JPH1026377A - Heat storage type air conditioner - Google Patents

Heat storage type air conditioner

Info

Publication number
JPH1026377A
JPH1026377A JP8179240A JP17924096A JPH1026377A JP H1026377 A JPH1026377 A JP H1026377A JP 8179240 A JP8179240 A JP 8179240A JP 17924096 A JP17924096 A JP 17924096A JP H1026377 A JPH1026377 A JP H1026377A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
valve
storage
expansion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8179240A
Other languages
Japanese (ja)
Other versions
JP3814877B2 (en
Inventor
Daisuke Shimamoto
大祐 嶋本
Moriya Miyamoto
守也 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17924096A priority Critical patent/JP3814877B2/en
Publication of JPH1026377A publication Critical patent/JPH1026377A/en
Application granted granted Critical
Publication of JP3814877B2 publication Critical patent/JP3814877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To carry out a cold heat storage, a heat storage and an air conditioning operation using the heat storage without replacing a heat storage tank even when one of cold heat storage heat exchangers cannot be used in operation. SOLUTION: A heat storage type air conditioner at least comprises a heat storage tank 9 which stores a heat storage medium 21, a first cold heat storage heat exchanger 10a disposed in the heat storage medium 21, a second cold heat storage medium heat exchanger 10b disposed in the heat storage heat exchanger 10b and connected with the first heat storage heat exchanger 10a in parallel, a second valve 26a mounted on one outlet of the first cold heat storage heat exchanger 10a, a fourth valve 27a mounted on the other outlet of the first cold heat storage heat exchanger 10a, a third valve 26b mounted on one outlet of the second cold heat storage heat exchanger 10b, a fifth valve 27b mounted on the other outlet of the second cold heat storage heat exchanger 10b, and third connecting pipes 136, 137 which include a sixth valve 23.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、昼間電力の抑制と
平準化対策に係る蓄熱式空気調和装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerative air conditioner relating to suppression of daytime electric power and leveling measures.

【0002】[0002]

【従来の技術】従来この種の蓄熱式空気調和装置とし
て、例えば特願平5−30727号公報に開示されたも
のを図17に示す。すなわち、図17において、1は例
えば5馬力の圧縮機、2は圧縮機用四方切換弁で、各々
は冷媒回路101にて連結されている。3は冷房時は凝
縮器として作用し暖房時は蒸発器として作用する室外側
熱交換器であり、圧縮機用四方切換弁2と冷媒回路10
2にて連結されている。
2. Description of the Related Art FIG. 17 shows a conventional heat storage type air conditioner disclosed in Japanese Patent Application No. 5-30727. That is, in FIG. 17, 1 is a compressor of, for example, 5 horsepower, 2 is a four-way switching valve for the compressor, and each is connected by the refrigerant circuit 101. Reference numeral 3 denotes an outdoor heat exchanger that functions as a condenser during cooling and as an evaporator during heating, and includes a four-way switching valve 2 for a compressor and a refrigerant circuit 10.
They are connected at 2.

【0003】6は室外側熱交換器3と冷媒回路103で
連結されている第1の絞り装置、7、8は各々バルブで
あり、冷媒回路108から分岐して構成された冷媒回路
109、110を介して第1の絞り装置6と各々連結さ
れている。9は蓄熱槽であり、内部に多数本の伝熱管を
縦に並べ、これを連結して形成した蓄冷熱用熱交換器1
0により、槽内に貯留した蓄熱媒体21(例えば水)
を、冷房時は凍結、暖房時は貯湯できるようにしてい
る。
[0003] Reference numeral 6 denotes a first expansion device connected to the outdoor heat exchanger 3 by a refrigerant circuit 103, and 7 and 8 denote valves, respectively, and refrigerant circuits 109 and 110 branched from the refrigerant circuit 108. Are connected to the first aperture device 6 via the respective apertures. Reference numeral 9 denotes a heat storage tank, in which a number of heat transfer tubes are vertically arranged and connected to form a heat exchanger 1 for cold storage heat.
0, the heat storage medium 21 (for example, water) stored in the tank
Can be frozen during cooling and hot water can be stored during heating.

【0004】バルブ8は蓄熱槽9の蓄冷熱用熱交換器1
0と冷媒回路111で連結されている。12はガス状冷
媒を搬送する冷媒ポンプであり、ポンプ容量は所定の運
転条件にて圧縮機1の運転による冷媒循環量と同量の循
環量が得られるものが選ばれている。11は冷媒ポンプ
12と冷媒回路114で連結された冷媒ポンプ用四方切
換弁である。13は冷媒ポンプ用アキュムレータ、14
はバルブであり蓄熱槽9からの冷媒回路112を分岐し
て冷媒回路113と118を構成し、各々を冷媒ポンプ
用四方切換弁11とバルブ14に連結している。
[0004] The valve 8 is a heat exchanger 1 for cold storage heat in a heat storage tank 9.
0 and a refrigerant circuit 111. Reference numeral 12 denotes a refrigerant pump for transporting a gaseous refrigerant. The pump capacity is selected so that the same circulation amount as the refrigerant circulation amount by the operation of the compressor 1 can be obtained under predetermined operating conditions. Reference numeral 11 denotes a refrigerant pump four-way switching valve connected to the refrigerant pump 12 by a refrigerant circuit 114. 13 is an accumulator for a refrigerant pump, 14
Is a valve, which branches the refrigerant circuit 112 from the heat storage tank 9 to form refrigerant circuits 113 and 118, which are connected to the refrigerant pump four-way switching valve 11 and the valve 14, respectively.

【0005】冷媒ポンプ用四方切換弁11と冷媒ポンプ
用アキュムレータ13は、冷媒回路116で連結されて
おり、冷媒ポンプ用アキュムレータ13は、冷媒回路1
15で冷媒ポンプ12に連結されている。117は冷媒
ポンプ用四方切換弁11と冷媒回路120に接続された
冷媒回路、119はバルブ14と冷媒回路125に連結
された冷媒回路、20は冷媒回路120と125を接続
するバルブであり、冷媒回路125の他端は前述の圧縮
機用四方切換弁2に接続されている。
The refrigerant pump four-way switching valve 11 and the refrigerant pump accumulator 13 are connected by a refrigerant circuit 116, and the refrigerant pump accumulator 13 is connected to the refrigerant circuit 1
At 15 is connected to the refrigerant pump 12. 117 is a refrigerant circuit connected to the refrigerant pump four-way switching valve 11 and the refrigerant circuit 120; 119 is a refrigerant circuit connected to the valve 14 and the refrigerant circuit 125; 20 is a valve connecting the refrigerant circuits 120 and 125; The other end of the circuit 125 is connected to the compressor four-way switching valve 2 described above.

【0006】121は前述のバルブ7に連結された冷媒
回路で、この回路と冷媒回路120間に複数の室内ユニ
ット用冷媒回路系a,b,cを有し、各々の回路系は、
冷媒回路122、第2の絞り装置15、冷媒回路12
3、室内側熱交換器16、冷媒回路124を順次連結し
て成る。
Reference numeral 121 denotes a refrigerant circuit connected to the valve 7 and has a plurality of indoor unit refrigerant circuit systems a, b, and c between the circuit and the refrigerant circuit 120.
Refrigerant circuit 122, second expansion device 15, refrigerant circuit 12
3. The indoor heat exchanger 16 and the refrigerant circuit 124 are sequentially connected.

【0007】圧縮機用四方切換弁2と圧縮機用アキュム
レータ17の間、圧縮機用アキュムレータ17と圧縮機
1の間は、それぞれ冷媒回路126、127にて連結さ
れている。
[0007] The refrigerant circuits 126 and 127 are connected between the compressor four-way switching valve 2 and the compressor accumulator 17 and between the compressor accumulator 17 and the compressor 1, respectively.

【0008】次に作用について、図18から図33を用
いて説明する。図18に、例えば夜間の蓄冷運転、即ち
製氷運転を示す。図において、バルブ7、20を閉じ、
バルブ8、14を開き、圧縮機1を運転する。このと
き、圧縮機1より吐出された冷媒は室外側熱交換器3で
凝縮し第1の絞り装置6で断熱膨張し蓄冷熱用熱交換器
10で蒸発し、蓄熱媒体21(例えば水)から熱をうば
い、蓄冷熱用熱交換器10の表面を凍結させるとともに
気化冷媒がアキュムレータ17を経由して圧縮機1に戻
る。
Next, the operation will be described with reference to FIGS. FIG. 18 shows a cold storage operation, for example, an ice making operation at night. In the figure, the valves 7, 20 are closed,
The valves 8 and 14 are opened, and the compressor 1 is operated. At this time, the refrigerant discharged from the compressor 1 is condensed in the outdoor heat exchanger 3, adiabatically expanded in the first expansion device 6, evaporates in the cold storage heat exchanger 10, and is discharged from the heat storage medium 21 (for example, water). The heat is applied to freeze the surface of the cold storage heat exchanger 10 and the vaporized refrigerant returns to the compressor 1 via the accumulator 17.

【0009】この蓄冷運転時の運転状態を表したモリエ
ル線図を図19に示す。図中数字にて表わす運転点は、
図中の同一数字で表わす冷媒回路内の冷媒の状態を示し
ており、凝縮温度は約40℃、蒸発温度は−3℃程度で
ある。本システムはかかる運転にて、例えば槽内の残水
がないことを前提に、22:00より製氷を開始、翌朝
8:00に製氷を終了する。
FIG. 19 is a Mollier diagram showing the operation state during the cold storage operation. The operating points represented by numbers in the figure are:
The state of the refrigerant in the refrigerant circuit represented by the same numeral in the figure is shown, where the condensation temperature is about 40 ° C. and the evaporation temperature is about −3 ° C. In this operation, the present system starts ice making at 22:00 and ends ice making at 8:00 the next morning, for example, on the assumption that there is no remaining water in the tank.

【0010】以下昼間の冷房運転について述べる。図2
0は蓄冷熱は利用せずに圧縮機1のみで冷房運転した場
合の、冷房運転を示す。図において、バルブ7、20を
開き、バルブ8、14を閉じて圧縮機1を運転する。図
18と同様の作用にて凝縮液化した高圧冷媒は、各室内
ユニット用冷媒回路系a,b,cに送られ、各々の第2
の絞り装置15で冷媒流量調節しながら減圧し、約6kg
/cm2 G程度の圧力で室内側熱交換器16内に流入し蒸
発する。このとき周囲の室内空気より吸熱し、ガス化し
た冷媒は、圧縮機用アキュムレータ17を経由し、圧縮
機1に戻る。このときの圧縮機1の運転容量は、室内機
の運転容量の総和により決定している。
The cooling operation in the daytime will be described below. FIG.
0 indicates the cooling operation when the cooling operation is performed only by the compressor 1 without using the cold storage heat. In the figure, the compressor 1 is operated with the valves 7, 20 opened and the valves 8, 14 closed. The high-pressure refrigerant condensed and liquefied by the same operation as in FIG. 18 is sent to each indoor unit refrigerant circuit system a, b, c, and the second
The pressure is reduced while adjusting the flow rate of the refrigerant with the throttle device 15 of about 6 kg.
At a pressure of about / cm 2 G, it flows into the indoor heat exchanger 16 and evaporates. At this time, the refrigerant that has absorbed heat from the surrounding room air and gasified returns to the compressor 1 via the compressor accumulator 17. At this time, the operating capacity of the compressor 1 is determined by the total operating capacity of the indoor units.

【0011】この一般冷房運転時の運転状態を表したモ
リエル線図を図21に示す。図中の数字は図19にて述
べた通りで、凝縮温度は約45℃、蒸発温度は約10℃
である。本システムはかかる運転にて、例えば蓄冷熱消
費後の冷房を行う。
FIG. 21 is a Mollier diagram showing the operation state during the general cooling operation. The numbers in the figure are as described in FIG. 19, the condensation temperature is about 45 ° C., and the evaporation temperature is about 10 ° C.
It is. In this operation, the present system performs, for example, cooling after consuming cold storage heat.

【0012】図22に、蓄冷熱利用のみによる冷房、即
ち放冷運転を示す。図において、第1の絞り装置6、バ
ルブ14、20を閉じ、バルブ7、8を開いて、冷媒ポ
ンプ12を運転する。このとき冷媒ポンプ12により送
出されたガス冷媒は蓄熱槽9内の氷で冷却され20〜2
5℃で凝縮し、液化した約9kg/cm2 Gの冷媒が各室内
ユニット用冷媒回路系a,b,cに送られ、図20と同
様にして冷房する。このとき冷媒ポンプ12の冷媒循環
量は、図20のときの圧縮機1による冷媒循環量と同等
のため、室内側熱交換器16には同温同圧の冷媒が同量
流れることとなり、動力としては差圧が約3kg/cm2
程度の小容量にも拘らず、冷房能力としては圧縮機1の
単独運転による図20の一般冷房運転と同等となる。こ
のときの冷媒ポンプ12の運転容量は、室内機の運転容
量の総和により決定している。
FIG. 22 shows cooling using only cold storage heat, that is, cooling operation. In the figure, the first throttle device 6, valves 14 and 20 are closed, valves 7 and 8 are opened, and the refrigerant pump 12 is operated. At this time, the gas refrigerant sent out by the refrigerant pump 12 is cooled by ice in the heat storage tank 9 and is cooled by 20 to 2
Approximately 9 kg / cm 2 G of refrigerant condensed and liquefied at 5 ° C. is sent to each indoor unit refrigerant circuit system a, b, c, and cooled as in FIG. At this time, since the refrigerant circulation amount of the refrigerant pump 12 is equal to the refrigerant circulation amount by the compressor 1 in FIG. 20, the same amount and the same amount of refrigerant flows through the indoor heat exchanger 16, and the power Is about 3 kg / cm 2 G
Despite the small capacity, the cooling capacity is equivalent to the general cooling operation in FIG. The operating capacity of the refrigerant pump 12 at this time is determined by the sum of the operating capacity of the indoor units.

【0013】この放冷運転時の運転状態を表したモリエ
ル線図を図23に示す。図中の数字は図19にて述べた
通りで、凝縮温度は23℃程度、蒸発温度は約10℃で
ある。本システムはかかる運転にて、例えば軽負荷時の
冷房を行なう。
FIG. 23 is a Mollier diagram showing the operation state during the cooling operation. The numbers in the figure are as described in FIG. 19, and the condensation temperature is about 23 ° C. and the evaporation temperature is about 10 ° C. In this operation, the system performs, for example, cooling at a light load.

【0014】図24に図20の一般冷房運転と図22の
放冷運転とを同時に作用させた蓄冷熱併用冷房運転を示
す。図において、バルブ14を閉じ、バルブ7、8、2
0を開いて、圧縮機1および冷媒ポンプ12を運転す
る。このとき冷媒ポンプ12側の蓄冷熱用熱交換器10
で凝縮した液冷媒は、圧縮機1側の第1の絞り装置6で
減圧された冷媒とバルブ7の手前で合流し、室内ユニッ
ト用冷媒回路系a,b,cへは、図20の一般冷房運転
時あるいは図22の放冷運転時の約2倍の量の冷媒が循
環して、能力も2倍となる。このときの第1の絞り装置
6の開度は一定であり、上記合流部の圧力は8〜10kg
/cm2 G程度となる。このときの運転容量は、冷媒ポン
プ12は100%出力とし圧縮機1を容量制御して決定
するが、その容量制御の割合は室内機の運転容量の総和
により決定している。
FIG. 24 shows a regenerative cooling combined cooling operation in which the general cooling operation of FIG. 20 and the cooling operation of FIG. 22 are simultaneously operated. In the figure, the valve 14 is closed and the valves 7, 8, 2
Opening 0, the compressor 1 and the refrigerant pump 12 are operated. At this time, the heat exchanger 10 for cold storage heat on the refrigerant pump 12 side
The liquid refrigerant condensed in the step S1 joins the refrigerant decompressed by the first expansion device 6 on the compressor 1 side before the valve 7, and flows to the indoor unit refrigerant circuit systems a, b, c in FIG. Approximately twice the amount of the refrigerant circulates during the cooling operation or the cooling operation in FIG. 22, and the capacity is also doubled. At this time, the opening degree of the first expansion device 6 is constant, and the pressure at the junction is 8 to 10 kg.
/ Cm 2 G. The operating capacity at this time is determined by controlling the capacity of the compressor 1 with the refrigerant pump 12 being set to 100% output, and the rate of the capacity control is determined by the total operating capacity of the indoor units.

