vehicle interior temperature sensor S4 is read (step S11). The vehicle interior temperature Tamb thus read is compared with the heating mode switching temperature TM (step S12). If the vehicle interior temperature Tamb is higher than the heating mode switching temperature TM, the dehumidifying heating operation is selected (step S13). If the vehicle interior temperature Tamb is lower than the heating mode switching temperature TM, the heating operation is selected (step S14).

除湿暖房運転では、図4(a)に示すように、第2膨張弁7を全閉し(ステップS20)、第1圧力調整弁8aを全開する(ステップS21)。これによって、図6に示す除湿暖房用循環経路に切り替えられる。コンプレッサ2からの高温高圧の冷媒は、室内コンデンサ3、第1膨張弁6、室内エバポレータ4を通ってコンプレッサ2に戻る。このような冷媒の循環にあって、第1膨張弁6は、第1冷媒温度センサS1の検知冷媒温度に基づき、所定の冷媒過熱度になるよう弁開度が制御される(ステップS22)。室外熱交換器5は、冷凍サイクルの循環経路より外れた位置とされる。車室内に導かれる送風は、室内エバポレータ4と室内コンデンサ3を通過し、所望温度の温風とされて車室内に導かれる。又、車室内に導かれる送風は、室内エバポレータ4を通過する際に凝縮水を発生するため、車室内を除湿暖房することができる。   In the dehumidifying and heating operation, as shown in FIG. 4A, the second expansion valve 7 is fully closed (step S20), and the first pressure regulating valve 8a is fully opened (step S21). Thereby, it switches to the circulation path for dehumidification heating shown in FIG. The high-temperature and high-pressure refrigerant from the compressor 2 returns to the compressor 2 through the indoor condenser 3, the first expansion valve 6, and the indoor evaporator 4. In such circulation of the refrigerant, the first expansion valve 6 is controlled in valve opening degree so as to have a predetermined refrigerant superheat degree based on the refrigerant temperature detected by the first refrigerant temperature sensor S1 (step S22). The outdoor heat exchanger 5 is located at a position outside the circulation path of the refrigeration cycle. The air blown into the passenger compartment passes through the indoor evaporator 4 and the indoor condenser 3, and is heated to a desired temperature and guided into the passenger compartment. Further, since the air blown into the vehicle interior generates condensed water when passing through the interior evaporator 4, the vehicle interior can be dehumidified and heated.

暖房運転では、第1及び第2膨張弁6,7と、第1及び第2圧力調整弁8a,8bを全開位置や全閉位置としないことから、図7に示す暖房用循環経路に切り替えられる。そして、図4(b)に示すように、外気温度センサS3等の検知データを読み込み(ステップS30)、室外熱交換器5の出口側の冷媒蒸発温度を設定する(ステップS31)。   In the heating operation, the first and second expansion valves 6 and 7 and the first and second pressure regulating valves 8a and 8b are not set to the fully open position or the fully closed position, so that the heating circulation path shown in FIG. . And as shown in FIG.4 (b), detection data, such as outside temperature sensor S3, are read (step S30), and the refrigerant | coolant evaporation temperature of the exit side of the outdoor heat exchanger 5 is set (step S31).

コンプレッサ2からの高温高圧の冷媒は、室内コンデンサ3を通過した後に第1膨張弁6及び室内エバポレータ4の分岐路と、第2膨張弁7及び室外熱交換器5の分岐路とに分かれて流れる。合流器9で合流され、その後にコンプレッサ2に戻る。このような冷媒の循環にあって、第2膨張弁7は、第2冷媒温度センサS2の検知冷媒温度に基づき、所定の冷媒過熱度になるよう弁開度が制御される(ステップS32)。第1膨張弁6も、第1冷媒温度センサS1の検知冷媒温度に基づき、所定の冷媒過熱度になるよう弁開度が制御される(ステップS33)。そして、室内エバポレータ4側を流れた冷媒が室外熱交換器5側を流れた冷媒と同一圧力になるよう第1圧力調整弁8aが調整される(ステップS34)。   After passing through the indoor condenser 3, the high-temperature and high-pressure refrigerant from the compressor 2 flows into a branch path of the first expansion valve 6 and the indoor evaporator 4 and a branch path of the second expansion valve 7 and the outdoor heat exchanger 5. . They are merged by the merger 9 and then returned to the compressor 2. In such a refrigerant circulation, the opening degree of the second expansion valve 7 is controlled based on the refrigerant temperature detected by the second refrigerant temperature sensor S2 so as to achieve a predetermined degree of refrigerant superheat (step S32). The opening degree of the first expansion valve 6 is also controlled based on the refrigerant temperature detected by the first refrigerant temperature sensor S1 so as to achieve a predetermined refrigerant superheat degree (step S33). Then, the first pressure regulating valve 8a is adjusted so that the refrigerant flowing on the indoor evaporator 4 side has the same pressure as the refrigerant flowing on the outdoor heat exchanger 5 side (step S34).

この暖房運転では、室外熱交換器5は、冷凍サイクルの低圧側に配置されてエバポレータ(吸熱器)として機能する。これによって、室内に導かれる送風は、室内エバポレータ4と必要に応じて室内コンデンサ3を通過し、所望温度の温風とされて車室内に導かれる。車室内に導かれる送風は、室内エバポレータ4を通過する際に凝縮水を発生するため、車室内を除湿暖房することができる。そして、暖房運転における冷媒の熱の授受を見ると、冷媒は室内コンデンサ3でのみ放熱し、室内エバポレータ4と室外熱交換器5の双方で吸熱するため、図8に示すように、コンプレッサ2の動力に相当する熱量と室外熱交換器5の吸熱に相当する熱量が暖房熱量となる。   In this heating operation, the outdoor heat exchanger 5 is disposed on the low pressure side of the refrigeration cycle and functions as an evaporator (heat absorber). As a result, the air blown into the room passes through the indoor evaporator 4 and the indoor condenser 3 as necessary, is heated to a desired temperature, and is led into the vehicle interior. The air blown into the vehicle interior generates condensed water when passing through the interior evaporator 4, so that the vehicle interior can be dehumidified and heated. Then, looking at the transfer of heat of the refrigerant in the heating operation, the refrigerant radiates heat only in the indoor condenser 3 and absorbs heat in both the indoor evaporator 4 and the outdoor heat exchanger 5, so that as shown in FIG. The amount of heat corresponding to the power and the amount of heat corresponding to the heat absorbed by the outdoor heat exchanger 5 are the amount of heating heat.

以上より、冷房運転と暖房運転ができるシステムにあって、暖房運転では常に除湿暖房ができ、しかも、高い暖房性能を発揮することができる。   As described above, in a system capable of cooling operation and heating operation, dehumidification heating can always be performed in the heating operation, and high heating performance can be exhibited.

この実施形態では、冷房運転では、コンプレッサ2からの高温高圧の冷媒が室外熱交換器5を流れた後に室内コンデンサ3を流れるよう構成されているが、室外熱交換器5を流れた後に、室内コンデンサ3を流れることなく第1膨張弁6に導かれるよう構成しても良い。   In this embodiment, in the cooling operation, the high-temperature and high-pressure refrigerant from the compressor 2 is configured to flow through the indoor condenser 3 after flowing through the outdoor heat exchanger 5, but after flowing through the outdoor heat exchanger 5, the indoor You may comprise so that it may be guide | induced to the 1st expansion valve 6 without flowing through the capacitor | condenser 3. FIG.

この実施形態では、室内エバポレータ4と室外熱交換器5の上流側にはそれぞれ第1膨張弁6及び第2膨張弁7、つまり、専用の減圧手段が設けられているので、室内エバポレータ4を通過する冷媒の冷媒蒸発温度と室外熱交換器5を通過する冷媒の冷媒蒸発温度をそれぞれ別個に調整できる。従って、第2膨張弁7によって室内エバポレータ4の冷媒蒸発温度より室外熱交換器5の冷媒蒸発温度を低く設定できるため、室外熱交換器5は外気温度が低い時でも外気からの吸熱を行うことができ、外気が低温でも優れた暖房性能を発揮することができる。特に、この実施形態では、冷媒として超臨界冷媒を使用している。従って、外気が超低温(例えばマイナス20℃程度)であり、室外熱交換器5の冷媒蒸発温度を外気温より低温に設定してもコンプレッサ2の入口側(低圧側)の冷媒圧力が大気圧以下にならないため、外気が超低温でも不具合なくエバポレータ(吸熱器)として機能する。   In this embodiment, the first expansion valve 6 and the second expansion valve 7, that is, dedicated decompression means are provided on the upstream side of the indoor evaporator 4 and the outdoor heat exchanger 5, respectively, so that they pass through the indoor evaporator 4. The refrigerant evaporating temperature of the refrigerant and the refrigerant evaporating temperature of the refrigerant passing through the outdoor heat exchanger 5 can be adjusted separately. Therefore, since the refrigerant expansion temperature of the outdoor heat exchanger 5 can be set lower than the refrigerant evaporation temperature of the indoor evaporator 4 by the second expansion valve 7, the outdoor heat exchanger 5 absorbs heat from the outside air even when the outside air temperature is low. It can exhibit excellent heating performance even when the outside air is at a low temperature. In particular, in this embodiment, a supercritical refrigerant is used as the refrigerant. Therefore, even if the outside air is extremely low temperature (for example, about minus 20 ° C.) and the refrigerant evaporation temperature of the outdoor heat exchanger 5 is set lower than the outside air temperature, the refrigerant pressure on the inlet side (low pressure side) of the compressor 2 is below atmospheric pressure. Therefore, even if the outside air is at a very low temperature, it functions as an evaporator (heat absorber) without any problems.

尚、減圧手段は、2つの分岐路の上流分岐箇所より上流で、且つ、室内コンデンサ3よりも下流位置に介在した単一の減圧手段(膨張弁)にて構成しても良い。   The pressure reducing means may be constituted by a single pressure reducing means (expansion valve) interposed upstream of the upstream branching locations of the two branch paths and downstream of the indoor condenser 3.

この実施形態では、室外熱交換器5は、冷媒が循環されない位置に切り替えできる。つまり、上記したように除湿暖房運転が可能である。この除湿暖房運転における冷媒の熱の授受を見ると、冷媒の熱は室内コンデンサ3でのみ放熱し、室内エバポレータ4でのみ吸熱するため、コンプレッサ2の動力に相当する熱量だけが暖房熱量となる。以上より、暖房性能が低く、除湿を主目的とした除湿暖房運転が可能である。   In this embodiment, the outdoor heat exchanger 5 can be switched to a position where the refrigerant is not circulated. That is, the dehumidifying heating operation is possible as described above. Looking at the transfer of heat of the refrigerant in the dehumidifying heating operation, the heat of the refrigerant is radiated only by the indoor condenser 3 and is absorbed only by the indoor evaporator 4, so only the amount of heat corresponding to the power of the compressor 2 becomes the amount of heating heat. As described above, the heating performance is low and the dehumidifying heating operation mainly for dehumidification is possible.

この実施形態では、室内エバポレータ4側の分岐路と室外熱交換器5側の分岐路の下流合流点における冷媒圧力を同一圧力に調整する冷媒圧力調整手段8が設けられている。従って、冷媒の暖房用循環経路にあって、室内エバポレータ4側の分岐路を通った冷媒と室外熱交換器5側の分岐路を通った冷媒がそれぞれ他の分岐路に逆流することを防止できる。これによって、室内エバポレータ4内を通過する冷媒圧力と室外熱交換器5を通過する冷媒圧力をそれぞれ所望の圧力に維持できる。   In this embodiment, there is provided refrigerant pressure adjusting means 8 for adjusting the refrigerant pressure at the downstream junction of the branch path on the indoor evaporator 4 side and the branch path on the outdoor heat exchanger 5 side to the same pressure. Accordingly, it is possible to prevent the refrigerant passing through the branch path on the indoor evaporator 4 side and the refrigerant passing through the branch path on the outdoor heat exchanger 5 side from flowing back to the other branch paths in the circulation path for heating the refrigerant. . As a result, the refrigerant pressure passing through the indoor evaporator 4 and the refrigerant pressure passing through the outdoor heat exchanger 5 can be maintained at desired pressures, respectively.

又、冷媒圧力調整手段8は、室内エバポレータ4と下流合流点との間に介在された第1圧力調整弁8aと、室外熱交換器5と下流合流点との間に介在された第2圧力調整弁8bとから構成されているので、室内温度が外気温度よりも高い場合のみならず低い場合にも双方の冷媒圧力を同一に調整できる。又、暖房運転を行う状況下では、室内温度が外気温度より高いのが通常であるため、冷媒圧力調整手段8を第1圧力調整弁8aのみから構成しても良い。   The refrigerant pressure adjusting means 8 includes a first pressure adjusting valve 8a interposed between the indoor evaporator 4 and the downstream junction, and a second pressure interposed between the outdoor heat exchanger 5 and the downstream junction. Since the control valve 8b is configured, both refrigerant pressures can be adjusted to be the same not only when the room temperature is higher than the outside air temperature but also when the room temperature is lower. Moreover, since the room temperature is usually higher than the outside air temperature under the heating operation condition, the refrigerant pressure adjusting means 8 may be composed of only the first pressure adjusting valve 8a.

(第2実施形態)
図9は本発明の第2実施形態に係る車両用空気調和システムの概略構成図である。
(Second Embodiment)
FIG. 9 is a schematic configuration diagram of a vehicle air conditioning system according to the second embodiment of the present invention.

図9に示すように、第2実施形態の車両用空気調和システム1Bは、前記第1実施形態のものと比較するに、冷媒の除湿暖房用循環経路にあって、室内コンデンサ3と第2膨張弁7の間を通過する冷媒と、室外熱交換器5と下流合流点である合流器9の間を通過する冷媒間で熱交換させる内部熱交換部20を有する。内部熱交換部20は、ペアーチューブ(図示せず)にて構成され、ペアーチューブの一方のチューブ内を室内コンデンサ3から排出された高圧の冷媒が、ペアーチューブの他方のチューブ内を室外熱交換器5から排出された低圧の冷媒がそれぞれ通過するようになっている。   As shown in FIG. 9, the vehicle air conditioning system 1B of the second embodiment is in a refrigerant dehumidifying heating circulation path, compared with that of the first embodiment, and includes an indoor condenser 3 and a second expansion. It has an internal heat exchanging section 20 that exchanges heat between the refrigerant passing between the valves 7 and the refrigerant passing between the outdoor heat exchanger 5 and the junction 9 that is the downstream junction. The internal heat exchanging unit 20 is configured by a pair tube (not shown), and the high-pressure refrigerant discharged from the indoor condenser 3 in one of the pair tubes exchanges the heat in the other tube of the pair tubes. The low-pressure refrigerant discharged from the vessel 5 passes therethrough.

他の構成は、前記第1実施形態と同一であるため、図面に同一符号を付して重複説明を省略する。   Since other configurations are the same as those of the first embodiment, the same reference numerals are given to the drawings, and the duplicate description is omitted.

この車両用空気調和システム1Bでは、内部熱交換部20が設けられたので、室外熱交換器5の性能が向上すると共に、室内コンデンサ3で室内に利用できなかった熱量を回収できる。   In the vehicle air conditioning system 1B, since the internal heat exchange unit 20 is provided, the performance of the outdoor heat exchanger 5 is improved and the amount of heat that cannot be used indoors by the indoor condenser 3 can be recovered.

この車両用空気調和システム1Bでは、内部熱交換部20がペアーチューブ(図示せず)にて構成されたので、内部熱交換部20を簡単に構成できる。   In the vehicle air conditioning system 1B, since the internal heat exchange unit 20 is configured by a pair tube (not shown), the internal heat exchange unit 20 can be easily configured.

(第3実施形態)
図10及び図11は本発明の第3実施形態を示し、図10は車両用空気調和システムの概略構成図、図11はエジェクタの拡大断面図である。
(Third embodiment)
10 and 11 show a third embodiment of the present invention, FIG. 10 is a schematic configuration diagram of a vehicle air conditioning system, and FIG. 11 is an enlarged sectional view of an ejector.

図10に示すように、第3実施形態の車両用空気調和システム1Cは、前記第1実施形態のものと比較するに、冷媒圧力調整手段がエジェクタ21にて構成されている。   As shown in FIG. 10, in the vehicle air conditioning system 1 </ b> C of the third embodiment, the refrigerant pressure adjusting means is configured by an ejector 21 as compared with that of the first embodiment.

図11に示すように、エジェクタ21は、エジェクタ本体22を有する。エジェクタ本体22内には、冷媒吐出部22aと、これに連通し、通路径の小さい喉部22bと、喉部22bに連通し、通路径の大きな拡張部22cが形成されている。冷媒吐出部22aには、喉部22bに向かって開口する高圧側ノズル23と、喉部22bに直交する方向に開口する低圧側ノズル24が接続されている。高圧側ノズル23は、冷媒吐出部22aへの突出量を可変できるようになっている。高圧側ノズル23には、室外熱交換器5より排出された冷媒が導かれ、低圧側ノズル24には、室内エバポレータ4より排出された冷媒が導かれている。   As shown in FIG. 11, the ejector 21 has an ejector body 22. Inside the ejector body 22, there are formed a refrigerant discharge portion 22a, a throat portion 22b having a small passage diameter, and an expansion portion 22c having a large passage diameter, communicating with the throat portion 22b. A high pressure side nozzle 23 that opens toward the throat portion 22b and a low pressure side nozzle 24 that opens in a direction orthogonal to the throat portion 22b are connected to the refrigerant discharge portion 22a. The high-pressure side nozzle 23 can change the amount of protrusion to the refrigerant discharge portion 22a. The refrigerant discharged from the outdoor heat exchanger 5 is guided to the high pressure side nozzle 23, and the refrigerant discharged from the indoor evaporator 4 is guided to the low pressure side nozzle 24.

他の構成は、前記第1実施形態と同一であるため、図面に同一符号を付して重複説明を省略する。   Since other configurations are the same as those of the first embodiment, the same reference numerals are given to the drawings, and the duplicate description is omitted.

この第3実施形態にあっても、暖房運転時には、室内エバポレータ4から排出された冷媒と室外熱交換器5から排出された冷媒がエジェクタ21を通過し、その際に同一圧力とされてコンプレッサ2に戻される。   Even in the third embodiment, during the heating operation, the refrigerant discharged from the indoor evaporator 4 and the refrigerant discharged from the outdoor heat exchanger 5 pass through the ejector 21, and at that time, the same pressure is applied to the compressor 2. Returned to

高圧側ノズル23は、冷媒吐出部22aへの突出量を可変できるので、冷媒蒸発温度、吸引能力などを可変できる。   Since the high-pressure side nozzle 23 can vary the amount of protrusion to the refrigerant discharge part 22a, the refrigerant evaporation temperature, the suction capacity, and the like can be varied.

(第4実施形態)
図12は本発明の第4実施形態に係る車両用空気調和システムの概略構成図である。
(Fourth embodiment)
FIG. 12 is a schematic configuration diagram of a vehicle air conditioning system according to the fourth embodiment of the present invention.

図12に示すように、第4実施形態の車両用空気調和システム1Dは、前記第1実施形態のものと比較するに、室外熱交換器5の他に熱回収熱交換器30が付設されている。そして、冷媒の除湿暖房用循環経路は、室外熱交換器5に替えて熱回収熱交換器30が室内エバポレータ4に並列に接続される経路とされる。これに合わせて、第2圧力調整弁8bは、熱回収熱交換器30と合流点である合流器9との間に介在されている。第2冷媒温度センサS2は、熱回収熱交換器30の出口側の冷媒温度を検知する。   As shown in FIG. 12, the vehicle air conditioning system 1 </ b> D of the fourth embodiment is provided with a heat recovery heat exchanger 30 in addition to the outdoor heat exchanger 5, as compared with that of the first embodiment. Yes. The refrigerant dehumidifying and heating circulation path is a path in which the heat recovery heat exchanger 30 is connected in parallel to the indoor evaporator 4 instead of the outdoor heat exchanger 5. In accordance with this, the second pressure regulating valve 8b is interposed between the heat recovery heat exchanger 30 and the junction 9 that is the junction. The second refrigerant temperature sensor S <b> 2 detects the refrigerant temperature on the outlet side of the heat recovery heat exchanger 30.

この第4実施形態では、冷媒の除湿暖房用循環経路は、室外熱交換器5に替えて熱回収熱交換器30が室内エバポレータ4に並列に接続される経路とされる。従って、回収熱交換器30は冷房運転時には使用されないため、室外空気への放熱を配慮せずに室外空気からの吸熱のみを配慮した位置に設置することができ、設置位置の自由度が増す。又、室外空気からの吸熱に適した位置(例えば車室の換気空気を利用する位置)に設置できるため、暖房性能の向上を図ることができる。   In the fourth embodiment, the refrigerant dehumidifying and heating circulation path is a path in which the heat recovery heat exchanger 30 is connected in parallel to the indoor evaporator 4 instead of the outdoor heat exchanger 5. Therefore, since the recovered heat exchanger 30 is not used during the cooling operation, the recovered heat exchanger 30 can be installed at a position considering only heat absorption from the outdoor air without considering heat radiation to the outdoor air, and the degree of freedom of the installation position is increased. Moreover, since it can install in the position (for example, position which uses the ventilation air of a vehicle interior) suitable for the heat absorption from outdoor air, the improvement of heating performance can be aimed at.

本発明の第1実施形態を示し、車両用空気調和システムの概略構成図である。1 is a schematic configuration diagram of a vehicle air conditioning system according to a first embodiment of the present invention. 本発明の第1実施形態を示し、車両用空気調和システムの要部回路ブロック図である。1 shows a first embodiment of the present invention and is a principal circuit block diagram of an air conditioning system for a vehicle. FIG. 本発明の第1実施形態を示し、(a)は車両用空気調和システムの概略動作フローチャート、(b)は暖房が選択された場合の動作フローチャートである。1 shows a first embodiment of the present invention, (a) is a schematic operation flowchart of a vehicle air conditioning system, and (b) is an operation flowchart when heating is selected. 本発明の第1実施形態を示し、(a)は除湿暖房運転時の動作フローチャート、(b)は暖房運転時の動作フローチャートである。1 shows a first embodiment of the present invention, wherein (a) is an operation flowchart during dehumidifying heating operation, and (b) is an operation flowchart during heating operation. 本発明の第1実施形態を示し、冷房運転時の冷媒の流れを示す図である。It is a figure which shows 1st Embodiment of this invention and shows the flow of the refrigerant | coolant at the time of air_conditionaing | cooling operation. 本発明の第1実施形態を示し、除湿暖房運転時の冷媒の流れを示す図である。It is a figure which shows 1st Embodiment of this invention and shows the flow of the refrigerant | coolant at the time of dehumidification heating operation. 本発明の第1実施形態を示し、暖房運転時の冷媒の流れを示す図である。It is a figure which shows 1st Embodiment of this invention and shows the flow of the refrigerant | coolant at the time of heating operation. 本発明の第1実施の形態を示し、P−h線上に本実施形態に係る冷凍サイクルの状態を示した図である。It is the figure which showed 1st Embodiment of this invention and showed the state of the refrigerating cycle which concerns on this embodiment on Ph line. 本発明の第2実施形態を示し、車両用空気調和システムの概略構成図である。It is a schematic block diagram of the air conditioning system for vehicles which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示し、車両用空気調和システムの概略構成図である。It is a schematic block diagram of the air conditioning system for vehicles which shows 3rd Embodiment of this invention. 本発明の第3実施形態を示し、エジェクタの拡大断面図である。FIG. 6 is an enlarged sectional view of an ejector according to a third embodiment of the present invention. 本発明の第4実施形態を示し、車両用空気調和システムの概略構成図である。FIG. 4 is a schematic configuration diagram of a vehicle air conditioning system according to a fourth embodiment of the present invention. 従来例の空気調和システムの概略構成図である。It is a schematic block diagram of the air conditioning system of a prior art example. P−h線上に従来例に係る冷凍サイクルの状態を示した図である。It is the figure which showed the state of the refrigerating cycle which concerns on a prior art example on Ph line. 他の従来例の空気調和システムの概略構成図である。It is a schematic block diagram of the air conditioning system of another prior art example.

符号の説明Explanation of symbols

1A〜1D 車両用空気調和システム(空気調和システム)
2 コンプレッサ
3 室内コンデンサ
4 室内エバポレータ
5 室外熱交換器
6 第1膨張弁(減圧手段、第1減圧手段)
7 第2膨張弁(減圧手段、第2減圧手段)
8 冷媒圧力調整手段
8a 第1圧力調整手段
8b 第2圧力調整手段
20 内部熱交換部
30 熱回収熱交換器
1A-1D Vehicle Air Conditioning System (Air Conditioning System)
2 Compressor 3 Indoor condenser 4 Indoor evaporator 5 Outdoor heat exchanger 6 First expansion valve (pressure reducing means, first pressure reducing means)
7 Second expansion valve (pressure reduction means, second pressure reduction means)
8 Refrigerant pressure adjusting means 8a 1st pressure adjusting means 8b 2nd pressure adjusting means 20 Internal heat exchange part 30 Heat recovery heat exchanger

Claims (8)

冷媒を圧縮して冷媒を高温高圧の冷媒とするコンプレッサ(2)と、高温高圧の冷媒と室内に導く送風との間で熱交換させる室内コンデンサ(3)と、冷媒を減圧して低圧の冷媒とする減圧手段(6),(7)と、低圧の冷媒と室内に導く送風との間で熱交換させる室内エバポレータ(4)と、冷媒と外気との間で熱交換させる室外熱交換器(5)とを備えた空気調和システム(1A)〜(1C)であって、
前記コンプレッサ(2)からの高温高圧の冷媒が前記室外熱交換器(5)に導かれた後に前記減圧手段(6)を通って前記室内エバポレータ(4)に導かれる冷房用循環経路と、前記コンプレッサ(2)からの高温高圧の冷媒が前記室内コンデンサ(3)に導かれた後に前記減圧手段(6),(7)を通って、互いに並列に接続される前記室内エバポレータ(4)と前記室外熱交換器(5)に導かれる暖房用循環経路とに切り替えでき、
前記減圧手段(6),(7)は、冷媒の暖房用循環経路で、前記室内エバポレータ(4)側の分岐路に設けられた第1減圧手段(6)と、前記室外熱交換器(5)側の分岐路に設けられた第2減圧手段(7)とを有し、
前記室内エバポレータ(4)側の分岐路と前記室外熱交換器(5)側の分岐路の下流合流点における冷媒圧力を同一圧力に調整する冷媒圧力調整手段(8)が設けられ、前記冷媒圧力調整手段(8)は、室内エバポレータ(4)と下流合流点との間に介在された第1圧力調整弁(8a)と、前記室外熱交換器(5)と下流合流点との間に介在された第2圧力調整弁(8b)とを有し、
暖房運転では、前記室内エバポレータ(4)を通過した冷媒が所定の冷媒過熱度になるよう前記第1減圧手段(6)を、前記室外熱交換器(5)を通過した冷媒が所定の冷媒過熱度になるよう前記第2減圧手段(7)を制御すると共に、下流合流点における冷媒圧力が同一圧力になるよう前記第1圧力調整弁(8a)及び前記第2圧力調整弁(8b)を制御する制御部(12)を備えたことを特徴とする空気調和システム(1A)〜(1C)。
The compressor (2) that compresses the refrigerant to make the refrigerant a high-temperature and high-pressure refrigerant, the indoor condenser (3) that exchanges heat between the high-temperature and high-pressure refrigerant and the air blown into the room, and the low-pressure refrigerant by decompressing the refrigerant Pressure reducing means (6), (7), an indoor evaporator (4) for exchanging heat between the low-pressure refrigerant and the air blown into the room, and an outdoor heat exchanger (for exchanging heat between the refrigerant and the outside air) 5) and an air conditioning system (1A) to (1C),
A cooling circulation path in which high-temperature and high-pressure refrigerant from the compressor (2) is led to the indoor evaporator (4) through the decompression means (6) after being led to the outdoor heat exchanger (5); After the high-temperature and high-pressure refrigerant from the compressor (2) is led to the indoor condenser (3), it passes through the decompression means (6) and (7), and the indoor evaporator (4) connected in parallel with each other and the It can be switched to a heating circulation path led to the outdoor heat exchanger (5),
The decompression means (6), (7) is a circulation route for heating the refrigerant, and the first decompression means (6) provided in the branch path on the indoor evaporator (4) side and the outdoor heat exchanger (5 ) Side second decompression means (7) provided in the branch path on the side,
Refrigerant pressure adjusting means (8) for adjusting the refrigerant pressure at the downstream junction of the branch path on the indoor evaporator (4) side and the branch path on the outdoor heat exchanger (5) side to the same pressure is provided, and the refrigerant pressure The adjusting means (8) is interposed between the first pressure adjusting valve (8a) interposed between the indoor evaporator (4) and the downstream junction, and between the outdoor heat exchanger (5) and the downstream junction. A second pressure regulating valve (8b),
In the heating operation, the refrigerant that has passed through the indoor evaporator (4) has a predetermined degree of refrigerant superheating, the first pressure reducing means (6), and the refrigerant that has passed through the outdoor heat exchanger (5) has a predetermined refrigerant overheating. The second pressure reducing means (7) is controlled so as to be at the same time, and the first pressure adjusting valve (8a) and the second pressure adjusting valve (8b) are controlled so that the refrigerant pressure at the downstream junction becomes the same pressure. An air conditioning system (1A) to (1C) comprising a control unit (12) for performing the above.
請求項1記載の空気調和システム(1A)〜(1C)であって、
前記室内エバポレータ(4)を通過した冷媒の温度を検知する第1冷媒温度センサ(S1)と、
前記室外熱交換器(5)を通過した冷媒の温度を検知する第2冷媒温度センサ(S2)と、
外気温度を検知する外気温度検知センサ(S3)とを備え、
前記制御部(12)は、前記第1冷媒温度センサ(S1)、前記第2冷媒温度センサ(S2)、前記外気温度センサ(S3)の検知温度情報に基づいて前記第1減圧手段(6)及び前記第2減圧手段(7)を制御することを特徴とする空気調和システム(1A)〜(1C)。
The air conditioning system (1A) to (1C) according to claim 1,
A first refrigerant temperature sensor (S1) for detecting the temperature of the refrigerant that has passed through the indoor evaporator (4);
A second refrigerant temperature sensor (S2) for detecting the temperature of the refrigerant that has passed through the outdoor heat exchanger (5);
An outside temperature sensor (S3) for detecting outside temperature,
The control unit (12) includes the first pressure reducing means (6) based on temperature information detected by the first refrigerant temperature sensor (S1), the second refrigerant temperature sensor (S2), and the outside air temperature sensor (S3). And the second pressure reducing means (7) are controlled, wherein the air conditioning systems (1A) to (1C) are characterized.
請求項2記載の空気調和システム(1A)〜(1C)であって、
前記制御部(12)は、前記室外熱交換器(5)の出口側の冷媒蒸発温度を外気温より低温に設定する制御を行うことを特徴とする空気調和システム(1A)〜(1C)。
The air conditioning system (1A) to (1C) according to claim 2,
The said control part (12) performs control which sets the refrigerant | coolant evaporation temperature of the exit side of the said outdoor heat exchanger (5) to lower temperature than external temperature, Air conditioning system (1A)-(1C) characterized by the above-mentioned.
請求項1〜請求項3のいずれかに記載の空気調和システム(1B)であって、
前記前記冷媒圧力調整手段(8)は、下流合流点に配置されたエジェクタ(21)にて構成されたことを特徴とする空気調和システム(1B)。
It is an air conditioning system (1B) in any one of Claims 1-3,
The said refrigerant | coolant pressure adjustment means (8) was comprised by the ejector (21) arrange | positioned in a downstream confluence | merging point, The air conditioning system (1B) characterized by the above-mentioned.
請求項1〜請求項4のいずれかに記載の空気調和システム(1B)であって、
冷媒の暖房用循環経路には、前記室内コンデンサ(3)と前記減圧手段(7)の間を通過する冷媒と、前記室外熱交換器(5)と下流合流点の間を通過する冷媒間で熱交換させる内部熱交換部(20)が設けられたことを特徴とする空気調和システム(1B)。
It is an air conditioning system (1B) in any one of Claims 1-4,
The refrigerant heating circulation path includes a refrigerant passing between the indoor condenser (3) and the decompression means (7), and a refrigerant passing between the outdoor heat exchanger (5) and the downstream junction. An air conditioning system (1B) characterized in that an internal heat exchange section (20) for heat exchange is provided.
請求項5記載の空気調和システム(1B)であって、
前記内部熱交換部(20)は、ペアーチューブで構成されたことを特徴とする空気調和システム(1B)。
The air conditioning system (1B) according to claim 5,
The internal heat exchanging part (20) is an air conditioning system (1B) characterized in that it is composed of a paired tube.
請求項1〜請求項6のいずれかに記載の空気調和システム(1A)〜(1C)であって、
前記室外熱交換器(5)は、冷媒が循環されない位置に切り替えできることを特徴とする空気調和システム(1A)〜(1C)。
It is an air conditioning system (1A)-(1C) in any one of Claims 1-6, Comprising:
The outdoor heat exchanger (5) can be switched to a position where the refrigerant is not circulated, and the air conditioning system (1A) to (1C).
請求項1〜請求項7のいずれかに記載の空気調和システムであって、
冷媒の暖房用循環経路は、前記室外熱交換器(5)に替えて熱回収熱交換器(30)が前記室内エバポレータ(4)に並列に接続される経路とされたことを特徴とする空気調和システム(1D)。
It is an air conditioning system in any one of Claims 1-7,
The air circulation path for heating the refrigerant is a path in which a heat recovery heat exchanger (30) is connected in parallel to the indoor evaporator (4) instead of the outdoor heat exchanger (5). Harmony system (1D).
JP2008112878A 2008-04-23 2008-04-23 Air conditioning system Expired - Fee Related JP5108606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008112878A JP5108606B2 (en) 2008-04-23 2008-04-23 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008112878A JP5108606B2 (en) 2008-04-23 2008-04-23 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2009264633A JP2009264633A (en) 2009-11-12
JP5108606B2 true JP5108606B2 (en) 2012-12-26

Family

ID=41390697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008112878A Expired - Fee Related JP5108606B2 (en) 2008-04-23 2008-04-23 Air conditioning system

Country Status (1)

Country Link
JP (1) JP5108606B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084738A1 (en) * 2011-12-09 2013-06-13 サンデン株式会社 Air conditioning device for vehicle
JP6011507B2 (en) 2013-10-08 2016-10-19 株式会社デンソー Refrigeration cycle equipment
CN107738552B (en) * 2017-10-30 2019-12-17 安徽江淮汽车集团股份有限公司 vehicle air conditioner condensation control method and control system
CN111098654B (en) * 2018-10-25 2023-10-27 株式会社泉技研 Piping unit for automobile air conditioner and method for manufacturing piping unit for automobile air conditioner
CN111231621B (en) * 2018-11-29 2022-09-06 比亚迪股份有限公司 Vehicle thermal management system and vehicle
JP7266999B2 (en) * 2018-12-04 2023-05-01 三菱電機株式会社 Air conditioner and its construction method
JP7330482B2 (en) * 2019-02-26 2023-08-22 株式会社イズミ技研 heat pump system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2605930Y2 (en) * 1993-07-29 2000-09-04 カルソニックカンセイ株式会社 Automotive air conditioners
JP3233771B2 (en) * 1994-02-25 2001-11-26 サンデン株式会社 Vehicle air conditioner
JP3903292B2 (en) * 1995-10-31 2007-04-11 三菱電機株式会社 Thermal storage air conditioner
JPH1058965A (en) * 1996-08-27 1998-03-03 Calsonic Corp Heat pump-type air conditioner for automobile
JP2006242402A (en) * 2005-02-28 2006-09-14 Sanyo Electric Co Ltd Refrigerant cycle device

Also Published As

Publication number Publication date
JP2009264633A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP5108606B2 (en) Air conditioning system
JP6323489B2 (en) Heat pump system
US6931880B2 (en) Method and arrangement for defrosting a vapor compression system
US8733126B2 (en) Vehicle air-conditioning apparatus
JP3966044B2 (en) Air conditioner
JP2009264661A (en) Air conditioning system
JP2009274517A (en) Air conditioning system
AU2001286333A1 (en) Method and arrangement for defrosting a vapor compression system
KR102039165B1 (en) Heat Pump For a Vehicle
JP4539571B2 (en) Vapor compression cycle
JP2009092249A (en) Refrigerant cycle device with ejector
US10744854B2 (en) Air conditioning system for vehicle and method for controlling same
JP4553761B2 (en) Air conditioner
CN109982877B (en) Vehicle heat pump system
JPH08216667A (en) Air-conditioning and dehumidification device in heat pump for electric vehicle
JP2004182168A (en) Vehicular air conditioner
JP2017013561A (en) Heat pump system for vehicle
JP5096956B2 (en) Air conditioning system for vehicles
KR101622631B1 (en) Heat pump system for vehicle and its control method
JP2011225174A (en) Vehicular air conditioner
KR101146477B1 (en) Heat Pump System for Car
KR101510116B1 (en) Heat pump system for vehicle
KR20210126905A (en) Heat management system of vehicle
JP2010190537A (en) Air conditioner
KR20080008874A (en) Heat pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees