JP3903292B2 - Thermal storage air conditioner - Google Patents

Thermal storage air conditioner Download PDF

Info

Publication number
JP3903292B2
JP3903292B2 JP20603196A JP20603196A JP3903292B2 JP 3903292 B2 JP3903292 B2 JP 3903292B2 JP 20603196 A JP20603196 A JP 20603196A JP 20603196 A JP20603196 A JP 20603196A JP 3903292 B2 JP3903292 B2 JP 3903292B2
Authority
JP
Japan
Prior art keywords
heat exchanger
expansion device
compressor
heat storage
cooling circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20603196A
Other languages
Japanese (ja)
Other versions
JPH09184663A (en
Inventor
みどり 辻
守也 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20603196A priority Critical patent/JP3903292B2/en
Publication of JPH09184663A publication Critical patent/JPH09184663A/en
Application granted granted Critical
Publication of JP3903292B2 publication Critical patent/JP3903292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蓄熱式空気調和装置に関するものである。
【0002】
【従来の技術】
従来、この種の蓄熱式空気調和装置には、たとえば特願平5−30727号に提案された、図45に示すようなものがあった。同図において、1はたとえば5馬力の圧縮機、2は圧縮機用四方切換弁で、これらは冷媒配管101にて接続されている。3は圧縮機用四方切換弁2と冷媒配管102にて接続され、冷房時は凝縮器として、暖房時は蒸発器として動作する室外側熱交換器である。
【0003】
6は冷媒配管103で室外側熱交換器3と接続された第1の絞り装置である。また、7は第3のバルブ、8は第4のバルブであり、これらは第1の絞り装置6からの冷媒配管108を分岐してなる冷媒配管109と110とに、それぞれ接続されている。9は蓄熱槽で、内部に多数本の伝熱管を縦に並べ、これを相互に連結して形成した蓄熱用熱交換器10を有し、槽内に貯留したたとえば水などの蓄熱媒体21を、冷房時は凍結、暖房時は加熱できるように構成されている。この蓄熱槽9は冷媒配管111で第4のバルブ8と接続されている。
【0004】
12はガス状冷媒を搬送する冷媒ポンプで、ポンプ容量は所定の運転条件にて圧縮機1の運転による冷媒循環量と同量の循環量が得られるものが選定される。11は冷媒配管114で冷媒ポンプ12と接続された冷媒ポンプ用四方切換弁、13は冷媒配管115で冷媒ポンプ12と接続されるとともに冷媒配管116で冷媒ポンプ用四方切換弁11と接続された冷媒ポンプ用アキュムレータ、14は第1のバルブであり、蓄熱用熱交換器10からの冷媒配管112は冷媒配管113と118とに分岐し、冷媒配管113は冷媒ポンプ用四方切換弁11に、冷媒配管118は第1のバルブ14に、それぞれ接続されている。
【0005】
20は第5のバルブ、120は冷媒配管117で冷媒ポンプ用四方切換弁11と接続された冷媒配管、125は冷媒配管119で第1のバルブ14と接続された冷媒配管である。冷媒配管125は一端が第5のバルブ20を介して冷媒配管120に接続されるとともに、他端が前述の圧縮機用四方切換弁2に接続されている。
【0006】
121は前述の第3のバルブ7に接続された冷媒配管で、この冷媒配管121と上記冷媒配管120との間には、複数の室内ユニット用冷媒回路系a,b,cが並列に設けられている。室内ユニット用冷媒回路系a,b,cはそれぞれ冷媒配管121側から順次、冷媒配管122,第2の絞り装置15,冷媒配管123,室内側熱交換器16,及び冷媒配管124を接続して構成されている。なお、図中、符号末尾の英小文字は前述の複数の各室内ユニット用冷媒回路系a,b,cの区別を示す。
【0007】
さらに、圧縮機用四方切換弁2と圧縮機用アキュムレータ17との間と、圧縮機用アキュムレータ17と圧縮機1との間とは、それぞれ冷媒配管126,127にて接続されている。
【0008】
次いで、上記蓄熱式空気調和装置の動作について、図46〜61に基づいて説明する。
たとえば夜間、蓄冷運転(すなわち製氷運転)を行なう場合は、図46に示すように第3のバルブ7及び第5のバルブ20を閉じ、第1のバルブ14及び第4のバルブ8を開いて、圧縮機1を運転する。このとき、圧縮機1より吐出された冷媒は室外側熱交換器3で放熱凝縮し、第1の絞り装置6で断熱膨張したのち、蓄熱用熱交換器10で吸熱蒸発する際に蓄熱媒体21(水)から熱を奪い、蓄熱用熱交換器10の表面に近い蓄熱媒体21から順次凍結させる。また、気化した冷媒は圧縮機用アキュムレータ17を経由して圧縮機に戻る。
【0009】
この蓄冷運転時の運転状態を図47に示す。同図に数字にて示す運転点は、図46の同一符号に係る冷媒配管内の冷媒の状態を示しており、凝縮温度は約40℃、蒸発温度は−3℃程度である。本システムはかかる運転にて、たとえば蓄熱槽9内の残水がないことを前提に、22:00より製氷を開始し、翌朝8:00に製氷を終了する。
【0010】
次いで、昼間の冷房運転について述べる。
蓄熱槽9内の蓄冷を利用しない一般冷房運転を行なう場合は、図48に示すように第3のバルブ7及び第5のバルブ20を開き、第1のバルブ14及び第4のバルブ8を閉じて圧縮機1を運転する。室外側熱交換器3にて凝縮液化した高圧冷媒は、各室内ユニット用冷媒回路系a,b,cに送られ、各々の第2の絞り装置15で冷媒流量を調節されつつ減圧され、約6kg/cm2 G程度の圧力で室内側熱交換器16内に流入し蒸発する。このとき周囲の室内空気より吸熱し、ガス化した冷媒は、圧縮機用アキュムレータ17を経由し、圧縮機1に戻る。なお、圧縮機1の運転容量は、各室内ユニット用冷媒回路系a,b,cに係る室内機の運転容量の総和に応じて決定される。
【0011】
この一般冷房運転時の運転状態を図49に示す。図中の数字は図47の場合と同様であり、凝縮温度は約45℃、蒸発温度は約10℃である。本システムはかかる運転にて、たとえば蓄冷消費後の冷房を行う。
【0012】
また、蓄熱槽9内の蓄冷のみを利用する冷房運転、すなわち放冷運転を行なう場合は、図50に示すように第1の絞り装置6,第1のバルブ14,及び第5のバルブ20を閉じ、第3のバルブ7及び第4のバルブ8を開いて、冷媒ポンプ12を運転する。このとき冷媒ポンプ12により送出されたガス冷媒は蓄熱槽9内の蓄熱媒体21(氷)で冷却され20〜25℃で凝縮し、液化した約9kg/cm2 Gの冷媒が各室内ユニット用冷媒回路系a,b,cに送られ、図48の場合と同様に冷房する。このとき冷媒ポンプ12の冷媒循環量は、図48の場合の圧縮機1による冷媒循環量と同等のため、室内側熱交換器16には同温同圧の冷媒が同量流れることになり、動力としては差圧が約3kg/cm2 程度の小容量にもかかわらず、冷房能力は圧縮機1の単独運転による一般冷房運転と同等となる。なお、冷媒ポンプ12の運転容量は、各室内ユニット用冷媒回路系a,b,cに係る室内機の運転容量の総和に応じて決定される。
【0013】
この放冷運転時の運転状態を図51に示す。図中の数字は図47の場合と同様であり、凝縮温度は23℃程度、蒸発温度は約10℃である。本システムはかかる運転にて、たとえば軽負荷時の冷房を行なう。
【0014】
さらに、蓄熱槽9内の蓄冷を利用する放冷運転と圧縮機1による一般冷房運転とを併用する蓄冷併用冷房運転を行なう場合は、図52に示すように第1のバルブ14を閉じ、第3のバルブ7,第4のバルブ8,及び第5のバルブ20を開いて、圧縮機1及び冷媒ポンプ12を運転する。このとき冷媒ポンプ12側の蓄熱用熱交換器10で凝縮した液冷媒は、圧縮機1側の第1の絞り装置6で減圧された冷媒と合流部Mで合流し、室内ユニット用冷媒回路系a,b,cへは、図48の一般冷房運転時あるいは図50の放冷運転時の約2倍の量の冷媒が循環して、冷房能力も2倍となる。このときの第1の絞り装置6の開度は一定であり、上記合流部Mの冷媒圧力は8〜10kg/cm2 程度となる。なお、冷媒ポンプ12の運転容量は常時100%であり、圧縮機1の運転容量を変化させることにより調節される全体での運転容量は、各室内ユニット用冷媒回路系a,b,cに係る室内機の運転容量の総和に応じて決定される。
【0015】
この蓄冷併用冷房運転時の運転状態を図53に示す。図中の数字は図47の場合と同様であり、蒸発温度は他の冷房運転と同様約10℃であるが、凝縮温度は、室外側熱交換器3では約45℃、蓄熱用熱交換器10では20〜25℃程度である。本システムはかかる運転にて、通常の冷房負荷時の冷房を行なう。
【0016】
以上では冷房に係る動作についての説明であるが、以下は暖房に係る動作についての説明であり、したがって、特に断らない限り圧縮機用四方切換弁2及び冷媒ポンプ用四方切換弁11は暖房モードに設定されている。
たとえば夜間、蓄熱運転(すなわち貯湯運転)を行なう場合は、図54に示すように第3のバルブ7及び第5のバルブ20を閉じ、第1のバルブ14及び第4のバルブ8を開いて圧縮機1を運転する。このとき圧縮機1より吐出された高温ガス冷媒は図中の矢印の方向に流れ、蓄熱槽9の蓄熱用熱交換器10で凝縮し、蓄熱媒体21を昇温する。凝縮冷媒は第1の絞り装置6で断熱膨張し、室外側熱交換器3で外気より吸熱して蒸発し、気化冷媒がアキュムレータ17を経由して圧縮機1に戻る。
【0017】
この蓄熱運転時の運転状態を図55に示す。図中の数字は図47の場合と同様であり、蓄熱槽9内の蓄熱媒体21の沸き上がり温度は約50℃、このときの凝縮温度は約55℃、蒸発温度は約0℃である。本システムはかかる運転にて、夜間電力時間帯内に貯湯し、蓄熱槽9内の蓄熱媒体21が所定温度に到達次第運転を終了する。
【0018】
次いで、昼間の暖房運転について述べる。
蓄熱槽9内の蓄熱を利用しない一般暖房運転を行なう場合は、図56に示すように第3のバルブ7及び第5のバルブ20を開き、第1のバルブ14及び第4のバルブ8を閉じて、圧縮機1を運転する。圧縮機1より17kg/cm2 G前後の圧力で吐出された高温高圧ガスは各室内ユニット用冷媒回路系a,b,cに送られ、各々の室内側熱交換器16で凝縮し、室内空気を加熱する。凝縮した液冷媒は第2の絞り装置15で若干減圧され、さらに第1の絞り装置6で減圧されて約4kg/cm2 Gの圧力となって室外側熱交換器3内で蒸発したのち、図54の場合と同様に圧縮機1に戻る。なお、圧縮機1の運転容量は、各室内ユニット用冷媒回路系a,b,cに係る室内機の運転容量の総和に応じて決定される。
【0019】
この一般暖房運転時の運転状態を図57に示す。図中の数字は図47の場合と同様であり、凝縮温度は42〜43℃程度、蒸発温度は約0℃である。本システムはかかる運転にて、蓄熱消費後の日中の軽負荷時の暖房を行う。
【0020】
また、蓄熱槽9内の蓄熱のみを利用する暖房運転、すなわち放熱運転を行なう場合は、図58に示すように第1の絞り装置6,第1のバルブ14,及び第5のバルブ20を閉じ、第3のバルブ7及び第4のバルブ8を開いて、冷媒ポンプ12を運転する。このとき冷媒ポンプ12は蓄熱槽9内で蒸発圧力約13kg/cm2 Gで加熱気化されたガス冷媒を冷媒ポンプ用アキュムレータ13を経由して吸引する。したがって、約4kg/cm2 G程度昇圧して17kg/cm2 G前後となった高温・高圧のガス冷媒が各室内ユニット用冷媒回路系a,b,cに送られたのち、図56の場合と同様に室内空気の加熱を行なう。凝縮した冷媒は第2の絞り装置15にて減圧され、約13kg/cm2 Gの気液二相冷媒となって蓄熱槽9に戻る。なお、冷媒ポンプ12の運転容量は、各室内ユニット用冷媒回路系a,b,cに係る室内機の運転容量の総和に応じて決定される。
【0021】
この放熱運転時の運転状態を図59に示す。図中の数字は図47の場合と同様であり、凝縮温度は42〜43℃程度、蒸発温度は約35℃前後である。本システムはかかる運転にて、たとえば軽負荷時の暖房を行なう。
【0022】
さらに、蓄熱槽9内の蓄熱を利用する放熱運転と圧縮機1による一般冷房運転とを併用する蓄熱併用冷房運転を行なう場合は、図60に示すように第1のバルブ14を閉じ、第3のバルブ7,第4のバルブ8,及び第5のバルブ20を開いて、圧縮機1及び冷媒ポンプ12を運転する。このとき冷媒ポンプ12より送出されたガス冷媒は圧縮機1より吐出されたガス冷媒と合流し、室内ユニット用冷媒回路系a,b,cへは、図56の一般暖房運転時あるいは図58の放熱運転時の約2倍の量の、圧力17kg/cm2 G前後の高温・高圧冷媒が循環して、暖房能力も約2倍となる。第2の絞り装置15で減圧された約13kg/cm2 G程度の冷媒は、約1/2が蓄熱用熱交換器10に流入して図58の放熱運転と同様の作用をなすとともに、他の1/2の冷媒は第1の絞り装置6にて更に減圧され、約4kg/cm2 Gの圧力となって室外側熱交換器3に流入し、図56の一般暖房運転と同様の作用をなす。なお、冷媒ポンプ12の運転容量は常時100%であり、圧縮機1の運転容量を変化させることにより調節される全体での運転容量は、各室内ユニット用冷媒回路系a,b,cに係る室内機の運転容量の総和に応じて決定される。
【0023】
この蓄熱併用暖房運転時の運転状態を図61に示す。図中の数字は図47の場合と同様であり、凝縮温度は他の暖房運転と同じく42〜43℃程度であるが、蒸発温度は、蓄熱用熱交換器10では35℃前後、室外側熱交換器3では0℃前後である。本システムはかかる運転にて、暖房負荷の集中するたとえば朝の立上がり時の暖房を行なう。
【0024】
【発明が解決しようとする課題】
上記のような各々の運転を行なう従来の蓄熱式空気調和装置では、蓄冷併用冷房時に、冷媒の合流部Mにおける冷媒過冷却度を制御していないために、合流部Mにおける冷媒過冷却度が充分に取れないことがあり、第2の絞り装置15に気液二相状態の冷媒が供給されることがあった。
また、合流部Mで冷媒過冷却度が取れていても、合流部Mの位置と室内側熱交換器16の位置との高低差が大きい場合には、合流部Mから第2の絞り装置15に至るまでの冷媒配管内において冷媒が気液二相状態となることがあった。
そして、以上のような理由で気液二相冷媒が第2の絞り装置15に供給された場合には、第2の絞り装置15の開度によって決められる冷媒循環量が不安定になって、冷房能力も不安定になっていた。また、第2の絞り装置15a〜cによる冷媒の分配が精度よく行なわれず、各室内側熱交換器16a〜cに、それぞれの冷房負荷に応じた量の冷媒を供給できずに、各室内側熱交換器16a〜cが所望の冷房能力を発揮できないことになっていた。
【0025】
また、1日の蓄冷併用冷房時間の長さに応じて蓄冷使用量を調節していなかったので、蓄冷併用冷房時間が長い場合に蓄冷量が不足したり、蓄冷併用冷房時間が短い場合に蓄冷量が余ったりすることがあった。
【0026】
また、実際の蓄冷消費量と蓄冷併用冷房運転開始からの経過時間における蓄冷消費予測量との比較に基づいて蓄冷使用量を調節していなかったので、実際の蓄冷消費量が予想以上に多くて蓄冷が不足したり、実際の蓄冷消費量が予想以上に少なくて蓄冷が残ったりすることがあった。
【0027】
また、蓄熱媒体21の蓄冷量が少なくなってきた場合には、充分な蓄冷量がある場合に比べて冷房能力が低下することがあった。
【0028】
また、蓄熱媒体21の温度がある程度以上に上昇した場合には、蓄熱媒体21から冷熱を取り出すことができなくなり、蓄熱媒体21の温度が低い場合に比べて冷房能力が低下することがあった。
【0029】
また、圧縮機1の吸入側配管と冷媒ポンプ12の吸入側配管とが遠く離れた位置にあるため、冷媒とともに回路内を流動する潤滑油が圧縮機1又は冷媒ポンプ12のいずれかに偏って吸入されることがあり、これを防止する特別な策を講じなければ、長時間の連続運転時に圧縮機1又は冷媒ポンプ12が潤滑油枯渇に起因する故障を起こす危険性があった。
【0030】
また、蓄熱運転時には、室外側熱交換器3への着霜のために蓄熱能力が低下したり、頻繁な除霜運転によって蓄熱効率が低下したりする問題があった。
【0031】
また、蓄熱運転時に全ての室内機が停止している場合、室内機及びその近傍の冷媒配管に圧縮機1から吐出された高圧高温のガス冷媒が少量ずつ流入して液化・滞留し、その結果、蓄熱回路内の冷媒が不足して、圧縮機1の吐出圧力及び吸入圧力が低下し、蓄熱能力が低下する恐れがあった。
因みに、蓄熱式でない通常の空気調和装置では、複数の室内機の全てが停止しているような運転状態はあり得ず、室外機と室内機とを接続する冷媒配管のうち、室外機から各室内機に分岐するまでの配管には常にある程度の冷媒が流れているため、ここに液冷媒が滞留することはなく、分岐した後の、停止している室内機に係る配管に滞留するのみであった。これに対し、蓄熱式空気調和装置においては、複数の室内機の全てが停止している状態で室外機が運転されることは通常のことであり、室外機と室内機を接続する配管の全体に液冷媒が滞留するため、冷媒不足になる危険性が大きかった。
【0032】
本発明は以上のような問題点を解消するためになされたものであって、安定した冷房能力又は暖房能力を発揮することのできる蓄熱式空気調和装置を提供することを目的とするものである。
【0033】
【課題を解決するための手段】
上記目的を達成するため、本発明は、圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、一般冷房用回路の第1の絞り装置と第2の絞り装置との間と室内側熱交換器と圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し圧縮機,室外側熱交換器,及び第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、圧縮機の吸入側配管と第1の接続配管の第1のバルブと蓄熱用熱交換器との間とを冷媒ポンプを介して接続し蓄熱用熱交換器,第3の絞り装置,第2の絞り装置,及び室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽とを備えた蓄熱式空気調和装置において、一般冷房用回路と放冷用回路とを併用する蓄冷併用冷房運転を行なう際に一般冷房用回路と放冷用回路との合流部と第2の絞り装置との間の冷媒過冷却度を検出する冷媒過冷却度検出手段と、冷媒過冷却度検出手段の検出値に基づいて第1の絞り装置の開度を制御する第1の開度制御手段とを設けたものである。
【0034】
また、一般冷房用回路と放冷用回路とを併用する蓄冷併用冷房運転を行なう際に一般冷房用回路と放冷用回路との合流部と第2の絞り装置との間の冷媒過冷却度を検出する冷媒過冷却度検出手段と、冷媒過冷却度検出手段の検出値に基づいて冷媒ポンプの最大運転容量を設定する第1の最大運転容量設定手段とを設けたものである。
【0035】
また、一般冷房用回路と放冷用回路とを併用する蓄冷併用冷房運転を行なう際に一般冷房用回路と放冷用回路との合流部の冷媒圧力を検出する冷媒圧力検出手段と、合流部の位置と室内側熱交換器の位置との高低差を予め設定する高低差設定手段と、高低差設定手段の設定値に基づいて合流部の冷媒圧力制御目標値を設定するとともに冷媒圧力検出手段の検出値を冷媒圧力制御目標値に近付けるように第1の絞り装置の開度を制御する第2の開度制御手段とを設けたものである。
【0036】
また、合流部の位置と室内側熱交換器の位置との高低差を予め設定する高低差設定手段と、一般冷房用回路と放冷用回路とを併用する蓄冷併用冷房運転を行なう際に高低差設定手段の設定値に基づいて冷媒ポンプの最大運転容量を設定する第2の最大運転容量設定手段とを設けたものである。
【0037】
また、一般冷房用回路と放冷用回路とを併用する蓄冷併用冷房運転を行なう際に一般冷房用回路と放冷用回路との合流部の冷媒圧力を検出する冷媒圧力検出手段と、1日の蓄冷併用冷房時間を設定するとともにこの蓄冷併用冷房時間と予め設定された基準時間との時間差を演算する蓄冷併用冷房時間管理手段と、蓄冷併用冷房時間管理手段が演算した時間差に基づいて合流部の冷媒圧力制御目標値を設定するとともに冷媒圧力検出手段の検出値を冷媒圧力制御目標値に近付けるように第1の絞り装置の開度を制御する第3の開度制御手段とを設けたものである。
【0038】
また、一般冷房用回路と放冷用回路とを併用する蓄冷併用冷房運転を行なう際に1日の蓄冷併用冷房時間を設定するとともにこの蓄冷併用冷房時間と予め設定された基準時間との時間差を演算する蓄冷併用冷房時間管理手段と、蓄冷併用冷房時間管理手段が演算した時間差に基づいて冷媒ポンプの最大運転容量を設定する第3の最大運転容量設定手段とを設けたものである。
【0039】
また、一般冷房用回路と放冷用回路とを併用する蓄冷併用冷房運転を行なう際に一般冷房用回路と放冷用回路との合流部の冷媒圧力を検出する冷媒圧力検出手段と、蓄冷併用冷房運転開始からの経過時間における蓄冷消費量の予測値を演算する蓄冷消費量予測値演算手段と、蓄冷併用冷房運転開始からの経過時間及びこの経過時間における冷媒ポンプの積算運転容量によって実際の蓄冷消費量を演算する蓄冷消費量演算手段と、蓄冷消費量の予測値と実際の蓄冷消費量との消費量差に基づいて合流部の冷媒圧力制御目標値を設定するとともに冷媒圧力検出手段の検出値を冷媒圧力制御目標値に近付けるように第1の絞り装置の開度を制御する第4の開度制御手段とを設けたものである。
【0040】
また、一般冷房用回路と放冷用回路とを併用する蓄冷併用冷房運転の開始からの経過時間における蓄冷消費量の予測値を演算する蓄冷消費量予測値演算手段と、蓄冷併用冷房運転開始からの経過時間及びこの経過時間における冷媒ポンプの積算運転容量によって実際の蓄冷消費量を演算する蓄冷消費量演算手段と、蓄冷消費量の予測値と実際の蓄冷消費量との消費量差に基づいて冷媒ポンプの最大運転容量を設定する第4の最大運転容量設定手段とを設けたものである。
【0041】
また、一般冷房用回路と放冷用回路とを併用する蓄冷併用冷房運転の開始からの経過時間における蓄冷消費量の予測値を演算する蓄冷消費量予測値演算手段と、蓄冷併用冷房運転開始からの経過時間及びこの経過時間における冷媒ポンプの積算運転容量によって実際の蓄冷消費量を演算する蓄冷消費量演算手段と、冷房負荷全体をベース負荷とこのベース負荷より負荷の小さい変動負荷とに区分するとともに蓄冷消費量の予測値と実際の蓄冷消費量との消費量差に基づいて運転モードをベース負荷が放冷用回路でまかなわれる放冷ベースモードとベース負荷が一般冷房用回路でまかなわれる一般冷房ベースモードとのいずれかに切り換える運転モード切換手段とを設けたものである。
【0042】
また、蓄熱媒体の蓄冷量を検出する蓄冷量検出手段と、蓄冷量検出手段の検出値が予め設定された所定値を下回った時に圧縮機の最大運転容量を大きな容量に設定変更する第5の最大運転容量設定手段とを設けたものである。
【0043】
また、一般冷房用回路と放冷用回路とを併用する蓄冷併用冷房運転を行なう際に一般冷房用回路と放冷用回路との合流部の冷媒圧力を検出する冷媒圧力検出手段と、蓄熱媒体の温度を検出する蓄熱媒体温度検出手段と、蓄熱媒体温度検出手段の検出値が予め設定された所定値を上回った時に合流部の冷媒圧力制御目標値を高い圧力に設定変更するとともに冷媒圧力検出手段の検出値を設定変更された冷媒圧力制御目標値に近付けるように第1の絞り装置の開度を制御する第5の開度制御手段とを設けたものである。
【0044】
また、一般冷房用回路と放冷用回路とを併用する蓄冷併用冷房運転を行なう際に蓄熱媒体の温度を検出する蓄熱媒体温度検出手段と、蓄熱媒体温度検出手段の検出値が予め設定された所定値を上回った時に冷媒ポンプの最大運転容量を大きな容量に設定変更する第6の最大運転容量設定手段とを設けたものである。
【0045】
また、上記構成に加えて、圧縮機の吸入側配管と吐出側配管との間に設けられて一般冷房用回路の冷媒循環方向を反転させる四方切換弁と、圧縮機の吸入側配管と第1の接続配管の第1のバルブと蓄熱用熱交換器との間とを第2のバルブを介して接続する第3の接続配管とを備えたものである。
【0046】
また、圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、一般冷房用回路の第1の絞り装置と第2の絞り装置との間と室内側熱交換器と圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し圧縮機,室外側熱交換器,及び第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、圧縮機の吸入側配管と第1の接続配管の第1のバルブと蓄熱用熱交換器との間とを冷媒ポンプを介して接続し蓄熱用熱交換器,第3の絞り装置,第2の絞り装置,及び室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽と、圧縮機の吸入側配管と吐出側配管との間に設けられて一般冷房用回路の冷媒循環方向を反転させる四方切換弁と、圧縮機の吸入側配管と第1の接続配管の第1のバルブと蓄熱用熱交換器との間とを第2のバルブを介して接続する第3の接続配管とを備えた蓄熱式空気調和装置において、蓄熱媒体の温度を検出する蓄熱媒体温度検出手段と、圧縮機から吐出された冷媒が室内側熱交換器に向かうように四方切換弁を切り換えて蓄熱併用暖房運転を行なう際に蓄熱媒体温度検出手段の検出値に基づいて第1の絞り装置の開度を制御する第6の開度制御手段とを設けたものである。
【0047】
また、外気の温度を検出する外気温度検出手段と、圧縮機から吐出された冷媒が室内側熱交換器に向かうように四方切換弁を切り換えて蓄熱併用暖房運転を行なう際に外気温度検出手段の検出値に基づいて第1の絞り装置の開度を制御する第7の開度制御手段とを設けたものである。
【0048】
また、蓄熱媒体の温度を検出する蓄熱媒体温度検出手段と、外気の温度を検出する外気温度検出手段と、圧縮機から吐出された冷媒が室内側熱交換器に向かうように四方切換弁を切り換えて蓄熱併用暖房運転を行なう際に蓄熱媒体温度検出手段の検出値と外気温度検出手段の検出値との差に基づいて第1の絞り装置の開度を制御する第8の開度制御手段とを設けたものである。
【0049】
また、圧縮機から吐出された冷媒が室内側熱交換器に向かうように四方切換弁を切り換えて行なう蓄熱併用暖房運転の開始からの蓄熱消費量予測値と実際の蓄熱消費量との差を演算する蓄熱消費量差演算手段と、蓄熱消費量差演算手段の演算値に基づいて第1の絞り装置の開度を制御する第9の開度制御手段とを設けたものである。
【0050】
また、外気の温度を検出する外気温度検出手段と、室外側熱交換器と第1の絞り装置との間の配管の温度を検出する配管温度検出手段と、圧縮機から吐出された冷媒が第1の接続配管に向かうように四方切換弁を切り換えて蓄熱運転を行なう際に外気温度検出手段の検出値と配管温度検出手段の検出値とに基づいて圧縮機と冷媒ポンプとの少なくともいずれか一方の運転容量を制御する運転容量制御手段とを設けたものである。
【0051】
また、蓄熱用熱交換器への冷媒の循環量を検出する冷媒循環量検出手段と、圧縮機から吐出された冷媒が第1の接続配管に向かうように四方切換弁を切り換えて蓄熱運転を行なう際に冷媒循環量検出手段の検出値に基づいて第2の絞り装置の開度を制御する第10の開度制御手段とを設けたものである。
【0052】
【発明の実施の形態】
実施の形態1.
以下、本発明の実施の形態1に係る蓄熱式空気調和装置を図面に基づき説明する。図1は蓄熱式空気調和装置の概略構成を示しており、同図において、従来例における図45と同一もしくは相当する構成要素については同一の符号を付し、説明を省略する。図45と異なるのは以下の点である。
【0053】
すなわち、冷媒配管120と119とを合流してなる冷媒配管128は、その一端側が冷媒配管129と130とに分岐しており、冷媒配管129は圧縮機1の吸入側に、冷媒配管130は冷媒ポンプ12の吸入側に、それぞれ接続されている。圧縮機1の吐出側と室外側熱交換器3とは冷媒配管104により直接接続されている。冷媒ポンプ12の吐出側と冷媒配管112及び118とは冷媒配管131により直接接続されている。蓄熱用熱交換器10の、冷媒配管112と反対側には、冷媒配管106,第3の絞り装置22,冷媒配管105が順次接続されている。冷媒配管105は合流部Mにおいて冷媒配管108と合流し、この合流部Mには冷媒配管121が接続されている。また、合流部Mにおける冷媒の過冷却度を検出する冷媒過冷却度検出手段201と、この冷媒過冷却度検出手段201の検出値に基づいて第1の絞り装置6の開度を制御する第1の開度制御手段202とが設けられている。
【0054】
なお、冷媒配管105,106,112,118,及び119からなり、途中に第3の絞り装置22,蓄熱用熱交換器10,及び第1のバルブ14を有する一連の配管が本発明にいう第1の接続配管の一例であり、また、冷媒配管130及び131からなり、途中に冷媒ポンプ12を有する一連の配管が本発明にいう第2の接続配管の一例である。
【0055】
次いで、動作について説明する。基本的な冷媒の流れ、及び運転状態は従来例における蓄冷運転,一般冷房運転,放冷運転,及び蓄冷併用冷房運転と同様なのでここでは省略し、蓄冷併用冷房運転における冷媒過冷却度検出手段201及び第1の開度制御手段202の動作を説明する。
【0056】
図2は蓄冷併用冷房運転時の運転状態図であり、第1の絞り装置6が所定開度の場合の運転状態は図中に実線で示す通りである。そして、冷媒過冷却度検出手段201の検出値に基づいて第1の開度制御手段202が第1の絞り装置6の開度をより大きくすると、圧縮機1からの高圧の冷媒があまり減圧されずに合流部Mに達することになって、図中に一点鎖線で示すように合流部Mの圧力がM’で示す圧力まで上昇し、冷媒過冷却度も高められる。
【0057】
図3は、冷媒過冷却度検出手段201による冷媒過冷却度の検出値と、予め設定されている合流部Mにおける冷媒過冷却度の目標値とに基づく、第1の開度制御手段202による第1の絞り装置6の開度制御の方法を示している。
このように、(冷媒過冷却度目標値)−(冷媒過冷却度検出値)の値がマイナスの場合には第1の絞り装置6の開度を現状より減少させ、値がプラスの場合は第1の絞り装置6の開度を現状より増加させることにより、所定の冷媒過冷却度にすることができる。
【0058】
なお、冷媒過冷却度検出手段201により冷媒過冷却度を検出する位置は合流部Mに限定されず、合流部Mと第2の絞り装置15との間であれば、どこで冷媒過冷却度を検出してもよい。
【0059】
実施の形態2.
以下、本発明の実施の形態2に係る蓄熱式空気調和装置を図面に基づき説明する。図4は蓄熱式空気調和装置の概略構成を示しており、発明の実施の形態1の図1と異なるのは以下の点のみである。すなわち、第1の開度制御手段202に代えて、冷媒過冷却度検出手段201の検出値に基づいて冷媒ポンプ12の最大運転容量を設定する第1の最大運転容量設定手段203が設けられている。
【0060】
図5は蓄冷併用冷房運転時の運転状態図であり、冷媒ポンプ12を所定の最大運転容量で運転している場合の運転状態は図中に実線で示す通りである。そして、冷媒過冷却度検出手段201の検出値に基づいて第1の最大運転容量設定手段203が冷媒ポンプ12の最大運転容量をより大きく設定すると、図中に一点鎖線で示すように合流部Mにおける冷媒のエンタルピーがM´まで減少し、合流部Mにおける冷媒過冷却度は大きくなる。
【0061】
図6は、冷媒過冷却度検出手段201による冷媒過冷却度の検出値と、予め設定されている合流部Mにおける冷媒過冷却度の目標値とに基づく、第1の最大運転容量設定手段203による冷媒ポンプ12の最大運転容量の設定方法を示している。
このように、(冷媒過冷却度目標値)−(冷媒過冷却度検出値)の値がマイナスの場合には冷媒ポンプ12の最大運転容量設定値を現状より減少させ、値がプラスの場合には冷媒ポンプ12の最大運転容量設定値を現状より増加させることにより、所定の冷媒過冷却度にすることができる。
【0062】
実施の形態3.
以下、本発明の実施の形態3に係る蓄熱式空気調和装置を図面に基づき説明する。図7は蓄熱式空気調和装置の概略構成を示しており、発明の実施の形態1の図1と異なるのは以下の点のみである。すなわち、冷媒過冷却度検出手段201及び第1の開度制御手段202に代えて、合流部Mの冷媒圧力を検出する冷媒圧力検出手段204と、合流部Mの位置と室内側熱交換器16の位置との高低差を予め設定する高低差設定手段205と、この高低差設定手段205の設定値に基づいて合流部Mの冷媒圧力制御目標値を設定するとともに冷媒圧力検出手段204の検出値を上記冷媒圧力制御目標値に近付けるように第1の絞り装置6の開度を制御する第2の開度制御手段206とが設けられている。
【0063】
図8は蓄冷併用冷房運転時の運転状態図であり、合流部Mの冷媒圧力制御目標値が所定値に設定されている場合の運転状態は図中に実線で示す通りである。そして、第2の開度制御手段206が、高低差設定手段205の設定値に基づいて合流部Mの冷媒圧力制御目標値をより大きく設定するとともに冷媒圧力検出手段204の検出値を上記冷媒圧力制御目標値に近付けるように第1の絞り装置6の開度を大きくした場合には、図中に一点鎖線で示すように合流部Mにおける冷媒圧力がM´まで上昇し、第2の絞り装置15の入口もしくは各室内側熱交換器16a〜cへの分岐部における冷媒の圧力はPからP´へと上昇し、冷媒過冷却度も増加する。
【0064】
図9は、高低差設定手段205の設定値に基づく、第2の開度制御手段206による合流部Mの冷媒圧力制御目標値の設定方法を示している。
このように、(室内側熱交換器16の高さ)−(冷媒合流部Mの高さ)の値(高低差設定値)が所定高低差たとえば10m以上の場合は、合流部Mの圧力制御目標値を所定圧力たとえば9.0kg/cm2 Gよりも増加させることにより、合流部Mから第2の絞り装置15に至るまでの冷媒配管内において冷媒が気液二相状態となるのを防止することができる。
【0065】
実施の形態4.
以下、本発明の実施の形態4に係る蓄熱式空気調和装置を図面に基づき説明する。図10は蓄熱式空気調和装置の概略構成を示しており、発明の実施の形態3の図7と異なるのは以下の点のみである。すなわち、冷媒圧力検出手段204及び第2の開度制御手段206に代えて、高低差設定手段205の設定値に基づいて冷媒ポンプ12の最大運転容量を設定する第2の最大運転容量設定手段207が設けられている。
【0066】
図11は蓄冷併用冷房運転時の運転状態図であり、冷媒ポンプ12の運転容量が所定の最大運転容量に設定されている場合の運転状態は図中に実線で示す通りである。そして、第2の最大運転容量設定手段207が、高低差設定手段205の設定値に基づいて冷媒ポンプ12の最大運転容量をより大きく設定した場合には、図中に一点鎖線で示すように合流部Mにおける冷媒のエンタルピーがM´まで減少し、これにより、第2の絞り装置15の入口もしくは各室内側熱交換器16a〜cへの分岐部における冷媒の圧力はPからP´へと上昇し、冷媒過冷却度も増加する。
【0067】
図12は、高低差設定手段205の設定値に基づく、第2の最大運転容量設定手段207による冷媒ポンプ12の最大運転容量の設定方法を示している。 このように、(室内側熱交換器16の高さ)−(冷媒合流部Mの高さ)の値(高低差設定値)が所定高低差たとえば10m以上の場合は、冷媒ポンプ12の最大運転容量を所定容量たとえば70%よりも増加させることにより、合流部Mから第2の絞り装置15に至るまでの冷媒配管内において冷媒が気液二相状態となるのを防止することができる。
【0068】
実施の形態5.
以下、本発明の実施の形態5に係る蓄熱式空気調和装置を図面に基づき説明する。図13は蓄熱式空気調和装置の概略構成を示しており、発明の実施の形態3の図7と異なるのは以下の点のみである。すなわち、高低差設定手段205及び第2の開度制御手段206に代えて、1日の蓄冷併用冷房時間を設定するとともにこの蓄冷併用冷房時間と予め設定された基準時間との時間差を演算する蓄冷併用冷房時間管理手段208と、この蓄冷併用冷房時間管理手段208が演算した時間差に基づいて合流部Mの冷媒圧力制御目標値を設定するとともに冷媒圧力検出手段204の検出値を上記冷媒圧力制御目標値に近付けるように第1の絞り装置6の開度を制御する第3の開度制御手段209とが設けられている。
【0069】
蓄冷併用冷房時間管理手段208は、夜間蓄えられる蓄冷量に見合った蓄冷併用冷房時間の基準値たとえば10時間と、その日1日の蓄冷併用冷房時間との時間差を演算する機能を有しており、この演算された時間差に基づいて、合流部Mの冷媒圧力制御目標値を設定する。
【0070】
図14は、蓄冷併用冷房時間管理手段208が演算する時間差に基づく、第3の開度制御手段209による合流部Mの冷媒圧力制御目標値の設定方法を示している。
このように、(1日の蓄冷併用冷房時間)−(予め設定された基準時間)の値がプラスの場合には、合流部Mの圧力制御目標値を増加させ、値がマイナスの場合には、合流部Mの圧力制御目標値を減少させる。
【0071】
図15は、冷媒圧力検出手段204による合流部Mにおける冷媒圧力の検出値と放冷用回路に係る運転負荷との関係を示している。
合流部Mの圧力制御目標値を増加させると、第1の絞り装置6の開度をより大きくする制御がなされる。第1の絞り装置6の開度が大きくなると、圧縮機1,室外側熱交換器3,第1の絞り装置6,第2の絞り装置15,及び室内側熱交換器16からなる一般冷房用回路に係る運転負荷が大きくなり、合流部Mにおける冷媒圧力の検出値が高くなるとともに、冷媒ポンプ12,蓄熱用熱交換器10,第3の絞り装置22,第2の絞り装置15,及び室内側熱交換器16からなる放冷用回路に係る運転負荷は小さくなる。よって、1日の蓄冷併用冷房時間が予め設定された基準時間よりも長い場合に蓄冷量が不足するのを防止できる。また、1日の蓄冷併用冷房時間が予め設定された基準時間よりも短い場合には、合流部Mの圧力制御目標値を減少させるので、上記とは反対に放冷用回路に係る運転負荷が大きくなって、蓄冷量が余るのを防止できる。
【0072】
実施の形態6.
以下、本発明の実施の形態6に係る蓄熱式空気調和装置を図面に基づき説明する。図16は蓄熱式空気調和装置の概略構成を示しており、発明の実施の形態5の図13と異なるのは以下の点のみである。すなわち、冷媒圧力検出手段204及び第3の開度制御手段209に代えて、蓄冷併用冷房時間管理手段208が演算した時間差に基づいて冷媒ポンプ12の最大運転容量を設定する第3の最大運転容量設定手段210が設けられている。
【0073】
図17は、蓄冷併用冷房時間管理手段208が演算する時間差に基づく、第3の最大運転容量設定手段210による冷媒ポンプ12の最大運転容量の設定方法を示している。
このように、(1日の蓄冷併用冷房時間)−(予め設定された基準時間)の値がプラスの場合には、冷媒ポンプ12の最大運転容量設定値を減少させる。これにより放冷用回路に係る運転負荷が小さくなり、蓄冷量が不足するのを防止できる。また、(1日の蓄冷併用冷房時間)−(予め設定された基準時間)の値がマイナスの場合には、冷媒ポンプ12の最大運転容量設定値を増加させる。これにより放冷用回路に係る運転負荷が大きくなり、蓄冷量が余るのを防止できる。
【0074】
実施の形態7.
以下、本発明の実施の形態7に係る蓄熱式空気調和装置を図面に基づき説明する。図18は蓄熱式空気調和装置の概略構成を示しており、発明の実施の形態3の図7と異なるのは以下の点のみである。すなわち、高低差設定手段205及び第2の開度制御手段206に代えて、蓄冷併用冷房運転開始からの経過時間における蓄冷消費量の予測値を演算する蓄冷消費量予測値演算手段211と、蓄冷併用冷房運転開始からの経過時間及びこの経過時間における冷媒ポンプ12の積算運転容量によって実際の蓄冷消費量を演算する蓄冷消費量演算手段212と、蓄冷消費量予測値演算手段211が演算した蓄冷消費量の予測値と蓄冷消費量演算手段212が演算した実際の蓄冷消費量との消費量差に基づいて合流部Mの冷媒圧力制御目標値を設定するとともに冷媒圧力検出手段204の検出値を上記冷媒圧力制御目標値に近付けるように第1の絞り装置6の開度を制御する第4の開度制御手段213とが設けられている。
【0075】
蓄冷消費量予測値演算手段211は、たとえば蓄冷併用冷房を開始する時点の外気温度に基づき、蓄冷併用冷房運転開始からの経過時間における蓄冷消費量の予測値を演算する。また、第4の開度制御手段213は、蓄冷消費量予測値演算手段211が演算した蓄冷消費量の予測値と、蓄冷消費量演算手段212が演算した実際の蓄冷消費量をリアルタイムに比較し、これらの消費量の差の積算値によって合流部Mの冷媒圧力制御目標値を設定する。
【0076】
図19は、第4の開度制御手段213による合流部Mの冷媒圧力制御目標値の設定方法を示している。
このように、(蓄冷消費量の予測値)−(実際の蓄冷消費量)の積算値がプラスの場合には、合流部Mの冷媒圧力制御目標値を減少させ、積算値がマイナスの場合には、合流部Mの冷媒圧力制御目標値を増加させる。
【0077】
図20は、図19のような制御を行なった場合の、蓄冷消費量の予測値と実際の蓄冷消費量との差の積算値の変化を示している。図中点線は積算値がゼロの線である。区間Aでは積算値がプラスの状態が続いているため、a点で合流部Mの冷媒圧力制御目標値を下げており、この結果、区間Bでは第1の絞り装置6の開度が小さくなり、放冷用回路に係る運転負荷が大きくなって、積算値は次第に減少している。
【0078】
そして、b点で一旦ゼロとなった積算値は、区間Cでは区間Aとは逆にマイナスに転じているため、c点では合流部Mの冷媒圧力制御目標値を上げており、この結果、区間Dでは第1の絞り装置6の開度が大きくなり、放冷用回路に係る運転負荷が小さくなって、積算値は次第に増加し、d点では再び積算値がゼロとなっている。上記a点、c点におけるような合流部Mの冷媒圧力制御目標値の変更をたとえば周期的に行うことにより、所定の蓄冷併用冷房時間内に蓄冷量を過不足なく使い切ることが可能となる。
【0079】
実施の形態8.
以下、本発明の実施の形態8に係る蓄熱式空気調和装置を図面に基づき説明する。図21は蓄熱式空気調和装置の概略構成を示しており、発明の実施の形態7の図18と異なるのは以下の点のみである。すなわち、冷媒圧力検出手段204及び第4の開度制御手段213に代えて、蓄冷消費量予測値演算手段211が演算した蓄冷消費量の予測値と蓄冷消費量演算手段212が演算した実際の蓄冷消費量との消費量差に基づいて冷媒ポンプ12の最大運転容量を設定する第4の最大運転容量設定手段214が設けられている。
【0080】
第4の最大運転容量設定手段214は、蓄冷消費量予測値演算手段211が演算した蓄冷消費量の予測値と、蓄冷消費量演算手段212が演算した実際の蓄冷消費量をリアルタイムに比較し、これらの消費量の差の積算値によって冷媒ポンプ12の最大運転容量を設定する。
【0081】
図22は、第4の最大運転容量設定手段214による冷媒ポンプ12の最大運転容量の設定方法を示している。
このように、(蓄冷消費量の予測値)−(実際の蓄冷消費量)の積算値がプラスの場合には、冷媒ポンプ12の最大運転容量を増加させ、積算値がマイナスの場合には、冷媒ポンプ12の最大運転容量を減少させる。
【0082】
冷媒ポンプ12の最大運転容量を増加させた場合には、放冷用回路に係る運転負荷が大きくなって、積算値は次第に減少してゆき、反対に、冷媒ポンプ12の最大運転容量を減少させた場合には、放冷用回路に係る運転負荷が小さくなって、積算値は次第に増加してゆく。
なお、このような制御を行なった場合の、蓄冷消費量の予測値と実際の蓄冷消費量との差の積算値の変化は発明の実施の形態7における図20と同様であるので、重複する図示を省略する。
【0083】
実施の形態9.
以下、本発明の実施の形態9に係る蓄熱式空気調和装置を図面に基づき説明する。図23は蓄熱式空気調和装置の概略構成を示しており、発明の実施の形態7の図18と異なるのは以下の点のみである。すなわち、冷媒圧力検出手段204及び第4の開度制御手段213に代えて、運転モード切換手段215が設けられている。運転モード切換手段215は、冷房負荷全体を所定のベース負荷とこのベース負荷より負荷の小さい変動負荷とに区分するとともに、蓄冷消費量予測値演算手段211が演算した蓄冷消費量の予測値と蓄冷消費量演算手段212が演算した実際の蓄冷消費量との消費量差をリアルタイムに比較し、その消費量差の積算値に基づいて、運転モードを上記ベース負荷が放冷用回路でまかなわれる放冷ベースモードと上記ベース負荷が一般冷房用回路でまかなわれる一般冷房ベースモードとのいずれかに切り換えるものである。
【0084】
図24は、運転モード切換手段215による運転モードの切り換え方法を示している。
このように、(蓄冷消費量の予測値)−(実際の蓄冷消費量)の積算値がプラスの場合には、ベース負荷が放冷用回路でまかなわれる放冷ベースモードに切り換え、積算値がマイナスの場合には、ベース負荷が一般冷房用回路でまかなわれる一般冷房ベースモードに切り換える。
【0085】
放冷ベースモードに切り換えた場合には、変動負荷より負荷の大きいベース負荷が放冷用回路でまかなわれるために、放冷用回路に係る運転負荷が大きくなって、積算値は次第に減少してゆく。また、これとは反対に、一般冷房ベースモードに切り換えた場合には、ベース負荷は一般冷房用回路でまかなわれ、ベース負荷より負荷の小さい変動負荷が放冷用回路でまかなわれるため、放冷用回路に係る運転負荷が小さくなって、積算値は次第に増加してゆく。
なお、このような制御を行なった場合の、蓄冷消費量の予測値と実際の蓄冷消費量との差の積算値の変化は発明の実施の形態7における図20と同様であるので、重複する図示を省略する。
【0086】
実施の形態10.
以下、本発明の実施の形態10に係る蓄熱式空気調和装置を図面に基づき説明する。図25は蓄熱式空気調和装置の概略構成を示しており、発明の実施の形態1の図1と異なるのは以下の点のみである。すなわち、冷媒過冷却度検出手段201及び第1の開度制御手段202に代えて、蓄熱媒体21の蓄冷量を検出する蓄冷量検出手段216と、蓄冷量検出手段216の検出値が予め設定された所定値を下回った時に圧縮機1の最大運転容量を大きな容量に設定変更する第5の最大運転容量設定手段217とが設けられている。 なお、蓄冷量検出手段216は、たとえば蓄熱媒体21の温度に基づいて蓄冷量を検出する。
【0087】
したがって、蓄熱媒体21の蓄冷量が減少して蓄熱用熱交換器10の熱交換能力が低下した場合に、圧縮機1の最大運転容量が大きな容量に設定変更されて室外側熱交換器3の熱交換能力が増強され、これにより、蓄熱用熱交換器10の熱交換能力低下分が補われるので、蓄熱式空気調和装置全体としての冷房能力は低下することがない。
【0088】
実施の形態11.
以下、本発明の実施の形態11に係る蓄熱式空気調和装置を図面に基づき説明する。図26は蓄熱式空気調和装置の概略構成を示しており、発明の実施の形態3の図7と異なるのは以下の点のみである。すなわち、高低差設定手段205及び第2の開度制御手段206に代えて、蓄熱媒体21の温度を検出する蓄熱媒体温度検出手段218と、蓄熱媒体温度検出手段218の検出値が予め設定された所定値を上回った時に合流部Mの冷媒圧力制御目標値を高い圧力に設定変更するとともに冷媒圧力検出手段204の検出値を上記設定変更された冷媒圧力制御目標値に近付けるように第1の絞り装置6の開度を制御する第5の開度制御手段219とが設けられている。
【0089】
したがって、蓄熱媒体温度検出手段218の検出値が予め設定された所定値を上回り、蓄熱媒体21から冷熱を取り出すのが不可能となったような場合には、第5の開度制御手段219が合流部Mの冷媒圧力制御目標値を高い圧力に設定変更するとともに冷媒圧力検出手段204の検出値を上記設定変更された冷媒圧力制御目標値に近付けるように第1の絞り装置6の開度を大きくするので、合流部Mの冷媒圧力が高められ、蓄熱用熱交換器10内の冷媒圧力も高くなって、蓄熱用熱交換器10内の冷媒の飽和温度が上昇する。これにより、蓄熱媒体21からさらに冷熱を取り出すことが可能となる。
【0090】
実施の形態12.
以下、本発明の実施の形態12に係る蓄熱式空気調和装置を図面に基づき説明する。図27は蓄熱式空気調和装置の概略構成を示しており、発明の実施の形態11の図26と異なるのは以下の点のみである。すなわち、冷媒圧力検出手段204及び第5の開度制御手段219に代えて、蓄熱媒体温度検出手段218の検出値が予め設定された所定値を上回った時に冷媒ポンプ12の最大運転容量を大きな容量に設定変更する第6の最大運転容量設定手段220が設けられている。
【0091】
したがって、蓄熱媒体温度検出手段218の検出値が予め設定された所定値を上回り、蓄熱媒体21から冷熱を取り出すのが不可能となったような場合には、第6の最大運転容量設定手段220が冷媒ポンプ12の最大運転容量を大きな容量に設定変更するので、蓄熱用熱交換器10内の冷媒圧力が高くなって、蓄熱用熱交換器10内の冷媒の飽和温度が上昇する。これにより、蓄熱媒体21からさらに冷熱を取り出すことが可能となる。
【0092】
実施の形態13.
以下、本発明の実施の形態13に係る蓄熱式空気調和装置を図面に基づき説明する。図28は蓄熱式空気調和装置の概略構成を示しており、発明の実施の形態1の図1と以下の点が異なっている。すなわち、圧縮機1の吸入側配管である冷媒配管129と、圧縮機1の吐出側配管である冷媒配管104との間に、四方切換弁23が設けられている。四方切換弁23は、冷媒配管133を介して冷媒配管129に、冷媒配管134を介して室外側熱交換器3に、それぞれ接続されている。そして、発明の実施の形態1では圧縮機1から室外側熱交換器3に向かって流れるのみであった一般冷房用回路の冷媒循環方向を、四方切換弁23の切り換えによって、圧縮機1から室内側熱交換器16に向かって流れる方向に反転できるように構成されている。
【0093】
また、冷媒配管133には冷媒配管135,第2のバルブ18,及び冷媒配管136が順次接続され、冷媒配管136は冷媒配管112に接続されている。
なお、冷媒配管135及び136からなり、途中に第2のバルブ18を有する一連の配管が本発明にいう第3の接続配管の一例である。
【0094】
次いで、動作について説明する。冷媒配管104からの冷媒が冷媒配管134に向かうように四方切換弁23を切り換えるとともに第2のバルブ18を閉じて行なわれる蓄冷運転,一般冷房運転,放冷運転,及び蓄冷併用冷房運転における基本的な冷媒の流れや運転状態と、蓄冷併用冷房運転における冷媒過冷却度検出手段201及び第1の開度制御手段202の動作は発明の実施の形態1と同様であるので、説明を省略する。
【0095】
図29に示すように、冷媒配管104からの冷媒が冷媒配管128に向かうように四方切換弁23を切り換えるとともに、第1のバルブ14を開き、第2のバルブ18を閉じて圧縮機1を運転すると、圧縮機1から吐出された冷媒は四方切換弁23,第1のバルブ14,蓄熱用熱交換器10,第3の絞り装置22,第1の絞り装置6,室外側熱交換器3,四方切換弁23を順次経て圧縮機1に戻り、これにより蓄熱媒体21を加熱する蓄熱運転が行なわれる。
【0096】
また、図30に示すように、冷媒配管104からの冷媒が冷媒配管128に向かうように四方切換弁23を切り換えるとともに、第1のバルブ14及び第2のバルブ18を閉じて圧縮機1を運転すると、圧縮機1から吐出された冷媒は四方切換弁23,室内側熱交換器16,第2の絞り装置15,第1の絞り装置6,室外側熱交換器3,四方切換弁23を順次経て圧縮機1に戻り、これにより一般暖房運転が行なわれる。
【0097】
また、図31に示すように、冷媒配管104からの冷媒が冷媒配管128に向かうように四方切換弁23を切り換えるとともに、第1のバルブ14を閉じ、第2のバルブ18を開いて圧縮機1を運転すると、圧縮機1から吐出された冷媒は四方切換弁23,室内側熱交換器16,第2の絞り装置15,第3の絞り装置22,蓄熱用熱交換器10,第2のバルブ18を順次経て圧縮機1に戻り、これにより蓄熱媒体21の蓄熱を使用した暖房運転すなわち放熱運転が行なわれる。
【0098】
さらに、図32に示すように、冷媒配管104からの冷媒が冷媒配管128に向かうように四方切換弁23を切り換えるとともに、第1のバルブ14を閉じ、第2のバルブ18を開き、第1の絞り装置6の開度を調整するようにして、圧縮機1を運転すると、圧縮機1から吐出された冷媒は、四方切換弁23,室内側熱交換器16,第2の絞り装置15を経た後、第3の絞り装置22,蓄熱用熱交換器10,第2のバルブ18を順次経て圧縮機1に戻る放熱回路と、第1の絞り装置6,室外側熱交換器3,四方切換弁23を順次経て圧縮機1に戻る一般暖房回路とに分岐し、蓄熱媒体21の蓄熱を使用した暖房運転すなわち放熱運転と室外側熱交換器3から採熱する一般暖房運転とを併用する蓄熱併用暖房運転が行われる。
【0099】
以上説明したように、この実施の形態13では、従来例に係る図45の蓄熱式空気調和装置よりも簡単な構成でありながら、蓄冷運転,一般冷房運転,放冷運転,及び蓄冷併用冷房運転に加えて、蓄熱運転,一般暖房運転,放熱運転,及び蓄熱併用暖房運転が可能な冷暖房兼用の蓄熱式空気調和装置となっており、冷房時,暖房時とも、昼間の電力消費を抑制でき、年間を通じて電力のピークシフトを達成することが可能となっている。
【0100】
また、従来の蓄熱式空気調和装置と異なり、圧縮機1の吸入側配管である冷媒配管129に、冷媒ポンプ12の吸入側配管である冷媒配管130が接続されているので、冷媒とともに回路内を流れる潤滑油が圧縮機1又は冷媒ポンプ12に偏って吸入されることがなくなり、長時間の連続運転時にも圧縮機1及び冷媒ポンプ12の潤滑油枯渇に起因する故障を防止できる。
【0101】
実施の形態14.
以下、本発明の実施の形態14に係る蓄熱式空気調和装置を図面に基づき説明する。図33は蓄熱式空気調和装置の概略構成を示しており、発明の実施の形態13の図28と異なるのは以下の点である。すなわち、蓄熱媒体21の温度を検出する蓄熱媒体温度検出手段218と、この蓄熱媒体温度検出手段218の検出値に基づいて第1の絞り装置6の開度を制御する第6の開度制御手段223とを設けたことである。
【0102】
図34は、図32と同様な蓄熱併用暖房運転時の、蓄熱媒体温度検出手段218にて検出された蓄熱媒体21の温度に基づく、第6の開度制御手段223による第1の絞り装置6の開度制御方法を示している。
このように、蓄熱媒体21の温度が高い場合には、第1の絞り装置6の開度を小さく設定し、蓄熱用熱交換器10に係る放熱回路の冷媒流量を増加させ、蓄熱媒体21の放熱による暖房の高能力及び高効率を最大限に発揮し、蓄熱媒体21の温度が低い場合には、第1の絞り装置6の開度を大きく設定し、蓄熱用熱交換器10に流れる冷媒流量を減少させ、暖房運転の能力及び効率が低下するのを防止する。
【0103】
実施の形態15.
以下、本発明の実施の形態15に係る蓄熱式空気調和装置を図面に基づき説明する。図35は蓄熱式空気調和装置の概略構成を示しており、発明の実施の形態13の図28と異なるのは以下の点である。すなわち、外気の温度を検出する外気温度検出手段221と、この外気温度検出手段221の検出値に基づいて第1の絞り装置6の開度を制御する第7の開度制御手段224とを設けたことである。
【0104】
図36は、図32と同様な蓄熱併用暖房運転時の、外気温度検出手段221にて検出された外気温度に基づく、第7の開度制御手段224による第1の絞り装置6の開度制御方法を示している。
このように、外気温度が高い場合には、第1の絞り装置6の開度を大きく設定し、室外側熱交換器3への冷媒流量を増加させ、高温の外気からの採熱を主体とする高能力及び高効率を最大限に発揮する。一方、外気温度が低い場合には、第1の絞り装置6の開度を小さく設定し、室外側熱交換器3への冷媒流量を減少させることにより、蓄熱媒体21からの採熱を主体とする運転を行ない、暖房運転の能力及び効率が低下するのを防止する。
【0105】
実施の形態16.
以下、本発明の実施の形態16に係る蓄熱式空気調和装置を図面に基づき説明する。図37は蓄熱式空気調和装置の概略構成を示しており、発明の実施の形態13の図28と異なるのは以下の点である。すなわち、蓄熱媒体21の温度を検出する蓄熱媒体温度検出手段218と、外気温度を検出する外気温度検出手段221と、蓄熱媒体温度検出手段218の検出値と外気温度検出手段221の検出値と差に基づいて第1の絞り装置6の開度を制御する第8の開度制御手段225とを設けたことである。
【0106】
図38は、図32と同様な蓄熱併用暖房運転時の、蓄熱媒体温度検出手段218にて検出された蓄熱媒体21の温度と外気温度検出手段221にて検出された外気温度との差に基づく、第8の開度制御手段225による第1の絞り装置6の開度設定方法を示している。
このように、蓄熱媒体21の温度が外気温度よりも高い場合であって、かつ、蓄熱媒体21と外気との温度差が大きい場合には、第1の絞り装置6の開度を小さく設定し、蓄熱用熱交換器10への冷媒流量を増加させ、蓄熱媒体21と外気との温度差が小さいか又はマイナスの場合には、第1の絞り装置6の開度を大きく設定し、蓄熱用熱交換器10への冷媒流量を減少させることにより、暖房運転の高能力及び高効率化が図れる。
【0107】
なお、蓄熱媒体21の温度と外気温度検出手段221にて検出された外気温度との差の代わりに、各々の温度に対する冷媒飽和圧力の差に基づいて第1の絞り装置6の開度を制御する、すなわち、圧力差が大きい場合には、第1の絞り装置6の開度を小さく設定し、圧力差が小さいか又はマイナスの場合には、第1の絞り装置6の開度を大きく設定するような制御を行なっても、この実施の形態16とほぼ同様の効果が得られる。
【0108】
実施の形態17.
以下、本発明の実施の形態17に係る蓄熱式空気調和装置を図面に基づき説明する。図39は蓄熱式空気調和装置の概略構成を示しており、発明の実施の形態13の図28と異なるのは以下の点である。すなわち、蓄熱併用暖房運転の開始からの蓄熱消費量予測値と実際の蓄熱消費量との差を演算する蓄熱消費量差演算手段222と、この蓄熱消費量差演算手段222の演算値に基づいて第1の絞り装置6の開度を制御する第9の開度制御手段226とを設けたことである。
【0109】
蓄熱消費量差演算手段222は、たとえば、室内側熱交換器16が設置されている室内の暖房負荷と、蓄熱併用暖房運転開始からの経過時間とから、その時点における蓄熱消費量予測値と実際の蓄熱消費量との差を演算する。
【0110】
図40は、図32と同様な蓄熱併用暖房運転時の、蓄熱消費量差演算手段222の演算値に基づく、第9の開度制御手段226による第1の絞り装置6の開度設定方法を示している。
このように、(蓄熱消費量予測値)−(実際の蓄熱消費量)の差(演算値)が大きい場合には、第1の絞り装置6の開度を小さく設定し、蓄熱用熱交換器10への冷媒流量を増加させ、上記の差が小さいか又はマイナスの場合には、第1の絞り装置6の開度を大きく設定し、蓄熱用熱交換器10への冷媒流量を減少させる。これにより、蓄熱消費量を最適に制御し、蓄熱を過不足なく使い切ることができる。
【0111】
なお、蓄熱消費量差演算手段222が、圧縮機1の吐出圧力、圧縮機1の運転周波数、室内側熱交換器16の運転容量、室内側熱交換器16の吸込み温度と設定温度との差、等のいずれかに基づいて、蓄熱消費量予測値と実際の蓄熱消費量との差を演算するようにしてもよい。すなわち、第9の開度制御手段226が、圧縮機1の吐出圧力が高い、あるいは圧縮機1の運転周波数が高い、あるいは室内側熱交換器16の運転容量が大きい、あるいは室内側熱交換器16の吸込み温度と設定温度との差が大きい場合には、第1の絞り装置6の開度を大きく設定し、圧縮機1の吐出圧力が低い、あるいは圧縮機1の運転周波数が低い、あるいは室内側熱交換器16の運転容量が小さい、あるいは室内側熱交換器16の吸込み温度と設定温度の差が小さい場合には、第1の絞り装置6の開度を小さく設定するように構成しても、上記とほぼ同様の効果が得られる。
【0112】
実施の形態18.
以下、本発明の実施の形態18に係る蓄熱式空気調和装置を図面に基づき説明する。図41は蓄熱式空気調和装置の概略構成を示しており、発明の実施の形態13の図28と異なるのは以下の点である。すなわち、外気温度を検出する外気温度検出手段221と、室外側熱交換器3と第1の絞り装置6との間の冷媒配管103の温度を検出する配管温度検出手段227と、外気温度検出手段221の検出値と配管温度検出手段227の検出値とに基づいて圧縮機1及び冷媒ポンプ12の運転容量を制御する運転容量制御手段228とを設けたことである。
【0113】
図42は、図29と同様に、圧縮機1から吐出された冷媒が冷媒配管104から冷媒配管128に向かう(すなわち、本発明にいう第1の接続配管に向かう)ように四方切換弁23を切り換えるとともに、第1のバルブ14を開き、第2のバルブ18を閉じて行なわれる蓄熱運転時における、外気温度検出手段221にて検出された外気温度と配管温度検出手段227にて検出された配管温度とに基づく、運転容量制御手段228による圧縮機1及び冷媒ポンプ12の容量制御方法を示している。
【0114】
このように、配管温度が充分に高く、室外側熱交換器3に着霜する恐れのない場合は、圧縮機1及び冷媒ポンプ12の運転容量を大きくして(運転周波数を上昇させて)蓄熱能力をアップさせる。
また、外気温度と配管温度とが、室外側熱交換器3に着霜する恐れのある一定範囲内にある場合は、圧縮機1及び冷媒ポンプ12の運転容量に制限を設け、吸入圧力を上げることにより室外側熱交換器3への着霜を防ぎ、着霜による室外側熱交換器3の能力低下を抑えるとともに、除霜運転の頻度を抑制し、蓄熱運転の積算能力をアップさせる。
さらに、外気温度が低く、圧縮機1及び冷媒ポンプ12の運転容量に制限を設けても室外側熱交換器3に着霜する恐れのある場合は、圧縮機1及び冷媒ポンプ12の運転容量すなわち蓄熱能力を最大にして蓄熱運転を行なうことにより、除霜時間を含めた蓄熱運転時間内の、蓄熱量の積算値が最大になるようにする。
以上のような制御を行うことにより、夜間の限られた時間内に蓄熱量を効率的に確保することができる。
【0115】
なお、室外側熱交換器3と第1の絞り装置6との間の冷媒配管103の温度を検出する代わりに、圧縮機1の吸入圧力を検出し、圧縮機1の吸入圧力が高く室外側熱交換器3に着霜する恐れのない場合には運転容量を大きくし、また、外気温度及び圧縮機1の吸入圧力が、室外側熱交換器3に着霜する恐れのある一定範囲内にある場合には運転容量に制限を設け、さらに、外気温度が低く、運転容量に制限を設けても室外側熱交換器3に着霜する恐れのある場合には運転容量を最大にするように制御しても、上記とほぼ同様の効果が得られる。
また、上記では圧縮機1及び冷媒ポンプ12の運転容量を制御したが、運転容量制御手段228によって圧縮機1の運転容量のみを制御するようにしても、冷媒ポンプ12の運転容量のみを制御するようにしても、上記とほぼ同様の効果が得られる。
【0116】
実施の形態19.
以下、本発明の実施の形態19に係る蓄熱式空気調和装置を図面に基づき説明する。図43は蓄熱式空気調和装置の概略構成を示しており、発明の実施の形態13の図28と異なるのは以下の点である。すなわち、蓄熱用熱交換器10への冷媒の循環量を検出する冷媒循環量検出手段229と、この冷媒循環量検出手段229の検出値に基づいて第2の絞り装置15の開度を制御する第10の開度制御手段230とを設けたことである。
【0117】
図44は、図29と同様に、圧縮機1から吐出された冷媒が冷媒配管104から冷媒配管128に向かう(すなわち、本発明にいう第1の接続配管に向かう)ように四方切換弁23を切り換えるとともに、第1のバルブ14を開き、第2のバルブ18を閉じて行なわれる蓄熱運転時における、冷媒循環量検出手段229の検出値に基づく、第10の開度制御手段230による第2の絞り装置15の開度制御方法を示している。
このように、蓄熱用熱交換器10への冷媒循環量が少ない場合(すなわち第1の接続配管等から構成されている蓄熱回路内の冷媒が不足している場合)には、第2の絞り装置15の開度を大きく設定し、室内側熱交換器16への冷媒流量を増加させ、室内機もしくはその近傍の配管内で液化・滞留している冷媒を室外機側に戻し、蓄熱用熱交換器10への冷媒循環量を増加させることにより、所定の蓄熱能力を確保することができる。
【0118】
なお、蓄熱用熱交換器10への冷媒循環量を検出する代わりに、圧縮機1の吐出圧力、圧縮機1の吐出温度、圧縮機1の吸入圧力、圧縮機1の運転周波数、蓄熱槽9の冷媒配管内の液冷媒の過冷却度のいずれかを検出するようにし、圧縮機1の吐出圧力が高い、あるいは圧縮機1の吐出温度が高い、あるいは圧縮機1の吸入圧力が低い、あるいは圧縮機1の運転容量が小さい、あるいは蓄熱槽9内の冷媒過冷却度が小さい場合には、第2の絞り装置15の開度を大きく設定する制御を行なっても、上記とほぼ同様の効果が得られる。
【0119】
【発明の効果】
以上説明したように、この発明に係る蓄熱式空気調和装置にあっては、蓄冷併用冷房運転時に、一般冷房用回路と放冷用回路との合流部と第2の絞り装置との間の冷媒過冷却度が検出され、この検出値に基づいて第1の絞り装置の開度が制御されるので、所定の冷媒過冷却度にすることにより第2の絞り装置に液冷媒のみを供給するようにでき、冷媒循環量を安定させることができて、冷房能力の安定化が図れる。また、蓄熱式空気調和装置が第2の絞り装置と室内側熱交換器とを複数組備えたものである場合には、各室内側熱交換器に、それぞれの冷房負荷に応じた量の冷媒を供給することができ、各室内側熱交換器に所要の冷房能力を発揮させることができる。
【0120】
また、蓄冷併用冷房運転時に、一般冷房用回路と放冷用回路との合流部と第2の絞り装置との間の冷媒過冷却度が検出され、この検出値に基づいて冷媒ポンプの最大運転容量が設定されるので、所定の冷媒過冷却度にすることにより第2の絞り装置に液冷媒のみを供給するようにでき、冷媒循環量を安定させることができて、冷房能力の安定化が図れる。また、蓄熱式空気調和装置が第2の絞り装置と室内側熱交換器とを複数組備えたものである場合には、各室内側熱交換器に、それぞれの冷房負荷に応じた量の冷媒を供給することができ、各室内側熱交換器に所要の冷房能力を発揮させることができる。
【0121】
また、蓄冷併用冷房運転時に、一般冷房用回路と放冷用回路との合流部の位置と室内側熱交換器の位置との高低差とに基づいて合流部の冷媒圧力制御目標値が設定されるとともに、合流部の冷媒圧力が検出され、この検出値を冷媒圧力制御目標値に近付けるように第1の絞り装置の開度が制御されるので、合流部から第2の絞り装置に至るまでの冷媒配管内において冷媒が気液二相状態になるのを防止して第2の絞り装置に液冷媒のみを供給するようにでき、冷媒循環量を安定させることができて、冷房能力の安定化が図れる。また、蓄熱式空気調和装置が第2の絞り装置と室内側熱交換器とを複数組備えたものである場合には、各室内側熱交換器に、それぞれの冷房負荷に応じた量の冷媒を供給することができ、各室内側熱交換器に所要の冷房能力を発揮させることができる。
【0122】
また、蓄冷併用冷房運転時に、一般冷房用回路と放冷用回路との合流部の位置と室内側熱交換器の位置との高低差とに基づいて冷媒ポンプの最大運転容量が設定されるので、冷媒ポンプの最大運転容量を大きくして合流部の冷媒圧力を高めることにより、合流部から第2の絞り装置に至るまでの冷媒配管内において冷媒が気液二相状態になるのを防止して第2の絞り装置に液冷媒のみを供給するようにでき、冷媒循環量を安定させることができて、冷房能力の安定化が図れる。また、蓄熱式空気調和装置が第2の絞り装置と室内側熱交換器とを複数組備えたものである場合には、各室内側熱交換器に、それぞれの冷房負荷に応じた量の冷媒を供給することができ、各室内側熱交換器に所要の冷房能力を発揮させることができる。
【0123】
また、蓄冷併用冷房運転時に、1日の蓄冷併用冷房時間と予め設定された基準時間との時間差が演算され、この時間差に基づいて一般冷房用回路と放冷用回路との合流部の冷媒圧力制御目標値が設定されるとともに、合流部の冷媒圧力が検出され、この検出値を冷媒圧力制御目標値に近付けるように第1の絞り装置の開度が制御されるので、放冷用回路の運転負荷を蓄冷併用冷房時間の長さに応じたものにすることができて、蓄冷併用冷房時間が基準時間より長い場合に蓄冷量が不足したり、基準時間より短い場合に蓄冷量が余ったりすることを防止でき、蓄冷量の有効利用と冷房能力の安定化が図れる。
【0124】
また、蓄冷併用冷房運転時に、1日の蓄冷併用冷房時間と予め設定された基準時間との時間差が演算され、この時間差に基づいて冷媒ポンプの最大運転容量が設定されるので、放冷用回路の運転負荷を蓄冷併用冷房時間の長さに応じたものにすることができて、蓄冷併用冷房時間が基準時間より長い場合に蓄冷量が不足したり、基準時間より短い場合に蓄冷量が余ったりすることを防止でき、蓄冷量の有効利用と冷房能力の安定化が図れる。
【0125】
また、蓄冷併用冷房運転時に、蓄冷併用冷房運転開始からの経過時間における蓄冷消費量の予測値と実際の蓄冷消費量とが演算され、この蓄冷消費量の予測値と実際の蓄冷消費量との消費量差に基づいて一般冷房用回路と放冷用回路との合流部の冷媒圧力制御目標値が設定されるとともに、合流部の冷媒圧力が検出され、この検出値を冷媒圧力制御目標値に近付けるように第1の絞り装置の開度が制御されるので、実際の蓄冷消費量を蓄冷消費量の予測値に近付けることができ、蓄冷併用冷房時間内に蓄冷量を過不足なく使い切ることができて、蓄冷量の有効利用と冷房能力の安定化が図れる。
【0126】
また、蓄冷併用冷房運転時に、蓄冷併用冷房運転開始からの経過時間における蓄冷消費量の予測値と実際の蓄冷消費量とが演算され、この蓄冷消費量の予測値と実際の蓄冷消費量との消費量差に基づいて冷媒ポンプの最大運転容量が設定されるので、実際の蓄冷消費量を蓄冷消費量の予測値に近付けることができ、蓄冷併用冷房時間内に蓄冷量を過不足なく使い切ることができて、蓄冷量の有効利用と冷房能力の安定化が図れる。
【0127】
また、蓄冷併用冷房運転時に、蓄冷併用冷房運転開始からの経過時間における蓄冷消費量の予測値と実際の蓄冷消費量とが演算され、この蓄冷消費量の予測値と実際の蓄冷消費量との消費量差に基づいてベース負荷が放冷用回路でまかなわれる放冷ベースモードと一般冷房用回路でまかなわれる一般冷房ベースモードとのいずれかに運転モードが切り換えられるので、実際の蓄冷消費量を蓄冷消費量の予測値に近付けることができ、蓄冷併用冷房時間内に蓄冷量を過不足なく使い切ることができて、蓄冷量の有効利用と冷房能力の安定化が図れる。
【0128】
また、蓄冷併用冷房運転時に、蓄熱媒体の蓄熱量が検出され、この検出値が予め設定された所定値を下回った時に圧縮機の最大運転容量が大きな容量に設定変更されるので、蓄熱量が少なくなって蓄熱用熱交換器の熱交換能力が低下した場合の冷房能力不足を解消することが可能となる。
【0129】
また、蓄冷併用冷房運転時に、蓄熱媒体の温度が検出され、この検出値が予め設定された所定値を上回った時に一般冷房用回路と放冷用回路との合流部の冷媒圧力制御目標値が高い圧力に設定変更されるとともに、合流部の冷媒圧力が検出され、この検出値を設定変更された冷媒圧力制御目標値に近付けるように第1の絞り装置の開度が制御されるので、蓄熱用熱交換器内の冷媒圧力を高めてその飽和温度を上昇させることにより、温度がある程度上昇した蓄熱媒体からも冷熱を取り出すことが可能となり、蓄熱媒体からの採熱量を増やせるとともに蓄熱媒体の温度上昇に伴う冷房能力不足を解消することが可能となる。
【0130】
また、蓄冷併用冷房運転時に、蓄熱媒体の温度が検出され、この検出値が予め設定された所定値を上回った時に冷媒ポンプの最大運転容量が大きな容量に設定変更されるので、蓄熱用熱交換器内の冷媒圧力を高めてその飽和温度を上昇させることにより、温度がある程度上昇した蓄熱媒体からも冷熱を取り出すことが可能となり、蓄熱媒体からの採熱量を増やせるとともに蓄熱媒体の温度上昇に伴う冷房能力不足を解消することが可能となる。
【0131】
また、従来例の蓄熱式空気調和装置よりも簡単な構成でありながら、蓄冷運転,一般冷房運転,放冷運転,及び蓄冷併用冷房運転に加えて、蓄熱運転,一般暖房運転,放熱運転,及び蓄熱併用暖房運転が可能な冷暖房兼用の蓄熱式空気調和装置が得られる。また、圧縮機の吸入側配管に冷媒ポンプの吸入側配管が接続されているので、潤滑油が圧縮機又は冷媒ポンプに偏って吸入されることがなくなり、特別な対策なしに、長時間の連続運転時にも圧縮機及び冷媒ポンプの潤滑油枯渇に起因する故障を防止できる。
【0132】
また、蓄熱併用暖房運転時に、蓄熱媒体の温度が検出され、この検出値に基づいて第1の絞り装置の開度が制御されるので、蓄熱媒体の温度が高い場合には、第1の絞り装置の開度を小さくし蓄熱用熱交換器に流れる冷媒流量を増加させて、蓄熱媒体からの採熱を主とした高能力かつ高効率の暖房を行なうとともに、蓄熱媒体の温度が低い場合には、第1の絞り装置の開度を大きくして蓄熱用熱交換器に流れる冷媒流量を減少させ、暖房運転の能力及び効率の低下を防止することが可能となる。
【0133】
また、蓄熱併用暖房運転時に、外気の温度が検出され、この検出値に基づいて第1の絞り装置の開度が制御されるので、外気の温度が高い場合には、第1の絞り装置の開度を大きくし室外側熱交換器に流れる冷媒流量を増加させて、外気からの採熱を主とした高能力かつ高効率の暖房を行なうとともに、外気の温度が低い場合には、第1の絞り装置の開度を小さくして室外側熱交換器に流れる冷媒流量を減少させ、蓄熱媒体からの採熱を主体とする運転を行なうことにより、暖房運転の能力及び効率の低下を防止することが可能となる。
【0134】
また、蓄熱併用暖房運転時に、蓄熱媒体の温度と外気の温度とが検出され、これらの検出値の差に基づいて第1の絞り装置の開度が制御されるので、蓄熱媒体温度が外気温度よりも高い場合であって、かつ、蓄熱媒体と外気との温度差が大きい場合には、第1の絞り装置の開度を小さくし蓄熱用熱交換器に流れる冷媒流量を増加させて、蓄熱媒体からの採熱を主とした高能力かつ高効率の暖房を行なうとともに、蓄熱媒体と外気との温度差が小さい場合や蓄熱媒体が外気よりも低温である場合には、第1の絞り装置の開度を大きくし蓄熱用熱交換器に流れる冷媒流量を減少させて、暖房運転の高能力化及び高効率化を図ることが可能となる。
【0135】
また、蓄熱併用暖房運転の開始からの蓄熱消費量予測値と実際の蓄熱消費量との差が演算され、この演算値に基づいて第1の絞り装置の開度が制御されるので、演算値が大きい場合には、第1の絞り装置の開度を小さくして蓄熱用熱交換器に流れる冷媒流量を増加させ、演算値が小さい場合には、第1の絞り装置の開度を大きくして蓄熱用熱交換器に流れる冷媒流量を減少させることにより、蓄熱消費量を最適に制御することが可能となる。
【0136】
また、蓄熱運転時に、外気の温度と、室外側熱交換器と第1の絞り装置との間の配管温度とが検出され、これらの検出値に基づいて圧縮機と冷媒ポンプとの少なくとのいずれか一方の運転容量が制御されるので、配管温度が高くて室外側熱交換器に着霜する恐れがない場合には、運転容量を大きくして蓄熱能力を上昇させ、外気温度と配管温度とが室外側熱交換器に着霜する恐れのある一定範囲内にある場合には、運転容量を小さくし圧縮機及び冷媒ポンプ吸入側の圧力を上昇させて室外側熱交換器への着霜を防ぎ、これにより除霜運転の頻度を下げて蓄熱運転時間全体としての蓄熱能力を上昇させ、さらに、外気温度が低くて運転容量を小さくしても室外側熱交換器に着霜する恐れのある場合には、運転容量すなわち蓄熱能力を最大にして蓄熱運転を行なうことにより、除霜時間を含めた蓄熱時間内の積算蓄熱量を最大限にするようにでき、いずれの場合にも、夜間の限られた時間内に効率的に蓄熱量を確保することが可能となる。
【0137】
また、蓄熱運転時に、蓄熱用熱交換器への冷媒の循環量が検出され、この検出値に基づいて第2の絞り装置の開度が制御されるので、冷媒循環量が少ない場合、すなわち蓄熱用熱交換器及び第1の接続配管等から構成されている蓄熱回路内の冷媒が不足している場合には、第2の絞り装置の開度を大きくし室内側熱交換器に流れる冷媒流量を増加させて、室内機及びその近傍の配管内で液化・滞留している冷媒を室外機側に戻し、これにより蓄熱用熱交換器への冷媒の循環量を増加させて、所定の蓄熱能力を確保することが可能となる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1に係る空気調和装置の概略構成図である。
【図2】 本発明の実施の形態1に係る蓄冷併用冷房運転時の運転状態図である。
【図3】 第1の開度制御手段による第1の絞り装置の開度制御を示す説明図である。
【図4】 本発明の実施の形態2に係る空気調和装置の概略構成図である。
【図5】 本発明の実施の形態2に係る蓄冷併用冷房運転時の運転状態図である。
【図6】 第1の最大運転容量設定手段による冷媒ポンプの最大運転容量の設定を示す説明図である。
【図7】 本発明の実施の形態3に係る空気調和装置の概略構成図である。
【図8】 本発明の実施の形態3に係る蓄冷併用冷房運転時の運転状態図である。
【図9】 第2の開度制御手段による合流部の冷媒圧力制御目標値の設定を示す説明図である。
【図10】 本発明の実施の形態4に係る空気調和装置の概略構成図である。
【図11】 本発明の実施の形態4に係る蓄冷併用冷房運転時の運転状態図である。
【図12】 第2の最大運転容量設定手段による冷媒ポンプの最大運転容量の設定を示す説明図である。
【図13】 本発明の実施の形態5に係る空気調和装置の概略構成図である。
【図14】 第3の開度制御手段による合流部の冷媒圧力制御目標値の設定を示す説明図である。
【図15】 合流部における冷媒圧力と放冷用回路に係る運転負荷との関係を示す説明図である。
【図16】 本発明の実施の形態6に係る空気調和装置の概略構成図である。
【図17】 第3の最大運転容量設定手段による冷媒ポンプの最大運転容量の設定を示す説明図である。
【図18】 本発明の実施の形態7に係る空気調和装置の概略構成図である。
【図19】 第4の開度制御手段による合流部の冷媒圧力制御目標値の設定を示す説明図である。
【図20】 蓄冷消費量の予測値と実際の蓄冷消費量との関係を示す説明図である。
【図21】 本発明の実施の形態8に係る空気調和装置の概略構成図である。
【図22】 第4の最大運転容量設定手段による冷媒ポンプの最大運転容量の設定を示す説明図である。
【図23】 本発明の実施の形態9に係る空気調和装置の概略構成図である。
【図24】 運転モード切換手段による運転モードの切り換えを示す説明図である。
【図25】 本発明の実施の形態10に係る空気調和装置の概略構成図である。
【図26】 本発明の実施の形態11に係る空気調和装置の概略構成図である。
【図27】 本発明の実施の形態12に係る空気調和装置の概略構成図である。
【図28】 本発明の実施の形態13に係る空気調和装置の概略構成図である。
【図29】 本発明の実施の形態13に係る空気調和装置の蓄熱運転を示す説明図である。
【図30】 本発明の実施の形態13に係る空気調和装置の一般暖房運転を示す説明図である。
【図31】 本発明の実施の形態13に係る空気調和装置の放熱運転を示す説明図である。
【図32】 本発明の実施の形態13に係る空気調和装置の蓄熱併用暖房運転を示す説明図である。
【図33】 本発明の実施の形態14に係る空気調和装置の概略構成図である。
【図34】 第6の開度制御手段による第1の絞り装置の開度制御を示す説明図である。
【図35】 本発明の実施の形態15に係る空気調和装置の概略構成図である。
【図36】 第7の開度制御手段による第1の絞り装置の開度制御を示す説明図である。
【図37】 本発明の実施の形態16に係る空気調和装置の概略構成図である。
【図38】 第8の開度制御手段による第1の絞り装置の開度制御を示す説明図である。
【図39】 本発明の実施の形態17に係る空気調和装置の概略構成図である。
【図40】 第9の開度制御手段による第1の絞り装置の開度制御を示す説明図である。
【図41】 本発明の実施の形態18に係る空気調和装置の概略構成図である。
【図42】 運転容量制御手段による圧縮機及び冷媒ポンプの運転容量制御を示す説明図である。
【図43】 本発明の実施の形態19に係る空気調和装置の概略構成図である。
【図44】 第10の開度制御手段による第2の絞り装置の開度制御を示す説明図である。
【図45】 従来の空気調和装置の概略構成図である。
【図46】 従来の空気調和装置の蓄冷運転を示す説明図である。
【図47】 従来の空気調和装置の蓄冷運転時の運転状態図である。
【図48】 従来の空気調和装置の一般冷房運転を示す説明図である。
【図49】 従来の空気調和装置の一般冷房運転時の運転状態図である。
【図50】 従来の空気調和装置の放冷運転を示す説明図である。
【図51】 従来の空気調和装置の放冷運転時の運転状態図である。
【図52】 従来の空気調和装置の蓄冷併用冷房運転を示す説明図である。
【図53】 従来の空気調和装置の蓄冷併用冷房運転時の運転状態図である。
【図54】 従来の空気調和装置の蓄熱運転を示す説明図である。
【図55】 従来の空気調和装置の蓄熱運転時の運転状態図である。
【図56】 従来の空気調和装置の一般暖房運転を示す説明図である。
【図57】 従来の空気調和装置の一般暖房運転時の運転状態図である。
【図58】 従来の空気調和装置の放熱運転を示す説明図である。
【図59】 従来の空気調和装置の放熱運転時の運転状態図である。
【図60】 従来の空気調和装置の蓄熱併用暖房運転を示す説明図である。
【図61】 従来の空気調和装置の蓄熱併用暖房運転時の運転状態図である。
【符号の説明】
1 圧縮機、3 室外側熱交換器、6 第1の絞り装置、9 蓄熱槽、10蓄熱用熱交換器、12 冷媒ポンプ、14 第1のバルブ、15a 第2の絞り装置、15b 第2の絞り装置、15c 第2の絞り装置、16a 室内側熱交換器、16b 室内側熱交換器、16c 室内側熱交換器、18 第2のバルブ、21 蓄熱媒体、22 第3の絞り装置、23 四方切換弁、201 冷媒過冷却度検出手段、202 第1の開度制御手段、203 第1の最大運転容量設定手段、204 冷媒圧力検出手段、205 高低差設定手段、206 第2の開度制御手段、207 第2の最大運転容量設定手段、208 蓄冷併用冷房時間管理手段、209 第3の開度制御手段、210 第3の最大運転容量設定手段、211 蓄冷消費量予測値演算手段、212 蓄冷消費量演算手段、213 第4の開度制御手段、214 第4の最大運転容量設定手段、215 運転モード切換手段、216 蓄冷量検出手段、217 第5の最大運転容量設定手段、218 蓄熱媒体温度検出手段、219 第5の開度制御手段、220 第6の最大運転容量設定手段、221 外気温度検出手段、222 蓄熱消費量差演算手段、223 第6の開度制御手段、224 第7の開度制御手段、225第8の開度制御手段、226 第9の開度制御手段、227 配管温度検出手段、228 運転容量制御手段、229 冷媒循環量検出手段、230 第10の開度制御手段、M 合流部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat storage type air conditioner.
[0002]
[Prior art]
Conventionally, this type of heat storage type air conditioner has been proposed in Japanese Patent Application No. 5-30727, for example, as shown in FIG. In the figure, reference numeral 1 is, for example, a 5-horsepower compressor, 2 is a compressor four-way switching valve, and these are connected by a refrigerant pipe 101. Reference numeral 3 denotes an outdoor heat exchanger that is connected to the compressor four-way switching valve 2 by a refrigerant pipe 102 and operates as a condenser during cooling and as an evaporator during heating.
[0003]
Reference numeral 6 denotes a first expansion device connected to the outdoor heat exchanger 3 through a refrigerant pipe 103. Reference numeral 7 denotes a third valve, and 8 denotes a fourth valve, which are connected to refrigerant pipes 109 and 110 formed by branching the refrigerant pipe 108 from the first throttling device 6, respectively. Reference numeral 9 denotes a heat storage tank, which has a heat storage heat exchanger 10 formed by arranging a number of heat transfer tubes vertically in the interior and interconnecting them, and a heat storage medium 21 such as water stored in the tank. It is configured so that it can be frozen during cooling and heated during heating. The heat storage tank 9 is connected to the fourth valve 8 by a refrigerant pipe 111.
[0004]
Reference numeral 12 denotes a refrigerant pump that conveys a gaseous refrigerant, and a pump capacity that can obtain a circulation amount equal to the refrigerant circulation amount by the operation of the compressor 1 under a predetermined operating condition is selected. Reference numeral 11 denotes a refrigerant pump four-way switching valve connected to the refrigerant pump 12 via a refrigerant pipe 114, and reference numeral 13 denotes a refrigerant pump connected to the refrigerant pump 12 via a refrigerant pipe 115 and refrigerant connected to the refrigerant pump four-way switching valve 11 via a refrigerant pipe 116. The pump accumulator 14 is a first valve. The refrigerant pipe 112 from the heat storage heat exchanger 10 branches into refrigerant pipes 113 and 118. The refrigerant pipe 113 is connected to the refrigerant pump four-way switching valve 11 and the refrigerant pipe. Reference numerals 118 are respectively connected to the first valve 14.
[0005]
Reference numeral 20 denotes a fifth valve, 120 denotes a refrigerant pipe connected to the refrigerant pump four-way switching valve 11 via a refrigerant pipe 117, and 125 denotes a refrigerant pipe connected to the first valve 14 via a refrigerant pipe 119. One end of the refrigerant pipe 125 is connected to the refrigerant pipe 120 via the fifth valve 20, and the other end is connected to the compressor four-way switching valve 2 described above.
[0006]
121 is a refrigerant pipe connected to the third valve 7 described above, and a plurality of indoor unit refrigerant circuit systems a, b, c are provided in parallel between the refrigerant pipe 121 and the refrigerant pipe 120. ing. The indoor unit refrigerant circuit systems a, b, and c are connected to the refrigerant pipe 121, the second expansion device 15, the refrigerant pipe 123, the indoor heat exchanger 16, and the refrigerant pipe 124 in this order from the refrigerant pipe 121 side. It is configured. In the figure, the lower case letter at the end of the symbol indicates the distinction between the plurality of indoor unit refrigerant circuit systems a, b, and c.
[0007]
Furthermore, the refrigerant four-way switching valve 2 and the compressor accumulator 17 and the compressor accumulator 17 and the compressor 1 are connected by refrigerant pipes 126 and 127, respectively.
[0008]
Next, the operation of the heat storage type air conditioner will be described with reference to FIGS.
For example, when performing cold storage operation (that is, ice making operation) at night, as shown in FIG. 46, the third valve 7 and the fifth valve 20 are closed, the first valve 14 and the fourth valve 8 are opened, The compressor 1 is operated. At this time, the refrigerant discharged from the compressor 1 radiates and condenses in the outdoor heat exchanger 3, adiabatically expands in the first expansion device 6, and then absorbs and evaporates in the heat storage heat exchanger 10. Heat is taken from (water), and the heat storage medium 21 close to the surface of the heat storage heat exchanger 10 is sequentially frozen. The vaporized refrigerant returns to the compressor via the compressor accumulator 17.
[0009]
The operation state at the time of this cold storage operation is shown in FIG. The operating point indicated by a number in the figure indicates the state of the refrigerant in the refrigerant pipe according to the same reference numeral in FIG. 46, the condensation temperature is about 40 ° C., and the evaporation temperature is about −3 ° C. In this operation, the system starts ice making from 22:00 on the premise that there is no residual water in the heat storage tank 9, and ends ice making at 8:00 the next morning.
[0010]
Next, the daytime cooling operation will be described.
When the general cooling operation without using the cold storage in the heat storage tank 9 is performed, the third valve 7 and the fifth valve 20 are opened and the first valve 14 and the fourth valve 8 are closed as shown in FIG. The compressor 1 is operated. The high-pressure refrigerant condensed and liquefied in the outdoor heat exchanger 3 is sent to each indoor unit refrigerant circuit system a, b, c, and is decompressed while adjusting the refrigerant flow rate in each second expansion device 15. 6kg / cm 2 It flows into the indoor heat exchanger 16 at a pressure of about G and evaporates. At this time, the refrigerant that has absorbed heat from the surrounding indoor air and gasified returns to the compressor 1 via the compressor accumulator 17. The operating capacity of the compressor 1 is determined according to the sum of the operating capacities of the indoor units related to the indoor unit refrigerant circuit systems a, b, and c.
[0011]
FIG. 49 shows the operating state during this general cooling operation. The numbers in the figure are the same as in FIG. 47, the condensation temperature is about 45 ° C., and the evaporation temperature is about 10 ° C. In this operation, the present system performs cooling after cold storage consumption, for example.
[0012]
Further, in the case of performing the cooling operation using only the cold storage in the heat storage tank 9, that is, the cooling operation, the first expansion device 6, the first valve 14, and the fifth valve 20 are provided as shown in FIG. The third valve 7 and the fourth valve 8 are opened and the refrigerant pump 12 is operated. At this time, the gas refrigerant sent out by the refrigerant pump 12 is cooled by the heat storage medium 21 (ice) in the heat storage tank 9, condensed at 20 to 25 ° C., and liquefied, about 9 kg / cm. 2 The refrigerant G is sent to each indoor unit refrigerant circuit system a, b, c, and is cooled as in the case of FIG. At this time, since the refrigerant circulation amount of the refrigerant pump 12 is equivalent to the refrigerant circulation amount by the compressor 1 in the case of FIG. 48, the same amount of refrigerant of the same temperature and pressure flows through the indoor heat exchanger 16. As the power, the differential pressure is about 3kg / cm 2 In spite of the small capacity, the cooling capacity is equivalent to the general cooling operation by the independent operation of the compressor 1. The operating capacity of the refrigerant pump 12 is determined according to the sum of the operating capacities of the indoor units related to the indoor unit refrigerant circuit systems a, b, and c.
[0013]
FIG. 51 shows the operating state during this cooling operation. The numbers in the figure are the same as those in FIG. 47, the condensation temperature is about 23 ° C., and the evaporation temperature is about 10 ° C. In this operation, the present system performs cooling at a light load, for example.
[0014]
Further, in the case of performing a cold storage combined cooling operation using both the cooling operation using the cold storage in the heat storage tank 9 and the general cooling operation by the compressor 1, the first valve 14 is closed as shown in FIG. The third valve 7, the fourth valve 8, and the fifth valve 20 are opened, and the compressor 1 and the refrigerant pump 12 are operated. At this time, the liquid refrigerant condensed in the heat storage heat exchanger 10 on the refrigerant pump 12 side merges with the refrigerant depressurized by the first expansion device 6 on the compressor 1 side at the junction M, and the indoor unit refrigerant circuit system About twice as much refrigerant as that in the general cooling operation of FIG. 48 or the cooling operation of FIG. 50 circulates to a, b, and c, and the cooling capacity is also doubled. The opening degree of the first expansion device 6 at this time is constant, and the refrigerant pressure in the junction M is 8 to 10 kg / cm. 2 It will be about. The operating capacity of the refrigerant pump 12 is always 100%, and the total operating capacity adjusted by changing the operating capacity of the compressor 1 is related to the refrigerant circuit systems a, b, and c for each indoor unit. It is determined according to the total operating capacity of the indoor units.
[0015]
The operation state at the time of this cold storage combined cooling operation is shown in FIG. The numbers in the figure are the same as in FIG. 47, and the evaporation temperature is about 10 ° C. as in other cooling operations, but the condensation temperature is about 45 ° C. in the outdoor heat exchanger 3 and the heat storage heat exchanger. 10 is about 20 to 25 ° C. In this operation, the system performs cooling during normal cooling load.
[0016]
The above description is about the operation related to cooling, but the following is the description about the operation related to heating. Therefore, unless otherwise specified, the compressor four-way switching valve 2 and the refrigerant pump four-way switching valve 11 are in the heating mode. Is set.
For example, when performing a heat storage operation (that is, a hot water storage operation) at night, the third valve 7 and the fifth valve 20 are closed and the first valve 14 and the fourth valve 8 are opened and compressed as shown in FIG. The machine 1 is operated. At this time, the high-temperature gas refrigerant discharged from the compressor 1 flows in the direction of the arrow in the figure, condenses in the heat storage heat exchanger 10 of the heat storage tank 9, and raises the temperature of the heat storage medium 21. The condensed refrigerant adiabatically expands in the first expansion device 6, absorbs heat from the outside air in the outdoor heat exchanger 3 and evaporates, and the vaporized refrigerant returns to the compressor 1 via the accumulator 17.
[0017]
The operating state during this heat storage operation is shown in FIG. The numbers in the figure are the same as in FIG. 47, the boiling temperature of the heat storage medium 21 in the heat storage tank 9 is about 50 ° C., the condensation temperature at this time is about 55 ° C., and the evaporation temperature is about 0 ° C. In this operation, the present system stores hot water in the nighttime power period, and ends the operation as soon as the heat storage medium 21 in the heat storage tank 9 reaches a predetermined temperature.
[0018]
Next, the daytime heating operation will be described.
When performing general heating operation that does not use the heat storage in the heat storage tank 9, the third valve 7 and the fifth valve 20 are opened and the first valve 14 and the fourth valve 8 are closed as shown in FIG. Then, the compressor 1 is operated. 17 kg / cm from compressor 1 2 The high-temperature and high-pressure gas discharged at a pressure around G is sent to each indoor unit refrigerant circuit system a, b, c, and condensed in each indoor-side heat exchanger 16 to heat indoor air. The condensed liquid refrigerant is slightly depressurized by the second throttling device 15 and further depressurized by the first throttling device 6 to be about 4 kg / cm. 2 After evaporating in the outdoor heat exchanger 3 with the pressure of G, the flow returns to the compressor 1 as in the case of FIG. The operating capacity of the compressor 1 is determined according to the sum of the operating capacities of the indoor units related to the indoor unit refrigerant circuit systems a, b, and c.
[0019]
The operating state during this general heating operation is shown in FIG. The numbers in the figure are the same as in FIG. 47, the condensation temperature is about 42-43 ° C., and the evaporation temperature is about 0 ° C. In this operation, the system performs heating during light loads during the day after consumption of heat storage.
[0020]
Further, in the case of performing the heating operation using only the heat storage in the heat storage tank 9, that is, the heat radiation operation, the first expansion device 6, the first valve 14, and the fifth valve 20 are closed as shown in FIG. Then, the third valve 7 and the fourth valve 8 are opened, and the refrigerant pump 12 is operated. At this time, the refrigerant pump 12 has an evaporation pressure of about 13 kg / cm in the heat storage tank 9. 2 The gas refrigerant heated and vaporized by G is sucked through the refrigerant pump accumulator 13. Therefore, about 4 kg / cm 2 Boosted to about G, 17kg / cm 2 After the high-temperature and high-pressure gas refrigerant that has become around G is sent to the indoor unit refrigerant circuit systems a, b, and c, the indoor air is heated in the same manner as in FIG. The condensed refrigerant is decompressed by the second expansion device 15 and is about 13 kg / cm. 2 It returns to the heat storage tank 9 as a gas-liquid two-phase refrigerant of G. The operating capacity of the refrigerant pump 12 is determined according to the sum of the operating capacities of the indoor units related to the indoor unit refrigerant circuit systems a, b, and c.
[0021]
The operation state during this heat radiation operation is shown in FIG. The numbers in the figure are the same as in FIG. 47, the condensation temperature is about 42-43 ° C., and the evaporation temperature is about 35 ° C. In this operation, the system performs heating at a light load, for example.
[0022]
Furthermore, when performing a heat storage combined cooling operation using both the heat radiation operation using the heat storage in the heat storage tank 9 and the general cooling operation by the compressor 1, the first valve 14 is closed as shown in FIG. The valve 7, the fourth valve 8, and the fifth valve 20 are opened, and the compressor 1 and the refrigerant pump 12 are operated. At this time, the gas refrigerant sent out from the refrigerant pump 12 merges with the gas refrigerant discharged from the compressor 1, and the indoor unit refrigerant circuit systems a, b, c are connected to the indoor unit refrigerant circuit systems a, b, c in FIG. The pressure is 17kg / cm, which is twice the amount of heat dissipation operation. 2 The high-temperature and high-pressure refrigerant around G circulates, and the heating capacity is also doubled. About 13 kg / cm decompressed by the second expansion device 15 2 About 1/2 of the refrigerant of about G flows into the heat storage heat exchanger 10 to perform the same operation as the heat radiation operation of FIG. 58, and the other 1/2 refrigerant is obtained by the first expansion device 6. Further reduced pressure, about 4kg / cm 2 It becomes the pressure of G, flows into the outdoor heat exchanger 3, and makes the same action as the general heating operation of FIG. The operating capacity of the refrigerant pump 12 is always 100%, and the total operating capacity adjusted by changing the operating capacity of the compressor 1 is related to the refrigerant circuit systems a, b, and c for each indoor unit. It is determined according to the total operating capacity of the indoor units.
[0023]
The operation state at the time of this heat storage combined use heating operation is shown in FIG. The numbers in the figure are the same as those in FIG. 47, and the condensation temperature is about 42 to 43 ° C. as in other heating operations, but the evaporation temperature is around 35 ° C. in the heat storage heat exchanger 10 and the outdoor heat. In the exchanger 3, the temperature is around 0 ° C. In this operation, the system performs heating when the heating load is concentrated, for example, at the start-up in the morning.
[0024]
[Problems to be solved by the invention]
In the conventional regenerative air conditioner that performs each operation as described above, the refrigerant subcooling degree in the merge part M of the refrigerant is not controlled at the time of cold storage combined cooling. In some cases, the second expansion device 15 may be supplied with a gas-liquid two-phase refrigerant.
In addition, even if the refrigerant supercooling degree is obtained at the junction M, if the height difference between the position of the junction M and the position of the indoor heat exchanger 16 is large, the second expansion device 15 from the junction M is obtained. In some cases, the refrigerant is in a gas-liquid two-phase state in the refrigerant piping up to.
When the gas-liquid two-phase refrigerant is supplied to the second expansion device 15 for the above reasons, the refrigerant circulation amount determined by the opening degree of the second expansion device 15 becomes unstable. The cooling capacity was also unstable. Further, the distribution of the refrigerant by the second expansion devices 15a to 15c is not accurately performed, and the indoor side heat exchangers 16a to 16c cannot be supplied with an amount of refrigerant corresponding to the respective cooling loads. It was supposed that the heat exchangers 16a to 16c could not exhibit the desired cooling capacity.
[0025]
In addition, the amount of cool storage used was not adjusted according to the length of the cool storage combined cooling time of the day, so if the cool storage combined cooling time is long, the cool storage amount is insufficient, or the cool storage combined cooling time is short There was sometimes a surplus.
[0026]
In addition, because the cold storage consumption was not adjusted based on the comparison between the actual cold storage consumption and the cold storage consumption predicted amount in the elapsed time from the start of cold storage combined cooling operation, the actual cold storage consumption was higher than expected. In some cases, cold storage was insufficient, or actual cold storage consumption was less than expected and cold storage remained.
[0027]
Moreover, when the amount of cold storage of the heat storage medium 21 has decreased, the cooling capacity may be reduced as compared with the case where there is a sufficient amount of cold storage.
[0028]
Moreover, when the temperature of the heat storage medium 21 rises to a certain level or more, it becomes impossible to take out the cold heat from the heat storage medium 21, and the cooling capacity may be reduced as compared with the case where the temperature of the heat storage medium 21 is low.
[0029]
Further, since the suction side piping of the compressor 1 and the suction side piping of the refrigerant pump 12 are located far away from each other, the lubricating oil flowing in the circuit together with the refrigerant is biased to either the compressor 1 or the refrigerant pump 12. Unless special measures are taken to prevent this, there is a risk that the compressor 1 or the refrigerant pump 12 may fail due to exhaustion of lubricating oil during long-term continuous operation.
[0030]
Moreover, at the time of heat storage operation, there existed a problem that heat storage capability fell because of the frost formation to the outdoor heat exchanger 3, or heat storage efficiency fell by frequent defrost operation.
[0031]
In addition, when all the indoor units are stopped during the heat storage operation, the high-pressure and high-temperature gas refrigerant discharged from the compressor 1 gradually flows into the indoor unit and the refrigerant piping in the vicinity thereof, and liquefies and stays as a result. The refrigerant in the heat storage circuit is insufficient, the discharge pressure and the suction pressure of the compressor 1 are lowered, and the heat storage capacity may be lowered.
Incidentally, in a normal air conditioner that is not a heat storage type, there cannot be an operation state in which all of the plurality of indoor units are stopped, and each of the refrigerant pipes connecting the outdoor unit and the indoor unit is separated from the outdoor unit. Since a certain amount of refrigerant always flows through the pipe before branching to the indoor unit, liquid refrigerant does not stay here, but only stays in the pipe related to the stopped indoor unit after branching. there were. On the other hand, in the regenerative air conditioner, it is normal for the outdoor unit to be operated with all of the plurality of indoor units stopped, and the entire piping connecting the outdoor unit and the indoor unit Since liquid refrigerant stays in the tank, there is a high risk of refrigerant shortage.
[0032]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat storage type air conditioner capable of exhibiting stable cooling capacity or heating capacity. .
[0033]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are sequentially connected by piping. The third expansion device, the heat storage heat exchanger, and the first expansion device are connected between the first expansion device and the second expansion device of the general cooling circuit and between the indoor heat exchanger and the compressor. A first connection pipe that forms a cold storage circuit together with the compressor, the outdoor heat exchanger, and the first expansion device, and is connected to the compressor through the valve, and the first suction pipe and the first connection pipe of the compressor And the heat storage heat exchanger are connected via a refrigerant pump, and a cooling circuit is installed together with the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchanger. A regenerative air conditioner comprising a second connecting pipe to be constructed, a heat storage tank storing a heat storage heat exchanger and a heat storage medium The degree of refrigerant supercooling between the junction of the general cooling circuit and the cooling circuit and the second expansion device when performing the regenerative cooling combined cooling operation using the general cooling circuit and the cooling circuit together And a first opening degree control means for controlling the opening degree of the first expansion device based on the detection value of the refrigerant supercooling degree detection means.
[0034]
In addition, when performing a regenerative cooling combined cooling operation in which a general cooling circuit and a cooling circuit are used in combination, the degree of refrigerant supercooling between the junction of the general cooling circuit and the cooling circuit and the second expansion device And a first maximum operating capacity setting means for setting the maximum operating capacity of the refrigerant pump based on the detected value of the refrigerant supercooling degree detecting means.
[0035]
Further, a refrigerant pressure detecting means for detecting a refrigerant pressure at a junction of the general cooling circuit and the cooling circuit when performing a cold storage combined cooling operation in which the general cooling circuit and the cooling circuit are used together, and a merging unit A height difference setting means for presetting a height difference between the position of the indoor side heat exchanger and the position of the indoor heat exchanger, and setting a refrigerant pressure control target value for the junction based on a set value of the height difference setting means and a refrigerant pressure detecting means And a second opening degree control means for controlling the opening degree of the first throttling device so as to bring the detected value close to the refrigerant pressure control target value.
[0036]
In addition, the height difference setting means for presetting the height difference between the position of the merging portion and the position of the indoor heat exchanger and the height when performing the cooling storage combined cooling operation using the general cooling circuit and the cooling circuit together. And a second maximum operating capacity setting means for setting the maximum operating capacity of the refrigerant pump based on the set value of the difference setting means.
[0037]
A refrigerant pressure detecting means for detecting a refrigerant pressure at a joining portion of the general cooling circuit and the cooling circuit when performing a regenerative cooling combined cooling operation using the general cooling circuit and the cooling circuit; The cooling storage combined cooling time management means for setting the cooling storage combined cooling time and calculating the time difference between the cold storage combined cooling time and a preset reference time, and the junction portion based on the time difference calculated by the cold storage combined cooling time management means And a third opening degree control means for controlling the opening degree of the first expansion device so as to bring the detected value of the refrigerant pressure detection means closer to the refrigerant pressure control target value. It is.
[0038]
In addition, when performing a cooling storage combined cooling operation using both a general cooling circuit and a cooling circuit, a cooling storage combined cooling time for one day is set, and a time difference between the cooling storage combined cooling time and a preset reference time is set. Cooling storage combined cooling time management means to be calculated, and third maximum operating capacity setting means for setting the maximum operating capacity of the refrigerant pump based on the time difference calculated by the cold storage combined cooling time management means are provided.
[0039]
In addition, the refrigerant pressure detection means for detecting the refrigerant pressure at the junction of the general cooling circuit and the cooling circuit when performing the cooling combined use cooling operation in which the general cooling circuit and the cooling circuit are used together, and the cold storage combination The cold storage consumption predicted value calculation means for calculating the predicted value of the cold storage consumption during the elapsed time from the start of the cooling operation, and the actual cold storage by the elapsed time from the start of the cooling storage combined cooling operation and the accumulated operating capacity of the refrigerant pump at this elapsed time Refrigerant pressure calculation means for calculating consumption, and setting of a refrigerant pressure control target value for the junction based on the difference in consumption between the predicted value of the cold storage consumption and the actual cold storage consumption, and detection by the refrigerant pressure detection means And a fourth opening degree control means for controlling the opening degree of the first throttling device so that the value approaches the refrigerant pressure control target value.
[0040]
In addition, a cold storage consumption predicted value calculation means for calculating a predicted value of the cold storage consumption in the elapsed time from the start of the cold storage combined cooling operation using the general cooling circuit and the cooling circuit, and from the cold storage combined cooling operation start Based on the consumption amount difference between the estimated value of the cold storage consumption and the actual cold storage consumption, and the cold storage consumption calculation means for calculating the actual cold storage consumption by the elapsed operation time and the cumulative operating capacity of the refrigerant pump at this elapsed time And a fourth maximum operating capacity setting means for setting the maximum operating capacity of the refrigerant pump.
[0041]
In addition, a cold storage consumption predicted value calculation means for calculating a predicted value of the cold storage consumption in the elapsed time from the start of the cold storage combined cooling operation using the general cooling circuit and the cooling circuit, and from the cold storage combined cooling operation start The cool storage consumption calculating means for calculating the actual cool storage consumption based on the elapsed time of the engine and the accumulated operating capacity of the refrigerant pump at the elapsed time, and the cooling load as a whole are classified into a base load and a variable load having a smaller load than the base load. At the same time, based on the consumption difference between the predicted value of cold storage consumption and the actual cold storage consumption, the operation mode is based on the cooling base mode and the base load is covered by the cooling circuit. Operation mode switching means for switching to any one of the cooling base mode is provided.
[0042]
Further, a cold storage amount detection means for detecting the cold storage amount of the heat storage medium, and a fifth setting for changing the maximum operating capacity of the compressor to a large capacity when the detection value of the cold storage amount detection means falls below a predetermined value set in advance. And a maximum operating capacity setting means.
[0043]
Further, a refrigerant pressure detecting means for detecting a refrigerant pressure at a junction of the general cooling circuit and the cooling circuit when performing a cold storage combined cooling operation using the general cooling circuit and the cooling circuit together, and a heat storage medium Storage medium temperature detection means for detecting the temperature of the refrigerant, and when the detected value of the heat storage medium temperature detection means exceeds a predetermined value set in advance, the refrigerant pressure control target value at the junction is changed to a high pressure and refrigerant pressure detection And a fifth opening degree control means for controlling the opening degree of the first throttling device so as to bring the detected value of the means closer to the refrigerant pressure control target value whose setting has been changed.
[0044]
In addition, the heat storage medium temperature detection means for detecting the temperature of the heat storage medium when performing the cold storage combined cooling operation using the general cooling circuit and the cooling circuit together, and the detection value of the heat storage medium temperature detection means are preset. And a sixth maximum operating capacity setting means for changing the maximum operating capacity of the refrigerant pump to a large capacity when a predetermined value is exceeded.
[0045]
Further, in addition to the above configuration, a four-way switching valve provided between the suction side pipe and the discharge side pipe of the compressor to reverse the refrigerant circulation direction of the general cooling circuit, the suction side pipe of the compressor, and the first And a third connection pipe for connecting the first valve of the connection pipe and the heat storage heat exchanger via the second valve.
[0046]
In addition, a general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are sequentially connected by piping, and the first of the general cooling circuit A compressor connected between the expansion device and the second expansion device and between the indoor heat exchanger and the compressor via a third expansion device, a heat storage heat exchanger, and a first valve; An outdoor heat exchanger, a first connection pipe that constitutes a cold storage circuit together with the first expansion device, a suction side pipe of the compressor, a first valve of the first connection pipe, and a heat storage heat exchanger; And a second connection pipe that constitutes a cooling circuit together with a heat storage heat exchanger, a third expansion device, a second expansion device, and an indoor heat exchanger; It is installed between the heat storage tank containing the heat exchanger for heat storage and the heat storage medium, and the suction side piping and the discharge side piping of the compressor. A four-way switching valve that reverses the refrigerant circulation direction of the circuit for use, and a connection between the suction side pipe of the compressor, the first valve of the first connection pipe, and the heat storage heat exchanger through the second valve In the heat storage type air conditioner having the third connection pipe that performs the above operation, the heat storage medium temperature detecting means for detecting the temperature of the heat storage medium and the four-way switching so that the refrigerant discharged from the compressor goes to the indoor heat exchanger And a sixth opening degree control means for controlling the opening degree of the first expansion device based on the detected value of the heat storage medium temperature detection means when the valve is switched to perform the heat storage combined heating operation.
[0047]
The outside air temperature detecting means for detecting the temperature of the outside air and the outside air temperature detecting means for performing the heat storage combined heating operation by switching the four-way switching valve so that the refrigerant discharged from the compressor is directed to the indoor heat exchanger. Seventh opening degree control means for controlling the opening degree of the first throttling device based on the detected value is provided.
[0048]
Also, the heat storage medium temperature detecting means for detecting the temperature of the heat storage medium, the outside air temperature detecting means for detecting the temperature of the outside air, and the four-way switching valve are switched so that the refrigerant discharged from the compressor goes to the indoor heat exchanger. And an eighth opening degree control means for controlling the opening degree of the first expansion device based on the difference between the detected value of the heat storage medium temperature detecting means and the detected value of the outside air temperature detecting means when performing the heat storage combined heating operation. Is provided.
[0049]
Also, calculate the difference between the heat storage consumption predicted value from the start of the heat storage combined heating operation that is performed by switching the four-way switching valve so that the refrigerant discharged from the compressor goes to the indoor heat exchanger and the actual heat storage consumption And a ninth opening degree control means for controlling the opening degree of the first expansion device based on the calculated value of the heat storage consumption amount difference calculating means.
[0050]
The outside air temperature detecting means for detecting the temperature of the outside air, the pipe temperature detecting means for detecting the temperature of the pipe between the outdoor heat exchanger and the first expansion device, and the refrigerant discharged from the compressor When the heat storage operation is performed by switching the four-way switching valve so as to go to one connection pipe, at least one of the compressor and the refrigerant pump based on the detected value of the outside air temperature detecting means and the detected value of the pipe temperature detecting means Operating capacity control means for controlling the operating capacity is provided.
[0051]
Further, the refrigerant circulation amount detecting means for detecting the refrigerant circulation amount to the heat storage heat exchanger and the four-way switching valve are switched so that the refrigerant discharged from the compressor is directed to the first connection pipe, and the heat accumulation operation is performed. In this case, a tenth opening degree control means for controlling the opening degree of the second expansion device based on the detection value of the refrigerant circulation amount detection means is provided.
[0052]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Hereinafter, a heat storage type air-conditioning apparatus according to Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration of a heat storage type air conditioner. In FIG. 1, the same or corresponding components as those in FIG. 45 in the conventional example are denoted by the same reference numerals, and description thereof is omitted. 45 differs from FIG. 45 in the following points.
[0053]
In other words, the refrigerant pipe 128 formed by joining the refrigerant pipes 120 and 119 is branched at one end to the refrigerant pipes 129 and 130, the refrigerant pipe 129 is on the suction side of the compressor 1, and the refrigerant pipe 130 is the refrigerant. Each is connected to the suction side of the pump 12. The discharge side of the compressor 1 and the outdoor heat exchanger 3 are directly connected by a refrigerant pipe 104. The discharge side of the refrigerant pump 12 and the refrigerant pipes 112 and 118 are directly connected by a refrigerant pipe 131. A refrigerant pipe 106, a third expansion device 22, and a refrigerant pipe 105 are sequentially connected to the heat storage heat exchanger 10 on the side opposite to the refrigerant pipe 112. The refrigerant pipe 105 merges with the refrigerant pipe 108 at the junction M, and the refrigerant pipe 121 is connected to the junction M. Further, the refrigerant supercooling degree detection means 201 for detecting the degree of refrigerant supercooling at the junction M and the opening degree of the first expansion device 6 based on the detection value of the refrigerant supercooling degree detection means 201 are controlled. 1 opening degree control means 202 is provided.
[0054]
Note that a series of pipes including the refrigerant pipes 105, 106, 112, 118, and 119 and having the third expansion device 22, the heat storage heat exchanger 10, and the first valve 14 in the middle are referred to as the first aspect of the present invention. 1 is a connection pipe, and a series of pipes including the refrigerant pipes 130 and 131 and having the refrigerant pump 12 in the middle is an example of the second connection pipe according to the present invention.
[0055]
Next, the operation will be described. Since the basic refrigerant flow and operation state are the same as those in the conventional cold storage operation, general cooling operation, cooling operation, and cold storage combined cooling operation, they are omitted here, and the refrigerant supercooling degree detection means 201 in the cold storage combined cooling operation is omitted. The operation of the first opening degree control means 202 will be described.
[0056]
FIG. 2 is an operation state diagram at the time of cooling operation combined with cold storage, and the operation state when the first expansion device 6 has a predetermined opening is as indicated by a solid line in the drawing. And if the 1st opening degree control means 202 enlarges the opening degree of the 1st expansion device 6 more based on the detected value of the refrigerant | coolant supercooling degree detection means 201, the high pressure refrigerant | coolant from the compressor 1 will be pressure-reduced so much. Without reaching the junction M, the pressure at the junction M rises to the pressure indicated by M ′ as shown by the alternate long and short dash line in the figure, and the degree of refrigerant supercooling is also increased.
[0057]
FIG. 3 shows the first opening degree control means 202 based on the detected value of the refrigerant supercooling degree by the refrigerant supercooling degree detection means 201 and the preset target value of the refrigerant supercooling degree in the junction M. The method of opening degree control of the 1st expansion device 6 is shown.
In this way, when the value of (refrigerant supercooling degree target value) − (refrigerant supercooling degree detection value) is negative, the opening degree of the first expansion device 6 is decreased from the current state, and when the value is positive, By increasing the opening degree of the first expansion device 6 from the current level, a predetermined degree of refrigerant supercooling can be achieved.
[0058]
Note that the position where the refrigerant supercooling degree detection means 201 detects the refrigerant supercooling degree is not limited to the merging portion M, and the position where the refrigerant subcooling degree is between the merging portion M and the second expansion device 15 is determined. It may be detected.
[0059]
Embodiment 2. FIG.
Hereinafter, a regenerative air conditioner according to Embodiment 2 of the present invention will be described with reference to the drawings. FIG. 4 shows a schematic configuration of the heat storage type air conditioner, and only the following points are different from FIG. 1 of the first embodiment of the invention. That is, instead of the first opening degree control means 202, first maximum operating capacity setting means 203 for setting the maximum operating capacity of the refrigerant pump 12 based on the detected value of the refrigerant supercooling degree detecting means 201 is provided. Yes.
[0060]
FIG. 5 is an operation state diagram at the time of cooling operation combined with cold storage, and the operation state when the refrigerant pump 12 is operated at a predetermined maximum operation capacity is as indicated by a solid line in the drawing. When the first maximum operating capacity setting unit 203 sets the maximum operating capacity of the refrigerant pump 12 to be larger based on the detection value of the refrigerant supercooling degree detecting unit 201, the junction M is shown as indicated by a one-dot chain line in the figure. The enthalpy of the refrigerant at M is reduced to M ′, and the refrigerant supercooling degree at the junction M is increased.
[0061]
FIG. 6 shows first maximum operating capacity setting means 203 based on the detected value of the refrigerant supercooling degree by the refrigerant supercooling degree detection means 201 and the preset target value of the refrigerant supercooling degree in the junction M. 3 shows a method for setting the maximum operating capacity of the refrigerant pump 12 according to FIG.
As described above, when the value of (refrigerant supercooling degree target value) − (refrigerant supercooling degree detection value) is negative, the maximum operating capacity setting value of the refrigerant pump 12 is decreased from the current value, and when the value is positive. By increasing the maximum operating capacity setting value of the refrigerant pump 12 from the current level, a predetermined degree of refrigerant supercooling can be achieved.
[0062]
Embodiment 3 FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 3 of the present invention will be described with reference to the drawings. FIG. 7 shows a schematic configuration of the heat storage type air conditioner, and only the following points are different from FIG. 1 of the first embodiment of the invention. That is, instead of the refrigerant supercooling degree detection means 201 and the first opening degree control means 202, the refrigerant pressure detection means 204 for detecting the refrigerant pressure in the junction M, the position of the junction M and the indoor heat exchanger 16 The height difference setting means 205 for presetting the height difference from the position of the first position, the refrigerant pressure control target value of the junction M based on the set value of the height difference setting means 205, and the detection value of the refrigerant pressure detection means 204 And a second opening degree control means 206 for controlling the opening degree of the first expansion device 6 so as to approach the refrigerant pressure control target value.
[0063]
FIG. 8 is an operation state diagram at the time of cold storage combined cooling operation, and the operation state when the refrigerant pressure control target value of the junction M is set to a predetermined value is as indicated by a solid line in the drawing. Then, the second opening degree control means 206 sets the refrigerant pressure control target value of the confluence M based on the set value of the height difference setting means 205 and sets the detected value of the refrigerant pressure detecting means 204 to the refrigerant pressure. When the opening degree of the first expansion device 6 is increased so as to approach the control target value, the refrigerant pressure at the junction M increases to M ′ as indicated by the alternate long and short dash line in the figure, and the second expansion device The pressure of the refrigerant at the inlet of 15 or the branching portion to each of the indoor heat exchangers 16a to 16c increases from P to P ', and the degree of refrigerant supercooling also increases.
[0064]
FIG. 9 shows a method for setting the refrigerant pressure control target value of the junction M by the second opening degree control means 206 based on the set value of the height difference setting means 205.
Thus, when the value (height difference setting value) of (height of the indoor heat exchanger 16) − (height of the refrigerant junction M) is a predetermined height difference, for example, 10 m or more, the pressure control of the junction M is performed. The target value is a predetermined pressure, for example 9.0 kg / cm. 2 By making it increase from G, it is possible to prevent the refrigerant from entering a gas-liquid two-phase state in the refrigerant pipe from the junction M to the second expansion device 15.
[0065]
Embodiment 4 FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 4 of the present invention will be described with reference to the drawings. FIG. 10 shows a schematic configuration of a heat storage type air conditioner, and only the following points are different from FIG. 7 of the third embodiment of the invention. That is, instead of the refrigerant pressure detection means 204 and the second opening degree control means 206, the second maximum operation capacity setting means 207 that sets the maximum operation capacity of the refrigerant pump 12 based on the set value of the height difference setting means 205. Is provided.
[0066]
FIG. 11 is an operation state diagram at the time of cooling operation combined with cold storage, and the operation state when the operation capacity of the refrigerant pump 12 is set to a predetermined maximum operation capacity is as indicated by a solid line in the figure. Then, when the second maximum operating capacity setting means 207 sets the maximum operating capacity of the refrigerant pump 12 to be larger based on the set value of the height difference setting means 205, the merging as shown by the one-dot chain line in the figure The enthalpy of the refrigerant in the part M is reduced to M ′, whereby the refrigerant pressure at the inlet of the second expansion device 15 or the branch part to each of the indoor heat exchangers 16a to 16c increases from P to P ′. However, the degree of refrigerant supercooling also increases.
[0067]
FIG. 12 shows a method for setting the maximum operating capacity of the refrigerant pump 12 by the second maximum operating capacity setting means 207 based on the set value of the height difference setting means 205. Thus, when the value (height difference setting value) of (height of the indoor heat exchanger 16) − (height of the refrigerant junction M) is a predetermined height difference, for example, 10 m or more, the maximum operation of the refrigerant pump 12 is performed. By increasing the capacity from a predetermined capacity, for example, 70%, it is possible to prevent the refrigerant from entering a gas-liquid two-phase state in the refrigerant pipe from the junction M to the second expansion device 15.
[0068]
Embodiment 5 FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 5 of the present invention will be described with reference to the drawings. FIG. 13 shows a schematic configuration of a heat storage type air conditioner, and only the following points are different from FIG. 7 of the third embodiment of the invention. That is, in place of the elevation difference setting means 205 and the second opening degree control means 206, a cold storage time for setting a daily cool storage combined cooling time and calculating a time difference between the cool storage combined cooling time and a preset reference time is set. Based on the time difference calculated by the combined cooling time management means 208 and the cold storage combined cooling time management means 208, the refrigerant pressure control target value of the junction M is set, and the detection value of the refrigerant pressure detection means 204 is set as the refrigerant pressure control target. Third opening control means 209 for controlling the opening of the first expansion device 6 so as to approach the value is provided.
[0069]
The cool storage combined cooling time management means 208 has a function of calculating a time difference between a reference value of the cool storage combined cooling time corresponding to the amount of stored cold at night, for example, 10 hours, and the cool storage combined cooling time of the day of the day, Based on the calculated time difference, the refrigerant pressure control target value of the junction M is set.
[0070]
FIG. 14 shows a method for setting the refrigerant pressure control target value of the junction M by the third opening degree control means 209 based on the time difference calculated by the cool storage combined cooling time management means 208.
As described above, when the value of (daily cooling storage combined cooling time) − (preset reference time) is positive, the pressure control target value of the merging portion M is increased, and when the value is negative, Then, the pressure control target value of the junction M is decreased.
[0071]
FIG. 15 shows the relationship between the detected value of the refrigerant pressure at the junction M by the refrigerant pressure detecting means 204 and the operation load related to the cooling circuit.
When the pressure control target value of the merging portion M is increased, control for increasing the opening degree of the first expansion device 6 is performed. When the opening degree of the first expansion device 6 is increased, the general cooling system including the compressor 1, the outdoor heat exchanger 3, the first expansion device 6, the second expansion device 15, and the indoor heat exchanger 16 is used. The operation load related to the circuit is increased, the detected value of the refrigerant pressure at the junction M is increased, and the refrigerant pump 12, the heat storage heat exchanger 10, the third expansion device 22, the second expansion device 15, and the chamber The operation load related to the cooling circuit composed of the inner heat exchanger 16 is reduced. Therefore, it is possible to prevent a shortage of the amount of cold storage when the cooling time with one day of cold storage is longer than a preset reference time. In addition, when the cooling time with one day of cold storage combined use is shorter than a preset reference time, the pressure control target value of the merging portion M is decreased, so that the operation load related to the cooling circuit is opposite to the above. It becomes large and can prevent the amount of cold storage remaining.
[0072]
Embodiment 6 FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 6 of the present invention will be described with reference to the drawings. FIG. 16 shows a schematic configuration of a heat storage type air conditioner, and only the following points are different from FIG. 13 of the fifth embodiment of the invention. That is, instead of the refrigerant pressure detection means 204 and the third opening degree control means 209, the third maximum operation capacity for setting the maximum operation capacity of the refrigerant pump 12 based on the time difference calculated by the cool storage combined use cooling time management means 208 Setting means 210 is provided.
[0073]
FIG. 17 shows a method of setting the maximum operating capacity of the refrigerant pump 12 by the third maximum operating capacity setting unit 210 based on the time difference calculated by the cool storage combined use cooling time management unit 208.
Thus, when the value of (daily cool storage combined cooling time) − (preliminarily set reference time) is positive, the maximum operating capacity setting value of the refrigerant pump 12 is decreased. Thereby, the operating load concerning the circuit for cooling is reduced, and it is possible to prevent the cold storage amount from being insufficient. Further, when the value of (daily cool storage combined cooling time) − (preliminary reference time) is negative, the maximum operating capacity setting value of the refrigerant pump 12 is increased. As a result, the operation load related to the circuit for cooling is increased, and it is possible to prevent the amount of cold storage from remaining.
[0074]
Embodiment 7 FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 7 of the present invention will be described with reference to the drawings. FIG. 18 shows a schematic configuration of a heat storage type air conditioner, and only the following points are different from FIG. 7 of the third embodiment of the invention. That is, instead of the height difference setting unit 205 and the second opening degree control unit 206, a cold storage consumption predicted value calculation unit 211 that calculates a predicted value of the cold storage consumption during the elapsed time from the start of the cold storage combined cooling operation, and the cold storage Cold storage consumption calculation means 212 for calculating the actual cold storage consumption based on the elapsed time from the start of the combined cooling operation and the accumulated operation capacity of the refrigerant pump 12 during this elapsed time, and the cold storage consumption calculated by the cold storage consumption predicted value calculation means 211 Based on the consumption difference between the predicted value of the amount and the actual cold storage consumption calculated by the cold storage consumption calculation means 212, the refrigerant pressure control target value of the junction M is set, and the detection value of the refrigerant pressure detection means 204 is set as above. A fourth opening degree control means 213 for controlling the opening degree of the first expansion device 6 is provided so as to approach the refrigerant pressure control target value.
[0075]
The cold storage consumption predicted value calculation means 211 calculates the predicted value of the cold storage consumption during the elapsed time from the start of the cold storage combined cooling operation, for example, based on the outside air temperature at the time of starting the cold storage combined cooling. Further, the fourth opening degree control means 213 compares the predicted value of the cold storage consumption calculated by the cold storage consumption predicted value calculation means 211 with the actual cold storage consumption calculated by the cold storage consumption calculation means 212 in real time. Then, the refrigerant pressure control target value of the merging portion M is set by the integrated value of the difference between these consumption amounts.
[0076]
FIG. 19 shows a method for setting the refrigerant pressure control target value of the merging portion M by the fourth opening degree control means 213.
Thus, when the integrated value of (prediction value of cold storage consumption) − (actual cold storage consumption) is positive, the refrigerant pressure control target value of junction M is decreased, and the integrated value is negative. Increases the refrigerant pressure control target value of the junction M.
[0077]
FIG. 20 shows a change in the integrated value of the difference between the predicted value of the cold storage consumption and the actual cold storage consumption when the control as shown in FIG. 19 is performed. The dotted line in the figure is a line with an integrated value of zero. Since the integrated value continues to be positive in the section A, the refrigerant pressure control target value of the junction M is lowered at the point a. As a result, in the section B, the opening of the first expansion device 6 becomes small. The operation load related to the cooling circuit increases, and the integrated value gradually decreases.
[0078]
And since the integrated value that once became zero at the point b has turned negative in the interval C as opposed to the interval A, the refrigerant pressure control target value of the junction M is increased at the point c. As a result, In the section D, the opening degree of the first expansion device 6 is increased, the operation load related to the cooling circuit is decreased, the integrated value gradually increases, and the integrated value is zero again at the point d. By periodically changing, for example, the refrigerant pressure control target value of the junction M at the point a and the point c, it is possible to use up the amount of cool storage without excess or shortage within a predetermined cool storage combined cooling time.
[0079]
Embodiment 8 FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 8 of the present invention will be described with reference to the drawings. FIG. 21 shows a schematic configuration of a heat storage type air conditioner, and only the following points are different from FIG. 18 of the seventh embodiment of the invention. That is, instead of the refrigerant pressure detection means 204 and the fourth opening degree control means 213, the cold storage consumption predicted value calculated by the cold storage consumption predicted value calculation means 211 and the actual cold storage calculated by the cold storage consumption calculation means 212 are used. A fourth maximum operating capacity setting unit 214 is provided for setting the maximum operating capacity of the refrigerant pump 12 based on the consumption difference from the consumption.
[0080]
The fourth maximum operating capacity setting unit 214 compares the predicted value of the cold storage consumption calculated by the cold storage consumption predicted value calculation unit 211 with the actual cold storage consumption calculated by the cold storage consumption calculation unit 212 in real time, The maximum operating capacity of the refrigerant pump 12 is set by the integrated value of the difference between these consumption amounts.
[0081]
FIG. 22 shows a method for setting the maximum operating capacity of the refrigerant pump 12 by the fourth maximum operating capacity setting means 214.
Thus, when the integrated value of (predicted value of cold storage consumption) − (actual cold storage consumption) is positive, the maximum operating capacity of the refrigerant pump 12 is increased, and when the integrated value is negative, The maximum operating capacity of the refrigerant pump 12 is reduced.
[0082]
When the maximum operating capacity of the refrigerant pump 12 is increased, the operating load related to the cooling circuit increases, and the integrated value gradually decreases. On the contrary, the maximum operating capacity of the refrigerant pump 12 is decreased. In such a case, the operating load related to the circuit for cooling is reduced, and the integrated value gradually increases.
In addition, since the change of the integrated value of the difference between the predicted value of the cold storage consumption and the actual cold storage consumption in the case of performing such control is the same as that in FIG. Illustration is omitted.
[0083]
Embodiment 9 FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 9 of the present invention will be described with reference to the drawings. FIG. 23 shows a schematic configuration of a heat storage type air conditioner, and only the following points are different from FIG. 18 of the seventh embodiment of the invention. That is, instead of the refrigerant pressure detection means 204 and the fourth opening degree control means 213, an operation mode switching means 215 is provided. The operation mode switching unit 215 divides the entire cooling load into a predetermined base load and a variable load having a load smaller than the base load, and the predicted value of the cold storage consumption calculated by the cold storage consumption predicted value calculation unit 211 and the cold storage. The consumption difference with the actual cold storage consumption calculated by the consumption calculation means 212 is compared in real time, and the operation mode is determined based on the integrated value of the consumption difference. Switching between the cold base mode and the general cooling base mode in which the base load is covered by a general cooling circuit.
[0084]
FIG. 24 shows the operation mode switching method by the operation mode switching means 215.
In this way, when the integrated value of (predicted cold storage consumption)-(actual cold storage consumption) is positive, the base load is switched to the cool-down base mode that is covered by the cool-down circuit, and the integrated value is In the negative case, the base load is switched to the general cooling base mode in which the general cooling circuit is used.
[0085]
When switching to the cool-down base mode, since the base load that is larger than the variable load is covered by the cool-down circuit, the operating load related to the cool-down circuit increases and the integrated value gradually decreases. go. On the contrary, when switching to the general cooling base mode, the base load is covered by the general cooling circuit, and the variable load having a load smaller than the base load is covered by the cooling circuit. As the operation load on the circuit becomes smaller, the integrated value gradually increases.
In addition, since the change of the integrated value of the difference between the predicted value of the cold storage consumption and the actual cold storage consumption in the case of performing such control is the same as that in FIG. Illustration is omitted.
[0086]
Embodiment 10 FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 10 of the present invention will be described with reference to the drawings. FIG. 25 shows a schematic configuration of a heat storage type air conditioner, and only the following points are different from FIG. 1 of the first embodiment of the invention. That is, instead of the refrigerant supercooling degree detection means 201 and the first opening degree control means 202, the cold storage amount detection means 216 for detecting the cold storage amount of the heat storage medium 21 and the detection values of the cold storage amount detection means 216 are preset. And a fifth maximum operating capacity setting means 217 for changing the setting of the maximum operating capacity of the compressor 1 to a large capacity when it falls below the predetermined value. In addition, the cold storage amount detection means 216 detects the cold storage amount based on the temperature of the heat storage medium 21, for example.
[0087]
Therefore, when the amount of cold storage of the heat storage medium 21 decreases and the heat exchange capacity of the heat storage heat exchanger 10 decreases, the maximum operating capacity of the compressor 1 is changed to a large capacity and the outdoor heat exchanger 3 Since the heat exchange capacity is enhanced and thereby the heat exchange capacity decrease of the heat storage heat exchanger 10 is compensated, the cooling capacity of the heat storage type air conditioner as a whole is not lowered.
[0088]
Embodiment 11 FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 11 of the present invention will be described with reference to the drawings. FIG. 26 shows a schematic configuration of the heat storage type air conditioner, and only the following points are different from FIG. 7 of the third embodiment of the invention. That is, instead of the height difference setting means 205 and the second opening degree control means 206, the heat storage medium temperature detection means 218 for detecting the temperature of the heat storage medium 21 and the detection values of the heat storage medium temperature detection means 218 are preset. When the predetermined value is exceeded, the refrigerant pressure control target value of the merging section M is set to a high pressure, and the first throttle is set so that the detection value of the refrigerant pressure detection means 204 approaches the refrigerant pressure control target value that has been changed. A fifth opening degree control means 219 for controlling the opening degree of the device 6 is provided.
[0089]
Therefore, if the detected value of the heat storage medium temperature detection means 218 exceeds a predetermined value set in advance and it becomes impossible to extract cold from the heat storage medium 21, the fifth opening degree control means 219 The opening of the first expansion device 6 is set so that the refrigerant pressure control target value of the merging portion M is set to a high pressure and the detection value of the refrigerant pressure detection means 204 is brought close to the refrigerant pressure control target value that has been changed. Since the refrigerant pressure in the junction M is increased, the refrigerant pressure in the heat storage heat exchanger 10 is also increased, and the saturation temperature of the refrigerant in the heat storage heat exchanger 10 is increased. Thereby, it is possible to further extract cold energy from the heat storage medium 21.
[0090]
Embodiment 12 FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 12 of the present invention will be described with reference to the drawings. FIG. 27 shows a schematic configuration of a heat storage type air conditioner, and only the following points are different from FIG. 26 of the eleventh embodiment of the invention. That is, instead of the refrigerant pressure detection means 204 and the fifth opening degree control means 219, the maximum operating capacity of the refrigerant pump 12 is increased when the detection value of the heat storage medium temperature detection means 218 exceeds a predetermined value set in advance. The sixth maximum operating capacity setting means 220 for changing the setting is provided.
[0091]
Therefore, when the detected value of the heat storage medium temperature detection means 218 exceeds a predetermined value set in advance and it becomes impossible to extract cold from the heat storage medium 21, the sixth maximum operating capacity setting means 220 is set. However, since the maximum operating capacity of the refrigerant pump 12 is changed to a large capacity, the refrigerant pressure in the heat storage heat exchanger 10 increases, and the saturation temperature of the refrigerant in the heat storage heat exchanger 10 increases. Thereby, it is possible to further extract cold energy from the heat storage medium 21.
[0092]
Embodiment 13 FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 13 of the present invention will be described with reference to the drawings. FIG. 28 shows a schematic configuration of a heat storage type air conditioner, which is different from FIG. 1 of the first embodiment of the invention in the following points. That is, the four-way switching valve 23 is provided between the refrigerant pipe 129 that is the suction side pipe of the compressor 1 and the refrigerant pipe 104 that is the discharge side pipe of the compressor 1. The four-way switching valve 23 is connected to the refrigerant pipe 129 via the refrigerant pipe 133 and to the outdoor heat exchanger 3 via the refrigerant pipe 134. In the first embodiment of the invention, the refrigerant circulation direction of the general cooling circuit that only flows from the compressor 1 toward the outdoor heat exchanger 3 is changed from the compressor 1 to the room by switching the four-way switching valve 23. It is comprised so that it can reverse to the direction which flows toward the inner side heat exchanger 16. FIG.
[0093]
In addition, the refrigerant pipe 135, the second valve 18, and the refrigerant pipe 136 are sequentially connected to the refrigerant pipe 133, and the refrigerant pipe 136 is connected to the refrigerant pipe 112.
In addition, a series of piping which consists of refrigerant | coolant piping 135 and 136 and has the 2nd valve | bulb 18 in the middle is an example of the 3rd connection piping said to this invention.
[0094]
Next, the operation will be described. Basics in cool storage operation, general cooling operation, cooling operation, and cool storage combined cooling operation performed by switching the four-way switching valve 23 and closing the second valve 18 so that the coolant from the coolant pipe 104 goes to the coolant pipe 134. Since the operation of the refrigerant flow and operation state and the operations of the refrigerant supercooling degree detection means 201 and the first opening degree control means 202 in the cooling and storage combined cooling operation are the same as those in the first embodiment of the invention, the description thereof is omitted.
[0095]
As shown in FIG. 29, the four-way switching valve 23 is switched so that the refrigerant from the refrigerant pipe 104 is directed to the refrigerant pipe 128, the first valve 14 is opened, the second valve 18 is closed, and the compressor 1 is operated. Then, the refrigerant discharged from the compressor 1 is the four-way switching valve 23, the first valve 14, the heat storage heat exchanger 10, the third expansion device 22, the first expansion device 6, the outdoor heat exchanger 3. The heat storage operation for heating the heat storage medium 21 is performed by sequentially returning to the compressor 1 through the four-way switching valve 23.
[0096]
Further, as shown in FIG. 30, the four-way switching valve 23 is switched so that the refrigerant from the refrigerant pipe 104 is directed to the refrigerant pipe 128, and the first valve 14 and the second valve 18 are closed to operate the compressor 1. Then, the refrigerant discharged from the compressor 1 sequentially passes through the four-way switching valve 23, the indoor heat exchanger 16, the second expansion device 15, the first expansion device 6, the outdoor heat exchanger 3, and the four-way switching valve 23. Then, it returns to the compressor 1, and a general heating operation is performed by this.
[0097]
Further, as shown in FIG. 31, the four-way switching valve 23 is switched so that the refrigerant from the refrigerant pipe 104 goes to the refrigerant pipe 128, the first valve 14 is closed, the second valve 18 is opened, and the compressor 1 , The refrigerant discharged from the compressor 1 is converted into the four-way switching valve 23, the indoor heat exchanger 16, the second expansion device 15, the third expansion device 22, the heat storage heat exchanger 10, and the second valve. 18 is sequentially returned to the compressor 1, whereby the heating operation using the heat storage of the heat storage medium 21, that is, the heat radiation operation is performed.
[0098]
Furthermore, as shown in FIG. 32, the four-way switching valve 23 is switched so that the refrigerant from the refrigerant pipe 104 goes to the refrigerant pipe 128, the first valve 14 is closed, the second valve 18 is opened, When the compressor 1 is operated so as to adjust the opening degree of the expansion device 6, the refrigerant discharged from the compressor 1 passes through the four-way switching valve 23, the indoor heat exchanger 16, and the second expansion device 15. Thereafter, a heat radiating circuit that returns to the compressor 1 through the third expansion device 22, the heat storage heat exchanger 10, and the second valve 18 in sequence, the first expansion device 6, the outdoor heat exchanger 3, and the four-way switching valve The heat storage is combined with the heating operation using the heat storage of the heat storage medium 21, that is, the heat radiation operation and the general heating operation collecting heat from the outdoor heat exchanger 3. Heating operation is performed.
[0099]
As described above, in the thirteenth embodiment, the cool storage operation, the general cooling operation, the cooling operation, and the cool storage combined cooling operation are simpler than the heat storage type air conditioner of FIG. 45 according to the conventional example. In addition, it is a regenerative air conditioning unit that can be used for both air conditioning and heating, which can perform heat storage operation, general heating operation, heat radiation operation, and heat storage combined use heating operation. It is possible to achieve peak power shifts throughout the year.
[0100]
In addition, unlike the conventional heat storage type air conditioner, the refrigerant pipe 129 that is the suction side pipe of the refrigerant pump 12 is connected to the refrigerant pipe 129 that is the suction side pipe of the compressor 1, so The flowing lubricating oil is not sucked into the compressor 1 or the refrigerant pump 12 in a biased manner, and a failure due to exhaustion of the lubricating oil in the compressor 1 and the refrigerant pump 12 can be prevented even during a long continuous operation.
[0101]
Embodiment 14 FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 14 of the present invention will be described with reference to the drawings. FIG. 33 shows a schematic configuration of a heat storage type air conditioner, which is different from FIG. 28 of the thirteenth embodiment in the following points. That is, the heat storage medium temperature detection means 218 that detects the temperature of the heat storage medium 21 and the sixth opening degree control means that controls the opening degree of the first expansion device 6 based on the detected value of the heat storage medium temperature detection means 218. 223.
[0102]
FIG. 34 shows the first expansion device 6 by the sixth opening degree control means 223 based on the temperature of the heat storage medium 21 detected by the heat storage medium temperature detection means 218 during the heat storage combined use heating operation similar to FIG. The opening degree control method is shown.
Thus, when the temperature of the heat storage medium 21 is high, the opening degree of the first expansion device 6 is set small, the refrigerant flow rate of the heat dissipation circuit related to the heat storage heat exchanger 10 is increased, and the heat storage medium 21 Refrigerant flowing to the heat storage heat exchanger 10 by maximizing the opening degree of the first expansion device 6 when the high capacity and efficiency of heating by heat radiation are maximized and the temperature of the heat storage medium 21 is low. Reduce the flow rate and prevent the capacity and efficiency of heating operation from decreasing.
[0103]
Embodiment 15 FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 15 of the present invention will be described with reference to the drawings. FIG. 35 shows a schematic configuration of a heat storage type air conditioner, which is different from FIG. 28 of the thirteenth embodiment of the invention in the following points. In other words, an outside air temperature detecting means 221 for detecting the temperature of the outside air and a seventh opening degree controlling means 224 for controlling the opening degree of the first expansion device 6 based on the detected value of the outside air temperature detecting means 221 are provided. That is.
[0104]
FIG. 36 shows the opening degree control of the first expansion device 6 by the seventh opening degree control means 224 based on the outside air temperature detected by the outside air temperature detecting means 221 during the heat storage combined use heating operation similar to FIG. Shows how.
As described above, when the outside air temperature is high, the opening degree of the first expansion device 6 is set large, the refrigerant flow rate to the outdoor heat exchanger 3 is increased, and the heat collection from the high temperature outside air is mainly performed. To maximize its high capacity and efficiency. On the other hand, when the outside air temperature is low, the opening degree of the first expansion device 6 is set to be small, and the refrigerant flow rate to the outdoor heat exchanger 3 is reduced, so that the heat collection from the heat storage medium 21 is mainly performed. The operation and the efficiency of heating operation are prevented from being reduced.
[0105]
Embodiment 16 FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 16 of the present invention will be described with reference to the drawings. FIG. 37 shows a schematic configuration of a heat storage type air conditioner, which is different from FIG. 28 of the thirteenth embodiment of the invention in the following points. That is, the difference between the heat storage medium temperature detection means 218 that detects the temperature of the heat storage medium 21, the outside air temperature detection means 221 that detects the outside air temperature, and the detection value of the heat storage medium temperature detection means 218 and the detection value of the outside air temperature detection means 221. And an eighth opening degree control means 225 for controlling the opening degree of the first expansion device 6 based on the above.
[0106]
FIG. 38 is based on the difference between the temperature of the heat storage medium 21 detected by the heat storage medium temperature detection means 218 and the outside air temperature detected by the outside air temperature detection means 221 during the heat storage combined use heating operation similar to FIG. The opening setting method of the 1st expansion device 6 by the 8th opening degree control means 225 is shown.
Thus, when the temperature of the heat storage medium 21 is higher than the outside air temperature and the temperature difference between the heat storage medium 21 and the outside air is large, the opening degree of the first expansion device 6 is set small. When the refrigerant flow rate to the heat storage heat exchanger 10 is increased and the temperature difference between the heat storage medium 21 and the outside air is small or negative, the opening degree of the first expansion device 6 is set large, By reducing the flow rate of the refrigerant to the heat exchanger 10, high capacity and high efficiency of the heating operation can be achieved.
[0107]
In addition, instead of the difference between the temperature of the heat storage medium 21 and the outside air temperature detected by the outside air temperature detecting means 221, the opening degree of the first expansion device 6 is controlled based on the difference in the refrigerant saturation pressure with respect to each temperature. In other words, when the pressure difference is large, the opening degree of the first throttling device 6 is set small, and when the pressure difference is small or negative, the opening degree of the first throttling device 6 is set large. Even if such control is performed, substantially the same effect as in the sixteenth embodiment can be obtained.
[0108]
Embodiment 17. FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 17 of the present invention will be described with reference to the drawings. FIG. 39 shows a schematic configuration of a heat storage type air conditioner, which is different from FIG. 28 of the thirteenth embodiment in the following points. That is, based on the heat storage consumption difference calculation means 222 that calculates the difference between the heat storage consumption predicted value from the start of the heat storage combined heating operation and the actual heat storage consumption, and the calculated value of the heat storage consumption difference calculation means 222 The ninth opening control means 226 for controlling the opening of the first expansion device 6 is provided.
[0109]
The heat storage consumption difference calculation means 222 is, for example, the predicted heat storage consumption at the time and the actual value from the heating load in the room where the indoor heat exchanger 16 is installed and the elapsed time from the start of the combined heat storage operation. The difference from the heat storage consumption is calculated.
[0110]
FIG. 40 shows a method of setting the opening of the first expansion device 6 by the ninth opening control means 226 based on the calculated value of the heat storage consumption difference calculating means 222 during the heat storage combined heating operation similar to FIG. Show.
Thus, when the difference (calculated value) of (heat storage consumption prediction value) − (actual heat storage consumption) is large, the opening degree of the first expansion device 6 is set small, and the heat storage heat exchanger When the refrigerant flow rate to 10 is increased and the above difference is small or negative, the opening degree of the first expansion device 6 is set large, and the refrigerant flow rate to the heat storage heat exchanger 10 is reduced. Thereby, heat storage consumption can be controlled optimally and heat storage can be used up without excess and deficiency.
[0111]
Note that the heat storage consumption difference calculation means 222 is the difference between the discharge pressure of the compressor 1, the operating frequency of the compressor 1, the operating capacity of the indoor heat exchanger 16, and the suction temperature of the indoor heat exchanger 16 and the set temperature. The difference between the predicted heat storage consumption amount and the actual heat storage consumption amount may be calculated based on one of the above. That is, the ninth opening degree control means 226 has a high discharge pressure of the compressor 1, a high operating frequency of the compressor 1, a large operating capacity of the indoor heat exchanger 16, or an indoor heat exchanger. When the difference between the suction temperature of 16 and the set temperature is large, the opening degree of the first expansion device 6 is set large, and the discharge pressure of the compressor 1 is low, or the operating frequency of the compressor 1 is low, or When the operating capacity of the indoor heat exchanger 16 is small or the difference between the suction temperature of the indoor heat exchanger 16 and the set temperature is small, the opening of the first expansion device 6 is set to be small. However, substantially the same effect as described above can be obtained.
[0112]
Embodiment 18 FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 18 of the present invention will be described with reference to the drawings. FIG. 41 shows a schematic configuration of a heat storage type air conditioner, which differs from FIG. 28 of the thirteenth embodiment in the following points. That is, the outside temperature detecting means 221 for detecting the outside temperature, the pipe temperature detecting means 227 for detecting the temperature of the refrigerant pipe 103 between the outdoor heat exchanger 3 and the first expansion device 6, and the outside temperature detecting means. The operation capacity control means 228 for controlling the operation capacities of the compressor 1 and the refrigerant pump 12 based on the detection value 221 and the detection value of the pipe temperature detection means 227 is provided.
[0113]
42, similarly to FIG. 29, the four-way switching valve 23 is set so that the refrigerant discharged from the compressor 1 is directed from the refrigerant pipe 104 to the refrigerant pipe 128 (that is, toward the first connection pipe in the present invention). While switching, the first valve 14 is opened and the second valve 18 is closed. During the heat storage operation, the outside air temperature detected by the outside air temperature detecting means 221 and the pipe detected by the pipe temperature detecting means 227 The capacity | capacitance control method of the compressor 1 and the refrigerant | coolant pump 12 by the operation capacity control means 228 based on temperature is shown.
[0114]
Thus, when the piping temperature is sufficiently high and there is no fear of frost formation on the outdoor heat exchanger 3, the operating capacity of the compressor 1 and the refrigerant pump 12 is increased (the operating frequency is increased) to store heat. Increase your ability.
Further, when the outside air temperature and the pipe temperature are within a certain range that may cause frost formation on the outdoor heat exchanger 3, the operating capacities of the compressor 1 and the refrigerant pump 12 are limited, and the suction pressure is increased. In this way, frost formation on the outdoor heat exchanger 3 is prevented, and a decrease in the capacity of the outdoor heat exchanger 3 due to frost is suppressed, and the frequency of the defrosting operation is suppressed, thereby increasing the cumulative capacity of the heat storage operation.
Furthermore, if the outdoor air temperature is low and there is a risk of frost formation on the outdoor heat exchanger 3 even if the operating capacities of the compressor 1 and the refrigerant pump 12 are limited, the operating capacities of the compressor 1 and the refrigerant pump 12, that is, By performing the heat storage operation with the heat storage capacity maximized, the integrated value of the heat storage amount within the heat storage operation time including the defrosting time is maximized.
By performing the control as described above, the heat storage amount can be efficiently secured within a limited time at night.
[0115]
Instead of detecting the temperature of the refrigerant pipe 103 between the outdoor heat exchanger 3 and the first expansion device 6, the suction pressure of the compressor 1 is detected and the suction pressure of the compressor 1 is high. When there is no fear of frost formation on the heat exchanger 3, the operating capacity is increased, and the outside air temperature and the suction pressure of the compressor 1 are within a certain range where the outdoor heat exchanger 3 may be frosted. In some cases, the operating capacity is limited, and when the outside air temperature is low and the operating capacity is limited, the outdoor heat exchanger 3 may be frozen, so that the operating capacity is maximized. Even if controlled, the same effect as described above can be obtained.
In the above description, the operation capacities of the compressor 1 and the refrigerant pump 12 are controlled. However, even if only the operation capacity of the compressor 1 is controlled by the operation capacity control means 228, only the operation capacity of the refrigerant pump 12 is controlled. Even if it does, the effect similar to the above is acquired.
[0116]
Embodiment 19. FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 19 of the present invention will be described with reference to the drawings. FIG. 43 shows a schematic configuration of a heat storage type air conditioner, which is different from FIG. 28 of the thirteenth embodiment of the invention in the following points. That is, the refrigerant circulation amount detection means 229 for detecting the refrigerant circulation amount to the heat storage heat exchanger 10, and the opening degree of the second expansion device 15 is controlled based on the detected value of the refrigerant circulation amount detection means 229. The tenth opening degree control means 230 is provided.
[0117]
44, similarly to FIG. 29, the four-way switching valve 23 is set so that the refrigerant discharged from the compressor 1 is directed from the refrigerant pipe 104 toward the refrigerant pipe 128 (that is, toward the first connection pipe according to the present invention). The second opening degree by the tenth opening degree control means 230 based on the detected value of the refrigerant circulation amount detection means 229 during the heat storage operation performed by switching the first valve 14 and closing the second valve 18. The opening degree control method of the expansion device 15 is shown.
As described above, when the refrigerant circulation amount to the heat storage heat exchanger 10 is small (that is, when the refrigerant in the heat storage circuit constituted by the first connection pipe or the like is insufficient), the second throttle The opening degree of the device 15 is set to be large, the refrigerant flow rate to the indoor heat exchanger 16 is increased, and the refrigerant liquefied and staying in the indoor unit or the piping in the vicinity thereof is returned to the outdoor unit side, and heat for heat storage A predetermined heat storage capacity can be secured by increasing the refrigerant circulation amount to the exchanger 10.
[0118]
Instead of detecting the amount of refrigerant circulation to the heat storage heat exchanger 10, the discharge pressure of the compressor 1, the discharge temperature of the compressor 1, the suction pressure of the compressor 1, the operating frequency of the compressor 1, the heat storage tank 9 The degree of supercooling of the liquid refrigerant in the refrigerant pipe is detected, the discharge pressure of the compressor 1 is high, the discharge temperature of the compressor 1 is high, the suction pressure of the compressor 1 is low, or When the operating capacity of the compressor 1 is small or the degree of refrigerant supercooling in the heat storage tank 9 is small, the same effect as described above can be obtained even if control is performed to increase the opening of the second expansion device 15. Is obtained.
[0119]
【The invention's effect】
As described above, in the regenerative air conditioner according to the present invention, the refrigerant between the joining portion of the general cooling circuit and the cooling circuit and the second expansion device during the cooling operation combined with cooling is used. Since the degree of supercooling is detected and the opening degree of the first throttling device is controlled based on the detected value, only the liquid refrigerant is supplied to the second throttling device by setting a predetermined refrigerant subcooling degree. Therefore, the refrigerant circulation rate can be stabilized, and the cooling capacity can be stabilized. Further, when the heat storage type air conditioner includes a plurality of sets of the second expansion device and the indoor heat exchanger, each indoor heat exchanger has an amount of refrigerant corresponding to each cooling load. Therefore, each indoor heat exchanger can exhibit a required cooling capacity.
[0120]
In addition, during the cooling operation combined with the cold storage, the refrigerant supercooling degree between the junction of the general cooling circuit and the cooling circuit and the second expansion device is detected, and the maximum operation of the refrigerant pump is performed based on the detected value. Since the capacity is set, only the liquid refrigerant can be supplied to the second throttling device by setting the predetermined refrigerant supercooling degree, the refrigerant circulation amount can be stabilized, and the cooling capacity can be stabilized. I can plan. Further, when the heat storage type air conditioner includes a plurality of sets of the second expansion device and the indoor heat exchanger, each indoor heat exchanger has an amount of refrigerant corresponding to each cooling load. Therefore, each indoor heat exchanger can exhibit a required cooling capacity.
[0121]
Further, at the time of cooling operation combined with cold storage, the refrigerant pressure control target value of the junction is set based on the height difference between the position of the junction of the general cooling circuit and the circuit for cooling and the position of the indoor heat exchanger. In addition, the refrigerant pressure at the junction is detected, and the opening of the first throttle device is controlled so that the detected value approaches the refrigerant pressure control target value, so that from the junction to the second throttle device. It is possible to prevent the refrigerant from entering a gas-liquid two-phase state in the refrigerant pipe and supply only the liquid refrigerant to the second throttle device, stabilize the refrigerant circulation amount, and stabilize the cooling capacity. Can be achieved. Further, when the heat storage type air conditioner includes a plurality of sets of the second expansion device and the indoor heat exchanger, each indoor heat exchanger has an amount of refrigerant corresponding to each cooling load. Therefore, each indoor heat exchanger can exhibit a required cooling capacity.
[0122]
Also, during cooling operation with cold storage, the maximum operating capacity of the refrigerant pump is set based on the height difference between the position of the junction between the general cooling circuit and the cooling circuit and the position of the indoor heat exchanger By increasing the maximum operating capacity of the refrigerant pump and increasing the refrigerant pressure in the junction, the refrigerant is prevented from entering a gas-liquid two-phase state in the refrigerant pipe from the junction to the second throttle device. Thus, only the liquid refrigerant can be supplied to the second throttling device, the amount of refrigerant circulation can be stabilized, and the cooling capacity can be stabilized. Further, when the heat storage type air conditioner includes a plurality of sets of the second expansion device and the indoor heat exchanger, each indoor heat exchanger has an amount of refrigerant corresponding to each cooling load. Therefore, each indoor heat exchanger can exhibit a required cooling capacity.
[0123]
In addition, during the cooling storage combined cooling operation, a time difference between the daily cooling storage combined cooling time and a preset reference time is calculated, and based on this time difference, the refrigerant pressure at the junction of the general cooling circuit and the cooling circuit Since the control target value is set, the refrigerant pressure at the junction is detected, and the opening degree of the first throttle device is controlled so that the detected value approaches the refrigerant pressure control target value. The operating load can be adjusted according to the length of the cooling time with the cold storage, and if the cooling time with the cold storage is longer than the reference time, the cold storage amount is insufficient, or the cold storage amount is excessive when the cooling time is shorter than the reference time. Can be prevented, effective use of the cold storage amount and stabilization of the cooling capacity can be achieved.
[0124]
In addition, during the cooling storage combined cooling operation, the time difference between the daily cooling storage combined cooling time and the preset reference time is calculated, and the maximum operating capacity of the refrigerant pump is set based on this time difference. If the cooling load with cooling storage is longer than the reference time, the amount of cold storage is insufficient, or if the cooling time is shorter than the reference time, the amount of cold storage is excessive. Can be prevented, effective use of the cold storage amount and stabilization of the cooling capacity.
[0125]
Also, during the cooling combined use cooling operation, the predicted value of the cold storage consumption and the actual cold storage consumption during the elapsed time from the start of the cold storage combined cooling operation are calculated, and the predicted value of the cold storage consumption and the actual cold storage consumption Based on the consumption difference, the refrigerant pressure control target value at the junction of the general cooling circuit and the cooling circuit is set, the refrigerant pressure at the junction is detected, and this detected value is used as the refrigerant pressure control target value. Since the opening degree of the first throttle device is controlled so as to approach, the actual cool storage consumption can be brought close to the predicted value of the cool storage consumption, and the cool storage amount can be used up and down within the cooling storage combined cooling time. This makes it possible to effectively use the amount of cold storage and stabilize the cooling capacity.
[0126]
Also, during the cooling combined use cooling operation, the predicted value of the cold storage consumption and the actual cold storage consumption during the elapsed time from the start of the cold storage combined cooling operation are calculated, and the predicted value of the cold storage consumption and the actual cold storage consumption Since the maximum operating capacity of the refrigerant pump is set based on the consumption difference, the actual cold storage consumption can be brought close to the predicted value of the cold storage consumption, and the cold storage amount must be used up and down within the cooling storage combined cooling time. This makes it possible to effectively use the amount of cold storage and stabilize the cooling capacity.
[0127]
Also, during the cooling combined use cooling operation, the predicted value of the cold storage consumption and the actual cold storage consumption during the elapsed time from the start of the cold storage combined cooling operation are calculated, and the predicted value of the cold storage consumption and the actual cold storage consumption Based on the consumption difference, the operation mode is switched to either the cooling base mode where the base load is covered by the cooling circuit or the general cooling base mode where the base cooling circuit is used, so the actual cold storage consumption can be reduced. It is possible to approach the predicted value of the cold storage consumption, and the cool storage amount can be used up and down within the cooling storage combined cooling time without any excess or deficiency, so that effective use of the cold storage amount and stabilization of the cooling capacity can be achieved.
[0128]
In addition, during the cooling operation combined with cold storage, the heat storage amount of the heat storage medium is detected, and when the detected value falls below a predetermined value set in advance, the maximum operating capacity of the compressor is changed to a large capacity, so the heat storage amount is It becomes possible to eliminate the shortage of cooling capacity when the heat exchange capacity of the heat storage heat exchanger decreases and decreases.
[0129]
Further, during the cooling operation combined with cooling, the temperature of the heat storage medium is detected, and when the detected value exceeds a preset predetermined value, the refrigerant pressure control target value of the junction of the general cooling circuit and the cooling circuit is set. The setting is changed to a high pressure, the refrigerant pressure at the junction is detected, and the opening degree of the first expansion device is controlled so that the detected value approaches the setting target refrigerant pressure control value. By increasing the refrigerant pressure in the industrial heat exchanger and raising its saturation temperature, it is possible to extract cold heat from the heat storage medium whose temperature has risen to some extent, increasing the amount of heat collected from the heat storage medium and the temperature of the heat storage medium It becomes possible to solve the lack of cooling capacity accompanying the rise.
[0130]
Also, during the cooling operation with cooling storage, the temperature of the heat storage medium is detected, and the maximum operating capacity of the refrigerant pump is changed to a large capacity when the detected value exceeds a preset predetermined value. By increasing the refrigerant pressure in the chamber and raising its saturation temperature, it becomes possible to extract cold energy from the heat storage medium whose temperature has risen to some extent, and it is possible to increase the amount of heat collected from the heat storage medium and increase the temperature of the heat storage medium It becomes possible to solve the lack of cooling capacity.
[0131]
In addition to the heat storage operation, the general cooling operation, the cooling operation, and the cooling combined use cooling operation, the heat storage operation, the general heating operation, the heat radiation operation, and A regenerative air-conditioning apparatus that can also be used for cooling and heating that can perform a combined heat storage heating operation is obtained. In addition, because the suction side piping of the refrigerant pump is connected to the suction side piping of the compressor, the lubricating oil will not be sucked into the compressor or the refrigerant pump, and it will be continuous for a long time without any special measures. Even during operation, it is possible to prevent a failure caused by exhaustion of lubricating oil in the compressor and the refrigerant pump.
[0132]
Further, during the heat storage combined heating operation, the temperature of the heat storage medium is detected, and the opening degree of the first expansion device is controlled based on the detected value. Therefore, when the temperature of the heat storage medium is high, the first throttle When the temperature of the heat storage medium is low while reducing the opening of the device and increasing the flow rate of refrigerant flowing through the heat storage heat exchanger to perform high-performance and high-efficiency heating mainly from the heat storage medium Can increase the opening of the first expansion device to decrease the flow rate of the refrigerant flowing through the heat storage heat exchanger, thereby preventing a decrease in the capacity and efficiency of the heating operation.
[0133]
Further, during the heat storage combined use heating operation, the temperature of the outside air is detected, and the opening degree of the first expansion device is controlled based on the detected value. Therefore, when the temperature of the external air is high, the first expansion device When the opening degree is increased and the flow rate of refrigerant flowing through the outdoor heat exchanger is increased to perform high-performance and high-efficiency heating mainly for collecting heat from the outside air, and the temperature of the outside air is low, the first By reducing the flow rate of the refrigerant flowing through the outdoor heat exchanger by reducing the opening of the expansion device, and performing the operation mainly by collecting heat from the heat storage medium, the performance and efficiency of the heating operation are prevented from being lowered. It becomes possible.
[0134]
Further, during the heat storage combined heating operation, the temperature of the heat storage medium and the temperature of the outside air are detected, and the opening degree of the first expansion device is controlled based on the difference between these detected values, so that the heat storage medium temperature is the outside air temperature. If the temperature difference between the heat storage medium and the outside air is large, the opening amount of the first expansion device is decreased and the flow rate of the refrigerant flowing in the heat storage heat exchanger is increased to store the heat. The first throttling device performs high-performance and high-efficiency heating mainly for collecting heat from the medium, and when the temperature difference between the heat storage medium and the outside air is small or when the heat storage medium is at a lower temperature than the outside air. It is possible to increase the capacity of the heating operation and increase the efficiency by reducing the flow rate of the refrigerant flowing through the heat storage heat exchanger by increasing the opening of the heat storage.
[0135]
Moreover, since the difference between the heat storage consumption predicted value from the start of the heat storage combined use heating operation and the actual heat storage consumption is calculated, and the opening degree of the first expansion device is controlled based on this calculated value, the calculated value Is large, the opening of the first expansion device is decreased to increase the flow rate of the refrigerant flowing through the heat storage heat exchanger, and when the calculated value is small, the opening of the first expansion device is increased. By reducing the flow rate of the refrigerant flowing through the heat storage heat exchanger, the heat storage consumption can be optimally controlled.
[0136]
Further, during the heat storage operation, the temperature of the outside air and the pipe temperature between the outdoor heat exchanger and the first expansion device are detected, and based on these detection values, at least the compressor and the refrigerant pump Since either one of the operating capacities is controlled, if the piping temperature is high and there is no risk of frost formation on the outdoor heat exchanger, the operating capacity is increased to increase the heat storage capacity. Is within a certain range that may cause frost formation on the outdoor heat exchanger, the operating capacity is reduced and the pressure on the suction side of the compressor and refrigerant pump is increased to form frost on the outdoor heat exchanger. This reduces the frequency of the defrosting operation and increases the heat storage capacity as a whole of the heat storage operation time. Furthermore, even if the outside air temperature is low and the operation capacity is reduced, the outdoor heat exchanger may be frosted. In some cases, the operating capacity, i.e. By performing thermal operation, the accumulated heat storage amount within the heat storage time including the defrosting time can be maximized, and in either case, the heat storage amount is efficiently secured within the limited time at night. It becomes possible to do.
[0137]
Further, during the heat storage operation, the circulation amount of the refrigerant to the heat storage heat exchanger is detected, and the opening degree of the second expansion device is controlled based on the detected value. Therefore, when the refrigerant circulation amount is small, that is, the heat storage Refrigerant flow in the indoor heat exchanger by increasing the opening of the second expansion device when the refrigerant in the heat storage circuit composed of the heat exchanger for use and the first connection pipe is insufficient. To increase the amount of refrigerant circulating to the heat storage heat exchanger, thereby increasing the predetermined heat storage capacity. Can be secured.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 1 of the present invention.
FIG. 2 is an operation state diagram at the time of cooling storage combined cooling operation according to the first embodiment of the present invention.
FIG. 3 is an explanatory diagram showing opening control of the first throttle device by the first opening control means.
FIG. 4 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 2 of the present invention.
FIG. 5 is an operation state diagram at the time of cold storage combined cooling operation according to Embodiment 2 of the present invention.
FIG. 6 is an explanatory diagram showing setting of the maximum operating capacity of the refrigerant pump by the first maximum operating capacity setting means.
FIG. 7 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 3 of the present invention.
[Fig. 8] Fig. 8 is an operation state diagram during a cold storage combined cooling operation according to Embodiment 3 of the present invention.
FIG. 9 is an explanatory diagram showing setting of a refrigerant pressure control target value for a merging portion by the second opening degree control means.
FIG. 10 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 4 of the present invention.
FIG. 11 is an operation state diagram at the time of cool-storage combined cooling operation according to Embodiment 4 of the present invention.
FIG. 12 is an explanatory diagram showing the setting of the maximum operating capacity of the refrigerant pump by the second maximum operating capacity setting means.
FIG. 13 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 5 of the present invention.
FIG. 14 is an explanatory diagram showing the setting of the refrigerant pressure control target value of the merging portion by the third opening degree control means.
FIG. 15 is an explanatory diagram showing the relationship between the refrigerant pressure in the junction and the operating load related to the cooling circuit.
FIG. 16 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 6 of the present invention.
FIG. 17 is an explanatory diagram showing the setting of the maximum operating capacity of the refrigerant pump by the third maximum operating capacity setting means.
FIG. 18 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 7 of the present invention.
FIG. 19 is an explanatory diagram showing setting of a refrigerant pressure control target value for a merging portion by a fourth opening degree control means.
FIG. 20 is an explanatory diagram showing the relationship between the predicted value of cold storage consumption and the actual cold storage consumption.
FIG. 21 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 8 of the present invention.
FIG. 22 is an explanatory diagram showing the setting of the maximum operating capacity of the refrigerant pump by the fourth maximum operating capacity setting means.
FIG. 23 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 9 of the present invention.
FIG. 24 is an explanatory diagram showing switching of operation modes by operation mode switching means.
FIG. 25 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 10 of the present invention.
FIG. 26 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 11 of the present invention.
FIG. 27 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 12 of the present invention.
FIG. 28 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 13 of the present invention.
FIG. 29 is an explanatory diagram showing a heat storage operation of the air-conditioning apparatus according to Embodiment 13 of the present invention.
FIG. 30 is an explanatory diagram showing a general heating operation of the air-conditioning apparatus according to Embodiment 13 of the present invention.
FIG. 31 is an explanatory diagram showing a heat radiation operation of an air-conditioning apparatus according to Embodiment 13 of the present invention.
FIG. 32 is an explanatory diagram showing a heat storage combined heating operation of an air-conditioning apparatus according to Embodiment 13 of the present invention.
FIG. 33 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 14 of the present invention.
FIG. 34 is an explanatory diagram showing opening control of the first throttling device by sixth opening control means.
FIG. 35 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 15 of the present invention.
FIG. 36 is an explanatory diagram showing opening control of the first throttling device by the seventh opening control means.
FIG. 37 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 16 of the present invention.
FIG. 38 is an explanatory view showing the opening control of the first throttling device by the eighth opening control means.
FIG. 39 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 17 of the present invention.
FIG. 40 is an explanatory diagram showing opening control of the first throttling device by the ninth opening control means.
FIG. 41 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 18 of the present invention.
FIG. 42 is an explanatory diagram showing operation capacity control of the compressor and the refrigerant pump by the operation capacity control means.
FIG. 43 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 19 of the present invention.
FIG. 44 is an explanatory diagram showing opening control of the second throttling device by the tenth opening control means.
FIG. 45 is a schematic configuration diagram of a conventional air conditioner.
FIG. 46 is an explanatory diagram showing a cold storage operation of a conventional air conditioner.
FIG. 47 is an operation state diagram of the conventional air conditioner during a cold storage operation.
FIG. 48 is an explanatory diagram showing a general cooling operation of a conventional air conditioner.
FIG. 49 is an operation state diagram of the conventional air-conditioning apparatus during general cooling operation.
FIG. 50 is an explanatory diagram showing a cooling operation of a conventional air conditioner.
FIG. 51 is an operation state diagram of the conventional air conditioner during a cooling operation.
FIG. 52 is an explanatory diagram showing cooling operation combined with cold storage of a conventional air conditioner.
FIG. 53 is an operation state diagram of the conventional air-conditioning apparatus at the time of cooling operation combined with cold storage.
FIG. 54 is an explanatory diagram showing a heat storage operation of a conventional air conditioner.
FIG. 55 is an operation state diagram of the conventional air conditioner during a heat storage operation.
FIG. 56 is an explanatory diagram showing a general heating operation of a conventional air conditioner.
FIG. 57 is an operation state diagram of the conventional air-conditioning apparatus during general heating operation.
FIG. 58 is an explanatory diagram showing a heat radiation operation of a conventional air conditioner.
FIG. 59 is an operation state diagram of the conventional air conditioner during heat dissipation operation.
FIG. 60 is an explanatory view showing a heat storage combined heating operation of a conventional air conditioner.
FIG. 61 is an operation state diagram of the conventional air-conditioning apparatus during the combined heat storage heating operation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor, 3 Outdoor heat exchanger, 6 1st expansion device, 9 Thermal storage tank, 10 Heat storage heat exchanger, 12 Refrigerant pump, 14 1st valve, 15a 2nd expansion device, 15b 2nd Expansion device, 15c Second expansion device, 16a Indoor heat exchanger, 16b Indoor heat exchanger, 16c Indoor heat exchanger, 18 Second valve, 21 Heat storage medium, 22 Third expansion device, 23 Four-way Switching valve, 201 refrigerant supercooling degree detection means, 202 first opening degree control means, 203 first maximum operating capacity setting means, 204 refrigerant pressure detection means, 205 height difference setting means, 206 second opening degree control means 207, second maximum operating capacity setting means, 208 cool storage combined cooling time management means, 209 third opening degree control means, 210 third maximum operation capacity setting means, 211 cool storage consumption predicted value calculation means, 212 cool storage consumption Quantity calculation Means, 213 fourth opening degree control means, 214 fourth maximum operation capacity setting means, 215 operation mode switching means, 216 cold storage amount detection means, 217 fifth maximum operation capacity setting means, 218 heat storage medium temperature detection means, 219 fifth opening control means, 220 sixth maximum operating capacity setting means, 221 outside air temperature detection means, 222 heat storage consumption difference calculation means, 223 sixth opening control means, 224 seventh opening degree control means 225, eighth opening control means, 226, ninth opening control means, 227 piping temperature detection means, 228 operating capacity control means, 229 refrigerant circulation amount detection means, 230 tenth opening control means, M junction

Claims (19)

圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、上記一般冷房用回路の上記第1の絞り装置と上記第2の絞り装置との間と上記室内側熱交換器と上記圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,及び上記第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを冷媒ポンプを介して接続し上記蓄熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,及び上記室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、上記蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽とを備えた蓄熱式空気調和装置において、
上記一般冷房用回路と上記放冷用回路との合流部と上記第2の絞り装置との間の冷媒過冷却度を検出する冷媒過冷却度検出手段と、上記冷媒過冷却度検出手段の検出値に基づいて上記第1の絞り装置の開度を制御する第1の開度制御手段とを設け、
上記一般冷房用回路と上記放冷用回路とを併用する蓄冷併用冷房運転を行なう際に、上記第1の開度制御手段が、上記第2の絞り装置に供給される冷媒を液冷媒のみとするように上記第1の絞り装置の開度を制御することを特徴とする蓄熱式空気調和装置。
A general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are connected in order, and the first cooling circuit. The expansion device and the second expansion device and the indoor heat exchanger and the compressor are connected via a third expansion device, a heat storage heat exchanger, and a first valve. The compressor, the outdoor heat exchanger, and the first expansion device together with the first connection pipe constituting the cold storage circuit, the suction side pipe of the compressor, and the first connection pipe of the first connection pipe Together with the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchanger. The second connecting pipe constituting the cooling circuit, the heat storage heat exchanger and the heat storage medium containing the heat storage medium In the thermal storage type air conditioning apparatus and a tank,
Refrigerant supercooling degree detection means for detecting the degree of refrigerant supercooling between the junction of the general cooling circuit and the cooling circuit and the second throttle device, and detection by the refrigerant supercooling degree detection means A first opening degree control means for controlling the opening degree of the first throttle device based on the value;
When performing the regenerative cooling combined cooling operation in which the general cooling circuit and the cooling circuit are used together, the first opening degree control means uses only the liquid refrigerant as the refrigerant supplied to the second expansion device. The regenerative air conditioner is characterized in that the opening degree of the first throttling device is controlled .
圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、上記一般冷房用回路の上記第1の絞り装置と上記第2の絞り装置との間と上記室内側熱交換器と上記圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,及び上記第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを冷媒ポンプを介して接続し上記蓄熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,及び上記室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、上記蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽とを備えた蓄熱式空気調和装置において、
上記一般冷房用回路と上記放冷用回路との合流部と上記第2の絞り装置との間の冷媒過冷却度を検出する冷媒過冷却度検出手段と、上記冷媒過冷却度検出手段の検出値に基づいて上記冷媒ポンプの最大運転容量を設定する第1の最大運転容量設定手段とを設け、
上記一般冷房用回路と上記放冷用回路とを併用する蓄冷併用冷房運転を行なう際に、上記第1の最大運転容量設定手段が、上記第2の絞り装置に供給される冷媒を液冷媒のみとするように上記冷媒ポンプの最大運転容量を設定することを特徴とする蓄熱式空気調和装置。
A general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are connected in order, and the first cooling circuit. The expansion device and the second expansion device and the indoor heat exchanger and the compressor are connected via a third expansion device, a heat storage heat exchanger, and a first valve. The compressor, the outdoor heat exchanger, and the first expansion device together with the first connection pipe constituting the cold storage circuit, the suction side pipe of the compressor, and the first connection pipe of the first connection pipe Together with the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchanger. The second connecting pipe constituting the cooling circuit, the heat storage heat exchanger and the heat storage medium containing the heat storage medium In the thermal storage type air conditioning apparatus and a tank,
Refrigerant supercooling degree detection means for detecting the degree of refrigerant supercooling between the junction between the general cooling circuit and the cooling circuit and the second throttle device, and detection by the refrigerant supercooling degree detection means First maximum operating capacity setting means for setting the maximum operating capacity of the refrigerant pump based on the value,
When performing the regenerative cooling combined cooling operation in which the general cooling circuit and the cooling circuit are used together, the first maximum operating capacity setting means uses only the liquid refrigerant as the refrigerant supplied to the second expansion device. The regenerative air conditioner is characterized in that the maximum operating capacity of the refrigerant pump is set as follows .
圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、上記一般冷房用回路の上記第1の絞り装置と上記第2の絞り装置との間と上記室内側熱交換器と上記圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,及び上記第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを冷媒ポンプを介して接続し上記蓄熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,及び上記室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、上記蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽とを備えた蓄熱式空気調和装置において、
上記一般冷房用回路と上記放冷用回路との合流部の冷媒圧力を検出する冷媒圧力検出手段と、上記合流部の位置と上記室内側熱交換器の位置との高低差を予め設定する高低差設定手段と、上記高低差設定手段の設定値に基づいて上記合流部の冷媒圧力制御目標値を設定するとともに上記冷媒圧力検出手段の検出値を上記冷媒圧力制御目標値に近付けるように上記第1の絞り装置の開度を制御する第2の開度制御手段とを設け、
上記一般冷房用回路と上記放冷用回路とを併用する蓄冷併用冷房運転を行なう際に、上 記第2の開度制御手段が、上記第2の絞り装置に供給される冷媒を液冷媒のみとするように上記第1の絞り装置の開度を制御することを特徴とする蓄熱式空気調和装置。
A general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are connected in order, and the first cooling circuit. The expansion device and the second expansion device and the indoor heat exchanger and the compressor are connected via a third expansion device, a heat storage heat exchanger, and a first valve. The compressor, the outdoor heat exchanger, and the first expansion device together with the first connection pipe constituting the cold storage circuit, the suction side pipe of the compressor, and the first connection pipe of the first connection pipe Together with the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchanger. The second connecting pipe constituting the cooling circuit, the heat storage heat exchanger and the heat storage medium containing the heat storage medium In the thermal storage type air conditioning apparatus and a tank,
Refrigerant pressure detecting means for detecting the refrigerant pressure at the junction of the general cooling circuit and the cooling circuit, and a height for presetting the height difference between the position of the junction and the position of the indoor heat exchanger The refrigerant pressure control target value of the merging portion is set based on the setting values of the difference setting means and the height difference setting means, and the detection value of the refrigerant pressure detection means is set close to the refrigerant pressure control target value. Second opening control means for controlling the opening of the first throttle device;
When performing cool storage combination cooling operation using both the foregoing general cooling circuit and the cooling circuit, the upper Symbol second opening control means, the refrigerant supplied to the second throttle device liquid refrigerant only The regenerative air conditioner is characterized in that the opening degree of the first throttling device is controlled as follows .
圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、上記一般冷房用回路の上記第1の絞り装置と上記第2の絞り装置との間と上記室内側熱交換器と上記圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,及び上記第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを冷媒ポンプを介して接続し上記蓄熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,及び上記室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、上記蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽とを備えた蓄熱式空気調和装置において、
上記合流部の位置と上記室内側熱交換器の位置との高低差を予め設定する高低差設定手段と、上記高低差設定手段の設定値に基づいて上記冷媒ポンプの最大運転容量を設定する第2の最大運転容量設定手段とを設け、
上記一般冷房用回路と上記放冷用回路とを併用する蓄冷併用冷房運転を行なう際に、上記第2の最大運転容量設定手段が、上記第2の絞り装置に供給される冷媒を液冷媒のみとするように上記冷媒ポンプの最大運転容量を設定することを特徴とする蓄熱式空気調和装置。
A general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are connected in order, and the first cooling circuit. The expansion device and the second expansion device and the indoor heat exchanger and the compressor are connected via a third expansion device, a heat storage heat exchanger, and a first valve. The compressor, the outdoor heat exchanger, and the first expansion device together with the first connection pipe constituting the cold storage circuit, the suction side pipe of the compressor, and the first connection pipe of the first connection pipe Together with the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchanger. The second connecting pipe constituting the cooling circuit, the heat storage heat exchanger and the heat storage medium containing the heat storage medium In the thermal storage type air conditioning apparatus and a tank,
A height difference setting means for presetting the height difference between the position of the junction and the position of the indoor heat exchanger, and a maximum operating capacity of the refrigerant pump based on a set value of the height difference setting means. 2 maximum operating capacity setting means,
When performing the regenerative cooling combined cooling operation in which the general cooling circuit and the cooling circuit are used together, the second maximum operating capacity setting means uses only the liquid refrigerant as the refrigerant supplied to the second expansion device. The regenerative air conditioner is characterized in that the maximum operating capacity of the refrigerant pump is set as follows .
圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、上記一般冷房用回路の上記第1の絞り装置と上記第2の絞り装置との間と上記室内側熱交換器と上記圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,及び上記第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを冷媒ポンプを介して接続し上記蓄熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,及び上記室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、上記蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽とを備えた蓄熱式空気調和装置において、
上記一般冷房用回路と上記放冷用回路とを併用する蓄冷併用冷房運転を行なう際に上記一般冷房用回路と上記放冷用回路との合流部の冷媒圧力を検出する冷媒圧力検出手段と、1日の蓄冷併用冷房時間を設定するとともにこの蓄冷併用冷房時間と予め設定された基準時間との時間差を演算する蓄冷併用冷房時間管理手段と、上記蓄冷併用冷房時間管理手段が演算した時間差に基づいて上記合流部の冷媒圧力制御目標値を設定するとともに上記冷媒圧力検出手段の検出値を上記冷媒圧力制御目標値に近付けるように上記第1の絞り装置の開度を制御する第3の開度制御手段とを設けたことを特徴とする蓄熱式空気調和装置。
A general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are connected in order, and the first cooling circuit. The expansion device and the second expansion device and the indoor heat exchanger and the compressor are connected via a third expansion device, a heat storage heat exchanger, and a first valve. The compressor, the outdoor heat exchanger, and the first expansion device together with the first connection pipe constituting the cold storage circuit, the suction side pipe of the compressor, and the first connection pipe of the first connection pipe Together with the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchanger. The second connecting pipe constituting the cooling circuit, the heat storage heat exchanger and the heat storage medium containing the heat storage medium In the thermal storage type air conditioning apparatus and a tank,
Refrigerant pressure detection means for detecting the refrigerant pressure at the junction of the general cooling circuit and the cooling circuit when performing a cold storage combined cooling operation that uses the general cooling circuit and the cooling circuit together; Based on the time difference calculated by the cold storage combined cooling time management means for setting the daily cold storage combined cooling time and calculating the time difference between the cold storage combined cooling time and a preset reference time. The third opening degree for setting the refrigerant pressure control target value of the junction and controlling the opening degree of the first throttling device so that the detection value of the refrigerant pressure detection means approaches the refrigerant pressure control target value A regenerative air conditioner comprising a control means.
圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、上記一般冷房用回路の上記第1の絞り装置と上記第2の絞り装置との間と上記室内側熱交換器と上記圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,及び上記第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを冷媒ポンプを介して接続し上記蓄熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,及び上記室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、上記蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽とを備えた蓄熱式空気調和装置において、
上記一般冷房用回路と上記放冷用回路とを併用する蓄冷併用冷房運転を行なう際に1日の蓄冷併用冷房時間を設定するとともにこの蓄冷併用冷房時間と予め設定された基準時間との時間差を演算する蓄冷併用冷房時間管理手段と、上記蓄冷併用冷房時間管理手段が演算した時間差に基づいて上記冷媒ポンプの最大運転容量を設定する第3の最大運転容量設定手段とを設けたことを特徴とする蓄熱式空気調和装置。
A general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are connected in order, and the first cooling circuit. The expansion device and the second expansion device and the indoor heat exchanger and the compressor are connected via a third expansion device, a heat storage heat exchanger, and a first valve. The compressor, the outdoor heat exchanger, and the first expansion device together with the first connection pipe constituting the cold storage circuit, the suction side pipe of the compressor, and the first connection pipe of the first connection pipe Together with the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchanger. The second connecting pipe constituting the cooling circuit, the heat storage heat exchanger and the heat storage medium containing the heat storage medium In the thermal storage type air conditioning apparatus and a tank,
When performing the cooling storage combined cooling operation using both the general cooling circuit and the cooling circuit, a cooling storage combined cooling time for one day is set and a time difference between the cooling storage combined cooling time and a preset reference time is set. A cooling storage combined cooling time management means for calculating and a third maximum operating capacity setting means for setting the maximum operating capacity of the refrigerant pump based on the time difference calculated by the cold storage combined cooling time management means are provided. Regenerative air conditioner.
圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、上記一般冷房用回路の上記第1の絞り装置と上記第2の絞り装置との間と上記室内側熱交換器と上記圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,及び上記第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを冷媒ポンプを介して接続し上記蓄熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,及び上記室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、上記蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽とを備えた蓄熱式空気調和装置において、
上記一般冷房用回路と上記放冷用回路とを併用する蓄冷併用冷房運転を行なう際に上記一般冷房用回路と上記放冷用回路との合流部の冷媒圧力を検出する冷媒圧力検出手段と、蓄冷併用冷房運転開始からの経過時間における蓄冷消費量の予測値を演算する蓄冷消費量予測値演算手段と、蓄冷併用冷房運転開始からの経過時間及びこの経過時間における上記冷媒ポンプの積算運転容量によって実際の蓄冷消費量を演算する蓄冷消費量演算手段と、上記蓄冷消費量の予測値と上記実際の蓄冷消費量との消費量差に基づいて上記合流部の冷媒圧力制御目標値を設定するとともに上記冷媒圧力検出手段の検出値を上記冷媒圧力制御目標値に近付けるように上記第1の絞り装置の開度を制御する第4の開度制御手段とを設けたことを特徴とする蓄熱式空気調和装置。
A general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are connected in order, and the first cooling circuit. The expansion device and the second expansion device and the indoor heat exchanger and the compressor are connected via a third expansion device, a heat storage heat exchanger, and a first valve. The compressor, the outdoor heat exchanger, and the first expansion device together with the first connection pipe constituting the cold storage circuit, the suction side pipe of the compressor, and the first connection pipe of the first connection pipe Together with the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchanger. The second connecting pipe constituting the cooling circuit, the heat storage heat exchanger and the heat storage medium containing the heat storage medium In the thermal storage type air conditioning apparatus and a tank,
Refrigerant pressure detection means for detecting the refrigerant pressure at the junction of the general cooling circuit and the cooling circuit when performing a regenerative cooling combined cooling operation using the general cooling circuit and the cooling circuit together; The cold storage consumption predicted value calculation means for calculating the predicted value of the cold storage consumption during the elapsed time from the start of the cold storage combined cooling operation, the elapsed time from the start of the cold storage combined cooling operation, and the cumulative operating capacity of the refrigerant pump at the elapsed time The cold storage consumption calculating means for calculating the actual cold storage consumption, and setting the refrigerant pressure control target value of the junction based on the consumption difference between the predicted value of the cold storage consumption and the actual cold storage consumption And a fourth opening degree control means for controlling the opening degree of the first throttling device so as to bring the detection value of the refrigerant pressure detection means closer to the refrigerant pressure control target value. Conditioning apparatus.
圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、上記一般冷房用回路の上記第1の絞り装置と上記第2の絞り装置との間と上記室内側熱交換器と上記圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,及び上記第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを冷媒ポンプを介して接続し上記蓄熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,及び上記室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、上記蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽とを備えた蓄熱式空気調和装置において、
上記一般冷房用回路と上記放冷用回路とを併用する蓄冷併用冷房運転の開始からの経過時間における蓄冷消費量の予測値を演算する蓄冷消費量予測値演算手段と、蓄冷併用冷房運転開始からの経過時間及びこの経過時間における上記冷媒ポンプの積算運転容量によって実際の蓄冷消費量を演算する蓄冷消費量演算手段と、上記蓄冷消費量の予測値と上記実際の蓄冷消費量との消費量差に基づいて上記冷媒ポンプの最大運転容量を設定する第4の最大運転容量設定手段とを設けたことを特徴とする蓄熱式空気調和装置。
A general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are connected in order, and the first cooling circuit. The expansion device and the second expansion device and the indoor heat exchanger and the compressor are connected via a third expansion device, a heat storage heat exchanger, and a first valve. The compressor, the outdoor heat exchanger, and the first expansion device together with the first connection pipe constituting the cold storage circuit, the suction side pipe of the compressor, and the first connection pipe of the first connection pipe Together with the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchanger. The second connecting pipe constituting the cooling circuit, the heat storage heat exchanger and the heat storage medium containing the heat storage medium In the thermal storage type air conditioning apparatus and a tank,
From the cold storage consumption predicted value calculation means for calculating the predicted value of the cold storage consumption in the elapsed time from the start of the cold storage combined cooling operation using the general cooling circuit and the cooling circuit together, and from the cold storage combined cooling operation start And a cumulative storage capacity of the refrigerant pump at the elapsed time, a cold storage consumption calculating means for calculating an actual cold storage consumption, and a consumption difference between the predicted value of the cold storage consumption and the actual cold storage consumption And a fourth maximum operating capacity setting means for setting the maximum operating capacity of the refrigerant pump based on the heat storage type air conditioner.
圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、上記一般冷房用回路の上記第1の絞り装置と上記第2の絞り装置との間と上記室内側熱交換器と上記圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,及び上記第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを冷媒ポンプを介して接続し上記蓄熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,及び上記室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、上記蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽とを備えた蓄熱式空気調和装置において、
上記一般冷房用回路と上記放冷用回路とを併用する蓄冷併用冷房運転の開始からの経過時間における蓄冷消費量の予測値を演算する蓄冷消費量予測値演算手段と、蓄冷併用冷房運転開始からの経過時間及びこの経過時間における上記冷媒ポンプの積算運転容量によって実際の蓄冷消費量を演算する蓄冷消費量演算手段と、冷房負荷全体をベース負荷とこのベース負荷より負荷の小さい変動負荷とに区分するとともに上記蓄冷消費量の予測値と上記実際の蓄冷消費量との消費量差に基づいて運転モードを上記ベース負荷が上記放冷用回路でまかなわれる放冷ベースモードと上記ベース負荷が上記一般冷房用回路でまかなわれる一般冷房ベースモードとのいずれかに切り換える運転モード切換手段とを設けたことを特徴とする蓄熱式空気調和装置。
A general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are connected in order, and the first cooling circuit. The expansion device and the second expansion device and the indoor heat exchanger and the compressor are connected via a third expansion device, a heat storage heat exchanger, and a first valve. The compressor, the outdoor heat exchanger, and the first expansion device together with the first connection pipe constituting the cold storage circuit, the suction side pipe of the compressor, and the first connection pipe of the first connection pipe Together with the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchanger. The second connecting pipe constituting the cooling circuit, the heat storage heat exchanger and the heat storage medium containing the heat storage medium In the thermal storage type air conditioning apparatus and a tank,
From the cold storage consumption predicted value calculation means for calculating the predicted value of the cold storage consumption in the elapsed time from the start of the cold storage combined cooling operation using the general cooling circuit and the cooling circuit together, and from the cold storage combined cooling operation start The cool storage consumption calculation means for calculating the actual cool storage consumption based on the elapsed time and the cumulative operating capacity of the refrigerant pump at the elapsed time, and the entire cooling load is divided into a base load and a variable load having a smaller load than the base load. In addition, based on the consumption difference between the predicted value of the cold storage consumption and the actual cold storage consumption, the operation mode is changed to the cooling base mode in which the base load is covered by the cooling circuit and the base load is the general A regenerative air conditioner characterized by comprising an operation mode switching means for switching to any one of a general cooling base mode provided by a cooling circuit.
圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、上記一般冷房用回路の上記第1の絞り装置と上記第2の絞り装置との間と上記室内側熱交換器と上記圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,及び上記第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを冷媒ポンプを介して接続し上記蓄熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,及び上記室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、上記蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽とを備えた蓄熱式空気調和装置において、
上記蓄熱媒体の蓄冷量を検出する蓄冷量検出手段と、上記蓄冷量検出手段の検出値が予め設定された所定値を下回った時に上記圧縮機の最大運転容量を大きな容量に設定変更する第5の最大運転容量設定手段とを設けたことを特徴とする蓄熱式空気調和装置。
A general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are connected in order, and the first cooling circuit. The expansion device and the second expansion device and the indoor heat exchanger and the compressor are connected via a third expansion device, a heat storage heat exchanger, and a first valve. The compressor, the outdoor heat exchanger, and the first expansion device together with the first connection pipe constituting the cold storage circuit, the suction side pipe of the compressor, and the first connection pipe of the first connection pipe Together with the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchanger. The second connecting pipe constituting the cooling circuit, the heat storage heat exchanger and the heat storage medium containing the heat storage medium In the thermal storage type air conditioning apparatus and a tank,
A cold storage amount detection means for detecting the cold storage amount of the heat storage medium, and a fifth change of the maximum operating capacity of the compressor to a large capacity when a detection value of the cold storage amount detection means falls below a preset predetermined value. And a maximum operating capacity setting means. A regenerative air conditioner.
圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、上記一般冷房用回路の上記第1の絞り装置と上記第2の絞り装置との間と上記室内側熱交換器と上記圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,及び上記第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを冷媒ポンプを介して接続し上記蓄熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,及び上記室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、上記蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽とを備えた蓄熱式空気調和装置において、
上記一般冷房用回路と上記放冷用回路とを併用する蓄冷併用冷房運転を行なう際に上記一般冷房用回路と上記放冷用回路との合流部の冷媒圧力を検出する冷媒圧力検出手段と、上記蓄熱媒体の温度を検出する蓄熱媒体温度検出手段と、上記蓄熱媒体温度検出手段の検出値が予め設定された所定値を上回った時に上記合流部の冷媒圧力制御目標値を高い圧力に設定変更するとともに上記冷媒圧力検出手段の検出値を上記設定変更された冷媒圧力制御目標値に近付けるように上記第1の絞り装置の開度を制御する第5の開度制御手段とを設けたことを特徴とする蓄熱式空気調和装置。
A general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are connected in order, and the first cooling circuit. The expansion device and the second expansion device and the indoor heat exchanger and the compressor are connected via a third expansion device, a heat storage heat exchanger, and a first valve. The compressor, the outdoor heat exchanger, and the first expansion device together with the first connection pipe constituting the cold storage circuit, the suction side pipe of the compressor, and the first connection pipe of the first connection pipe Together with the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchanger. The second connecting pipe constituting the cooling circuit, the heat storage heat exchanger and the heat storage medium containing the heat storage medium In the thermal storage type air conditioning apparatus and a tank,
Refrigerant pressure detection means for detecting the refrigerant pressure at the junction of the general cooling circuit and the cooling circuit when performing a cold storage combined cooling operation that uses the general cooling circuit and the cooling circuit together; The heat storage medium temperature detection means for detecting the temperature of the heat storage medium, and when the detected value of the heat storage medium temperature detection means exceeds a predetermined value set in advance, the refrigerant pressure control target value of the junction is changed to a high pressure And a fifth opening degree control means for controlling the opening degree of the first throttling device so as to bring the detection value of the refrigerant pressure detection means closer to the refrigerant pressure control target value whose setting has been changed. A heat storage air conditioner.
圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、上記一般冷房用回路の上記第1の絞り装置と上記第2の絞り装置との間と上記室内側熱交換器と上記圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,及び上記第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを冷媒ポンプを介して接続し上記蓄熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,及び上記室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、上記蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽とを備えた蓄熱式空気調和装置において、
上記一般冷房用回路と上記放冷用回路とを併用する蓄冷併用冷房運転を行なう際に上記蓄熱媒体の温度を検出する蓄熱媒体温度検出手段と、上記蓄熱媒体温度検出手段の検出値が予め設定された所定値を上回った時に上記冷媒ポンプの最大運転容量を大きな容量に設定変更する第6の最大運転容量設定手段とを設けたことを特徴とする蓄熱式空気調和装置。
A general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are connected in order, and the first cooling circuit. The expansion device and the second expansion device and the indoor heat exchanger and the compressor are connected via a third expansion device, a heat storage heat exchanger, and a first valve. The compressor, the outdoor heat exchanger, and the first expansion device together with the first connection pipe constituting the cold storage circuit, the suction side pipe of the compressor, and the first connection pipe of the first connection pipe Together with the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchanger. The second connecting pipe constituting the cooling circuit, the heat storage heat exchanger and the heat storage medium containing the heat storage medium In the thermal storage type air conditioning apparatus and a tank,
The heat storage medium temperature detection means for detecting the temperature of the heat storage medium when performing the cold storage combined cooling operation using the general cooling circuit and the cooling circuit together, and the detection value of the heat storage medium temperature detection means are preset. And a sixth maximum operating capacity setting means for changing the maximum operating capacity of the refrigerant pump to a large capacity when the predetermined value is exceeded.
圧縮機の吸入側配管と吐出側配管との間に設けられて一般冷房用回路の冷媒循環方向を反転させる四方切換弁と、上記圧縮機の吸入側配管と第1の接続配管の第1のバルブと蓄熱用熱交換器との間とを第2のバルブを介して接続する第3の接続配管とを備えたことを特徴とする請求項第1項〜第12項のいずれかに記載の蓄熱式空気調和装置。  A four-way switching valve provided between the suction side pipe and the discharge side pipe of the compressor to reverse the refrigerant circulation direction of the general cooling circuit; and a first of the suction side pipe and the first connection pipe of the compressor 13. The third connection pipe according to claim 1, further comprising a third connection pipe connecting the valve and the heat storage heat exchanger via a second valve. Thermal storage air conditioner. 圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、上記一般冷房用回路の上記第1の絞り装置と上記第2の絞り装置との間と上記室内側熱交換器と上記圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,及び上記第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを冷媒ポンプを介して接続し上記蓄熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,及び上記室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、上記蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽とを備えた蓄熱式空気調和装置において、
上記圧縮機の吸入側配管と吐出側配管との間に設けられて上記一般冷房用回路の冷媒循環方向を反転させる四方切換弁と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを第2のバルブを介して接続する第3の接続配管とを備え、
上記蓄熱媒体の温度を検出する蓄熱媒体温度検出手段と、上記圧縮機から吐出された冷媒が上記室内側熱交換器に向かうように上記四方切換弁を切り換えて蓄熱併用暖房運転を行なう際に上記蓄熱媒体温度検出手段の検出値に基づいて上記第1の絞り装置の開度を制御する第6の開度制御手段とを設けたことを特徴とする蓄熱式空気調和装置。
A general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are connected in order, and the first cooling circuit. The expansion device and the second expansion device and the indoor heat exchanger and the compressor are connected via a third expansion device, a heat storage heat exchanger, and a first valve. The compressor, the outdoor heat exchanger, and the first expansion device together with the first connection pipe constituting the cold storage circuit, the suction side pipe of the compressor, and the first connection pipe of the first connection pipe Together with the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchanger. The second connecting pipe constituting the cooling circuit, the heat storage heat exchanger and the heat storage medium containing the heat storage medium In the thermal storage type air conditioning apparatus and a tank,
A four-way switching valve provided between the suction-side piping and the discharge-side piping of the compressor to reverse the refrigerant circulation direction of the general cooling circuit; the suction-side piping of the compressor and the first connection piping; A third connection pipe for connecting the first valve and the heat storage heat exchanger via a second valve;
The heat storage medium temperature detecting means for detecting the temperature of the heat storage medium, and the above-described heat storage combined heating operation by switching the four-way switching valve so that the refrigerant discharged from the compressor is directed to the indoor heat exchanger. A heat storage air conditioner comprising: sixth opening degree control means for controlling the opening degree of the first expansion device based on a detection value of the heat storage medium temperature detection means.
圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、上記一般冷房用回路の上記第1の絞り装置と上記第2の絞り装置との間と上記室内側熱交換器と上記圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,及び上記第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを冷媒ポンプを介して接続し上記蓄熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,及び上記室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、上記蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽とを備えた蓄熱式空気調和装置において、
上記圧縮機の吸入側配管と吐出側配管との間に設けられて上記一般冷房用回路の冷媒循環方向を反転させる四方切換弁と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを第2のバルブを介して接続する第3の接続配管とを備え、
外気の温度を検出する外気温度検出手段と、上記圧縮機から吐出された冷媒が上記室内側熱交換器に向かうように上記四方切換弁を切り換えて蓄熱併用暖房運転を行なう際に上記外気温度検出手段の検出値に基づいて上記第1の絞り装置の開度を制御する第7の開度制御手段とを設けたことを特徴とする蓄熱式空気調和装置。
A general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are connected in order, and the first cooling circuit. The expansion device and the second expansion device and the indoor heat exchanger and the compressor are connected via a third expansion device, a heat storage heat exchanger, and a first valve. The compressor, the outdoor heat exchanger, and the first expansion device together with the first connection pipe constituting the cold storage circuit, the suction side pipe of the compressor, and the first connection pipe of the first connection pipe Together with the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchanger. The second connecting pipe constituting the cooling circuit, the heat storage heat exchanger and the heat storage medium containing the heat storage medium In the thermal storage type air conditioning apparatus and a tank,
A four-way switching valve provided between the suction-side piping and the discharge-side piping of the compressor to reverse the refrigerant circulation direction of the general cooling circuit; the suction-side piping of the compressor and the first connection piping; A third connection pipe for connecting the first valve and the heat storage heat exchanger via a second valve;
Outside air temperature detection means for detecting the temperature of the outside air, and the outside air temperature detection when the four-way switching valve is switched so that the refrigerant discharged from the compressor goes to the indoor heat exchanger and the combined heat storage heating operation is performed. And a seventh opening degree control means for controlling the opening degree of the first throttling device based on a detected value of the means.
圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、上記一般冷房用回路の上記第1の絞り装置と上記第2の絞り装置との間と上記室内側熱交換器と上記圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,及び上記第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを冷媒ポンプを介して接続し上記蓄熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,及び上記室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、上記蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽とを備えた蓄熱式空気調和装置に おいて、
上記圧縮機の吸入側配管と吐出側配管との間に設けられて上記一般冷房用回路の冷媒循環方向を反転させる四方切換弁と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを第2のバルブを介して接続する第3の接続配管とを備え、
上記蓄熱媒体の温度を検出する蓄熱媒体温度検出手段と、外気の温度を検出する外気温度検出手段と、上記圧縮機から吐出された冷媒が上記室内側熱交換器に向かうように上記四方切換弁を切り換えて蓄熱併用暖房運転を行なう際に上記蓄熱媒体温度検出手段の検出値と上記外気温度検出手段の検出値との差に基づいて上記第1の絞り装置の開度を制御する第8の開度制御手段とを設けたことを特徴とする蓄熱式空気調和装置。
A general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are connected in order, and the first cooling circuit. The expansion device and the second expansion device and the indoor heat exchanger and the compressor are connected via a third expansion device, a heat storage heat exchanger, and a first valve. The compressor, the outdoor heat exchanger, and the first expansion device together with the first connection pipe constituting the cold storage circuit, the suction side pipe of the compressor, and the first connection pipe of the first connection pipe Together with the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchanger. The second connecting pipe constituting the cooling circuit, the heat storage heat exchanger and the heat storage medium containing the heat storage medium Oite in the thermal storage type air conditioning apparatus and a tank,
A four-way switching valve provided between the suction-side piping and the discharge-side piping of the compressor to reverse the refrigerant circulation direction of the general cooling circuit; the suction-side piping of the compressor and the first connection piping; A third connection pipe for connecting the first valve and the heat storage heat exchanger via a second valve;
Heat storage medium temperature detection means for detecting the temperature of the heat storage medium, outside air temperature detection means for detecting the temperature of the outside air, and the four-way switching valve so that the refrigerant discharged from the compressor is directed to the indoor heat exchanger The opening degree of the first expansion device is controlled based on the difference between the detected value of the heat storage medium temperature detecting means and the detected value of the outside air temperature detecting means when performing the combined heat storage heating operation. A regenerative air conditioner comprising an opening degree control means.
圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、上記一般冷房用回路の上記第1の絞り装置と上記第2の絞り装置との間と上記室内側熱交換器と上記圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,及び上記第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを冷媒ポンプを介して接続し上記蓄熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,及び上記室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、上記蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽とを備えた蓄熱式空気調和装置において、
上記圧縮機の吸入側配管と吐出側配管との間に設けられて上記一般冷房用回路の冷媒循環方向を反転させる四方切換弁と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを第2のバルブを介して接続する第3の接続配管とを備え、
上記圧縮機から吐出された冷媒が上記室内側熱交換器に向かうように上記四方切換弁を切り換えて行なう蓄熱併用暖房運転の開始からの蓄熱消費量予測値と実際の蓄熱消費量との差を演算する蓄熱消費量差演算手段と、上記蓄熱消費量差演算手段の演算値に基づいて上記第1の絞り装置の開度を制御する第9の開度制御手段とを設けたことを特徴とする蓄熱式空気調和装置。
A general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are connected in order, and the first cooling circuit. The expansion device and the second expansion device and the indoor heat exchanger and the compressor are connected via a third expansion device, a heat storage heat exchanger, and a first valve. The compressor, the outdoor heat exchanger, and the first expansion device together with the first connection pipe constituting the cold storage circuit, the suction side pipe of the compressor, and the first connection pipe of the first connection pipe Together with the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchanger. The second connecting pipe constituting the cooling circuit, the heat storage heat exchanger and the heat storage medium containing the heat storage medium In the thermal storage type air conditioning apparatus and a tank,
A four-way switching valve provided between the suction-side piping and the discharge-side piping of the compressor to reverse the refrigerant circulation direction of the general cooling circuit; the suction-side piping of the compressor and the first connection piping; A third connection pipe for connecting the first valve and the heat storage heat exchanger via a second valve;
The difference between the heat storage consumption predicted value from the start of the heat storage combined heating operation performed by switching the four-way switching valve so that the refrigerant discharged from the compressor is directed to the indoor heat exchanger and the actual heat storage consumption Heat storage consumption difference calculation means for calculating, and ninth opening degree control means for controlling the opening degree of the first expansion device based on the calculated value of the heat storage consumption difference calculation means are provided. Regenerative air conditioner.
圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、上記一般冷房用回路の上記第1の絞り装置と上記第2の絞り装置との間と上記室内側熱交換器と上記圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,及び上記第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを冷媒ポンプを介して接続し上記蓄熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,及び上記室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、上記蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽とを備えた蓄熱式空気調和装置において、
上記圧縮機の吸入側配管と吐出側配管との間に設けられて上記一般冷房用回路の冷媒循環方向を反転させる四方切換弁と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを第2のバルブを介して接続する第3の接続配管とを備え、
外気の温度を検出する外気温度検出手段と、上記室外側熱交換器と上記第1の絞り装置との間の配管の温度を検出する配管温度検出手段と、上記圧縮機から吐出された冷媒が上記第1の接続配管に向かうように上記四方切換弁を切り換えて蓄熱運転を行なう際に上記外気温度検出手段の検出値と上記配管温度検出手段の検出値とに基づいて上記圧縮機と上記冷媒ポンプとの少なくともいずれか一方の運転容量を制御する運転容量制御手段とを設けたことを特徴とする蓄熱式空気調和装置。
A general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are connected in order, and the first cooling circuit. The expansion device and the second expansion device and the indoor heat exchanger and the compressor are connected via a third expansion device, a heat storage heat exchanger, and a first valve. The compressor, the outdoor heat exchanger, and the first expansion device together with the first connection pipe constituting the cold storage circuit, the suction side pipe of the compressor, and the first connection pipe of the first connection pipe Together with the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchanger. The second connecting pipe constituting the cooling circuit, the heat storage heat exchanger and the heat storage medium containing the heat storage medium In the thermal storage type air conditioning apparatus and a tank,
A four-way switching valve provided between the suction-side piping and the discharge-side piping of the compressor to reverse the refrigerant circulation direction of the general cooling circuit; the suction-side piping of the compressor and the first connection piping; A third connection pipe for connecting the first valve and the heat storage heat exchanger via a second valve;
An outside air temperature detecting means for detecting the temperature of the outside air, a pipe temperature detecting means for detecting the temperature of the pipe between the outdoor heat exchanger and the first throttling device, and a refrigerant discharged from the compressor When the heat storage operation is performed by switching the four-way switching valve toward the first connection pipe, the compressor and the refrigerant are based on the detected value of the outside air temperature detecting means and the detected value of the pipe temperature detecting means. A regenerative air conditioner characterized by comprising operating capacity control means for controlling at least one of the operating capacity of the pump.
圧縮機,室外側熱交換器,第1の絞り装置,第2の絞り装置,及び室内側熱交換器を順次配管接続してなる一般冷房用回路と、上記一般冷房用回路の上記第1の絞り装置と上記第2の絞り装置との間と上記室内側熱交換器と上記圧縮機との間とを第3の絞り装置,蓄熱用熱交換器,及び第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,及び上記第1の絞り装置とともに蓄冷用回路を構成する第1の接続配管と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを冷媒ポンプを介して接続し上記蓄熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,及び上記室内側熱交換器とともに放冷用回路を構成する第2の接続配管と、上記蓄熱用熱交換器及び蓄熱媒体を収容した蓄熱槽とを備えた蓄熱式空気調和装置において、
上記圧縮機の吸入側配管と吐出側配管との間に設けられて上記一般冷房用回路の冷媒循環方向を反転させる四方切換弁と、上記圧縮機の吸入側配管と上記第1の接続配管の上記第1のバルブと上記蓄熱用熱交換器との間とを第2のバルブを介して接続する第3の接続配管とを備え、
上記蓄熱用熱交換器への冷媒の循環量を検出する冷媒循環量検出手段と、上記圧縮機から吐出された冷媒が上記第1の接続配管に向かうように上記四方切換弁を切り換えて蓄熱運転を行なう際に上記冷媒循環量検出手段の検出値に基づいて上記第2の絞り装置の開度を制御する第10の開度制御手段とを設けたことを特徴とする蓄熱式空気調和装置。
A general cooling circuit in which a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are connected in order, and the first cooling circuit. The expansion device and the second expansion device and the indoor heat exchanger and the compressor are connected via a third expansion device, a heat storage heat exchanger, and a first valve. The compressor, the outdoor heat exchanger, and the first expansion device together with the first connection pipe constituting the cold storage circuit, the suction side pipe of the compressor, and the first connection pipe of the first connection pipe Together with the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchanger. The second connecting pipe constituting the cooling circuit, the heat storage heat exchanger and the heat storage medium containing the heat storage medium In the thermal storage type air conditioning apparatus and a tank,
A four-way switching valve provided between the suction-side piping and the discharge-side piping of the compressor to reverse the refrigerant circulation direction of the general cooling circuit; the suction-side piping of the compressor and the first connection piping; A third connection pipe for connecting the first valve and the heat storage heat exchanger via a second valve;
Refrigerant circulation amount detection means for detecting the amount of refrigerant circulation to the heat storage heat exchanger, and heat storage operation by switching the four-way switching valve so that the refrigerant discharged from the compressor is directed to the first connection pipe And a tenth opening degree control means for controlling the opening degree of the second throttling device based on the detection value of the refrigerant circulation amount detecting means when performing the heat storage type air conditioner.
JP20603196A 1995-10-31 1996-08-05 Thermal storage air conditioner Expired - Lifetime JP3903292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20603196A JP3903292B2 (en) 1995-10-31 1996-08-05 Thermal storage air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28346995 1995-10-31
JP7-283469 1995-10-31
JP20603196A JP3903292B2 (en) 1995-10-31 1996-08-05 Thermal storage air conditioner

Publications (2)

Publication Number Publication Date
JPH09184663A JPH09184663A (en) 1997-07-15
JP3903292B2 true JP3903292B2 (en) 2007-04-11

Family

ID=26515409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20603196A Expired - Lifetime JP3903292B2 (en) 1995-10-31 1996-08-05 Thermal storage air conditioner

Country Status (1)

Country Link
JP (1) JP3903292B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5108606B2 (en) * 2008-04-23 2012-12-26 カルソニックカンセイ株式会社 Air conditioning system
WO2023119590A1 (en) * 2021-12-23 2023-06-29 三菱電機株式会社 Heat pump device

Also Published As

Publication number Publication date
JPH09184663A (en) 1997-07-15

Similar Documents

Publication Publication Date Title
JP2894421B2 (en) Thermal storage type air conditioner and defrosting method
US5755104A (en) Heating and cooling systems incorporating thermal storage, and defrost cycles for same
KR960010634B1 (en) Heat storage type air-conditioning apparatus
EP2211127A1 (en) Heat pump type air conditioner
US20020033024A1 (en) Utilization of harvest and/or melt water from an ice machine for a refrigerant subcool/precool system and method therefor
WO1982003449A1 (en) Precool/subcool system and condenser therefor
EP2527751A1 (en) Air conditioning-hot water supply combined system
US20150233624A1 (en) Cooling system
JPH0634169A (en) Air conditioning device
CN111486613B (en) Air conditioning system, control method and device thereof and storage medium
JP3567168B2 (en) Thermal storage heat pump air conditioner for cold regions
JP3903292B2 (en) Thermal storage air conditioner
JP4273470B2 (en) Refrigeration apparatus and method for increasing capacity of refrigeration apparatus
KR101434097B1 (en) Controling defrosting mode heat pump system
KR101418155B1 (en) An air conditioner
JP2757660B2 (en) Thermal storage type air conditioner
KR100345579B1 (en) The combined Compact Refrigerative / Regenerative Heat-Pump System
JPH1026377A (en) Heat storage type air conditioner
JPH06159743A (en) Heat accumulation type cooling device
KR100534003B1 (en) Heating and cooling system using brine circulation
JP3020384B2 (en) Thermal storage type air conditioner
JPH06241581A (en) Heat accumulating type air conditioner
JPH0849938A (en) Regenerative air-conditioner
CN115435416A (en) Fluorine pump dual-cycle air conditioning system and control method thereof
JP3613856B2 (en) Thermal storage air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term