【0015】この蓄冷熱併用冷房運転時の運転状態を表
したモリエル線図を図25に示す。図中の数字は図19
にて述べた通りである。蒸発温度は他の冷房運転と同様
約10℃であるが、凝縮温度は、室外側熱交換器3では
約45℃、蓄冷熱用熱交換器10では20〜25℃程度
である。本システムはかかる運転にて、通常の冷房負荷
時の冷房を行なう。
FIG. 25 is a Mollier diagram showing an operation state during the cooling operation combined with cold storage heat. The numbers in the figure are those in FIG.
It is as described in. The evaporation temperature is about 10 ° C. as in other cooling operations, but the condensation temperature is about 45 ° C. in the outdoor heat exchanger 3 and about 20 to 25 ° C. in the cold storage heat exchanger 10. In this operation, the system performs cooling under normal cooling load.

【0016】以上は冷房に関する作用について説明した
が、以下は暖房に関する作用説明であり、従って特に断
らない限り圧縮機用四方切換弁2、および冷媒ポンプ用
四方切換弁11は暖房モードに設定されている。図26
に、例えば夜間の蓄熱運転、即ち貯湯運転を示す。図に
おいて、バルブ7、20を閉じ、バルブ8、14を開き
圧縮機1を運転する。このとき圧縮機1より吐出された
高温ガス冷媒は図中の矢印の方向に流れ、蓄熱槽9の蓄
冷熱用熱交換器10で凝縮し、水21を昇温する。凝縮
冷媒は第1の絞り装置6で断熱膨張し、室外側熱交換器
3で外気より吸熱して蒸発し、気化冷媒がアキュムレー
タ17を経由して圧縮機1に戻る。
Although the operation relating to the cooling has been described above, the operation relating to the heating will be described below. Therefore, unless otherwise specified, the four-way switching valve 2 for the compressor and the four-way switching valve 11 for the refrigerant pump are set to the heating mode. I have. FIG.
3 shows, for example, a nighttime heat storage operation, that is, a hot water storage operation. In the figure, the valves 7 and 20 are closed, the valves 8 and 14 are opened, and the compressor 1 is operated. At this time, the high-temperature gas refrigerant discharged from the compressor 1 flows in the direction of the arrow in the drawing, condenses in the heat storage heat exchanger 10 in the heat storage tank 9, and raises the temperature of the water 21. The condensed refrigerant adiabatically expands in the first expansion device 6, absorbs heat from outside air in the outdoor heat exchanger 3, evaporates, and the vaporized refrigerant returns to the compressor 1 via the accumulator 17.

【0017】この蓄熱運転時の運転状態を表したモリエ
ル線図を図27に示す。図中の数字は図19にて述べた
通りで、槽水温の沸き上り温度は約50℃、このときの
凝縮温度は約55℃、蒸発温度は約0℃である。本シス
テムはかかる運転にて、夜間電力時間帯内に貯湯し、所
定の槽水温に到達次第運転を終了する。
FIG. 27 is a Mollier diagram showing the operation state during the heat storage operation. The numbers in the figure are as described in FIG. 19. The boiling temperature of the tank water temperature is about 50 ° C., the condensation temperature at this time is about 55 ° C., and the evaporation temperature is about 0 ° C. In this operation, the system stores hot water during the nighttime power period and ends the operation as soon as the temperature reaches a predetermined tank water temperature.

【0018】以下昼間の暖房運転について述べる。図2
8は蓄熱は利用せずに圧縮機1のみで暖房運転した場合
の、一般暖房運転を示す。図において、バルブ7、20
を開き、バルブ8、14を閉じて、圧縮機1を運転す
る。圧縮機1より17kg/cm2G前後の圧力で吐出され
た高温高圧ガスは各室内ユニット用冷媒回路系a,b,
cに送られ、各々の室内側熱交換器16で凝縮し、室内
空気を加熱する。凝縮した液冷媒は第2の絞り装置15
で若干の減圧をし、更に第1の絞り装置6で減圧して約
4kg/cm2 Gの圧力で室外側熱交換器3内で蒸発し、以
降図26と同作用にて圧縮機1に戻る。このときの圧縮
機1の運転容量は、室内機の運転容量の総和により決定
している。
The daytime heating operation will be described below. FIG.
Reference numeral 8 denotes a general heating operation when the heating operation is performed only by the compressor 1 without using the heat storage. In the figure, valves 7, 20
Is opened, the valves 8 and 14 are closed, and the compressor 1 is operated. The high-temperature and high-pressure gas discharged from the compressor 1 at a pressure of about 17 kg / cm 2 G is supplied to the refrigerant circuit systems a, b, and
c, and is condensed in each indoor heat exchanger 16 to heat the indoor air. The condensed liquid refrigerant is supplied to the second expansion device 15
Then, the pressure in the outdoor heat exchanger 3 is reduced at a pressure of about 4 kg / cm 2 G by the first expansion device 6 and then reduced to the compressor 1 by the same operation as in FIG. Return. At this time, the operating capacity of the compressor 1 is determined by the total operating capacity of the indoor units.

【0019】この一般暖房運転時の運転状態を表したモ
リエル線図を図29に示す。図中の数字は図19にて述
べた通りで、凝縮温度は42〜43℃程度、蒸発温度は
約0℃である。本システムはかかる運転にて、蓄熱消費
後の日中の軽負荷時の暖房を行う。
FIG. 29 shows a Mollier diagram showing the operating state during this general heating operation. The numbers in the figure are as described in FIG. 19, and the condensation temperature is about 42 to 43 ° C. and the evaporation temperature is about 0 ° C. In this operation, the present system performs heating during the day under light load after heat storage consumption.

【0020】図30に蓄熱利用のみによる暖房、即ち放
熱運転を示す。図において第1の絞り装置6およびバル
ブ14、20を閉じ、バルブ7、8を開いて冷媒ポンプ
12を運転する。このとき冷媒ポンプ12は槽内で蒸発
圧力約13kg/cm2 Gで加熱気化されたガス冷媒を冷媒
ポンプ用アキュムレータ13を経由して吸引する。従っ
て、約4kg/cm2 G程度の昇圧で17kg/cm2 G前後の
高温・高圧のガス冷媒を各室内ユニット用冷媒回路系
a,b,cに送り、以降図26と同様の作用により室内
空気の加熱を行なう。凝縮した冷媒は第2の絞り装置1
5にて減圧し、約13kg/cm2 Gの気液二相冷媒となっ
て蓄熱槽9に戻る。このときの冷媒ポンプ12の運転容
量は、室内機の運転容量の総和により決定している。
FIG. 30 shows heating using only heat storage, that is, heat dissipation operation. In the figure, the first expansion device 6 and the valves 14, 20 are closed, and the valves 7, 8 are opened to operate the refrigerant pump 12. At this time, the refrigerant pump 12 sucks the gas refrigerant heated and vaporized at the evaporation pressure of about 13 kg / cm 2 G in the tank via the refrigerant pump accumulator 13. Therefore, a high-temperature and high-pressure gas refrigerant of about 17 kg / cm 2 G at a pressure increase of about 4 kg / cm 2 G is sent to each indoor unit refrigerant circuit system a, b, c. Heat the air. The condensed refrigerant is supplied to the second expansion device 1
The pressure is reduced at 5, and the refrigerant returns to the heat storage tank 9 as a gas-liquid two-phase refrigerant of about 13 kg / cm 2 G. The operating capacity of the refrigerant pump 12 at this time is determined by the sum of the operating capacity of the indoor units.

【0021】この放熱運転時の運転状態を表したモリエ
ル線図を図31に示す。図中の数字は図19に述べた通
りで、凝縮温度は42〜43℃程度、蒸発温度は35℃
前後である。本システムはかかる運転にて、例えば軽負
荷時の暖房を行なう。
FIG. 31 is a Mollier diagram showing the operation state during the heat dissipation operation. The numbers in the figure are as described in FIG. 19, the condensation temperature is about 42 to 43 ° C., and the evaporation temperature is 35 ° C.
Before and after. In this operation, the system performs heating at a light load, for example.

【0022】図32に、図28の一般暖房運転と図30
の放熱運転とを同時に作用させた蓄熱併用暖房運転を示
す。図において、バルブ14を閉じ、バルブ7、8、2
0を開き圧縮機1と冷媒ポンプ12を運転する。このと
き冷媒ポンプ12より送出したガス冷媒は圧縮機1より
吐出されたガス冷媒とバルブ20出側で合流し、室内ユ
ニット用冷媒回路系a,b,cへは、図28の一般暖房
運転時あるいは図30の放熱運転時の約2倍の量の、圧
力17kg/cm2 G前後の高温・高圧冷媒が循環して、能
力も約2倍となる。第2の絞り装置15で減圧した約1
3kg/cm2 G程度の冷媒は、約1/2が蓄冷熱用熱交換
器10に流入して図30の放熱運転と同様の作用を成す
とともに、他の1/2の冷媒は第1の絞り装置6にて更
に減圧され、約4kg/cm2 Gの圧力となって室外側熱交
換器3に流入して図28の一般暖房運転と同様の作用を
なす。このときの運転容量は、冷媒ポンプ12は100
%出力とし圧縮機1を容量制御して決定するが、その容
量制御の割合は室内機の運転容量の総和により決定して
いる。
FIG. 32 shows the general heating operation of FIG. 28 and FIG.
2 shows a heat storage combined heating operation in which the heat dissipation operation is simultaneously performed. In the figure, the valve 14 is closed and the valves 7, 8, 2
0 is opened and the compressor 1 and the refrigerant pump 12 are operated. At this time, the gas refrigerant discharged from the refrigerant pump 12 merges with the gas refrigerant discharged from the compressor 1 on the outlet side of the valve 20, and enters the indoor unit refrigerant circuit systems a, b, and c during the general heating operation shown in FIG. Alternatively, a high-temperature, high-pressure refrigerant having a pressure of about 17 kg / cm 2 G, which is about twice the amount of the heat radiation operation in FIG. 30, is circulated, and the capacity is also about twice. The pressure is reduced by about 1
About 1/2 kg of the refrigerant of about 3 kg / cm 2 G flows into the cold storage heat exchanger 10 to perform the same operation as the heat dissipation operation of FIG. 30, and the other half of the refrigerant is the first refrigerant. The pressure is further reduced by the expansion device 6 to a pressure of about 4 kg / cm 2 G and flows into the outdoor heat exchanger 3 to perform the same operation as the general heating operation in FIG. At this time, the operating capacity of the refrigerant pump 12 is 100
% Output is determined by controlling the capacity of the compressor 1, and the rate of the capacity control is determined by the total operating capacity of the indoor units.

【0023】この蓄熱併用暖房運転時の運転状態を表し
たモリエル線図を図33に示す。図中の数字は図19に
て述べた通りである。凝縮温度は他の暖房運転と同様4
2〜43℃程度であるが、蒸発温度は、蓄冷熱用熱交換
器10では35℃前後、室外側熱交換器3では0℃前後
である。本システムはかかる運転にて、暖房負荷の集中
する例えば朝の立上り時の暖房を行なう。
FIG. 33 is a Mollier diagram showing the operating state during the heating operation with the heat storage. The numbers in the figure are as described in FIG. Condensing temperature is 4 as in other heating operations
The evaporation temperature is about 35 ° C. in the heat storage heat exchanger 10 and about 0 ° C. in the outdoor heat exchanger 3. In this operation, the system performs heating when the heating load is concentrated, for example, at the time of rising in the morning.

【0024】[0024]

【発明が解決しようとする課題】上記のような各々の運
転を行う従来の蓄熱式空気調和装置では、蓄冷熱用熱交
換器または蓄熱槽が一台使用できない状況になった場合
には、蓄熱槽を取り替えなければ蓄冷、蓄熱および蓄熱
利用空調運転を行うことができなかった。
In the conventional regenerative air-conditioning apparatus that performs each of the above-mentioned operations, if one of the heat exchangers for regenerative heat or the regenerator cannot be used, the regenerative air conditioner cannot be used. Unless the tank was replaced, it was not possible to perform cold storage, heat storage, and air conditioning operation using heat storage.

【0025】また、放熱暖房時において、夜間の蓄熱を
行った直後には高効率の蓄熱利用暖房ができるが、一度
蓄熱の利用を行った後は蓄熱槽内の蓄熱媒体の温度が低
下するため、次に蓄熱運転をするまでに再度蓄熱を利用
した空調を行う場合には、低下した水温による比較的効
率の悪い蓄熱利用暖房しかできなかった。
In addition, during heat radiation heating, high-efficiency heat storage heating can be performed immediately after performing nighttime heat storage, but once the heat storage is used, the temperature of the heat storage medium in the heat storage tank decreases. In the case where air conditioning using heat storage is performed again before the next heat storage operation, only heat storage using heating which is relatively inefficient due to the lowered water temperature can be performed.

【0026】また、放冷時に使用する単位時間毎の蓄冷
利用量はいつも同じ量であり、消費電力のピーク時に消
費電力夜間移行率を更に増加させるために、放冷時に使
用する単位時間毎の蓄冷利用量すなわち蓄冷熱用熱交換
器の伝熱面積を増加させることができなかった。
The amount of cold storage used per unit time used during cooling is always the same amount. To further increase the power consumption night shift rate during peak power consumption, the amount of cold storage used per unit time used during cooling can be reduced. The amount of cold storage, that is, the heat transfer area of the heat exchanger for cold storage heat could not be increased.

【0027】また、蓄熱運転の低外気運転時には、使用
していない室内機側のユニットおよび配管に冷媒が多く
分布している。そのため、使用している冷媒回路中の冷
媒量が不足し、不十分な運転状態となっていた。
Further, during the low outdoor air operation of the heat storage operation, a large amount of refrigerant is distributed in the units and pipes of the indoor unit that are not used. Therefore, the amount of the refrigerant in the refrigerant circuit used is insufficient, and the operation state is insufficient.

【0028】また、蓄熱槽を一体のユニットで構成する
と設置スペースが一個所に集中するため、設置のための
スペースが狭く分散されているような場合には、蓄熱槽
の設置スペースの確保ができなくなり、蓄熱槽設置に大
きな制約を受けていた。
When the heat storage tank is formed as an integral unit, the installation space is concentrated in one place, so that when the installation space is narrow and dispersed, the installation space for the heat storage tank can be secured. It was severely restricted by the installation of the heat storage tank.

【0029】[0029]

【課題を解決するための手段】上述した種々の問題点を
解決するために、この発明による蓄熱式空気調和装置
は、圧縮機、四方切換弁,室外側熱交換器,第1の絞り
装置,第2の絞り装置,および室内側熱交換器を順次配
管接続してなる一般冷暖房用回路と、一般冷暖房用回路
の第1の絞り装置から第2の絞り装置の間と室内側熱交
換器から圧縮機の間とを第3の絞り装置,第1の蓄冷熱
用熱交換器,および第1のバルブを介して接続し圧縮
機,室外側熱交換器,および第1の絞り装置とともに蓄
冷・蓄熱用回路を構成する第1の接続配管と、一般冷暖
房用回路の四方切換弁から圧縮機の吸込側の間と第1の
接続配管の第1のバルブから第1の蓄冷熱用熱交換器の
間とを冷媒ポンプを介して接続し第1の蓄冷熱用熱交換
器,第3の絞り装置,第2の絞り装置,および室内側熱
交換器とともに放冷・放熱用回路を構成する第2の接続
配管と、槽内に貯留した蓄熱媒体中に第1の蓄冷熱用熱
交換器を配置した蓄熱槽とを備える蓄熱式空気調和装置
において、蓄熱媒体中に配置されて放冷・放熱用回路の
一部を構成する1もしくは複数の第2の蓄冷熱用熱交換
器を、第1の蓄冷熱用熱交換器と並列して第1の接続配
管に接続するとともに、第1の接続配管の第1の蓄冷熱
用熱交換器の一方の出側に設けられた第2のバルブと、
第1の接続配管の第2の蓄冷熱用熱交換器の一方の出側
に設けられた第3のバルブと、第1の接続配管の第1の
蓄冷熱用熱交換器の他方の出側に設けられた第4のバル
ブと、第1の接続配管の第2の蓄冷熱用熱交換器の他方
の出側に設けられた第5のバルブと、一般冷暖房用回路
の四方切換弁から圧縮機の吸込側の間と第1の接続配管
の第1のバルブから第1および第2の蓄冷熱用熱交換器
の配管接続位置の間とを第6のバルブを介して接続する
第3の接続配管とを具備する構成にされている。
In order to solve the various problems described above, a regenerative air conditioner according to the present invention comprises a compressor, a four-way switching valve, an outdoor heat exchanger, a first throttle device, A circuit for general cooling and heating, in which the second expansion device and the indoor heat exchanger are sequentially connected by pipes, and a circuit between the first expansion device and the second expansion device of the general air conditioning circuit and from the indoor heat exchanger. The compressor and the compressor are connected via a third expansion device, a first heat exchanger for cold storage heat, and a first valve, and are connected with the compressor, the outdoor heat exchanger, and the first expansion device to cool and store the heat. A first connection pipe that constitutes a heat storage circuit, a section between the four-way switching valve of the general cooling and heating circuit and the suction side of the compressor, and a first heat exchanger for cold storage heat from the first valve of the first connection pipe. And a third heat exchanger for cold storage heat, a third expansion device, A second connecting pipe constituting a cooling / radiating circuit together with the expansion device and the indoor side heat exchanger, and a heat storage device in which the first cold storage heat exchanger is disposed in a heat storage medium stored in the tank. A regenerative air conditioner comprising a tank and one or more second regenerative heat exchangers arranged in a heat storage medium and constituting a part of a cooling / radiating circuit; A second valve connected to the first connection pipe in parallel with the first heat exchanger, and a second valve provided on one outlet side of the first cold storage heat exchanger of the first connection pipe;
A third valve provided on one outlet side of the second regenerative heat exchanger of the first connection pipe, and the other outlet side of the first regenerative heat exchanger on the first connection pipe; And a fifth valve provided on the other outlet side of the second regenerative heat exchanger of the first connection pipe and a four-way switching valve of the general cooling / heating circuit. A third valve connecting the suction side of the heat exchanger and the pipe connection positions of the first and second cold storage heat exchangers from the first valve of the first connection pipe via a sixth valve. And a connection pipe.

【0030】また、圧縮機,四方切換弁,室外側熱交換
器,第1の絞り装置,第2の絞り装置,および室内側熱
交換器を順次配管接続してなる一般冷暖房用回路と、一
般冷暖房用回路の第1の絞り装置から第2の絞り装置の
間と室内側熱交換器から圧縮機の間とを第3の絞り装
置,第1の蓄冷熱用熱交換器,および第1のバルブを介
して接続し圧縮機,室外側熱交換器,および第1の絞り
装置とともに蓄冷・蓄熱用回路を構成する第1の接続配
管と、一般冷暖房用回路の四方切換弁から圧縮機の吸込
側の間と第1の接続配管の第1のバルブから第1の蓄冷
熱用熱交換器の間とを冷媒ポンプを介して接続し第1の
蓄冷熱用熱交換器,第3の絞り装置,第2の絞り装置,
および室内側熱交換器とともに放冷・放熱用回路を構成
する第2の接続配管と、槽内に貯留した蓄熱媒体中に第
1の蓄冷熱用熱交換器を配置した蓄熱槽とを備える蓄熱
式空気調和装置において、蓄熱媒体中に配置されて放冷
・放熱用回路の一部を構成する1もしくは複数の第2の
蓄冷熱用熱交換器を、第1の蓄冷熱用熱交換器と並列し
て第1の接続配管に接続し、蓄熱槽を複数の蓄熱室に区
画して構成し、各蓄熱室に第1または第2の蓄冷熱用熱
交換器をそれぞれ配置するとともに、第1の接続配管の
第1の蓄冷熱用熱交換器の一方の出側に設けられた第2
のバルブと、第1の接続配管の第2の蓄冷熱用熱交換器
の一方の出側に設けられた第3のバルブと、一般冷暖房
用回路の四方切換弁から圧縮機の吸込側の間と第1の接
続配管の第1のバルブから第1および第2の蓄冷熱用熱
交換器の配管接続位置の間とを第6のバルブを介して接
続する第3の接続配管と、放冷・放熱用回路を用いる蓄
熱利用暖房運転を行う際に、第2のバルブと第3のバル
ブの開閉を相互に切り換えて第1または第2の蓄冷熱用
熱交換器のいずれかにより蓄熱媒体の蓄熱を使用する蓄
熱使用熱交換器管理手段とを具備してなるものである。
A general cooling / heating circuit comprising a compressor, a four-way switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger connected in series with a pipe. A third expansion device, a first regenerator heat exchanger, and a first expansion device are connected between the first expansion device and the second expansion device and between the indoor heat exchanger and the compressor in the cooling and heating circuit. A first connection pipe which is connected via a valve to form a cool storage / heat storage circuit together with the compressor, the outdoor heat exchanger, and the first expansion device; and a compressor suction from a four-way switching valve of a general cooling / heating circuit. The first cold storage heat exchanger and the third expansion device are connected via a refrigerant pump between the first side and the first connection pipe between the first valve and the first cold storage heat exchanger. , A second diaphragm device,
Heat storage comprising a second connection pipe forming a cooling / radiating circuit together with the indoor heat exchanger, and a heat storage tank in which a first heat storage heat exchanger is disposed in a heat storage medium stored in the tank. In the air conditioner of the type, one or a plurality of second heat exchangers for cold storage heat which are arranged in the heat storage medium and constitute a part of a circuit for cooling / radiating heat are referred to as a first heat exchanger for cold storage heat. Connected in parallel to the first connection pipe, the heat storage tank is divided into a plurality of heat storage chambers, and the first or second heat exchanger for cold storage heat is arranged in each of the heat storage chambers. A second pipe provided on one outlet side of the first regenerative heat exchanger of the connection pipe
, A third valve provided on one outlet side of the second regenerative heat exchanger of the first connection pipe, and between the four-way switching valve of the general cooling and heating circuit and the suction side of the compressor. A third connection pipe connecting a first valve of the first connection pipe and a pipe connection position of the first and second heat exchangers for cold storage heat via a sixth valve; When performing the heat-storage-based heating operation using the heat-dissipating circuit, the second valve and the third valve are switched between open and closed and the heat storage medium is switched by either the first or second cold-storage heat exchanger. And a heat storage using heat exchanger managing means that uses heat storage.

【0031】そして、圧縮機,四方切換弁,室外側熱交
換器,第1の絞り装置,第2の絞り装置,および室内側
熱交換器を順次配管接続してなる一般冷暖房用回路と、
一般冷暖房用回路の第1の絞り装置から第2の絞り装置
の間と室内側熱交換器から圧縮機の間とを第3の絞り装
置,第1の蓄冷熱用熱交換器,および第1のバルブを介
して接続し圧縮機,室外側熱交換器,および第1の絞り
装置とともに蓄冷・蓄熱用回路を構成する第1の接続配
管と、一般冷暖房用回路の四方切換弁から圧縮機の吸込
側の間と第1の接続配管の第1のバルブから第1の蓄冷
熱用熱交換器の間とを冷媒ポンプを介して接続し第1の
蓄冷熱用熱交換器,第3の絞り装置,第2の絞り装置,
および室内側熱交換器とともに放冷・放熱用回路を構成
する第2の接続配管と、槽内に貯留した蓄熱媒体中に第
1の蓄冷熱用熱交換器を配置した蓄熱槽とを備える蓄熱
式空気調和装置において、蓄熱媒体中に配置されて放冷
・放熱用回路の一部を構成する1もしくは複数の第2の
蓄冷熱用熱交換器を、第1の蓄冷熱用熱交換器と並列し
て第1の接続配管に接続し、蓄熱槽を複数の蓄熱室に区
画して構成し、各蓄熱室に第1または第2の蓄冷熱用熱
交換器をそれぞれ配置するとともに、第1の接続配管の
第1の蓄冷熱用熱交換器の一方の出側に設けられた第2
のバルブと、第1の接続配管の第2の蓄冷熱用熱交換器
の一方の出側に設けられた第3のバルブと、一般冷暖房
用回路の四方切換弁から圧縮機の吸込側の間と第1の接
続配管の第1のバルブから第1および第2の蓄冷熱用熱
交換器の配管接続位置の間とを第6のバルブを介して接
続する第3の接続配管と、放冷・放熱用回路を用いる冷
熱利用冷房運転を行う際に、第2のバルブと第3のバル
ブの開閉を切り換えて第1または第2の蓄冷熱用熱交換
器のいずれかまたは双方により蓄熱媒体の冷熱を使用す
る冷熱使用熱交換器管理手段とを具備してなるものであ
る。
And a general cooling and heating circuit in which a compressor, a four-way switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are sequentially connected by piping.
A third expansion device, a first regenerative heat exchanger, and a first expansion device between the first expansion device and the second expansion device and between the indoor heat exchanger and the compressor in the general cooling and heating circuit. A first connection pipe which is connected through a valve of the first embodiment to form a circuit for storing and storing heat with the compressor, the outdoor heat exchanger, and the first expansion device, and a four-way switching valve of a general cooling and heating circuit is connected to the compressor. A first cold storage heat exchanger and a third throttle are connected through a refrigerant pump between the suction side and the first cold storage heat exchanger from the first valve of the first connection pipe. Device, second diaphragm device,
Heat storage comprising a second connection pipe forming a cooling / radiating circuit together with the indoor heat exchanger, and a heat storage tank in which a first heat storage heat exchanger is disposed in a heat storage medium stored in the tank. In the air conditioner of the type, one or a plurality of second heat exchangers for cold storage heat which are arranged in the heat storage medium and constitute a part of a circuit for cooling / radiating heat are referred to as a first heat exchanger for cold storage heat. Connected in parallel to the first connection pipe, the heat storage tank is divided into a plurality of heat storage chambers, and the first or second heat exchanger for cold storage heat is arranged in each of the heat storage chambers. A second pipe provided on one outlet side of the first regenerative heat exchanger of the connection pipe
, A third valve provided on one outlet side of the second regenerative heat exchanger of the first connection pipe, and between the four-way switching valve of the general cooling and heating circuit and the suction side of the compressor. A third connection pipe connecting a first valve of the first connection pipe and a pipe connection position of the first and second heat exchangers for cold storage heat via a sixth valve; When performing the cooling operation utilizing the cooling heat using the circuit for radiating heat, the opening and closing of the second valve and the third valve are switched, and the heat storage medium is switched by one or both of the first and second heat exchangers for cold storage heat. And a means for managing a heat exchanger using cold heat.

【0032】更に、圧縮機,四方切換弁,室外側熱交換
器,第1の絞り装置,第2の絞り装置,および室内側熱
交換器を順次配管接続してなる一般冷暖房用回路と、一
般冷暖房用回路の第1の絞り装置から第2の絞り装置の
間と室内側熱交換器から圧縮機の間とを第3の絞り装
置,第1の蓄冷熱用熱交換器,および第1のバルブを介
して接続し圧縮機,室外側熱交換器,および第1の絞り
装置とともに蓄冷・蓄熱用回路を構成する第1の接続配
管と、一般冷暖房用回路の四方切換弁から圧縮機の吸込
側の間と第1の接続配管の第1のバルブから第1の蓄冷
熱用熱交換器の間とを冷媒ポンプを介して接続し第1の
蓄冷熱用熱交換器,第3の絞り装置,第2の絞り装置,
および室内側熱交換器とともに放冷・放熱用回路を構成
する第2の接続配管と、槽内に貯留した蓄熱媒体中に第
1の蓄冷熱用熱交換器を配置した蓄熱槽とを備える蓄熱
式空気調和装置において、蓄熱媒体中に配置されて放冷
・放熱用回路の一部を構成する1もしくは複数の第2の
蓄冷熱用熱交換器を、第1の蓄冷熱用熱交換器と並列し
て第1の接続配管に接続するとともに、第1の接続配管
の第1の蓄冷熱用熱交換器の一方の出側に設けられた第
2のバルブと、第1の接続配管の第2の蓄冷熱用熱交換
器の一方の出側に設けられた第3のバルブと、一般冷暖
房用回路の四方切換弁から圧縮機の吸込側の間と第1の
接続配管の第1のバルブから第1および第2の蓄冷熱用
熱交換器の配管接続位置の間とを第6のバルブを介して
接続する第3の接続配管と、蓄冷・蓄熱用回路を用いる
蓄熱運転を行うに先立ち、蓄冷運転を所定時間行って第
1または第2の蓄冷熱用熱交換器内から冷媒を排出させ
る冷凍サイクル内冷媒量調整手段とを具備してなるもの
である。
Further, a general cooling and heating circuit in which a compressor, a four-way switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are sequentially connected by piping, A third expansion device, a first regenerator heat exchanger, and a first expansion device are connected between the first expansion device and the second expansion device and between the indoor heat exchanger and the compressor in the cooling and heating circuit. A first connection pipe which is connected via a valve to form a cool storage / heat storage circuit together with the compressor, the outdoor heat exchanger, and the first expansion device; and a compressor suction from a four-way switching valve of a general cooling / heating circuit. The first cold storage heat exchanger and the third expansion device are connected via a refrigerant pump between the first side and the first connection pipe between the first valve and the first cold storage heat exchanger. , A second diaphragm device,
Heat storage comprising a second connection pipe forming a cooling / radiating circuit together with the indoor heat exchanger, and a heat storage tank in which a first heat storage heat exchanger is disposed in a heat storage medium stored in the tank. In the air conditioner of the type, one or a plurality of second heat exchangers for cold storage heat which are arranged in the heat storage medium and constitute a part of a circuit for cooling / radiating heat are referred to as a first heat exchanger for cold storage heat. A second valve provided on one outlet side of the first regenerative heat exchanger of the first connection pipe while being connected to the first connection pipe in parallel, and a second valve of the first connection pipe. A third valve provided on one outlet side of the heat exchanger for cold storage heat of No. 2 and a first valve of the first connection pipe between the four-way switching valve of the general cooling and heating circuit and the suction side of the compressor; And a third connection for connecting through a sixth valve between the pipe connection positions of the first and second regenerative heat exchangers. Prior to performing a heat storage operation using a circuit for cooling and storing heat, a refrigerant amount adjusting means in a refrigeration cycle for performing the cold storage operation for a predetermined time and discharging the refrigerant from the first or second heat exchanger for cold storage heat; It is provided with.

【0033】また、圧縮機,四方切換弁,室外側熱交換
器,第1の絞り装置,第2の絞り装置,および室内側熱
交換器を順次配管接続してなる一般冷暖房用回路と、一
般冷暖房用回路の第1の絞り装置から第2の絞り装置の
間と室内側熱交換器から圧縮機の間とを第3の絞り装
置,第1の蓄冷熱用熱交換器,および第1のバルブを介
して接続し圧縮機,室外側熱交換器,および第1の絞り
装置とともに蓄冷・蓄熱用回路を構成する第1の接続配
管と、一般冷暖房用回路の四方切換弁から圧縮機の吸込
側の間と第1の接続配管の第1のバルブから第1の蓄冷
熱用熱交換器の間とを冷媒ポンプを介して接続し第1の
蓄冷熱用熱交換器,第3の絞り装置,第2の絞り装置,
および室内側熱交換器とともに放冷・放熱用回路を構成
する第2の接続配管と、槽内に貯留した蓄熱媒体中に第
1の蓄冷熱用熱交換器を配置した蓄熱槽とを備える蓄熱
式空気調和装置において、蓄熱媒体中に配置されて放冷
・放熱用回路の一部を構成する1もしくは複数の第2の
蓄冷熱用熱交換器を、第1の蓄冷熱用熱交換器と並列し
て第1の接続配管に接続し、蓄熱槽を複数の分割蓄熱槽
として別個独立に構成するとともに、各分割蓄熱槽に第
1または第2の蓄冷熱用熱交換器をそれぞれ配置したも
のである。
A general cooling / heating circuit comprising a compressor, a four-way switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger connected in series with a pipe, A third expansion device, a first regenerator heat exchanger, and a first expansion device are connected between the first expansion device and the second expansion device and between the indoor heat exchanger and the compressor in the cooling and heating circuit. A first connection pipe which is connected via a valve to form a cool storage / heat storage circuit together with the compressor, the outdoor heat exchanger, and the first expansion device; and a compressor suction from a four-way switching valve of a general cooling / heating circuit. The first cold storage heat exchanger and the third expansion device are connected via a refrigerant pump between the first side and the first connection pipe between the first valve and the first cold storage heat exchanger. , A second diaphragm device,
Heat storage comprising a second connection pipe forming a cooling / radiating circuit together with the indoor heat exchanger, and a heat storage tank in which a first heat storage heat exchanger is disposed in a heat storage medium stored in the tank. In the air conditioner of the type, one or a plurality of second heat exchangers for cold storage heat which are arranged in the heat storage medium and constitute a part of a circuit for cooling / radiating heat are referred to as a first heat exchanger for cold storage heat. Connected in parallel to the first connection pipe, separately configured heat storage tanks as a plurality of divided heat storage tanks, and provided with a first or second cold storage heat exchanger in each divided heat storage tank It is.

【0034】[0034]

【発明の実施の形態】引続き、この発明の実施の形態に
つき図面に基づいて説明する。 実施の形態1.以下、本発明の実施の形態1に係る蓄熱
式空気調和装置を図面に基づき説明する。図1は蓄熱式
空気調和装置のシステムを示すものである。同図におい
て、従来例における図17と同一の構成要素については
同一の符号を付し、その説明を省略する。この蓄熱式空
気調和装置では、図1に示すように、圧縮機1、四方切
換弁28、室外側熱交換器3、第1の絞り装置6、第2
の絞り装置15a、15b、15c,および室内側熱交
換器16a、16b、16cが、冷媒配管104a、1
04b、103、108、121、122a、122
b、122c、123a、123b、123c、124
a、124b、124c、120、128a、128
b、139、129を介し順次接続されて一般冷暖房用
回路を構成している。また、一般冷暖房用回路の第1の
絞り装置6から第2の絞り装置15a、15b、15c
の間の冷媒配管108、121と室内側熱交換器16
a、16b、16cから圧縮機1の間の冷媒配管12
0、128aとを、第3の絞り装置22、第1の蓄冷熱
用熱交換器10a、および第1のバルブ14を介して接
続する第1の接続配管105、112、118、119
が設けられている。この第1の接続配管105、11
2、118、119は圧縮機1、室外側熱交換器3、お
よび第1の絞り装置6とともに蓄冷・蓄熱用回路を構成
している。また、一般冷暖房用回路の四方切換弁28か
ら圧縮機1の吸込側の間の冷媒配管129、139と第
1のバルブ14から第1の蓄冷熱用熱交換器10aの間
の第1の接続配管112、118とを冷媒ポンプ12お
よび第7のバルブ24を介して接続する第2の接続配管
130、133、132、131が設けられている。こ
の第2の接続配管130、133、132、131は第
1の蓄冷熱用熱交換器10a、第3の絞り装置22、第
2の絞り装置15a、15b、15c、および室内側熱
交換器16a、16b、16cとともに放冷・放熱用回
路を構成している。
Embodiments of the present invention will be described with reference to the drawings. Embodiment 1 FIG. Hereinafter, a regenerative air conditioner according to Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 shows a system of a regenerative air conditioner. In this figure, the same components as those in FIG. 17 in the conventional example are denoted by the same reference numerals, and the description thereof will be omitted. In this regenerative air conditioner, as shown in FIG. 1, the compressor 1, the four-way switching valve 28, the outdoor heat exchanger 3, the first throttle device 6, the second
Of the expansion pipes 15a, 15b, 15c and the indoor heat exchangers 16a, 16b, 16c
04b, 103, 108, 121, 122a, 122
b, 122c, 123a, 123b, 123c, 124
a, 124b, 124c, 120, 128a, 128
b, 139 and 129 are sequentially connected to form a general cooling / heating circuit. Further, the first expansion device 6 to the second expansion device 15a, 15b, 15c of the general cooling and heating circuit are used.
Between the refrigerant pipes 108 and 121 and the indoor heat exchanger 16
a, the refrigerant pipe 12 between the compressor 1 and 16b, 16c
0, 128a via a third expansion device 22, a first heat exchanger for cold storage heat 10a, and a first valve 14, first connection pipes 105, 112, 118, 119.
Is provided. The first connection pipes 105 and 11
Reference numerals 2, 118, and 119 together with the compressor 1, the outdoor heat exchanger 3, and the first expansion device 6 constitute a cool storage / heat storage circuit. Also, a first connection between the refrigerant pipes 129 and 139 between the four-way switching valve 28 and the suction side of the compressor 1 in the general cooling and heating circuit and the first valve 14 to the first heat exchanger 10a for cold storage heat. Second connection pipes 130, 133, 132, 131 for connecting the pipes 112, 118 via the refrigerant pump 12 and the seventh valve 24 are provided. The second connection pipes 130, 133, 132, 131 are connected to the first heat storage heat exchanger 10a, the third expansion device 22, the second expansion devices 15a, 15b, 15c, and the indoor heat exchanger 16a. , 16b and 16c constitute a cooling / radiating circuit.

【0035】そして、蓄熱媒体21中に配置されて放冷
・放熱用回路の一部を構成する第2の蓄冷熱用熱交換器
10bが、第1の蓄冷熱用熱交換器10aと並列して第
1の接続配管105、112に接続されている。更に
は、第1の接続配管112の第1の蓄冷熱用熱交換器1
0aの一方の出側に設けられた第2のバルブ26aと、
第1の接続配管112の第2の蓄冷熱用熱交換器10b
の一方の出側に設けられた第3のバルブ26bと、第1
の接続配管105の第1の蓄冷熱用熱交換器10aの他
方の出側に設けられた第4のバルブ27aと、第1の接
続配管105の第2の蓄冷熱用熱交換器10bの他方の
出側に設けられた第5のバルブ27bと、一般冷暖房用
回路の四方切換弁28から圧縮機1吸込側の間の冷媒配
管128b、139と第1のバルブ14から第1および
第2の蓄冷熱用熱交換器10a、10bの間の第1の接
続配管112とを第6のバルブ23を介して接続する第
3の接続配管136、137とを備えてなっている。
A second heat exchanger for cold storage heat 10b which is arranged in the heat storage medium 21 and forms a part of a circuit for cooling and radiating heat is arranged in parallel with the first heat exchanger for cold storage heat 10a. To the first connection pipes 105 and 112. Further, the first cold storage heat exchanger 1 of the first connection pipe 112
0a, a second valve 26a provided on one side of the outlet,
Second heat exchanger 10b for cold storage heat of first connection pipe 112
A third valve 26b provided on one outlet side of the
A fourth valve 27a provided on the other outlet side of the first cold storage heat exchanger 10a of the connection pipe 105, and the other of the second cold storage heat exchanger 10b of the first connection pipe 105 And a refrigerant pipe 128b, 139 between the four-way switching valve 28 and the compressor 1 suction side of the general cooling and heating circuit and the first and second valves 14 and 139 from the first valve 14. Third connection pipes 136 and 137 for connecting the first connection pipe 112 between the heat exchangers for cold storage heat 10a and 10b via the sixth valve 23 are provided.

【0036】従って、この蓄熱式空気調和装置において
は、第1の蓄冷熱用熱交換器10aが壊れた場合でも、
第2のバルブ26aおよび第4のバルブ27aを閉じる
ことにより、第2の蓄冷熱用熱交換器10bが使用可能
で、蓄熱槽9を使用する運転が可能となる。逆に、第2
の蓄冷熱用熱交換器10bが壊れたときは、第3のバル
ブ26bおよび第5のバルブ27bを閉じることによ
り、第1の蓄冷熱用熱交換器10aが使用可能で、蓄熱
槽9を使用する運転が可能となる。
Therefore, in this regenerative air conditioner, even if the first regenerative heat exchanger 10a is broken,
By closing the second valve 26a and the fourth valve 27a, the second cool storage heat exchanger 10b can be used, and the operation using the heat storage tank 9 can be performed. Conversely, the second
When the heat exchanger 10b for cold storage heat is broken, by closing the third valve 26b and the fifth valve 27b, the heat exchanger 10a for cold storage heat can be used and the heat storage tank 9 can be used. Operation is possible.

【0037】実施の形態2.以下、本発明の実施の形態
2に係る蓄熱式空気調和装置を図面に基づき説明する。
図2は蓄熱式空気調和装置のシステムを示すものであ
る。同図において、実施の形態1における図1と同一の
構成要素については同一の符号を付し、その説明を省略
する。図1と異なるのは以下の点である。すなわち、蓄
熱槽9が2つの蓄熱室9a、9bに区画して構成されて
おり、各蓄熱室9a、9bに第1の蓄冷熱用熱交換器1
0aまたは第2の蓄冷熱用熱交換器10bがそれぞれ配
置されていることと、放冷・放熱用回路を用いる蓄熱利
用暖房運転を行う際に、予め設定された暖房運転スケジ
ュールに基づいて第2のバルブ26aと第3のバルブ2
6bの開閉を相互に切り換えて第1または第2の蓄冷熱
用熱交換器10a、10bのいずれかにより蓄熱媒体2
1の蓄熱を使用する蓄熱使用熱交換器管理手段201を
備えていることである。
Embodiment 2 Hereinafter, a regenerative air conditioner according to Embodiment 2 of the present invention will be described with reference to the drawings.
FIG. 2 shows a system of a regenerative air conditioner. In the figure, the same components as those in FIG. 1 of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. The difference from FIG. 1 is as follows. That is, the heat storage tank 9 is divided into two heat storage chambers 9a and 9b, and each of the heat storage chambers 9a and 9b is provided with the first heat exchanger 1 for cold storage heat.
0a or the second heat storage heat exchanger 10b for cooling and heat storage, and performing the heat storage utilizing heating operation using the cooling / radiating circuit based on the preset heating operation schedule. Valve 26a and third valve 2
The heat storage medium 2 is switched by switching the opening and closing of the heat storage medium 2b by either the first or second heat exchangers for cold storage heat 10a, 10b.
In other words, there is provided a heat-storage-use heat exchanger managing means 201 that uses the heat storage of No. 1.

【0038】次いで、本実施の形態の動作、基本的な冷
媒の流れ、運転状態を説明する。本実施の形態の蓄熱室
9aを使用した時の放熱暖房運転の回路図は図2であ
る。図2において、第3の絞り装置22、第2の絞り装
置15a、15b、15c、第6のバルブ23、および
第2のバルブ26aは開き、その他の絞り装置およびバ
ルブは閉じている状態で、圧縮機1および冷媒ポンプ1
2を運転する。このとき圧縮機1は17kg/cm2 G前後
の高温・高圧のガス冷媒を各室内ユニット用冷媒回路系
a,b,cに送り、室内空気の加熱を行なう。凝縮した
冷媒は第2の絞り装置15にて減圧し、約13kg/cm2
Gの気液二相冷媒となって蓄熱室9aにもどり蒸発し
て、第6のバルブ23を経て、約4kg/cm2 Gで圧縮機
1に戻る。
Next, the operation of this embodiment, the basic flow of the refrigerant, and the operation state will be described. FIG. 2 is a circuit diagram of the heat radiation / heating operation when the heat storage chamber 9a of the present embodiment is used. In FIG. 2, the third throttle device 22, the second throttle devices 15a, 15b, 15c, the sixth valve 23, and the second valve 26a are open, and the other throttle devices and valves are closed. Compressor 1 and refrigerant pump 1
Drive 2 At this time, the compressor 1 sends a high-temperature and high-pressure gas refrigerant of about 17 kg / cm 2 G to each indoor unit refrigerant circuit system a, b, c to heat the indoor air. The condensed refrigerant is decompressed by the second expansion device 15 to about 13 kg / cm 2
The refrigerant becomes the gas-liquid two-phase refrigerant of G, returns to the heat storage chamber 9a, evaporates, and returns to the compressor 1 at about 4 kg / cm 2 G via the sixth valve 23.

【0039】一方、本実施の形態の蓄熱室9bを使用し
た時の放熱暖房運転の回路図を図3に示す。図3におい
て、第3の絞り装置22、第2の絞り装置15a、15
b、15c、第6のバルブ23、および第3のバルブ2
6bは開き、その他の絞り装置およびバルブは閉じてい
る状態で、圧縮機1および冷媒ポンプ12を運転する。
このとき圧縮機1は17kg/cm2 G前後の高温・高圧の
ガス冷媒を各室内ユニット用冷媒回路系a,b,cに送
り、室内空気の加熱を行なう。凝縮した冷媒は第2の絞
り装置15にて減圧し、約13kg/cm2 Gの気液二相冷
媒となって蓄熱室9bにもどり蒸発して、第6のバルブ
23を経て、約4kg/cm2 Gで圧縮機1に戻る。
On the other hand, FIG. 3 shows a circuit diagram of the heat radiation / heating operation when the heat storage chamber 9b of the present embodiment is used. In FIG. 3, the third aperture device 22, the second aperture devices 15a, 15
b, 15c, sixth valve 23, and third valve 2
The compressor 1 and the refrigerant pump 12 are operated while 6b is open and the other expansion devices and valves are closed.
At this time, the compressor 1 sends a high-temperature and high-pressure gas refrigerant of about 17 kg / cm 2 G to each indoor unit refrigerant circuit system a, b, c to heat the indoor air. The condensed refrigerant is decompressed by the second expansion device 15, becomes a gas-liquid two-phase refrigerant of about 13 kg / cm 2 G, returns to the heat storage chamber 9b and evaporates, passes through the sixth valve 23, and becomes about 4 kg / cm 2. Return to compressor 1 at cm 2 G.

【0040】次いで、本実施の形態の一般暖房運転の回
路図を図4に示す。図4において、第1の絞り装置6お
よび第2の絞り装置15a、15b、15cは開き、そ
の他の絞り装置およびバルブは閉っている状態で、圧縮
機1を運転する。圧縮機1より17kg/cm2 G前後の圧
力で吐出された高温高圧ガスは各室内ユニット用冷媒回
路系a,b,cに送られ、各々の室内側熱交換器16
a、16b、16cで凝縮し、室内空気を加熱する。凝
縮した液冷媒は第2の絞り装置15a、15b、15c
で若干の減圧をし、更に第1の絞り装置6で減圧して約
4kg/cm2 Gの圧力で室外側熱交換器3内で蒸発し圧縮
機1に戻る。
Next, a circuit diagram of the general heating operation of the present embodiment is shown in FIG. In FIG. 4, the compressor 1 is operated with the first expansion device 6 and the second expansion devices 15a, 15b, 15c open and the other expansion devices and valves closed. The high-temperature and high-pressure gas discharged from the compressor 1 at a pressure of about 17 kg / cm 2 G is sent to the indoor unit refrigerant circuit systems a, b, and c, and the indoor heat exchanger 16
a, 16b, and 16c condense and heat the room air. The condensed liquid refrigerant is supplied to the second expansion devices 15a, 15b, 15c.
Then, the pressure in the outdoor heat exchanger 3 is reduced at a pressure of about 4 kg / cm 2 G to return to the compressor 1 with a pressure of about 4 kg / cm 2 G.

【0041】次に、本実施の形態の暖房シーズンの暖房
時間帯運転切り替え状態図を図5に示す。図中の横軸は
時刻、縦軸は暖房運転中の暖房能力である。また、この
運転状態の制御を、制御ブロック図の図6に示す。蓄熱
使用熱交換器管理手段201によれば、まず、8:00
から暖房時間の時間帯に入り蓄熱室9aを冷凍サイクル
に含んだ放熱運転(第2のバルブ26aを開いた状態)
を行う(S1、S2)。この時点で、蓄熱室9bの第3
のバルブ26bは閉じている。また、8:00の時点で
は蓄熱室9aおよび蓄熱室9bの蓄熱媒体21である水
の温度は40℃である。この運転を8:00から12:
00まで行う(S3)。夜間蓄熱量を消費するとされる
12:00から16:00の間は第2のバルブ26a、
第3のバルブ26bは閉じて一般暖房運転に切り替える
動作を同時に行う(S4、S5)。16:00になった
時点で(S6)、第3のバルブ26bを開き、放熱運転
を開始する動作を同時に行う(S7)。蓄熱室9bを冷
凍サイクルに含む放熱運転を開始し(S8)、20:0
0まで放熱運転を行う。この時点で蓄熱室9bの水温は
40℃近くを保っており、放熱運転を効率良く運転でき
る水温となっている。そして、20:00になった時点
で(S9)、第3のバルブ26bを閉じ一般暖房運転を
開始する動作を同時に行う(S10)。20:00の時
点から22:00までの時間帯は一般暖房運転とし、第
2のバルブ26a、第3のバルブ26bは閉じている。
22:00では暖房運転時間帯を終了し(S11)、2
2:00から翌日の8:00までは蓄熱時間帯になる。
Next, FIG. 5 shows a switching diagram of the heating time zone operation switching in the heating season according to the present embodiment. The horizontal axis in the figure is time, and the vertical axis is the heating capacity during the heating operation. The control of this operating state is shown in FIG. 6 of a control block diagram. According to the heat storage use heat exchanger management means 201, first, 8:00.
From the time of the heating time to the heat dissipation operation in which the heat storage chamber 9a is included in the refrigeration cycle (with the second valve 26a opened).
(S1, S2). At this point, the third heat storage chamber 9b
Is closed. At 8:00, the temperature of water as the heat storage medium 21 in the heat storage chambers 9a and 9b is 40 ° C. From 8:00 to 12:
The processing is performed up to 00 (S3). The second valve 26a is used between 12:00 and 16:00, which is assumed to consume the heat storage at night.
The operation of switching the third valve 26b to the general heating operation by closing the third valve 26b is performed simultaneously (S4, S5). At 16:00 (S6), the operation of opening the third valve 26b and starting the heat dissipation operation is performed simultaneously (S7). The heat dissipation operation including the heat storage chamber 9b in the refrigeration cycle is started (S8), and the heat release operation is performed at 20: 0
The heat dissipation operation is performed until 0. At this time, the water temperature of the heat storage chamber 9b is maintained at about 40 ° C., and is a water temperature at which the heat dissipation operation can be efficiently performed. Then, at 20:00 (S9), the operation of closing the third valve 26b and starting the general heating operation is performed simultaneously (S10). During the time period from 20:00 to 22:00, the general heating operation is performed, and the second valve 26a and the third valve 26b are closed.
At 22:00, the heating operation time period ends (S11),
The heat storage time zone is from 2:00 to 8:00 the next day.

【0042】実施の形態3.以下、本発明の実施の形態
3に係る蓄熱式空気調和装置を図面に基づき説明する。
図7は蓄熱式空気調和装置のシステムを示すものであ
る。同図において、実施の形態2における図2と同一の
構成要素については同一の符号を付し、その説明を省略
する。図2と異なるのは以下の点である。すなわち、放
冷・放熱用回路を用いる冷熱利用冷房運転を行う際に、
予め設定された冷房運転スケジュールに基づいて第2の
バルブ26aと第3のバルブ26bの開閉を切り換えて
第1または第2の蓄冷熱用熱交換器10a、10bのい
ずれかまたは双方により蓄熱媒体21の冷熱を使用する
冷熱使用熱交換器管理手段202を備えていることであ
る。
Embodiment 3 Hereinafter, a heat storage type air conditioner according to Embodiment 3 of the present invention will be described with reference to the drawings.
FIG. 7 shows a system of a heat storage type air conditioner. In this figure, the same components as those in FIG. 2 in the second embodiment are denoted by the same reference numerals, and description thereof will be omitted. The difference from FIG. 2 is as follows. That is, when performing a cooling operation utilizing cooling heat using a cooling / radiating circuit,
The opening and closing of the second valve 26a and the third valve 26b are switched based on a preset cooling operation schedule, and the heat storage medium 21 is switched by either or both of the first and second heat storage heat exchangers 10a and 10b. Is provided with a cold-heat-using heat exchanger managing means 202 that uses the cold heat of the above.

【0043】次いで、本実施の形態の動作、基本的な冷
媒の流れ、運転状態について説明する。まず、蓄熱室9
aを使用した時の蓄冷熱併用冷房運転(放冷運転の中の
1つの運転)の回路図は図7である。図7において、第
1の絞り装置6、第3の絞り装置22、第2の絞り装置
15a、15b、15c、第7のバルブ24、および第
2のバルブ26aを開き、他のバルブを閉じている状態
で圧縮機1および冷媒ポンプ12を運転する。このとき
冷媒ポンプ12側の蓄熱室9aで凝縮した液冷媒は、圧
縮機1側の第1の絞り装置6で減圧された冷媒と合流
し、室内ユニット用冷媒回路系a,b,cへは、一般冷
房運転時の約2倍の量の冷媒が循環して、能力も2倍と
なる。そして冷媒は圧縮機1へ戻る。
Next, the operation of this embodiment, the basic flow of the refrigerant, and the operating state will be described. First, the heat storage room 9
FIG. 7 is a circuit diagram of a cooling operation combined with cold storage operation (one of the cooling operations) when a is used. In FIG. 7, the first throttle device 6, the third throttle device 22, the second throttle devices 15a, 15b, 15c, the seventh valve 24, and the second valve 26a are opened, and the other valves are closed. The compressor 1 and the refrigerant pump 12 are operated in a state where the compressor 1 is in the state. At this time, the liquid refrigerant condensed in the heat storage chamber 9a on the side of the refrigerant pump 12 merges with the refrigerant depressurized by the first expansion device 6 on the side of the compressor 1 and flows to the indoor unit refrigerant circuit systems a, b, c. In this case, the refrigerant circulates about twice as much as in the ordinary cooling operation, and the capacity is doubled. Then, the refrigerant returns to the compressor 1.

【0044】一方、蓄熱室9bを使用した時の蓄冷熱併
用冷房運転(放冷運転の中の1つの運転)の回路図を図
8に示す。図8において、第1の絞り装置6、第3の絞
り装置22、第2の絞り装置15a、15b、15c、
第7のバルブ24、および第3のバルブ26bを開き、
他のバルブを閉じている状態で圧縮機1および冷媒ポン
プ12を運転する。このとき冷媒ポンプ12側の蓄熱室
9bで凝縮した液冷媒は、圧縮機1側の第1の絞り装置
6で減圧された冷媒と合流し、室内ユニット用冷媒回路
系a,b,cへは、一般冷房運転時の約2倍の量の冷媒
が循環して、能力も2倍となる。そして冷媒は圧縮機1
へ戻る。
On the other hand, FIG. 8 shows a circuit diagram of the cooling operation combined with cold storage (one of the cooling operations) when the heat storage chamber 9b is used. In FIG. 8, the first aperture device 6, the third aperture device 22, the second aperture devices 15a, 15b, 15c,
Open the seventh valve 24 and the third valve 26b,
The compressor 1 and the refrigerant pump 12 are operated with other valves closed. At this time, the liquid refrigerant condensed in the heat storage chamber 9b on the side of the refrigerant pump 12 merges with the refrigerant decompressed by the first expansion device 6 on the side of the compressor 1, and flows to the indoor unit refrigerant circuit systems a, b, c. In this case, the refrigerant circulates about twice as much as in the ordinary cooling operation, and the capacity is doubled. And the refrigerant is the compressor 1
Return to

【0045】次いで、一般冷房運転の回路図を図9に示
す。第1の絞り装置6および第2の絞り装置15a、1
5b、15cは開き、その他の絞り装置およびバルブは
閉じている。圧縮機1より吐出された冷媒は室外側熱交
換器3にて凝縮液化した高圧冷媒は、各室内ユニット用
冷媒回路系a,b,cに送られ、第2の絞り装置15
a、15b、15cの各々で冷媒流量調節しながら減圧
し、約6kg/cm2 G程度の圧力で室内側熱交換器16
a、16b、16c内に流入し蒸発する。このとき周囲
の室内空気より吸熱し、ガス化した冷媒は圧縮機1に戻
る。
Next, a circuit diagram of the general cooling operation is shown in FIG. The first aperture device 6 and the second aperture devices 15a, 1
5b and 15c are open, and the other throttle devices and valves are closed. The high-pressure refrigerant condensed and liquefied in the outdoor heat exchanger 3 from the refrigerant discharged from the compressor 1 is sent to each of the indoor unit refrigerant circuit systems a, b, and c, and the second expansion device 15
a, 15b, and 15c, the pressure was reduced while controlling the flow rate of the refrigerant, and the indoor heat exchanger 16 was controlled at a pressure of about 6 kg / cm 2 G.
a, 16b and 16c flow into and evaporate. At this time, the refrigerant that has absorbed heat from the surrounding room air and returned to the compressor 1 is gasified.

【0046】次に本実施の形態の冷房シーズンの冷房時
間帯運転切り換え状態図を図10に示す。図中の横軸は
時刻、縦軸は冷房運転中の冷房能力である。また、この
運転状態の制御を、制御ブロック図の図11に示す。冷
熱使用熱交換器管理手段202によれば、まず、8:0
0から冷房運転時間に入り、第2のバルブ26aおよび
第3のバルブ26bを閉じて一般冷房運転を開始する動
作を同時に行う(S21、S22)。10:00になっ
た時点で(S23)、蓄熱室9aを一台運転するため、
第2のバルブ26aを開き、蓄冷熱併用冷房運転を開始
する動作を同時に行う(蓄熱室9aを優先して使用、S
24)。10:00から14:00になるまで蓄熱室9
aを1台のみ使用した蓄冷熱併用冷房運転を行い(S2
5)、14:00の時点で(S26)、蓄熱室9bの第
3のバルブ26bを開くことにより(S27)、第1の
蓄冷熱用熱交換器10aおよび第2の蓄冷熱用熱交換器
10bの2台で蓄冷熱併用冷房運転を開始する(S2
8)。この蓄熱室2台運転を電力消費量の多い14:0
0から16:00まで使用し、夏の電力ピーク時の夜間
電力移行率を高くする。16:00になった時点で(S
29)、第2のバルブ26aを閉じて蓄熱室9bのみの
蓄熱室1台運転を開始し(S30、S31)、16:0
0から18:00までこの運転を行う。18:00の時
点で(S32)、第3のバルブ26bを閉じて一般冷房
運転を開始する動作を同時に行う(S33、S34)。
18:00から22:00まで一般冷房運転を行った
後、22:00で冷房時間帯を終了して(S35、S3
6)、蓄冷運転に移行する。尚、本実施の形態は蓄冷利
用冷房だけでなく蓄熱利用暖房でも同様の効果を示す。
Next, FIG. 10 shows a switching state diagram of the cooling time zone operation in the cooling season according to the present embodiment. In the figure, the horizontal axis represents time, and the vertical axis represents cooling capacity during cooling operation. The control of the operating state is shown in FIG. 11 of the control block diagram. According to the cold heat use heat exchanger management means 202, first, 8: 0
The cooling operation time starts from 0, and the operation of closing the second valve 26a and the third valve 26b to start the general cooling operation is performed simultaneously (S21, S22). At 10:00 (S23), one heat storage chamber 9a is operated.
The second valve 26a is opened, and the operation of starting the cooling operation combined with the cold storage heat is simultaneously performed (the heat storage chamber 9a is preferentially used, S
24). Thermal storage room 9 from 10:00 to 14:00
a is used for the cooling operation combined with cold storage heat using only one unit (S2).
5) At 14:00 (S26), by opening the third valve 26b of the heat storage chamber 9b (S27), the first cold storage heat exchanger 10a and the second cold storage heat exchanger. 10b start cooling operation combined with regenerative heat (S2
8). The operation of the two heat storage chambers is performed at 14: 0, which consumes a large amount of power.
It is used from 0 to 16:00 to increase the nighttime power transfer rate at the time of summer power peak. At 16:00 (S
29), the second valve 26a is closed, and the operation of one heat storage chamber with only the heat storage chamber 9b is started (S30, S31), 16: 0
This operation is performed from 0 to 18:00. At 18:00 (S32), the operation of closing the third valve 26b and starting the general cooling operation is performed simultaneously (S33, S34).
After performing the general cooling operation from 18:00 to 22:00, the cooling time zone ends at 22:00 (S35, S3).
6) The operation shifts to the cold storage operation. In addition, this embodiment shows the same effect not only in cold storage cooling but also in heat storage heating.

【0047】実施の形態4.以下、本発明の実施の形態
4に係る蓄熱式空気調和装置を図面に基づき説明する。
図12は蓄熱式空気調和装置のシステムを示すものであ
る。同図において、実施の形態1における図1と同一の
構成要素については同一の符号を付し、その説明を省略
する。図1と異なるのは以下の点である。すなわち、第
1の蓄冷熱用熱交換器10aおよび第2の蓄冷熱用熱交
換器10bの第3の絞り装置22との接続側に、第4の
バルブ27aおよび第5のバルブ27bを設けてあるこ
と、また予め設定された暖房運転スケジュールに基づい
て蓄冷・蓄熱用回路を用いる蓄熱運転を行うに先立ち、
蓄冷運転を所定時間行って第1または第2の蓄冷熱用熱
交換器10a、10b内から冷媒を排出させる冷凍サイ
クル内冷媒量調整手段203を備えていることである。
Embodiment 4 Hereinafter, a regenerative air conditioner according to Embodiment 4 of the present invention will be described with reference to the drawings.
FIG. 12 shows a system of a regenerative air conditioner. In the figure, the same components as those in FIG. 1 of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. The difference from FIG. 1 is as follows. That is, the fourth valve 27a and the fifth valve 27b are provided on the connection side of the first regenerator heat exchanger 10a and the second regenerator heat exchanger 10b with the third expansion device 22. Prior to performing a heat storage operation using a cool storage / heat storage circuit based on a preset heating operation schedule,
It is provided with a refrigerant amount adjusting means 203 in the refrigeration cycle for performing the cold storage operation for a predetermined time and discharging the refrigerant from the first or second heat storage heat exchangers 10a and 10b.

【0048】次いで、本実施の形態の動作、基本的な冷
媒の流れ、運転状態を説明する。本実施の形態の蓄熱運
転については、図12に回路図を示している。図12に
おいて、第1の絞り装置6、第3の絞り装置22、第1
のバルブ14、第2のバルブ26a、第3のバルブ26
b、および第4のバルブ27aは開き、他の絞り装置お
よびバルブは閉じている状態で圧縮機1を運転する。こ
のとき圧縮機1により送出されたガス冷媒は蓄熱槽9内
で冷却され40℃程度で凝縮し、第3の絞り装置22お
よび第1の絞り装置6で絞られた冷媒が室外ユニット用
冷媒回路に送られ、約6kg/cm2 G程度の圧力で室外側
熱交換器3内に流入し蒸発する。このとき周囲の室外空
気より吸熱し、ガス化した冷媒が圧縮機1に戻る。
Next, the operation of this embodiment, the basic flow of the refrigerant, and the operating state will be described. FIG. 12 shows a circuit diagram of the heat storage operation of the present embodiment. In FIG. 12, the first aperture device 6, the third aperture device 22, the first
, The second valve 26a, the third valve 26
b, and the fourth valve 27a is open, and the compressor 1 is operated in a state where the other expansion devices and valves are closed. At this time, the gas refrigerant delivered by the compressor 1 is cooled in the heat storage tank 9 and condensed at about 40 ° C., and the refrigerant squeezed by the third expansion device 22 and the first expansion device 6 is supplied to the outdoor unit refrigerant circuit. And flows into the outdoor heat exchanger 3 at a pressure of about 6 kg / cm 2 G and evaporates. At this time, the gasified refrigerant that has absorbed heat from the surrounding outdoor air returns to the compressor 1.

【0049】次いで、本実施の形態の蓄冷運転の回路図
を図13に示す。図13において、第1の絞り装置6、
第3の絞り装置22、第2のバルブ26a、および第4
のバルブ27aを開き、第1のバルブ14および第7の
バルブ24はどちらか一方が閉じ、その他の絞り装置お
よびバルブは閉じている。このとき、圧縮機1より吐出
された冷媒は室外側熱交換器3で凝縮し第1の絞り装置
6および第3の絞り装置22で断熱膨張し第1の蓄冷熱
用熱交換器10aで蒸発し、蓄熱媒体21(例えば水)
より熱をうばい、第1の蓄冷熱用熱交換器10aの表面
を凍結させるとともに気化冷媒が圧縮機1に戻る。
Next, a circuit diagram of the cold storage operation of the present embodiment is shown in FIG. In FIG. 13, the first diaphragm device 6,
The third throttle device 22, the second valve 26a, and the fourth
Is opened, one of the first valve 14 and the seventh valve 24 is closed, and the other throttle device and valve are closed. At this time, the refrigerant discharged from the compressor 1 is condensed in the outdoor heat exchanger 3, adiabatically expanded in the first expansion device 6 and the third expansion device 22, and evaporated in the first cold storage heat exchanger 10a. Heat storage medium 21 (eg, water)
The surface of the first cold storage heat exchanger 10a is frozen, and the vaporized refrigerant returns to the compressor 1.

【0050】上記蓄熱運転では、第1または第2の蓄冷
熱用熱交換器10a、10bを凝縮器として使用するた
めに多量の冷媒が蓄冷熱用熱交換器内に分布する。よっ
て、蓄熱運転冷凍サイクル中の冷媒量は一般冷房運転や
一般暖房運転、第1または第2の蓄冷熱用熱交換器10
a、10bを蒸発器として使用する放熱運転や蓄冷運転
に比べて多量に必要となる。そこで、冷凍サイクル中の
冷媒量をうまく配分する制御が必要となる。
In the thermal storage operation, a large amount of refrigerant is distributed in the thermal storage heat exchanger because the first or second thermal storage heat exchangers 10a and 10b are used as condensers. Therefore, the amount of refrigerant in the heat storage operation refrigeration cycle depends on the general cooling operation, the general heating operation, and the first or second heat exchanger 10 for cold storage heat.
A large amount is required as compared with the heat dissipation operation and the cold storage operation in which a and b are used as evaporators. Therefore, control for properly allocating the refrigerant amount in the refrigeration cycle is required.

【0051】次に、本実施の形態の蓄熱運転時の冷凍サ
イクル内冷媒量制御について制御ブロック図の図14を
用いて説明する。冷凍サイクル内冷媒量調整手段203
によれば、まず、蓄熱運転を開始する時、準備運転とし
て四方切換弁28の流路を蓄冷側に切り換え、第1の蓄
冷熱用熱交換器10aの第2のバルブ26a、第4のバ
ルブ27aを閉じ、第2の蓄冷熱用熱交換器10bの第
3のバルブ26b、第5のバルブ27bを開けて、蓄冷
運転を行う動作を同時に行う(S41)。蓄冷運転を5
分間行うことにより(S42)、蒸発器として使用した
第2の蓄冷熱用熱交換器10b内の冷媒量は少なくな
る。この5分間の蓄冷運転終了後に四方切換弁28の流
路を蓄熱側に切り換え、更に第1の蓄冷熱用熱交換器1
0aの第2のバルブ26aおよび第4のバルブ27aを
開け、第2の蓄冷熱用熱交換器10bの第3のバルブ2
6bおよび第5のバルブ27bを閉じ、蓄熱運転を開始
する動作を同時に行う(S43、S44)。この時点
で、蓄熱運転の冷凍サイクル内の冷媒量は多量に存在す
る。そして、蓄熱槽9の水温が40℃を超えた時点で
(S45)、蓄熱運転を終了する(S46)。
Next, the control of the amount of refrigerant in the refrigeration cycle during the heat storage operation of this embodiment will be described with reference to FIG. 14 of a control block diagram. Refrigerating cycle refrigerant amount adjusting means 203
According to the first embodiment, when the heat storage operation is started, the flow path of the four-way switching valve 28 is switched to the cold storage side as a preparatory operation, and the second valve 26a and the fourth valve of the first cold storage heat exchanger 10a. 27a is closed, the third valve 26b and the fifth valve 27b of the second heat storage heat exchanger 10b are opened, and the operation of performing the cold storage operation is performed simultaneously (S41). 5 cool storage operations
By performing the heat treatment for one minute (S42), the amount of the refrigerant in the second cold storage heat exchanger 10b used as the evaporator is reduced. After the end of the cold storage operation for 5 minutes, the flow path of the four-way switching valve 28 is switched to the heat storage side, and the first cold storage heat exchanger 1
The second valve 26a and the fourth valve 27a of the second cold storage heat exchanger 10b are opened.
The operation of closing the 6b and the fifth valve 27b and starting the heat storage operation is performed simultaneously (S43, S44). At this point, a large amount of refrigerant exists in the refrigeration cycle of the heat storage operation. Then, when the water temperature of the heat storage tank 9 exceeds 40 ° C. (S45), the heat storage operation ends (S46).

【0052】実施の形態5.以下、本発明の実施の形態
5に係る蓄熱式空気調和装置を図面に基づき説明する。
図15は本実施の形態の蓄熱式空気調和装置の冷媒回路
図を示すものである。同図において、実施の形態1にお
ける図1と同一の構成要素については同一の符号を付
し、その説明を省略する。図1と異なるのは以下の点で
ある。すなわち、蓄熱槽が複数の分割蓄熱槽9A、9B
として別個独立に構成されており、各分割蓄熱槽9A、
9Bに第1の蓄冷熱用熱交換器10aまたは第2の蓄冷
熱用熱交換器10bがそれぞれ配置されたことである。
Embodiment 5 FIG. Hereinafter, a heat storage type air conditioner according to Embodiment 5 of the present invention will be described with reference to the drawings.
FIG. 15 shows a refrigerant circuit diagram of the regenerative air conditioner of the present embodiment. In the figure, the same components as those in FIG. 1 of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. The difference from FIG. 1 is as follows. That is, the heat storage tank is divided into a plurality of divided heat storage tanks 9A and 9B.
And each of the divided heat storage tanks 9A,
9B is that the first heat exchanger for cold storage heat 10a or the second heat exchanger for cold storage heat 10b is arranged.

【0053】因みに、図16のようなスペースに蓄熱槽
を設置する場合、蓄熱槽のサイズ(幅×奥行×高さ)が
2m×1m×2mのものでは、入りきらない。ところ
が、蓄熱槽を容積が1/2であるサイズ1m×1m×2
mの蓄熱槽2台分に分割すると、分割蓄熱槽9A、9B
を別々の場所へ収納できる。このようにすると、蓄熱槽
の設置の方法に選択の幅ができる。また、一つの分割蓄
熱槽が水漏れ等で使用不可となった場合でも、他の分割
蓄熱槽を使用することが可能である。
Incidentally, when a heat storage tank is installed in a space as shown in FIG. 16, if the size (width × depth × height) of the heat storage tank is 2 m × 1 m × 2 m, it cannot be accommodated. However, the heat storage tank has a size of 1m × 1m × 2
m heat storage tanks 9A and 9B
Can be stored in different places. In this way, the method of installing the heat storage tank has a range of choices. Further, even if one of the divided heat storage tanks becomes unusable due to water leakage or the like, it is possible to use another divided heat storage tank.

【0054】尚、上記した各実施の形態では、第2の蓄
冷熱用熱交換器は1台を設けた例を示したが、これに限
らず、第2の蓄冷熱用熱交換器を複数台並設したもので
もよい。
In each of the embodiments described above, an example is shown in which one second heat exchanger for cold storage heat is provided. However, the present invention is not limited to this, and a plurality of second heat exchangers for cold storage heat are provided. It may be arranged side by side.

【0055】[0055]

【発明の効果】この発明の蓄熱式空気調和装置によれ
ば、蓄冷熱用熱交換器等の一部が故障により使用できな
い状況になった場合でも、蓄冷熱用熱交換器や蓄熱槽を
取り替えたりしなくてもよく、蓄冷・蓄熱運転または放
冷・放熱による蓄熱利用の空調運転を継続して行うこと
ができる。
According to the regenerative air conditioner of the present invention, even if a part of the regenerator heat exchanger or the like cannot be used due to a failure, the regenerator heat exchanger or the regenerator is replaced. It is not necessary to perform the operation, and the air-conditioning operation using the heat storage using the cold storage / heat storage operation or the cooling / heating / radiation can be continuously performed.

【0056】また、放熱暖房運転に関し、夜間の蓄熱が
完了した直後に限らず、蓄熱を一度利用するに伴って蓄
熱槽内の蓄熱媒体の温度が低下した場合であっても、効
率の良い蓄熱利用の暖房運転を行うことができる。
Further, regarding the heat dissipation / heating operation, not only immediately after the completion of nighttime heat storage, but also in the case where the temperature of the heat storage medium in the heat storage tank decreases as the heat storage is used once, efficient heat storage Use heating operation can be performed.

【0057】そして、放冷冷房運転に関し、消費電力夜
間移行率を更に増加させるために、消費電力のピーク時
の放冷冷房運転に使用する単位時間あたりの蓄冷利用
量、すなわち蓄冷熱用熱交換器の伝熱面積に比例する放
冷量を増加させることができる。
With respect to the cooling / cooling operation, in order to further increase the power consumption night shift rate, the amount of cold storage used per unit time used for the cooling / cooling operation at the peak of the power consumption, that is, the heat exchange for cold storage heat The amount of cooling that is proportional to the heat transfer area of the vessel can be increased.

【0058】更に、蓄熱運転に関し、外気温度が低い場
合は使用していない室内ユニットや配管内に冷媒が多量
に分布しやすいことから、使用すべき冷媒回路中の冷媒
量が不足しがちであるが、蓄熱運転の前の予備運転とし
て少しだけ蓄冷運転を行うようにしたので、使用しない
方の蓄冷熱用熱交換器内の冷媒を冷媒回路に移動させた
のちに蓄熱運転を開始できる。これにより、不十分な冷
媒量による蓄熱運転状態に陥ることを回避できる。
Further, regarding the heat storage operation, when the outside air temperature is low, a large amount of refrigerant is likely to be distributed in unused indoor units and pipes, so that the amount of refrigerant in the refrigerant circuit to be used tends to be insufficient. However, since the cold storage operation is slightly performed as the preliminary operation before the heat storage operation, the heat storage operation can be started after the refrigerant in the unused heat storage heat exchanger is moved to the refrigerant circuit. As a result, it is possible to avoid falling into a heat storage operation state due to an insufficient amount of refrigerant.

【0059】また、必要とされる蓄熱槽と総容量が同等
となる複数の分割蓄熱槽を用いたので、蓄熱槽設置のた
めのスペースが分散されていて個々の分散スペースが狭
い場合でも、かかる狭いスペースに蓄熱槽を設置するこ
とができる。
Further, since a plurality of divided heat storage tanks having the same total capacity as the required heat storage tanks are used, even if the space for installing the heat storage tanks is dispersed and the individual dispersion space is narrow, such a case is required. A heat storage tank can be installed in a small space.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1による冷媒回路図で
ある。
FIG. 1 is a refrigerant circuit diagram according to Embodiment 1 of the present invention.

【図2】 実施の形態2による蓄熱室9aを使用した時
の放熱暖房運転時の冷媒回路図である。
FIG. 2 is a refrigerant circuit diagram during a heat radiation and heating operation when a heat storage chamber 9a according to a second embodiment is used.

【図3】 実施の形態2による蓄熱室9bを使用した時
の放熱暖房運転時の冷媒回路図である。
FIG. 3 is a refrigerant circuit diagram during a heat radiation and heating operation when a heat storage chamber 9b according to a second embodiment is used.

【図4】 実施の形態2による一般暖房運転時の冷媒回
路図である。
FIG. 4 is a refrigerant circuit diagram during a general heating operation according to a second embodiment.

【図5】 実施の形態2による暖房時間帯運転切り換え
状態図である。
FIG. 5 is a diagram showing a heating time zone operation switching state according to a second embodiment.

【図6】 実施の形態2による暖房時間帯運転切り換え
の制御ブロック図である。
FIG. 6 is a control block diagram of switching of heating time zone operation according to a second embodiment.

【図7】 実施の形態3による蓄熱室9aを使用した時
の蓄冷熱併用冷房運転の冷媒回路図である。
FIG. 7 is a refrigerant circuit diagram of a cooling operation combined with cold storage when the heat storage chamber 9a according to the third embodiment is used.

【図8】 実施の形態3による蓄熱室9bを使用した時
の蓄冷熱併用冷房運転の冷媒回路図である。
FIG. 8 is a refrigerant circuit diagram of a cooling operation combined with cold storage when the heat storage chamber 9b according to the third embodiment is used.

【図9】 実施の形態3による一般冷房運転の冷媒回路
図である。
FIG. 9 is a refrigerant circuit diagram of a general cooling operation according to a third embodiment.

【図10】 実施の形態3による冷房時間帯運転切り替
え状態図である。
FIG. 10 is a switching state diagram of a cooling time zone operation according to a third embodiment.

【図11】 実施の形態3による冷房時間帯運転切り替
えの制御ブロック図である。
FIG. 11 is a control block diagram of cooling time zone operation switching according to a third embodiment.

【図12】 実施の形態4による蓄熱運転の冷媒回路図
である。
FIG. 12 is a refrigerant circuit diagram of a heat storage operation according to a fourth embodiment.

【図13】 実施の形態4による蓄冷運転の冷媒回路図
である。
FIG. 13 is a refrigerant circuit diagram of a cold storage operation according to a fourth embodiment.

【図14】 実施の形態4による蓄熱運転の制御ブロッ
ク図である。
FIG. 14 is a control block diagram of a heat storage operation according to a fourth embodiment.

【図15】 実施の形態5による冷媒回路図である。FIG. 15 is a refrigerant circuit diagram according to a fifth embodiment.

【図16】 実施の形態5による蓄熱槽ユニットの設置
図である。
FIG. 16 is an installation diagram of a heat storage tank unit according to a fifth embodiment.

【図17】 従来例の冷媒回路図である。FIG. 17 is a refrigerant circuit diagram of a conventional example.

【図18】 従来例の蓄冷運転時の冷媒回路図である。FIG. 18 is a refrigerant circuit diagram during a cold storage operation of a conventional example.

【図19】 図18の冷媒回路における運転回路図であ
る。
19 is an operation circuit diagram in the refrigerant circuit of FIG.

【図20】 従来例の一般冷房運転時の冷媒回路図であ
る。
FIG. 20 is a refrigerant circuit diagram during a general cooling operation of a conventional example.

【図21】 図20の冷媒回路における運転状態図であ
る。
21 is an operation state diagram of the refrigerant circuit of FIG. 20.

【図22】 従来例の放冷運転時の冷媒回路図である。FIG. 22 is a refrigerant circuit diagram during a cooling operation according to a conventional example.

【図23】 図22の冷媒回路における運転状態図であ
る。
FIG. 23 is an operation state diagram of the refrigerant circuit of FIG. 22.

【図24】 従来例の蓄冷熱併用冷房運転時の冷媒回路
図である。
FIG. 24 is a refrigerant circuit diagram of a conventional example at the time of cooling operation combined with cold storage heat.

【図25】 図24の冷媒回路における運転状態図であ
る。
25 is an operation state diagram of the refrigerant circuit of FIG. 24.

【図26】 従来例の蓄熱運転時の冷媒回路図である。FIG. 26 is a refrigerant circuit diagram during a heat storage operation of a conventional example.

【図27】 図26の冷媒回路における運転状態図であ
る。
FIG. 27 is an operation state diagram of the refrigerant circuit of FIG. 26.

【図28】 従来例の一般暖房運転時の冷媒回路図であ
る。
FIG. 28 is a refrigerant circuit diagram of a conventional example during a general heating operation.

【図29】 図28の冷媒回路における運転状態図であ
る。
FIG. 29 is an operation state diagram of the refrigerant circuit of FIG. 28.

【図30】 従来例の放熱運転時の冷媒回路図である。FIG. 30 is a refrigerant circuit diagram during a heat dissipation operation of a conventional example.

【図31】 図30の冷媒回路における運転状態図であ
る。
31 is an operation state diagram of the refrigerant circuit of FIG. 30.

【図32】 従来例の蓄熱併用暖房運転時の冷媒回路図
である。
FIG. 32 is a refrigerant circuit diagram of a conventional example during a heating operation combined with heat storage.

【図33】 図32の冷媒回路における運転状態図であ
る。
FIG. 33 is an operation state diagram of the refrigerant circuit of FIG. 32.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 室外側熱交換器 6 第1の絞り装置 9 蓄熱槽 9a、9b 蓄熱室 9A、9B 分割蓄熱槽 10a 第1の蓄冷熱用熱交換器 10b 第2の蓄冷熱用熱交換器 12 冷媒ポンプ 14 第1のバルブ 15a、15b、15c 第2の絞り装置 16a、16b、16c 室内側熱交換器 21 蓄熱媒体 22 第3の絞り装置 23 第6のバルブ 24 第7のバルブ 26a 第2のバルブ 26b 第3のバルブ 27a 第4のバルブ 27b 第5のバルブ 28 四方切換弁 104a、104b、103、108、121、122
a、122b、122c、123a、123b、123
c、124a、124b、124c、120、128
a、128b、139、129 冷媒配管 105、112、118、119 第1の接続配管 130、133、132、131 第2の接続配管 136、137 第3の接続配管 201 蓄熱使用熱交換器管理手段 202 冷熱使用熱交換器管理手段 203 冷凍サイクル内冷媒量調整手段
DESCRIPTION OF SYMBOLS 1 Compressor 3 Outdoor heat exchanger 6 1st expansion device 9 Heat storage tank 9a, 9b Heat storage chamber 9A, 9B Split heat storage tank 10a 1st heat exchanger for cold storage heat 10b 2nd heat exchanger for cold storage heat 12 Refrigerant pump 14 First valve 15a, 15b, 15c Second throttle device 16a, 16b, 16c Indoor heat exchanger 21 Heat storage medium 22 Third throttle device 23 Sixth valve 24 Seventh valve 26a Second Valve 26b Third valve 27a Fourth valve 27b Fifth valve 28 Four-way switching valve 104a, 104b, 103, 108, 121, 122
a, 122b, 122c, 123a, 123b, 123
c, 124a, 124b, 124c, 120, 128
a, 128b, 139, 129 Refrigerant piping 105, 112, 118, 119 First connection piping 130, 133, 132, 131 Second connection piping 136, 137 Third connection piping 201 Heat storage use heat exchanger management means 202 Cold heat use heat exchanger management means 203 Refrigerant cycle refrigerant amount adjustment means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機,四方切換弁,室外側熱交換器,
第1の絞り装置,第2の絞り装置,および室内側熱交換
器を順次配管接続してなる一般冷暖房用回路と、上記一
般冷暖房用回路の上記第1の絞り装置から上記第2の絞
り装置の間と上記室内側熱交換器から上記圧縮機の間と
を第3の絞り装置,第1の蓄冷熱用熱交換器,および第
1のバルブを介して接続し上記圧縮機,上記室外側熱交
換器,および上記第1の絞り装置とともに蓄冷・蓄熱用
回路を構成する第1の接続配管と、上記一般冷暖房用回
路の上記四方切換弁から上記圧縮機の吸込側の間と上記
第1の接続配管の上記第1のバルブから上記第1の蓄冷
熱用熱交換器の間とを冷媒ポンプを介して接続し上記第
1の蓄冷熱用熱交換器,上記第3の絞り装置,上記第2
の絞り装置,および上記室内側熱交換器とともに放冷・
放熱用回路を構成する第2の接続配管と、槽内に貯留し
た蓄熱媒体中に上記第1の蓄冷熱用熱交換器を配置した
蓄熱槽とを備える蓄熱式空気調和装置において、 上記蓄熱媒体中に配置されて上記放冷・放熱用回路の一
部を構成する1もしくは複数の第2の蓄冷熱用熱交換器
を、上記第1の蓄冷熱用熱交換器と並列して上記第1の
接続配管に接続するとともに、上記第1の接続配管の上
記第1の蓄冷熱用熱交換器の一方の出側に設けられた第
2のバルブと、上記第1の接続配管の上記第2の蓄冷熱
用熱交換器の一方の出側に設けられた第3のバルブと、
上記第1の接続配管の上記第1の蓄冷熱用熱交換器の他
方の出側に設けられた第4のバルブと、上記第1の接続
配管の上記第2の蓄冷熱用熱交換器の他方の出側に設け
られた第5のバルブと、上記一般冷暖房用回路の上記四
方切換弁から上記圧縮機の吸込側の間と上記第1の接続
配管の上記第1のバルブから上記第1および第2の蓄冷
熱用熱交換器の配管接続位置の間とを第6のバルブを介
して接続する第3の接続配管とを具備してなることを特
徴とする蓄熱式空気調和装置。
1. A compressor, a four-way switching valve, an outdoor heat exchanger,
A general cooling and heating circuit in which a first expansion device, a second expansion device, and an indoor-side heat exchanger are sequentially connected by piping; and the first expansion device to the second expansion device of the general cooling and heating circuit And between the indoor heat exchanger and the compressor through a third expansion device, a first regenerator heat exchanger, and a first valve to connect the compressor and the outdoor. A first connection pipe which constitutes a cool storage / heat storage circuit together with a heat exchanger and the first expansion device; a first connection pipe between the four-way switching valve of the general cooling / heating circuit and a suction side of the compressor; The connection between the first valve of the first connection pipe and the first heat exchanger for cold storage heat via a refrigerant pump, the first heat exchanger for cold storage heat, the third expansion device, Second
With the expansion device and the indoor heat exchanger.
A heat-storage type air conditioner, comprising: a second connection pipe constituting a heat-dissipating circuit; and a heat storage tank in which the first heat-storage heat exchanger is disposed in a heat storage medium stored in the tank. One or a plurality of second regenerative heat exchangers disposed in the heat exchanger and constituting a part of the refrigerating / radiating circuit, in parallel with the first regenerative heat exchanger. A second valve provided on one outlet side of the first cold storage heat exchanger of the first connection pipe, and a second valve of the first connection pipe. A third valve provided on one outlet side of the heat exchanger for cold storage heat of
A fourth valve provided on the other outlet side of the first cold storage heat exchanger of the first connection pipe; and a fourth valve of the second cold storage heat exchanger of the first connection pipe. A fifth valve provided on the other outlet side, between the four-way switching valve of the general cooling and heating circuit and the suction side of the compressor, and from the first valve of the first connection pipe to the first valve. And a third connection pipe connecting between the pipe connection positions of the second regenerative heat exchanger via a sixth valve.
【請求項2】 圧縮機,四方切換弁,室外側熱交換器,
第1の絞り装置,第2の絞り装置,および室内側熱交換
器を順次配管接続してなる一般冷暖房用回路と、上記一
般冷暖房用回路の上記第1の絞り装置から上記第2の絞
り装置の間と上記室内側熱交換器から上記圧縮機の間と
を第3の絞り装置,第1の蓄冷熱用熱交換器,および第
1のバルブを介して接続し上記圧縮機,上記室外側熱交
換器,および上記第1の絞り装置とともに蓄冷・蓄熱用
回路を構成する第1の接続配管と、上記一般冷暖房用回
路の上記四方切換弁から上記圧縮機の吸込側の間と上記
第1の接続配管の上記第1のバルブから上記第1の蓄冷
熱用熱交換器の間とを冷媒ポンプを介して接続し上記第
1の蓄冷熱用熱交換器,上記第3の絞り装置,上記第2
の絞り装置,および上記室内側熱交換器とともに放冷・
放熱用回路を構成する第2の接続配管と、槽内に貯留し
た蓄熱媒体中に上記第1の蓄冷熱用熱交換器を配置した
蓄熱槽とを備える蓄熱式空気調和装置において、 上記蓄熱媒体中に配置されて上記放冷・放熱用回路の一
部を構成する1もしくは複数の第2の蓄冷熱用熱交換器
を、上記第1の蓄冷熱用熱交換器と並列して上記第1の
接続配管に接続し、上記蓄熱槽を複数の蓄熱室に区画し
て構成し、上記各蓄熱室に上記第1または第2の蓄冷熱
用熱交換器をそれぞれ配置するとともに、上記第1の接
続配管の上記第1の蓄冷熱用熱交換器の一方の出側に設
けられた第2のバルブと、上記第1の接続配管の上記第
2の蓄冷熱用熱交換器の一方の出側に設けられた第3の
バルブと、上記一般冷暖房用回路の上記四方切換弁から
上記圧縮機の吸込側の間と上記第1の接続配管の上記第
1のバルブから上記第1および第2の蓄冷熱用熱交換器
の配管接続位置の間とを第6のバルブを介して接続する
第3の接続配管と、上記放冷・放熱用回路を用いる蓄熱
利用暖房運転を行う際に上記第2のバルブと上記第3の
バルブの開閉を相互に切り換えて上記第1または第2の
蓄冷熱用熱交換器のいずれかにより蓄熱媒体の蓄熱を使
用する蓄熱使用熱交換器管理手段とを具備してなること
を特徴とする蓄熱式空気調和装置。
2. A compressor, a four-way switching valve, an outdoor heat exchanger,
A general cooling and heating circuit in which a first expansion device, a second expansion device, and an indoor-side heat exchanger are sequentially connected by piping; and the first expansion device to the second expansion device of the general cooling and heating circuit And between the indoor heat exchanger and the compressor through a third expansion device, a first regenerator heat exchanger, and a first valve to connect the compressor and the outdoor. A first connection pipe which constitutes a cool storage / heat storage circuit together with a heat exchanger and the first expansion device; a first connection pipe between the four-way switching valve of the general cooling / heating circuit and a suction side of the compressor; The connection between the first valve of the first connection pipe and the first heat exchanger for cold storage heat via a refrigerant pump, the first heat exchanger for cold storage heat, the third expansion device, Second
With the expansion device and the indoor heat exchanger.
A heat-storage type air conditioner, comprising: a second connection pipe forming a heat-dissipating circuit; and a heat storage tank in which the first cool storage heat exchanger is disposed in a heat storage medium stored in the tank. One or a plurality of second regenerative heat exchangers disposed in the heat exchanger and constituting a part of the refrigerating / radiating circuit, in parallel with the first regenerative heat exchanger. The heat storage tank is divided into a plurality of heat storage chambers, and the first or second heat exchanger for cold storage heat is arranged in each of the heat storage chambers. A second valve provided on one outlet side of the first cold storage heat exchanger of the connection pipe, and one outlet side of the second cold storage heat exchanger on the first connection pipe; And a third valve provided between the four-way switching valve of the general cooling and heating circuit and the suction side of the compressor. A third connection pipe for connecting, via a sixth valve, a connection between the first connection pipe and the pipe connection positions of the first and second cold storage heat exchangers from the first valve to the first connection pipe via a sixth valve; When performing the heat-storage-based heating operation using the cooling / radiating circuit, the second valve and the third valve are switched between open and closed to switch between the first and second cold storage heat exchangers. A heat storage type air conditioner, comprising: a heat storage use heat exchanger management unit that uses heat storage of a heat storage medium.
【請求項3】 圧縮機,四方切換弁,室外側熱交換器,
第1の絞り装置,第2の絞り装置,および室内側熱交換
器を順次配管接続してなる一般冷暖房用回路と、上記一
般冷暖房用回路の上記第1の絞り装置から上記第2の絞
り装置の間と上記室内側熱交換器から上記圧縮機の間と
を第3の絞り装置,第1の蓄冷熱用熱交換器,および第
1のバルブを介して接続し上記圧縮機,上記室外側熱交
換器,および上記第1の絞り装置とともに蓄冷・蓄熱用
回路を構成する第1の接続配管と、上記一般冷暖房用回
路の上記四方切換弁から上記圧縮機の吸込側の間と上記
第1の接続配管の上記第1のバルブから上記第1の蓄冷
熱用熱交換器の間とを冷媒ポンプを介して接続し上記第
1の蓄冷熱用熱交換器,上記第3の絞り装置,上記第2
の絞り装置,および上記室内側熱交換器とともに放冷・
放熱用回路を構成する第2の接続配管と、槽内に貯留し
た蓄熱媒体中に上記第1の蓄冷熱用熱交換器を配置した
蓄熱槽とを備える蓄熱式空気調和装置において、 上記蓄熱媒体中に配置されて上記放冷・放熱用回路の一
部を構成する1もしくは複数の第2の蓄冷熱用熱交換器
を、上記第1の蓄冷熱用熱交換器と並列して上記第1の
接続配管に接続し、上記蓄熱槽を複数の蓄熱室に区画し
て構成し、上記各蓄熱室に上記第1または第2の蓄冷熱
用熱交換器をそれぞれ配置するとともに、上記第1の接
続配管の上記第1の蓄冷熱用熱交換器の一方の出側に設
けられた第2のバルブと、上記第1の接続配管の上記第
2の蓄冷熱用熱交換器の一方の出側に設けられた第3の
バルブと、上記一般冷暖房用回路の上記四方切換弁から
上記圧縮機の吸込側の間と上記第1の接続配管の上記第
1のバルブから上記第1および第2の蓄冷熱用熱交換器
の配管接続位置の間とを第6のバルブを介して接続する
第3の接続配管と、上記放冷・放熱用回路を用いる冷熱
利用冷房運転を行う際に上記第2のバルブと上記第3の
バルブの開閉を切り換えて上記第1または第2の蓄冷熱
用熱交換器のいずれかまたは双方により蓄熱媒体の冷熱
を使用する冷熱使用熱交換器管理手段とを具備してなる
ことを特徴とする蓄熱式空気調和装置。
3. A compressor, a four-way switching valve, an outdoor heat exchanger,
A general cooling and heating circuit in which a first expansion device, a second expansion device, and an indoor-side heat exchanger are sequentially connected by piping; and the first expansion device to the second expansion device of the general cooling and heating circuit And between the indoor heat exchanger and the compressor through a third expansion device, a first regenerator heat exchanger, and a first valve to connect the compressor and the outdoor. A first connection pipe which constitutes a cool storage / heat storage circuit together with a heat exchanger and the first expansion device; a first connection pipe between the four-way switching valve of the general cooling / heating circuit and a suction side of the compressor; The connection between the first valve of the first connection pipe and the first heat exchanger for cold storage heat via a refrigerant pump, the first heat exchanger for cold storage heat, the third expansion device, Second
With the expansion device and the indoor heat exchanger.
A heat-storage type air conditioner, comprising: a second connection pipe forming a heat-dissipating circuit; and a heat storage tank in which the first cool storage heat exchanger is disposed in a heat storage medium stored in the tank. One or a plurality of second regenerative heat exchangers disposed in the heat exchanger and constituting a part of the refrigerating / radiating circuit, in parallel with the first regenerative heat exchanger. The heat storage tank is divided into a plurality of heat storage chambers, and the first or second heat exchanger for cold storage heat is arranged in each of the heat storage chambers. A second valve provided on one outlet side of the first cold storage heat exchanger of the connection pipe, and one outlet side of the second cold storage heat exchanger on the first connection pipe; And a third valve provided between the four-way switching valve of the general cooling and heating circuit and the suction side of the compressor. A third connection pipe for connecting, via a sixth valve, a connection between the first connection pipe and the pipe connection positions of the first and second cold storage heat exchangers from the first valve to the first connection pipe via a sixth valve; When performing the cooling operation utilizing the cooling energy using the cooling / radiating circuit, the second valve and the third valve are switched between open and closed to produce either the first or second heat exchanger for cold storage heat. Alternatively, a regenerative air conditioner comprising: a cold-heat-using heat exchanger managing means that uses cold energy of a heat storage medium by both of them.
【請求項4】 圧縮機,四方切換弁,室外側熱交換器,
第1の絞り装置,第2の絞り装置,および室内側熱交換
器を順次配管接続してなる一般冷暖房用回路と、上記一
般冷暖房用回路の上記第1の絞り装置から上記第2の絞
り装置の間と上記室内側熱交換器から上記圧縮機の間と
を第3の絞り装置,第1の蓄冷熱用熱交換器,および第
1のバルブを介して接続し上記圧縮機,上記室外側熱交
換器,および上記第1の絞り装置とともに蓄冷・蓄熱用
回路を構成する第1の接続配管と、上記一般冷暖房用回
路の上記四方切換弁から上記圧縮機の吸込側の間と上記
第1の接続配管の上記第1のバルブから上記第1の蓄冷
熱用熱交換器の間とを冷媒ポンプを介して接続し上記第
1の蓄冷熱用熱交換器,上記第3の絞り装置,上記第2
の絞り装置,および上記室内側熱交換器とともに放冷・
放熱用回路を構成する第2の接続配管と、槽内に貯留し
た蓄熱媒体中に上記第1の蓄冷熱用熱交換器を配置した
蓄熱槽とを備える蓄熱式空気調和装置において、 上記蓄熱媒体中に配置されて上記放冷・放熱用回路の一
部を構成する1もしくは複数の第2の蓄冷熱用熱交換器
を、上記第1の蓄冷熱用熱交換器と並列して上記第1の
接続配管に接続するとともに、上記第1の接続配管の上
記第1の蓄冷熱用熱交換器の一方の出側に設けられた第
2のバルブと、上記第1の接続配管の上記第2の蓄冷熱
用熱交換器の一方の出側に設けられた第3のバルブと、
上記一般冷暖房用回路の上記四方切換弁から上記圧縮機
の吸込側の間と上記第1の接続配管の上記第1のバルブ
から上記第1および第2の蓄冷熱用熱交換器の配管接続
位置の間とを第6のバルブを介して接続する第3の接続
配管と、上記蓄冷・蓄熱用回路を用いる蓄熱運転を行う
に先立ち、蓄冷運転を所定時間行って上記第1または第
2の蓄冷熱用熱交換器内から冷媒を排出させる冷凍サイ
クル内冷媒量調整手段とを具備してなることを特徴とす
る蓄熱式空気調和装置。
4. A compressor, a four-way switching valve, an outdoor heat exchanger,
A general cooling and heating circuit in which a first expansion device, a second expansion device, and an indoor-side heat exchanger are sequentially connected by piping; and the first expansion device to the second expansion device of the general cooling and heating circuit And between the indoor heat exchanger and the compressor through a third expansion device, a first regenerator heat exchanger, and a first valve to connect the compressor and the outdoor. A first connection pipe which constitutes a cool storage / heat storage circuit together with a heat exchanger and the first expansion device; a first connection pipe between the four-way switching valve of the general cooling / heating circuit and a suction side of the compressor; The connection between the first valve of the first connection pipe and the first heat exchanger for cold storage heat via a refrigerant pump, the first heat exchanger for cold storage heat, the third expansion device, Second
With the expansion device and the indoor heat exchanger.
A heat-storage type air conditioner, comprising: a second connection pipe forming a heat-dissipating circuit; and a heat storage tank in which the first cool storage heat exchanger is disposed in a heat storage medium stored in the tank. One or a plurality of second regenerative heat exchangers disposed in the heat exchanger and constituting a part of the refrigerating / radiating circuit, in parallel with the first regenerative heat exchanger. A second valve provided on one outlet side of the first cold storage heat exchanger of the first connection pipe, and a second valve of the first connection pipe. A third valve provided on one outlet side of the heat exchanger for cold storage heat of
A pipe connection position between the four-way switching valve of the general cooling and heating circuit and the suction side of the compressor, and from the first valve of the first connection pipe to the first and second cold storage heat exchangers. And a third connection pipe connecting the first and second cold storages via a sixth valve, and performing the cold storage operation for a predetermined time before performing the heat storage operation using the cool storage / heat storage circuit. A regenerative air conditioner comprising: a refrigerant amount adjusting means in a refrigeration cycle for discharging a refrigerant from a heat exchanger for heat.
【請求項5】 圧縮機,四方切換弁,室外側熱交換器,
第1の絞り装置,第2の絞り装置,および室内側熱交換
器を順次配管接続してなる一般冷暖房用回路と、上記一
般冷暖房用回路の上記第1の絞り装置から上記第2の絞
り装置の間と上記室内側熱交換器から上記圧縮機の間と
を第3の絞り装置,第1の蓄冷熱用熱交換器,および第
1のバルブを介して接続し上記圧縮機,上記室外側熱交
換器,および上記第1の絞り装置とともに蓄冷・蓄熱用
回路を構成する第1の接続配管と、上記一般冷暖房用回
路の上記四方切換弁から上記圧縮機の吸込側の間と上記
第1の接続配管の上記第1のバルブから上記第1の蓄冷
熱用熱交換器の間とを冷媒ポンプを介して接続し上記第
1の蓄冷熱用熱交換器,上記第3の絞り装置,上記第2
の絞り装置,および上記室内側熱交換器とともに放冷・
放熱用回路を構成する第2の接続配管と、槽内に貯留し
た蓄熱媒体中に上記第1の蓄冷熱用熱交換器を配置した
蓄熱槽とを備える蓄熱式空気調和装置において、 上記蓄熱媒体中に配置されて上記放冷・放熱用回路の一
部を構成する1もしくは複数の第2の蓄冷熱用熱交換器
を、上記第1の蓄冷熱用熱交換器と並列して上記第1の
接続配管に接続し、上記蓄熱槽を複数の分割蓄熱槽とし
て別個独立に構成するとともに、上記各分割蓄熱槽に上
記第1または第2の蓄冷熱用熱交換器をそれぞれ配置し
たことを特徴とする蓄熱式空気調和装置。
5. A compressor, a four-way switching valve, an outdoor heat exchanger,
A general cooling and heating circuit in which a first expansion device, a second expansion device, and an indoor-side heat exchanger are sequentially connected by piping; and the first expansion device to the second expansion device of the general cooling and heating circuit And between the indoor heat exchanger and the compressor through a third expansion device, a first regenerator heat exchanger, and a first valve to connect the compressor and the outdoor. A first connection pipe which constitutes a cool storage / heat storage circuit together with a heat exchanger and the first expansion device; a first connection pipe between the four-way switching valve of the general cooling / heating circuit and a suction side of the compressor; The connection between the first valve of the first connection pipe and the first heat exchanger for cold storage heat via a refrigerant pump, the first heat exchanger for cold storage heat, the third expansion device, Second
With the expansion device and the indoor heat exchanger.
A heat-storage type air conditioner, comprising: a second connection pipe forming a heat-dissipating circuit; and a heat storage tank in which the first cool storage heat exchanger is disposed in a heat storage medium stored in the tank. One or a plurality of second regenerative heat exchangers disposed in the heat exchanger and constituting a part of the refrigerating / radiating circuit, in parallel with the first regenerative heat exchanger. And the heat storage tanks are separately and independently configured as a plurality of divided heat storage tanks, and the first or second heat exchanger for cold storage heat is disposed in each of the divided heat storage tanks. Heat storage type air conditioner.
JP17924096A 1996-07-09 1996-07-09 Thermal storage air conditioner Expired - Fee Related JP3814877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17924096A JP3814877B2 (en) 1996-07-09 1996-07-09 Thermal storage air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17924096A JP3814877B2 (en) 1996-07-09 1996-07-09 Thermal storage air conditioner

Publications (2)

Publication Number Publication Date
JPH1026377A true JPH1026377A (en) 1998-01-27
JP3814877B2 JP3814877B2 (en) 2006-08-30

Family

ID=16062400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17924096A Expired - Fee Related JP3814877B2 (en) 1996-07-09 1996-07-09 Thermal storage air conditioner

Country Status (1)

Country Link
JP (1) JP3814877B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245560A (en) * 2002-10-18 2004-09-02 Mitsubishi Jisho Sekkei Inc Heat source system, control method of heat source system, heat source and control method of heat source
CN104833010A (en) * 2015-05-25 2015-08-12 广东美的暖通设备有限公司 Outdoor unit of heat recovery VRF air conditioning system and heat recovery VRF air conditioning system
CN105066343A (en) * 2015-07-31 2015-11-18 新智能源系统控制有限责任公司 Variable water temperature control system applicable to primary pump system of air conditioner
CN105588360A (en) * 2015-06-30 2016-05-18 青岛海信日立空调系统有限公司 Heat accumulation outdoor unit, heat pump system and control method of heat accumulation outdoor unit and heat pump system
CN114110846A (en) * 2021-11-23 2022-03-01 珠海格力电器股份有限公司 Energy storage heat pump system and control method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245560A (en) * 2002-10-18 2004-09-02 Mitsubishi Jisho Sekkei Inc Heat source system, control method of heat source system, heat source and control method of heat source
CN104833010A (en) * 2015-05-25 2015-08-12 广东美的暖通设备有限公司 Outdoor unit of heat recovery VRF air conditioning system and heat recovery VRF air conditioning system
WO2016188295A1 (en) * 2015-05-25 2016-12-01 广东美的暖通设备有限公司 Outdoor unit for heat recovery multi-split air conditioning system and heat recovery multi-split air conditioning system
CN104833010B (en) * 2015-05-25 2017-06-06 广东美的暖通设备有限公司 The outdoor unit and heat-reclamation multi-compressors of heat-reclamation multi-compressors
US10260785B2 (en) 2015-05-25 2019-04-16 Gd Midea Heating & Ventilating Equipment Co., Ltd. Outdoor unit for heat recovery VRF air conditioning system and heat recovery VRF air conditioning system
CN105588360A (en) * 2015-06-30 2016-05-18 青岛海信日立空调系统有限公司 Heat accumulation outdoor unit, heat pump system and control method of heat accumulation outdoor unit and heat pump system
CN105588360B (en) * 2015-06-30 2018-09-25 青岛海信日立空调系统有限公司 A kind of accumulation of heat outdoor unit, heat pump system and its control method
CN105066343A (en) * 2015-07-31 2015-11-18 新智能源系统控制有限责任公司 Variable water temperature control system applicable to primary pump system of air conditioner
CN114110846A (en) * 2021-11-23 2022-03-01 珠海格力电器股份有限公司 Energy storage heat pump system and control method thereof
CN114110846B (en) * 2021-11-23 2023-05-02 珠海格力电器股份有限公司 Energy storage heat pump system and control method thereof

Also Published As

Publication number Publication date
JP3814877B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
JP2894421B2 (en) Thermal storage type air conditioner and defrosting method
JP3352469B2 (en) Air conditioner
JPH0235216B2 (en)
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
JP3882056B2 (en) Refrigeration air conditioner
KR101864636B1 (en) Waste heat recovery type hybrid heat pump system
JP2006023006A (en) Refrigeration facility
JP3567168B2 (en) Thermal storage heat pump air conditioner for cold regions
JP3814877B2 (en) Thermal storage air conditioner
JPH06257868A (en) Heat pump type ice heat accumulating device for air conditioning
JP2646877B2 (en) Thermal storage refrigeration cycle device
JP2757660B2 (en) Thermal storage type air conditioner
JP3370501B2 (en) Cooling system
JP3781340B2 (en) Thermal storage refrigeration air conditioner
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
JP2000240980A (en) Refrigerator/air conditioner
JP3197107B2 (en) Thermal storage type air conditioner
JP3164079B2 (en) Refrigeration equipment
JPH10311614A (en) Heat storage type cooling device
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
JP3614626B2 (en) Air conditioner and method of operating air conditioner
JP3020384B2 (en) Thermal storage type air conditioner
JP2007147133A (en) Air conditioner
JPH11173689A (en) Heat storage type cooling device
KR20200012165A (en) Heat pump system and method for using thermal storage energy

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees