WO2023119590A1 - Heat pump device - Google Patents

Heat pump device Download PDF

Info

Publication number
WO2023119590A1
WO2023119590A1 PCT/JP2021/048010 JP2021048010W WO2023119590A1 WO 2023119590 A1 WO2023119590 A1 WO 2023119590A1 JP 2021048010 W JP2021048010 W JP 2021048010W WO 2023119590 A1 WO2023119590 A1 WO 2023119590A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
heat
water storage
transfer performance
heat transfer
Prior art date
Application number
PCT/JP2021/048010
Other languages
French (fr)
Japanese (ja)
Inventor
啓輔 ▲高▼山
慶郎 青▲柳▼
泰光 野村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/048010 priority Critical patent/WO2023119590A1/en
Publication of WO2023119590A1 publication Critical patent/WO2023119590A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present disclosure relates to a heat pump device.
  • the heat pump cycle device disclosed in Patent Document 1 below adds a target calculated temperature T1 to a second hot water storage tank temperature Ts2 to obtain a target hot water outlet temperature when the water stored in the hot water storage tank is heated to a predetermined temperature. Tea is calculated, and the rotational speed of the compressor is controlled so that the discharged hot water temperature Te of the heat exchanger on the user side becomes equal to the target discharged hot water temperature Tea.
  • the tank unit used in combination with the heat pump device is equipped with a water heat exchanger that exchanges heat between the heat medium and the water stored in the hot water storage tank.
  • a water heat exchanger that exchanges heat between the heat medium and the water stored in the hot water storage tank.
  • tank units that differ in the construction of the water heat exchanger.
  • a tank unit having a water heat exchanger with a different structure is combined with a heat pump device, there is a possibility that the hot water storage operation cannot be performed appropriately.
  • the present disclosure has been made to solve the problems described above, and an object of the present disclosure is to provide a heat pump device that can be combined with a plurality of types of tank units having different structures of water heat exchangers. .
  • a heat pump device is a heat pump device that supplies a heat medium to a tank unit having a water heat exchanger that exchanges heat between a heat medium and water stored in a hot water storage tank, a compressor that compresses the heat medium heat exchanger that exchanges heat between the refrigerant and the heat medium; heat transfer performance determination means that determines the heat transfer performance of the water heat exchanger; Compressor control means for adjusting the rotation speed of the compressor during the hot water storage operation, which is an operation for raising the temperature, and the compressor control means is determined to have a relatively low heat transfer performance of the water heat exchanger.
  • the rotational speed of the compressor during hot water storage operation is set so that the rotational speed of the compressor is higher than the rotational speed of the compressor when it is determined that the heat transfer performance of the water heat exchanger is relatively high. is adjusted.
  • FIG. 1 is a diagram showing a heat pump device according to Embodiment 1 and a hot water supply system including the same;
  • FIG. 1 is a functional block diagram of a hot water supply system according to Embodiment 1;
  • FIG. 1 is a diagram showing a heat pump device according to Embodiment 1 and a hot water supply system including the same;
  • FIG. 4 is a flowchart showing an example of processing executed by the hot water supply system when selecting a hot water storage operation mode;
  • 4 is a flow chart showing an example of processing executed by the hot water supply system during initial hot water storage operation.
  • FIG. 4 is a diagram showing the relationship between continuously rising stored hot water temperature and the heating capacity of the heat pump device at that time.
  • FIG. 4 is a diagram showing an example of how icons are displayed on a display;
  • FIG. 1 shows a heat pump device 2 according to Embodiment 1 and a hot water supply system 1 including the same.
  • the heat pump device 2 is separate from the tank unit 3 .
  • the heat pump device 2 supplies a heated heat medium to the tank unit 3 .
  • the heat pump device 2 is arranged outdoors.
  • the tank unit 3 is arranged outdoors or indoors.
  • the heat pump device 2 is combined with the tank unit 3 to configure the hot water supply system 1 .
  • Hot water supply system 1 may be configured by connecting heat pump device 2 .
  • a housing 43 of the heat pump device 2 includes a compressor 4 for compressing refrigerant, a heat medium heat exchanger 5, an expansion valve 6, an evaporator 7, a first controller 9, and a blower 10. It is Substances used as refrigerants are not particularly limited, but CO 2 , HFCs, HCs, HFOs, etc. can be used, for example.
  • the heat medium heat exchanger 5 includes a primary flow path 5a and a secondary flow path 5b. Heat is exchanged between the refrigerant passing through the primary flow path 5a and the heat medium passing through the secondary flow path 5b.
  • the liquid used as the heat medium may be water or brine other than water.
  • a refrigerant circuit is formed by connecting the compressor 4, the primary flow path 5a, the expansion valve 6, and the evaporator 7 via refrigerant pipes.
  • the expansion valve 6 corresponds to a decompression device that decompresses and expands the high-pressure refrigerant.
  • the evaporator 7 evaporates the refrigerant by exchanging heat between the outdoor air taken in from the outside of the heat pump device 2 and the refrigerant.
  • the blower 10 blows outside air so that it flows past the evaporator 7 .
  • a hot water storage tank 11 , a water heat exchanger 12 , a heat medium pump 13 , a water pump 14 , and a flow path switching valve 15 are provided inside the housing 44 of the tank unit 3 .
  • the hot water storage tank 11 is a container for storing hot water.
  • the hot water storage tank 11 is covered with a heat insulating material (not shown).
  • An outflow port 17 is provided at the bottom of the hot water storage tank 11 .
  • the inflow port 18 is provided in the hot water storage tank 11 at a position higher than the outflow port 17 .
  • the hot water tank 11 has, for example, a cylindrical outer shape.
  • the water heat exchanger 12 includes a primary flow path 12a and a secondary flow path 12b. Heat is exchanged between the heat medium passing through the primary flow path 12a and the water passing through the secondary flow path 12b.
  • a water feed passage 19 connects the outlet 17 to the inlet of the secondary flow path 12b.
  • a water return passage 20 connects the outlet of the secondary flow path 12 b to the inlet 18 .
  • a water pump 14 is provided in the middle of the water return passage 20. - ⁇ A water circuit 21 is formed by the water feed passage 19 , the secondary flow passage 12 b and the water return passage 20 . When the water pump 14 is activated, water in the water circuit 21 flows.
  • a water supply pipe 22 is connected to the bottom of the hot water storage tank 11 .
  • the water supply pipe 22 extends to the outside of the tank unit 3 .
  • Water supplied from a water source such as tap water flows into the hot water storage tank 11 through the water supply pipe 22 .
  • a hot water supply pipe 23 is connected to the upper portion of the hot water storage tank 11 .
  • Hot water supply pipe 23 extends to the outside of tank unit 3 .
  • Hot water stored in the hot water storage tank 11 is supplied through a hot water supply pipe 23 to a hot water supply end such as a shower, a faucet, or a bathtub.
  • a hot water supply end such as a shower, a faucet, or a bathtub.
  • a heating device 24 for warming the room may be connected to the tank unit 3 as in the illustrated example.
  • the operation in which the heat medium is circulated through the heating device 24 is referred to as heating operation.
  • a heating device 24 is installed in the room.
  • the heating device 24 may include, for example, at least one of a floor heating panel installed under the floor, a radiator installed on the indoor wall surface, a panel heater, and a fan convector.
  • a branch portion 25 is formed in the passage on the upstream side of the suction port of the heat medium pump 13 .
  • the passage 26 connects the outlet of the primary flow path 12 a of the water heat exchanger 12 to the branch portion 25 .
  • the channel switching valve 15 is a valve for switching the circuit through which the heat medium flows.
  • the channel switching valve 15 has an a port as an inflow port, a c port as an outflow port, and a d port as an outflow port.
  • the passages 27 and 28 connect the heat pump device 2 to the tank unit 3 .
  • the passage 27 connects the outlet of the heat medium pump 13 to the inlet of the secondary flow path 5 b of the heat medium heat exchanger 5 .
  • a passage 28 connects the outlet of the secondary flow path 5 b to the a port of the flow path switching valve 15 .
  • the passages 27 and 28 pass through the outside of the housing 43 of the heat pump device 2 and the outside of the housing 44 of the tank unit 3 .
  • the installation location of the heat pump device 2 may be distant from the installation location of the tank unit 3 .
  • the passage 29 connects the c port of the flow switching valve 15 to the inlet of the primary flow passage 12 a of the water heat exchanger 12 .
  • the passages 30 and 31 connect the heating device 24 to the tank unit 3 .
  • the passage 30 connects the d port of the flow switching valve 15 to the heat medium inlet of the heating device 24 .
  • the passage 31 connects the heat medium outlet of the heating device 24 to the branch portion 25 .
  • the discharge temperature sensor 32 is arranged in the refrigerant pipe between the compressor 4 and the heat medium heat exchanger 5 .
  • the discharge temperature sensor 32 can detect the compressor discharge temperature, which is the temperature of the refrigerant discharged from the compressor 4 .
  • a hot water storage temperature sensor 35 is provided in the hot water storage tank 11 .
  • a hot water temperature sensor 35 detects the water temperature in the hot water tank 11 .
  • the position where the stored hot water temperature sensor 35 is arranged is a position higher than the outflow port 17 and lower than the inflow port 18 .
  • the temperature of the heat medium flowing into the secondary flow path 5b of the heat medium heat exchanger 5 is referred to as the "heat pump inlet temperature”
  • the temperature of the heat medium flowing out of the secondary flow path 5b is referred to as the “heat pump outlet temperature”.
  • the heat pump device 2 further includes a heat pump inlet temperature sensor 37 , a heat pump outlet temperature sensor 38 and an outside air temperature sensor 41 .
  • a heat pump inlet temperature sensor 37 installed in the passage 27 detects the heat pump inlet temperature.
  • a heat pump outlet temperature sensor 38 installed in the passageway 28 senses the heat pump outlet temperature.
  • the outside air temperature sensor 41 detects the outside air temperature, which is the temperature of the outdoor air.
  • tank outflow temperature corresponds to the temperature of the water flowing into the secondary flow path 12 b of the water heat exchanger 12 .
  • a tank outflow temperature sensor 39 installed in the water feed passage 19 detects the tank outflow temperature.
  • tank inflow temperature the temperature of water flowing into the hot water storage tank 11 from the inlet 18 through the water return passage 20.
  • the tank inflow temperature corresponds to the temperature of water flowing out from the secondary flow path 12 b of the water heat exchanger 12 to the water return path 20 .
  • a tank inflow temperature sensor 40 installed in the water return passage 20 detects the tank inflow temperature.
  • the hot water storage tank 11 has an uppermost portion 42 .
  • the uppermost portion 42 corresponds to a portion of the hot water storage tank 11 higher than the inlet 18 .
  • the inlet of the hot water supply pipe 23 is located within the uppermost portion 42 .
  • the hot water supply pipe 23 is configured to take out the hot water in the uppermost portion 42 . Hot water in the uppermost portion 42 is supplied to the outside through the hot water supply pipe 23 .
  • the second controller 16 is arranged inside the housing 44 of the tank unit 3 .
  • the second controller 16 may be arranged outside the housing 44 , or the second controller 16 may be provided integrally with the heat pump device 2 .
  • the first controller 9 and the second controller 16 are connected by wire or wirelessly so as to be capable of bidirectional data communication.
  • the first controller 9 and the second controller 16 correspond to control circuits that control the operation of the hot water supply system 1 .
  • At least one of the first controller 9 and the second controller 16 may have a timer function for managing time.
  • At least one of the first controller 9 and the second controller 16 may have a calendar function for managing dates.
  • the first controller 9 and the second controller 16 cooperate to control the operation of the hot water supply system 1 .
  • the present disclosure is not limited to a configuration in which a plurality of controllers work together to control the operation of the hot water supply system 1 as in the illustrated example, but a configuration in which the operation of the hot water supply system 1 is controlled by a single controller. may
  • the hot water supply system 1 of the present embodiment includes a remote controller 50 .
  • the remote control 50 and the second controller 16 are connected by wire or wirelessly so as to be capable of bidirectional data communication.
  • the remote control 50 may be installed in the room.
  • the remote controller 50 has a function of receiving user's operations related to operation commands, setting value changes, and others.
  • the remote control 50 corresponds to a human interface.
  • the remote control 50 may include a display for displaying information about the state of the hot water supply system 1, an operation unit such as a switch operated by the user, a speaker, a microphone, and the like.
  • Hot water supply system 1 may include a plurality of remote controllers 50 installed at different locations.
  • a mobile terminal such as a smart phone or a tablet terminal may be configured to be used as a human interface of the hot water supply system 1.
  • a mobile terminal such as a smart phone or a tablet terminal may be configured to be used as a human interface of the hot water supply system 1.
  • the remote control 50 is used as a representative of the human interface will be mainly described, but in the present disclosure, any processing using the remote control 50 can be replaced with processing using the mobile terminal. .
  • FIG. 2 is a functional block diagram of hot water supply system 1 according to Embodiment 1.
  • the compressor 4, the expansion valve 6, the blower 10, the discharge temperature sensor 32, the heat pump inlet temperature sensor 37, the heat pump outlet temperature sensor 38, and the outside air temperature sensor 41 are each connected to the first controller 9. are electrically connected to each other.
  • Each of the heat medium pump 13, the water pump 14, the channel switching valve 15, the stored hot water temperature sensor 35, the tank outflow temperature sensor 39, and the tank inflow temperature sensor 40 is electrically connected to the second controller 16.
  • Each function of the first controller 9 may be realized by a processing circuit.
  • the processing circuitry of the first controller 9 may comprise at least one processor 9a and at least one memory 9b.
  • the at least one processor 9a may realize each function of the first controller 9 by reading and executing a program stored in at least one memory 9b.
  • the processing circuitry of the first controller 9 may comprise at least one piece of dedicated hardware.
  • Each function of the second controller 16 may be realized by a processing circuit.
  • the processing circuitry of the second controller 16 may comprise at least one processor 16a and at least one memory 16b.
  • the at least one processor 16a may implement each function of the second controller 16 by reading and executing a program stored in the at least one memory 16b.
  • the processing circuitry of the second controller 16 may comprise at least one piece of dedicated hardware.
  • the first controller 9 can control the rotational speed of the compressor 4 to be variable, for example, by inverter control.
  • the first controller 9 corresponds to compressor control means for adjusting the rotational speed of the compressor 4 .
  • the second controller 16 may be able to control the rotation speed of the heat medium pump 13 to be variable, for example, by inverter control.
  • the second controller 16 may be capable of controlling the rotation speed of the water pump 14 to be variable, for example, by inverter control.
  • the hot water supply system 1 can execute hot water storage operation.
  • the hot water storage operation is an operation for increasing the temperature of the water in the hot water storage tank 11 .
  • the first controller 9 and the second controller 16 control the hot water storage operation.
  • the first controller 9 and the second controller 16 control operations during the hot water storage operation as follows. Compressor 4, heat medium pump 13, and water pump 14 are driven. In the channel switching valve 15, port a communicates with port c, and port d is closed.
  • the high-temperature and high-pressure refrigerant compressed by the compressor 4 flows into the primary flow path 5 a of the heat medium heat exchanger 5 .
  • the coolant flowing through the primary flow path 5a is cooled by the heat medium flowing through the secondary flow path 5b.
  • the refrigerant that has passed through the primary flow path 5a is decompressed by the expansion valve 6 to become a low-temperature, low-pressure refrigerant.
  • This low-temperature, low-pressure refrigerant flows into the evaporator 7 .
  • heat is exchanged between the outside air guided by the blower 10 and the low-temperature, low-pressure refrigerant.
  • the refrigerant is evaporated by being heated by the outside air in the evaporator 7 .
  • the evaporated refrigerant is sucked into the compressor 4 .
  • a refrigeration cycle is formed.
  • the heat medium heated by the refrigerant in the heat medium heat exchanger 5 flows through the passage 28, the flow path switching valve 15, and the passage 29 into the primary flow path 12a of the water heat exchanger 12.
  • the heat medium that has passed through the primary flow path 12 a returns to the heat medium heat exchanger 5 through the passage 26 , the branch portion 25 , the heat medium pump 13 and the passage 27 .
  • a circuit in which the heat medium circulates through the heat medium heat exchanger 5 and the water heat exchanger 12 in this manner is hereinafter referred to as a "heat medium circuit".
  • the water in the lower part of the hot water storage tank 11 passes through the outlet 17 and the water feed passage 19 and flows into the secondary flow path 12b of the water heat exchanger 12.
  • the water flowing through the secondary flow path 12b is heated by the heat medium flowing through the primary flow path 12a.
  • the heated water flows into the upper part of the hot water storage tank 11 through the water return passage 20 and the inlet 18 .
  • the second controller 16 makes the rotation speed of the water pump 14 relatively high so that the flow rate of water flowing through the water circuit 21 is relatively high.
  • the water is heated to a substantially uniform temperature.
  • the hot water that has flowed into the hot water storage tank 11 through the water return passage 20 and the inlet 18 rises to a position higher than the inlet 18 due to buoyancy.
  • the entire water in the hot water storage tank 11 is heated to a substantially uniform temperature.
  • the hot water with a temperature higher than that of the water heated by the water heat exchanger 12 remains in the uppermost portion 42 of the hot water storage tank 11 , the hot water may continue to remain in the uppermost portion 42 .
  • the first controller 9 may adjust the degree of opening of the expansion valve 6 so that the compressor discharge temperature detected by the discharge temperature sensor 32 becomes equal to a predetermined temperature. As the opening degree of the expansion valve 6 increases, the refrigerant flow rate increases and the compressor discharge temperature decreases.
  • the second controller 16 may fix the rotation speed of the heat medium pump 13 at a rotation speed that makes the flow rate of the heat medium flowing through the heat medium circuit equal to a predetermined value.
  • the second controller 16 controls the heat medium so that the difference between the heat pump outlet temperature detected by the heat pump outlet temperature sensor 38 and the heat pump inlet temperature detected by the heat pump inlet temperature sensor 37 is equal to the target temperature difference.
  • the rotation speed of the pump 13 may be adjusted.
  • the second controller 16 may fix the rotation speed of the water pump 14 at a rotation speed that makes the flow rate of water flowing through the water circuit 21 equal to a predetermined value. Alternatively, the second controller 16 controls the water pump so that the difference between the tank inflow temperature detected by the tank inflow temperature sensor 40 and the tank outflow temperature detected by the tank outflow temperature sensor 39 is equal to the target temperature difference. 14 rotation speed may be adjusted.
  • a plate heat exchanger may be used as the water heat exchanger 12.
  • a plate heat exchanger has a structure that facilitates heat transfer. Therefore, when a plate heat exchanger is used as the water heat exchanger 12, the difference between the temperature of the heat medium flowing through the primary flow path 12a and the temperature of the water flowing through the secondary flow path 12b is made smaller. This makes it possible to carry out more efficient hot water storage operation.
  • the first controller 9 and the second controller 16 control heating operation.
  • the first controller 9 and the second controller 16 control operations during heating operation as follows.
  • Compressor 4 and heat medium pump 13 are driven.
  • Water pump 14 is stopped.
  • port a communicates with port d, and port c is closed.
  • the operation of the heat pump device 2 is the same as or similar to that during the hot water storage operation.
  • the heat medium heated by the refrigerant in the heat medium heat exchanger 5 passes through the passage 28 , the flow switching valve 15 and the passage 30 and flows into the heating device 24 .
  • the heating device 24 heats the room using the heat of the heat medium.
  • the temperature of the heat medium decreases while passing through the heating device 24 .
  • the heat medium whose temperature has decreased returns to the heat medium heat exchanger 5 through the passage 31 , the branch portion 25 , the heat medium pump 13 and the passage 27 .
  • a circuit in which the heat medium circulates through the heat medium heat exchanger 5 and the heating device 24 in this manner is hereinafter referred to as a "heating circuit".
  • the channel switching valve 15 corresponds to a switching valve that switches between the heating operation and the hot water storage operation.
  • FIG. 3 is a diagram showing the heat pump device 2 according to Embodiment 1 and the hot water supply system 1 including the same.
  • the hot water supply system 1 is configured by connecting the same heat pump device 2 as in FIG. 1 to a tank unit 45 different from the tank unit 3 in FIG.
  • the tank unit 45 will be described with a focus on differences from the tank unit 3, and descriptions of common points will be simplified or omitted.
  • the tank unit 45 does not include the water heat exchanger 12, the water pump 14, the water circuit 21, the tank outflow temperature sensor 39, and the tank inflow temperature sensor 40.
  • the tank unit 45 includes a water heat exchanger 46 arranged inside the hot water storage tank 11 .
  • a heat medium pipe 47 of the water heat exchanger 46 has a shape wound in a helical shape or a coil shape around the central axis of the hot water storage tank 11 .
  • the water heat exchanger 46 is submerged in the hot water tank 11 . Regarding the position in the vertical direction, the center of the water heat exchanger 46 is located lower than the center of the hot water storage tank 11 .
  • the water heat exchanger 46 has an inlet 48 and an outlet 49 .
  • the inlet 48 is positioned higher than the outlet 49 .
  • the inlet passage 51 connects the c port of the flow switching valve 15 to the inlet 48 of the water heat exchanger 46 .
  • An outlet passage 52 connects the outlet 49 of the water heat exchanger 46 to the branch 25 .
  • the heat medium pipes 47 of the water heat exchanger 46 are arranged without being in contact with the inner wall surface of the hot water storage tank 11 .
  • the heat medium pipe 47 of the water heat exchanger 46 may be in contact with the inner wall surface of the hot water storage tank 11 .
  • the heat medium heated by the heat medium heat exchanger 5 of the heat pump device 2 passes through the passage 28, the flow path switching valve 15, the inlet passage 51, and the inlet 48 to become water. It flows into the heat medium tube 47 of the heat exchanger 46 .
  • the heat medium that has passed through the heat medium pipe 47 of the water heat exchanger 46 returns to the heat medium heat exchanger 5 through the outlet 49 , the outlet passage 52 , the branch portion 25 , the heat medium pump 13 and the passage 27 .
  • heat is exchanged between the heat medium flowing through the heat medium pipes 47 and the water in the hot water storage tank 11 that is in contact with the outer wall of the heat medium pipes 47. heated.
  • the heat transfer performance of a water heat exchanger that exchanges heat between the heat medium and the water stored in the hot water storage tank 11, such as the water heat exchanger 12 or the water heat exchanger 46 is simply It is sometimes called "heat transfer performance”.
  • heat transfer performance of the water heat exchanger 46 of the tank unit 45 is lower than the heat transfer performance of the water heat exchanger 12 of the tank unit 3 .
  • the main reason for this is that the water in the water heat exchanger 12 undergoes forced convection, whereas the water in the water heat exchanger 46 undergoes natural convection.
  • heat transfer performance can be represented by, for example, an AK value.
  • the AK value is a value obtained by multiplying the heat transfer area A [m 2 ] by the heat transfer coefficient K [kW/(m 2 K)]. Heat transfer performance is determined by the structure of the water heat exchanger.
  • the efficiency of the hot water storage operation using the tank unit 45 is lower than the efficiency of the hot water storage operation using the tank unit 3.
  • the tank unit 45 does not require the water pump 14 and the water circuit 21, it has the advantage of being cheaper than the tank unit 3.
  • a user of the hot water supply system 1 or a builder who installs the hot water supply system 1 may combine the tank unit 3 with the heat pump device 2 from the viewpoint of emphasizing the efficiency of the hot water storage operation.
  • the user or installer may combine the tank unit 45 with the heat pump device 2 from the viewpoint of reducing the installation cost.
  • the heat pump device 2 may be used in combination with the tank unit 3 having the water heat exchanger 12 with relatively high heat transfer performance, or may be used in combination with the water heat exchanger 12 with relatively low heat transfer performance. It may be used in combination with a tank unit 45 having an exchanger 46 .
  • the hot water storage operation is terminated.
  • the time required for the hot water storage operation is the time from the start of the hot water storage operation until the stored hot water temperature detected by the stored hot water temperature sensor 35 reaches the target temperature.
  • the time required for the hot water storage operation using the tank unit 45 having the water heat exchanger 46 with low heat transfer performance is It is longer than the time required for the hot water storage operation using the tank unit 3 having the heat exchanger 12 .
  • the hot water supply system 1 may temporarily suspend the heating operation, perform the hot water storage operation, and resume the heating operation as soon as the hot water storage operation ends. be.
  • the longer the time required for the hot water storage operation the longer the period during which the heating operation is suspended. Since heat is not supplied to the heating device 24 while the heating operation is suspended, the temperature of the room decreases. Therefore, it is not preferable that the hot water storage operation takes a long time.
  • the heat pump device 2 of the present embodiment includes heat transfer performance determination means for determining heat transfer performance.
  • the heat transfer performance determination means in this embodiment is achieved by the first controller 9 .
  • the heat transfer performance determining means may determine whether the heat transfer performance is high or low compared to a reference.
  • the first controller 9 determines the rotation speed of the compressor 4 when the heat transfer performance determining means determines that the heat transfer performance is relatively low, and the rotational speed of the compressor 4 when the heat transfer performance determining means determines that the heat transfer performance is relatively high.
  • the rotation speed of the compressor 4 during the hot water storage operation is adjusted so as to be higher than the rotation speed of the compressor 4. - ⁇ As a result, the time required for the hot water storage operation using the tank unit 45 having the water heat exchanger 46 with low heat transfer performance is reduced to the time required for the hot water storage operation using the tank unit 3 having the water heat exchanger 12 with high heat transfer performance. You can avoid being longer than time. Therefore, even when the tank unit 45 having the water heat exchanger 46 with low heat transfer performance is combined with the heat pump device 2, it is possible to avoid an increase in the interruption period of the heating operation.
  • the rotational speed of the compressor 4 during the hot water storage operation may be kept constant or may vary.
  • the average value of the rotation speed of the compressor 4 from the start to the end of the hot water storage operation is called "average rotation speed of the compressor 4".
  • the first controller 9 adjusts the average rotation speed of the compressor 4 when the heat transfer performance determination means determines that the heat transfer performance is relatively low.
  • the rotational speed of the compressor 4 during the hot water storage operation may be adjusted so as to be higher than the average rotational speed of the compressor 4 when the heat transfer performance determination means determines that the heat transfer performance is relatively high. .
  • the heat transfer performance determination means of the first controller 9 measures the time required for the hot water storage operation when the hot water storage operation is performed, and determines the heat transfer performance according to the measured required time. do. Thereby, the heat transfer performance determining means can accurately and easily determine the heat transfer performance.
  • the heat transfer performance determination means of first controller 9 measures the time required for hot water storage operation, and according to the measured required time, to determine the heat transfer performance. Then, the hot water supply system 1 performs the second and subsequent hot water storage operations as normal hot water storage operations. During the normal hot water storage operation, the first controller 9 determines the heat transfer performance when the rotational speed of the compressor 4 is relatively high when the heat transfer performance determination means determines that the heat transfer performance is relatively low. The rotational speed of the compressor 4 is adjusted so that it is higher than the rotational speed of the compressor 4 determined by the means.
  • FIG. 4 is a flowchart showing an example of processing executed by the hot water supply system 1 when selecting the hot water storage operation mode.
  • the hot water supply system 1 executes the process of the flowchart of FIG. 4, for example, when the stored hot water temperature detected by the stored hot water temperature sensor 35 is lower than a predetermined value.
  • the second controller 16 determines whether there is a history of completing the hot water storage operation in the past. If there is no record of completion of the hot water storage operation in the past, since this is the first time, the process proceeds to step S102 and the first hot water storage operation is performed. If there is a history of completing the hot water storage operation in the past, since this is not the first time, the process proceeds to step S103 and the normal hot water storage operation is performed.
  • FIG. 5 is a flowchart showing an example of processing executed by the hot water supply system 1 during the initial hot water storage operation.
  • the first controller 9 sets the rotation speed of the compressor 4 to an initial value in step S201.
  • the second controller 16 sets the target hot water storage temperature Thw.
  • the target stored hot water temperature Thw may be a value set by the user using the remote controller 50 .
  • step S203 the hot water temperature sensor 35 detects the water temperature Tcw of the hot water storage tank 11 before the hot water storage operation is started.
  • the water temperature Tcw of the hot water storage tank 11 before the start of the hot water storage operation corresponds to the "first temperature”.
  • the target stored hot water temperature Thw corresponds to the "second temperature”.
  • step S204 counting is started to measure the time required for the hot water storage operation.
  • step S205 the hot water storage operation is performed.
  • step S206 it is determined whether or not the stored hot water temperature detected by the stored hot water temperature sensor 35 has reached the target stored hot water temperature Thw. If the stored hot water temperature detected by the stored hot water temperature sensor 35 has not yet reached the target stored hot water temperature Thw, the hot water storage operation is continued.
  • step S207 the process proceeds to step S207 to end the hot water storage operation.
  • step S208 the counting for measuring the time required for the hot water storage operation ends.
  • step S209 the standard hot water storage operation time is calculated.
  • FIG. 6 is a diagram showing the relationship between the continuously rising stored hot water temperature and the heating capacity [W] of the heat pump device 2 at that time.
  • the heating capacity [W] of the heat pump device 2 is the amount of heat given to the heat medium by the heat pump device 2 per unit time.
  • FIG. 6 shows the relationship when the rotational speed of the compressor 4 is kept constant. When the rotational speed of the compressor 4 is kept constant, the heating capacity gradually decreases as the stored hot water temperature rises.
  • the stored hot water temperature is equally divided into four sections, section 1 to section 4, from the assumed minimum temperature Tts to the assumed maximum temperature Tte.
  • Q1 be the heating capacity at the intermediate stored hot water temperature Tt1 in section 1 .
  • Q2 be the heating capacity at the intermediate stored hot water temperature Tt2 in section 2 .
  • Q3 be the heating capacity at the intermediate stored hot water temperature Tt3 in section 3 .
  • Q4 be the heating capacity at the intermediate stored hot water temperature Tt4 in section 4 .
  • the first controller 9 stores in advance the relationship between the stored hot water temperature and the heating capacity as shown in FIG.
  • the relationship between the stored hot water temperature and the heating capacity actually changes continuously, but when the first controller 9 performs calculations, it may be a discrete value. For example, in section 2 where the stored hot water temperature is from Tt1-2 to Tt2-3, the representative value of the stored hot water temperature is Tt2 and the heating capacity is Q2.
  • the heating amount H2 [J] for the hot water storage tank 11 required for the stored hot water temperature to rise from Tt1-2 to Tt2-3 is the water amount Mw [kg] in the hot water storage tank 11 and the water specific heat Cpw [J/kgK], it can be calculated by the following formula (1).
  • the heating amount H4 in interval 4 can be calculated by the following equation (3).
  • the amount of heat required to heat the water in the hot water storage tank 11 from the water temperature Tcw to the target hot water storage temperature Thw is divided and calculated for each section.
  • the time required to heat the water in the hot water storage tank 11 from the water temperature Tcw to the target hot water storage temperature Thw can be calculated. Therefore, the hot water storage operation time thu required for heating the water in the hot water storage tank 11 from the water temperature Tcw before the hot water storage operation to the target hot water storage temperature Thw can be calculated by the following equation (4).
  • the above required hot water storage operation time thu corresponds to the standard hot water storage operation time.
  • the relationship between the stored hot water temperature and the heating capacity shown in FIG. 6 is a numerical value when the tank unit 3 having the water heat exchanger 12 with relatively high heat transfer performance is used. Therefore, the standard hot water storage operation time thu is a numerical value when the tank unit 3 having the water heat exchanger 12 with relatively high heat transfer performance is used.
  • the standard hot water storage operation time thu is an example of the standard required time.
  • step S210 the heat transfer performance determination means of the first controller 9 compares the required hot water storage operation time measured by the processing from steps S204 to S208 with the standard hot water storage operation time thu calculated in step S209. The fact that the required hot water storage operation time is longer than the standard hot water storage operation time thu corresponds to relatively low heat transfer performance. If the required hot water storage operation time is longer than the standard hot water storage operation time thu, the process proceeds to step S211. In step S211, the first controller 9 sets the rotation speed of the compressor 4 during the normal hot water storage operation to be performed next time onwards to a value obtained by adding a predetermined value to the initial value set in step S201.
  • step S212 the first controller 9 maintains the rotation speed of the compressor 4 during the normal hot water storage operation to be performed next time and thereafter, at the initial value set in step S201.
  • the rotation speed of the compressor 4 when the heat transfer performance determination means determines that the heat transfer performance is relatively low in the normal hot water storage operation after the second time is relatively high. This corresponds to adjusting the rotation speed of the compressor 4 so as to be higher than the rotation speed of the compressor 4 when the heat transfer performance determination means determines that the rotation speed of the compressor 4 is higher.
  • the first controller 9 may change the initial value of the rotation speed of the compressor 4 set in step S201 according to the outside air temperature detected by the outside air temperature sensor 41 .
  • the first controller 9 may change the rotational speed of the compressor 4 according to the stored hot water temperature detected by the stored hot water temperature sensor 35 during the hot water storage operation. For example, the rotational speed of the compressor 4 may be increased continuously or stepwise as the stored hot water temperature rises. At that time, the first controller 9 determines that the rotational speed of the compressor 4 when the heat transfer performance is relatively low is determined to be relatively high at each time point during the hot water storage operation. The rotation speed of the compressor 4 may be adjusted so as to be higher than the rotation speed of the compressor 4 when it is determined.
  • the first controller 9 performs compression so that the difference between the heat pump outlet temperature detected by the heat pump outlet temperature sensor 38 and the stored hot water temperature detected by the stored hot water temperature sensor 35 becomes equal to the target temperature difference. It may be configured to adjust the rotational speed of the machine 4 .
  • the rotation speed of the compressor 4 increases as the target temperature difference increases. Therefore, the first controller 9 sets the target temperature difference when it is determined that the heat transfer performance is relatively low to be larger than the target temperature difference when it is determined that the heat transfer performance is relatively high. , the target temperature difference may be set.
  • the first controller 9 does not have to control the rotational speed value of the compressor 4 itself. That is, the rotation speed of the compressor 4 when the heat transfer performance is determined to be relatively low is compared with the rotation speed of the compressor 4 when the heat transfer performance is determined to be relatively high. It should be higher.
  • the heat pump outlet temperature and the hot water storage temperature need to increase the difference between
  • the rotational speed of the compressor 4 when it is determined that the heat transfer performance is low is the rotational speed when it is determined that the heat transfer performance is relatively high. Since it is higher than the rotation speed of the compressor 4, the difference between the heat pump outlet temperature and the stored hot water temperature becomes large. Therefore, even when the tank unit 45 having the water heat exchanger 46 with low heat transfer performance is connected to the heat pump device 2, it is possible to prevent the time required for the hot water storage operation from being extended. Therefore, it is possible to avoid the interruption period of the heating operation from becoming longer.
  • the rotation speed of the compressor 4 during the hot water storage operation can be automatically and appropriately adjusted according to the heat transfer performance of the water heat exchanger of the tank unit connected to the heat pump device 2. . Therefore, the heat pump device 2 can easily be combined with a plurality of types of tank units having different heat transfer performances of water heat exchangers. At the time of installation, there is no need to make special adjustments to the heat pump device 2 according to the type of tank unit.
  • a tank unit of a type in which water is circulated by a water pump 14 in a water circuit 21, which is a circulation circuit that connects the water heat exchanger 12 arranged outside the hot water storage tank 11 to the hot water storage tank 11, is hereinafter referred to as an "external heat exchange type.”
  • the tank unit 3 of FIG. 1 corresponds to the external heat exchange type.
  • the type of tank unit in which the heat medium pipe 47 of the water heat exchanger 46 is arranged inside the hot water storage tank 11 is hereinafter referred to as the "inner coil type".
  • the tank unit 45 in FIG. 3 corresponds to the inner coil type.
  • tank unit in which the heat medium pipes of the water heat exchanger are in contact with the outer wall of the hot water storage tank 11.
  • Such a tank unit is hereinafter referred to as an "outer coil type".
  • the heat medium pipe of the water heat exchanger is wound around the outer periphery of the hot water storage tank 11 in a helical or coiled manner.
  • the wall of the hot water storage tank 11 is heated by the heat of the heat medium flowing through the heat medium pipes that are in contact with the outer wall of the hot water storage tank 11 . Heat is transferred from the inner wall of the hot water storage tank 11 to the water in contact with the inner wall, thereby heating the water in the hot water storage tank 11 .
  • the heat pump device 2 of the present embodiment can also be used by being connected to an outer coil type tank unit.
  • the heat transfer performance determining means of the first controller 9 can also determine the heat transfer performance of the water heat exchanger of the outer coil type tank unit.
  • the initial value of the rotational speed of the compressor 4 in step S201 is set to a relatively low value, and when it is determined that the heat transfer performance is low, in step S211, the rotational speed of the compressor 4 is reduced to I am trying to increase it. Since the initial value of the rotation speed of the compressor 4 is set to a relatively low value in this way, it is possible to more reliably prevent the heat pump outlet temperature from becoming too high during the first hot water storage operation. Therefore, it is possible to more reliably prevent the operation of the control for protecting the product, such as the forced stop of the heat pump device 2, during the first hot water storage operation.
  • Embodiment 2 Next, the second embodiment will be described with reference to FIGS. 7 and 8. The description will focus on the differences from the above-described first embodiment, and the common description will be simplified or omitted. Moreover, the same code
  • the heat transfer performance determination means of the heat pump device 2 presents a plurality of options regarding the type of tank unit through a human interface.
  • a user of the hot water supply system 1 or a builder who constructs the hot water supply system 1 selects an option corresponding to the tank unit to be constructed from among the presented options.
  • the heat transfer performance determination means determines heat transfer performance according to the selected option.
  • the human interface may be, for example, the remote control 50 or a mobile terminal.
  • the heat transfer performance is determined by the structure of the water heat exchanger. Therefore, by allowing the user or the builder to select the type of tank unit, the heat transfer performance determining means can determine the heat transfer performance without measuring the time required for the hot water storage operation.
  • the plurality of options presented by the heat transfer performance determination means are selected from options indicating an external heat exchange type tank unit, options indicating an inner coil type tank unit, and options indicating an outer coil type tank unit. Contains at least two options.
  • the external heat exchange type corresponds to the first type.
  • the inner coil type corresponds to the second type.
  • the outer coil type corresponds to the third type.
  • the heat transfer performance of the inner coil type water heat exchanger 46 like the tank unit 45 is lower than the heat transfer performance of the external heat exchange type water heat exchanger 12 like the tank unit 3 . Further, the heat transfer performance of the water heat exchanger of the outer coil type tank unit is generally lower than that of the water heat exchanger of the inner coil type tank unit due to its structure.
  • the heat transfer performance determining means of the heat pump device 2 determines that the external heat exchange type has the highest heat transfer performance, determines that the inner coil type has the second highest heat transfer performance, and determines that the outer coil type has the highest heat transfer performance. determined to be the lowest. Thereby, the heat transfer performance determining means can accurately determine the heat transfer performance according to the type of tank unit selected by the user or the builder.
  • the first controller 9 controls the rotational speed of the compressor 4 during the hot water storage operation when the inner coil type option is selected, and the compressor 4 during the hot water storage operation when the external heat exchange type option is selected. higher than the rotation speed of In addition, the first controller 9 sets the rotational speed of the compressor 4 during the hot water storage operation when the outer coil type option is selected, to the compressor speed during the hot water storage operation when the inner coil type option is selected. Make it higher than the rotation speed of 4.
  • the heat transfer performance determination means of the heat pump device 2 may display icons corresponding to each of the multiple options on the display 53 of the human interface when presenting multiple options regarding the type of tank unit.
  • FIG. 7 is a diagram showing a display example of icons on the display 53.
  • the display 53 may be, for example, the display section of the remote controller 50 or the display section of the portable terminal. Display 53 may be a touch screen.
  • the display 53 displays an icon 54 indicating options for the external heat exchange type, an icon 55 indicating options for the inner coil type, and a message 56 "Please select a tank type.” ing.
  • the icon 54 corresponds to a pictogram showing the structure in which the water heat exchanger 12 is arranged outside the hot water storage tank 11 .
  • the icon 55 corresponds to a pictogram showing the structure in which the heat medium pipes 47 of the water heat exchanger 46 are arranged inside the hot water storage tank 11 .
  • the display 53 may further display an icon indicating options for the outer coil type using pictograms.
  • a left selection button 57 a right selection button 58 , an enter button 59 , and a selection indicator 60 are additionally displayed on the display 53 .
  • the user or builder touches the left selection button 57 or the right selection button 58 to move the position of the selected indicia 60 left or right.
  • the decision button 59 is touched while the mark 60 being selected is overlaid on the icon 54 or the icon 55, the selection is confirmed.
  • the display 53 displays the icons 54 and 55 corresponding to a plurality of options regarding the type of tank unit, so that the user or the builder can select the type of tank unit to be constructed. You can quickly understand the right options.
  • the heat transfer performance determining means of the heat pump device 2 causes the display 53 to display the icon 54 and the icon 55 corresponding to each of the plurality of options regarding the tank unit type when presenting the plurality of options regarding the tank unit type.
  • the name corresponding to each of the plurality of options may be displayed on the display 53 .
  • both the icons 54 and 55 and their corresponding names may be displayed on the display 53 .
  • FIG. 8 is a flowchart showing an example of processing executed by the hot water supply system 1 in the second embodiment.
  • hot water supply system 1 executes the process of the flowchart of FIG. 8, for example, when the stored hot water temperature detected by stored hot water temperature sensor 35 is lower than a predetermined value.
  • the hot water supply system 1 executes the process of the flowchart of FIG. 8 before starting the hot water storage operation.
  • the second controller 16 determines whether there is a history of completing the hot water storage operation in the past.
  • step S301 if there is a history of completion of the hot water storage operation in the past, it is considered that selection of the tank unit type has already been completed. In this case, the process proceeds to step S303, the hot water supply system 1 ends the process of this flowchart, and performs the hot water storage operation.
  • step S301 If it is determined in step S301 that there is no history of completion of the hot water storage operation in the past, it is considered that this is the first hot water storage operation and the tank unit type has not yet been selected. In this case, the process proceeds to step S302, and hot water supply system 1 causes display 53 to display icon 54 and icon 55 corresponding to each of a plurality of options regarding the type of tank unit.
  • step S302 the user or builder selects an icon corresponding to the type of tank unit to be constructed.
  • the heat transfer performance determining means determines that the heat transfer performance of the water heat exchanger is relatively low.
  • the process proceeds to step S305.
  • step S305 the first controller 9 sets the rotation speed of the compressor 4 during the hot water storage operation to a value obtained by adding a predetermined value to the initial value.
  • the initial value is the same as the initial value set in step S201 of FIG. After that, the hot water supply system 1 performs the hot water storage operation according to the set rotational speed of the compressor 4 .
  • the heat transfer performance determination means determines that the heat transfer performance of the water heat exchanger is relatively high. In this case, the process proceeds to step S306. In step S306, the first controller 9 maintains the rotational speed of the compressor 4 during the hot water storage operation at the initial value. After that, the hot water supply system 1 performs the hot water storage operation according to the rotational speed of the compressor 4 maintained at the initial value.
  • the rotational speed of the compressor 4 when the heat transfer performance determination means determines that the heat transfer performance is relatively low is relatively high, and the heat transfer performance determination means determines that the heat transfer performance is relatively high. This corresponds to the first controller 9 adjusting the rotational speed of the compressor 4 during the hot water storage operation so that it becomes higher than the rotational speed of the compressor 4 in this case.

Abstract

A heat pump device according to the present disclosure supplies a heat medium to a tank unit having a water heat exchanger that exchanges heat between the heat medium and water stored in a hot-water storage tank. This heat pump device comprises: a compressor that compresses a refrigerant; a heat medium heat exchanger that exchanges heat between the refrigerant and the heat medium; a heat transfer performance determination means for determining the heat transfer performance of the water heat exchanger; and a compressor control means for adjusting the rotation speed of the compressor during hot-water storage operation for increasing the temperature of water in the hot-water storage tank. The compressor control means adjusts the compressor rotation speed during the hot-water storage operation so that the compressor rotation speed when the heat transfer performance of the water heat exchanger is determined to be relatively low is higher than that when the heat transfer performance of the water heat exchanger is determined to be relatively high.

Description

ヒートポンプ装置heat pump equipment
 本開示は、ヒートポンプ装置に関する。 The present disclosure relates to a heat pump device.
 下記特許文献1に開示されたヒートポンプサイクル装置は、貯湯タンクに貯留されている水を所定温度に加熱する運転のときに、第2貯湯タンク温度Ts2に目標算出温度T1を加算して目標出湯温度Teaを算出し、利用側熱交換器の出湯温度Teが目標出湯温度Teaに等しくなるように圧縮機の回転速度を制御する。 The heat pump cycle device disclosed in Patent Document 1 below adds a target calculated temperature T1 to a second hot water storage tank temperature Ts2 to obtain a target hot water outlet temperature when the water stored in the hot water storage tank is heated to a predetermined temperature. Tea is calculated, and the rotational speed of the compressor is controlled so that the discharged hot water temperature Te of the heat exchanger on the user side becomes equal to the target discharged hot water temperature Tea.
日本特開2013-155991号公報Japanese Patent Application Laid-Open No. 2013-155991
 ヒートポンプ装置と組み合わせて使用されるタンクユニットは、熱媒体と、貯湯タンクに貯留された水との間で熱を交換する水熱交換器を備える。水熱交換器の構造が異なる複数のタイプのタンクユニットが存在する。水熱交換器の構造が異なるタンクユニットがヒートポンプ装置と組み合わされた場合、貯湯運転を適切に実施できない可能性がある。 The tank unit used in combination with the heat pump device is equipped with a water heat exchanger that exchanges heat between the heat medium and the water stored in the hot water storage tank. There are several types of tank units that differ in the construction of the water heat exchanger. When a tank unit having a water heat exchanger with a different structure is combined with a heat pump device, there is a possibility that the hot water storage operation cannot be performed appropriately.
 本開示は、上述のような課題を解決するためになされたもので、水熱交換器の構造が異なる複数のタイプのタンクユニットとの組み合わせを可能とするヒートポンプ装置を提供することを目的とする。 The present disclosure has been made to solve the problems described above, and an object of the present disclosure is to provide a heat pump device that can be combined with a plurality of types of tank units having different structures of water heat exchangers. .
 本開示に係るヒートポンプ装置は、熱媒体と、貯湯タンクに貯留された水との間で熱を交換する水熱交換器を有するタンクユニットに対して熱媒体を供給するヒートポンプ装置であって、冷媒を圧縮する圧縮機と、冷媒と熱媒体との間で熱を交換する熱媒体熱交換器と、水熱交換器の伝熱性能を判定する伝熱性能判定手段と、貯湯タンク内の水の温度を上昇させる運転である貯湯運転のときの圧縮機の回転速度を調整する圧縮機制御手段と、を備え、圧縮機制御手段は、水熱交換器の伝熱性能が比較的低いと判定された場合の圧縮機の回転速度が、水熱交換器の伝熱性能が比較的高いと判定された場合の圧縮機の回転速度よりも高くなるように、貯湯運転のときの圧縮機の回転速度を調整するものである。 A heat pump device according to the present disclosure is a heat pump device that supplies a heat medium to a tank unit having a water heat exchanger that exchanges heat between a heat medium and water stored in a hot water storage tank, a compressor that compresses the heat medium heat exchanger that exchanges heat between the refrigerant and the heat medium; heat transfer performance determination means that determines the heat transfer performance of the water heat exchanger; Compressor control means for adjusting the rotation speed of the compressor during the hot water storage operation, which is an operation for raising the temperature, and the compressor control means is determined to have a relatively low heat transfer performance of the water heat exchanger. The rotational speed of the compressor during hot water storage operation is set so that the rotational speed of the compressor is higher than the rotational speed of the compressor when it is determined that the heat transfer performance of the water heat exchanger is relatively high. is adjusted.
 本開示によれば、水熱交換器の構造が異なる複数のタイプのタンクユニットとの組み合わせを可能とするヒートポンプ装置を提供することが可能となる。 According to the present disclosure, it is possible to provide a heat pump device that can be combined with a plurality of types of tank units having different water heat exchanger structures.
実施の形態1によるヒートポンプ装置と、それを備えた給湯システムを示す図である。1 is a diagram showing a heat pump device according to Embodiment 1 and a hot water supply system including the same; FIG. 実施の形態1による給湯システムの機能ブロック図である。1 is a functional block diagram of a hot water supply system according to Embodiment 1; FIG. 実施の形態1によるヒートポンプ装置と、それを備えた給湯システムを示す図である。1 is a diagram showing a heat pump device according to Embodiment 1 and a hot water supply system including the same; FIG. 貯湯運転モードを選択するときに給湯システムが実行する処理の例を示すフローチャートである。4 is a flowchart showing an example of processing executed by the hot water supply system when selecting a hot water storage operation mode; 初回貯湯運転のときに給湯システムが実行する処理の例を示すフローチャートである。4 is a flow chart showing an example of processing executed by the hot water supply system during initial hot water storage operation. 連続的に上昇する貯湯温度と、そのときのヒートポンプ装置の加熱能力との関係を示す図である。FIG. 4 is a diagram showing the relationship between continuously rising stored hot water temperature and the heating capacity of the heat pump device at that time. ディスプレイによるアイコンの表示例を示す図である。FIG. 4 is a diagram showing an example of how icons are displayed on a display; 実施の形態2において給湯システムが実行する処理の例を示すフローチャートFlowchart showing an example of processing executed by the hot water supply system in Embodiment 2
 以下、図面を参照して実施の形態について説明する。各図において共通または対応する要素には、同一の符号を付して、説明を簡略化または省略する。以下の説明において、「水」または「湯」との記載は、原則として、液体の水を意味し、冷水から熱湯までもが含まれうるものとする。 Embodiments will be described below with reference to the drawings. Elements that are common or correspond to each figure are denoted by the same reference numerals, and their explanations are simplified or omitted. In the following description, "water" or "hot water" basically means liquid water, and can include cold water to hot water.
実施の形態1.
 図1は、実施の形態1によるヒートポンプ装置2と、それを備えた給湯システム1を示す図である。ヒートポンプ装置2は、タンクユニット3とは別体になっている。ヒートポンプ装置2は、タンクユニット3に対して、加熱された熱媒体を供給する。ヒートポンプ装置2は、室外に配置される。タンクユニット3は、室外または室内に配置される。ヒートポンプ装置2が、タンクユニット3と組み合わされることで、給湯システム1が構成される。ヒートポンプ装置2と同じメーカーによって製造されたタンクユニット3に、ヒートポンプ装置2が接続されて給湯システム1が構成される場合だけではなく、ヒートポンプ装置2とは異なるメーカーによって製造されたタンクユニット3に、ヒートポンプ装置2が接続されて給湯システム1が構成される場合もありうる。
Embodiment 1.
FIG. 1 shows a heat pump device 2 according to Embodiment 1 and a hot water supply system 1 including the same. The heat pump device 2 is separate from the tank unit 3 . The heat pump device 2 supplies a heated heat medium to the tank unit 3 . The heat pump device 2 is arranged outdoors. The tank unit 3 is arranged outdoors or indoors. The heat pump device 2 is combined with the tank unit 3 to configure the hot water supply system 1 . Not only in the case where the hot water supply system 1 is configured by connecting the heat pump device 2 to the tank unit 3 manufactured by the same manufacturer as the heat pump device 2, but also in the tank unit 3 manufactured by a manufacturer different from the heat pump device 2, Hot water supply system 1 may be configured by connecting heat pump device 2 .
 ヒートポンプ装置2の筐体43の内部には、冷媒を圧縮する圧縮機4と、熱媒体熱交換器5と、膨張弁6と、蒸発器7と、第一コントローラ9と、送風機10とが備えられている。冷媒として使用される物質は、特に限定されないが、例えばCO、HFC、HC、HFO等を使用可能である。熱媒体熱交換器5は、一次流路5a及び二次流路5bを備える。一次流路5aを通る冷媒と、二次流路5bを通る熱媒体との間で熱が交換される。熱媒体として使用される液体は、水でもよいし、水以外のブラインでもよい。圧縮機4、一次流路5a、膨張弁6、及び蒸発器7が冷媒管を介して接続されることにより、冷媒回路が形成されている。 A housing 43 of the heat pump device 2 includes a compressor 4 for compressing refrigerant, a heat medium heat exchanger 5, an expansion valve 6, an evaporator 7, a first controller 9, and a blower 10. It is Substances used as refrigerants are not particularly limited, but CO 2 , HFCs, HCs, HFOs, etc. can be used, for example. The heat medium heat exchanger 5 includes a primary flow path 5a and a secondary flow path 5b. Heat is exchanged between the refrigerant passing through the primary flow path 5a and the heat medium passing through the secondary flow path 5b. The liquid used as the heat medium may be water or brine other than water. A refrigerant circuit is formed by connecting the compressor 4, the primary flow path 5a, the expansion valve 6, and the evaporator 7 via refrigerant pipes.
 膨張弁6は、高圧冷媒を減圧及び膨張させる減圧装置に相当する。蒸発器7は、ヒートポンプ装置2の外部から取り込まれる室外の空気と、冷媒との間で熱を交換させることで、冷媒を蒸発させる。送風機10は、外気が蒸発器7を通過して流れるように、送風する。 The expansion valve 6 corresponds to a decompression device that decompresses and expands the high-pressure refrigerant. The evaporator 7 evaporates the refrigerant by exchanging heat between the outdoor air taken in from the outside of the heat pump device 2 and the refrigerant. The blower 10 blows outside air so that it flows past the evaporator 7 .
 タンクユニット3の筐体44の内部には、貯湯タンク11と、水熱交換器12と、熱媒体ポンプ13と、水ポンプ14と、流路切替弁15とが備えられている。 A hot water storage tank 11 , a water heat exchanger 12 , a heat medium pump 13 , a water pump 14 , and a flow path switching valve 15 are provided inside the housing 44 of the tank unit 3 .
 貯湯タンク11は、湯を貯留するための容器である。貯湯タンク11は、図示しない断熱材により覆われている。流出口17が貯湯タンク11の下部に設けられている。流入口18は、流出口17よりも高い位置において貯湯タンク11に設けられている。貯湯タンク11は、例えば、円筒状の外形を有する。 The hot water storage tank 11 is a container for storing hot water. The hot water storage tank 11 is covered with a heat insulating material (not shown). An outflow port 17 is provided at the bottom of the hot water storage tank 11 . The inflow port 18 is provided in the hot water storage tank 11 at a position higher than the outflow port 17 . The hot water tank 11 has, for example, a cylindrical outer shape.
 水熱交換器12は、一次流路12a及び二次流路12bを備える。一次流路12aを通る熱媒体と、二次流路12bを通る水との間で熱が交換される。水送り通路19は、流出口17を二次流路12bの入口につなぐ。水戻り通路20は、二次流路12bの出口を流入口18につなぐ。水戻り通路20の途中に水ポンプ14が設けられている。水送り通路19と、二次流路12bと、水戻り通路20とにより水回路21が形成される。水ポンプ14が作動すると、水回路21内の水が流れる。 The water heat exchanger 12 includes a primary flow path 12a and a secondary flow path 12b. Heat is exchanged between the heat medium passing through the primary flow path 12a and the water passing through the secondary flow path 12b. A water feed passage 19 connects the outlet 17 to the inlet of the secondary flow path 12b. A water return passage 20 connects the outlet of the secondary flow path 12 b to the inlet 18 . A water pump 14 is provided in the middle of the water return passage 20. - 特許庁A water circuit 21 is formed by the water feed passage 19 , the secondary flow passage 12 b and the water return passage 20 . When the water pump 14 is activated, water in the water circuit 21 flows.
 給水管22が貯湯タンク11の下部に接続されている。給水管22は、タンクユニット3の外部へ延びている。例えば上水道のような水源から供給される水が給水管22を通って貯湯タンク11に流入する。給湯管23が貯湯タンク11の上部に接続されている。給湯管23は、タンクユニット3の外部へ延びている。貯湯タンク11に貯留された湯は、給湯管23を通って、例えばシャワー、蛇口、浴槽のような給湯端に供給される。貯湯タンク11から給湯管23を通って湯が流出すると、同量の水が給水管22から貯湯タンク11に流入する。その結果、貯湯タンク11は、満水状態に維持される。 A water supply pipe 22 is connected to the bottom of the hot water storage tank 11 . The water supply pipe 22 extends to the outside of the tank unit 3 . Water supplied from a water source such as tap water flows into the hot water storage tank 11 through the water supply pipe 22 . A hot water supply pipe 23 is connected to the upper portion of the hot water storage tank 11 . Hot water supply pipe 23 extends to the outside of tank unit 3 . Hot water stored in the hot water storage tank 11 is supplied through a hot water supply pipe 23 to a hot water supply end such as a shower, a faucet, or a bathtub. When hot water flows out from the hot water storage tank 11 through the hot water supply pipe 23, the same amount of water flows into the hot water storage tank 11 from the water supply pipe 22. - 特許庁As a result, the hot water storage tank 11 is kept full.
 図示の例のように、部屋を暖めるための暖房装置24が、タンクユニット3に対して接続されていてもよい。以下の説明では、暖房装置24に熱媒体を循環させる運転を暖房運転と称する。暖房装置24は、部屋に設置されている。暖房装置24は、例えば、床下に設置される床暖房パネル、室内壁面に設置されるラジエータ、パネルヒーター、及び、ファンコンベクターのうちの少なくとも一つを備えていてもよい。 A heating device 24 for warming the room may be connected to the tank unit 3 as in the illustrated example. In the following description, the operation in which the heat medium is circulated through the heating device 24 is referred to as heating operation. A heating device 24 is installed in the room. The heating device 24 may include, for example, at least one of a floor heating panel installed under the floor, a radiator installed on the indoor wall surface, a panel heater, and a fan convector.
 熱媒体ポンプ13の吸入口よりも上流側の通路に分岐部25が形成されている。通路26は、水熱交換器12の一次流路12aの出口を分岐部25につなぐ。流路切替弁15は、熱媒体が流れる回路を切り替えるための弁である。流路切替弁15は、流入口であるaポートと、流出口であるcポートと、流出口であるdポートとを有する。 A branch portion 25 is formed in the passage on the upstream side of the suction port of the heat medium pump 13 . The passage 26 connects the outlet of the primary flow path 12 a of the water heat exchanger 12 to the branch portion 25 . The channel switching valve 15 is a valve for switching the circuit through which the heat medium flows. The channel switching valve 15 has an a port as an inflow port, a c port as an outflow port, and a d port as an outflow port.
 通路27及び通路28は、ヒートポンプ装置2を、タンクユニット3に対して接続している。通路27は、熱媒体ポンプ13の吐出口を、熱媒体熱交換器5の二次流路5bの入口につなぐ。通路28は、二次流路5bの出口を流路切替弁15のaポートにつなぐ。通路27及び通路28は、ヒートポンプ装置2の筐体43の外部及びタンクユニット3の筐体44の外部を通っている。ヒートポンプ装置2の設置場所は、タンクユニット3の設置場所から離れている場合もある。通路29は、流路切替弁15のcポートを水熱交換器12の一次流路12aの入口につなぐ。 The passages 27 and 28 connect the heat pump device 2 to the tank unit 3 . The passage 27 connects the outlet of the heat medium pump 13 to the inlet of the secondary flow path 5 b of the heat medium heat exchanger 5 . A passage 28 connects the outlet of the secondary flow path 5 b to the a port of the flow path switching valve 15 . The passages 27 and 28 pass through the outside of the housing 43 of the heat pump device 2 and the outside of the housing 44 of the tank unit 3 . The installation location of the heat pump device 2 may be distant from the installation location of the tank unit 3 . The passage 29 connects the c port of the flow switching valve 15 to the inlet of the primary flow passage 12 a of the water heat exchanger 12 .
 通路30及び通路31は、暖房装置24を、タンクユニット3に対して接続している。通路30は、流路切替弁15のdポートを暖房装置24の熱媒体の入口につなぐ。通路31は、暖房装置24の熱媒体の出口を分岐部25につなぐ。 The passages 30 and 31 connect the heating device 24 to the tank unit 3 . The passage 30 connects the d port of the flow switching valve 15 to the heat medium inlet of the heating device 24 . The passage 31 connects the heat medium outlet of the heating device 24 to the branch portion 25 .
 吐出温度センサ32は、圧縮機4と熱媒体熱交換器5との間の冷媒管に配置されている。吐出温度センサ32は、圧縮機4から吐出される冷媒の温度である圧縮機吐出温度を検知することができる。 The discharge temperature sensor 32 is arranged in the refrigerant pipe between the compressor 4 and the heat medium heat exchanger 5 . The discharge temperature sensor 32 can detect the compressor discharge temperature, which is the temperature of the refrigerant discharged from the compressor 4 .
 貯湯タンク11には、貯湯温度センサ35が設けられている。貯湯温度センサ35は、貯湯タンク11内の水温を検知する。貯湯温度センサ35が配置された位置は、流出口17よりも高い位置であって、流入口18よりも低い位置である。 A hot water storage temperature sensor 35 is provided in the hot water storage tank 11 . A hot water temperature sensor 35 detects the water temperature in the hot water tank 11 . The position where the stored hot water temperature sensor 35 is arranged is a position higher than the outflow port 17 and lower than the inflow port 18 .
 以下の説明では、熱媒体熱交換器5の二次流路5bに流入する熱媒体の温度を「ヒートポンプ入口温度」と称し、二次流路5bから流出する熱媒体の温度を「ヒートポンプ出口温度」と称する。 In the following description, the temperature of the heat medium flowing into the secondary flow path 5b of the heat medium heat exchanger 5 is referred to as the "heat pump inlet temperature", and the temperature of the heat medium flowing out of the secondary flow path 5b is referred to as the "heat pump outlet temperature. ”.
 ヒートポンプ装置2は、ヒートポンプ入口温度センサ37と、ヒートポンプ出口温度センサ38と、外気温度センサ41とをさらに備える。通路27に設置されたヒートポンプ入口温度センサ37は、ヒートポンプ入口温度を検知する。通路28に設置されたヒートポンプ出口温度センサ38は、ヒートポンプ出口温度を検知する。外気温度センサ41は、屋外の空気の温度である外気温度を検知する。 The heat pump device 2 further includes a heat pump inlet temperature sensor 37 , a heat pump outlet temperature sensor 38 and an outside air temperature sensor 41 . A heat pump inlet temperature sensor 37 installed in the passage 27 detects the heat pump inlet temperature. A heat pump outlet temperature sensor 38 installed in the passageway 28 senses the heat pump outlet temperature. The outside air temperature sensor 41 detects the outside air temperature, which is the temperature of the outdoor air.
 本開示において、貯湯タンク11の流出口17から水送り通路19へ流出する水の温度を「タンク流出温度」と称する。タンク流出温度は、水熱交換器12の二次流路12bに流入する水の温度に相当する。水送り通路19に設置されたタンク流出温度センサ39は、タンク流出温度を検知する。 In the present disclosure, the temperature of water flowing out from the outlet 17 of the hot water storage tank 11 to the water feed passage 19 is referred to as "tank outflow temperature". The tank outflow temperature corresponds to the temperature of the water flowing into the secondary flow path 12 b of the water heat exchanger 12 . A tank outflow temperature sensor 39 installed in the water feed passage 19 detects the tank outflow temperature.
 本開示において、水戻り通路20を通って流入口18から貯湯タンク11に流入する水の温度を「タンク流入温度」と称する。タンク流入温度は、水熱交換器12の二次流路12bから水戻り通路20へ流出する水の温度に相当する。水戻り通路20に設置されたタンク流入温度センサ40は、タンク流入温度を検知する。 In the present disclosure, the temperature of water flowing into the hot water storage tank 11 from the inlet 18 through the water return passage 20 is referred to as "tank inflow temperature". The tank inflow temperature corresponds to the temperature of water flowing out from the secondary flow path 12 b of the water heat exchanger 12 to the water return path 20 . A tank inflow temperature sensor 40 installed in the water return passage 20 detects the tank inflow temperature.
 本実施の形態において、貯湯タンク11は、最上部42を有する。最上部42は、貯湯タンク11のうちで、流入口18よりも高い部分に相当する。給湯管23の入口は、最上部42内に位置する。給湯管23は、最上部42内の湯を取り出すように構成されている。最上部42内の湯が給湯管23を通って外部へ供給される。 In this embodiment, the hot water storage tank 11 has an uppermost portion 42 . The uppermost portion 42 corresponds to a portion of the hot water storage tank 11 higher than the inlet 18 . The inlet of the hot water supply pipe 23 is located within the uppermost portion 42 . The hot water supply pipe 23 is configured to take out the hot water in the uppermost portion 42 . Hot water in the uppermost portion 42 is supplied to the outside through the hot water supply pipe 23 .
 図示の例において、タンクユニット3の筐体44の内部に第二コントローラ16が配置されている。変形例として、筐体44の外部に第二コントローラ16が配置されていてもよいし、ヒートポンプ装置2と一体に第二コントローラ16が設けられていてもよい。 In the illustrated example, the second controller 16 is arranged inside the housing 44 of the tank unit 3 . As a modification, the second controller 16 may be arranged outside the housing 44 , or the second controller 16 may be provided integrally with the heat pump device 2 .
 第一コントローラ9と第二コントローラ16とは、有線または無線により、双方向にデータ通信可能に接続されている。第一コントローラ9及び第二コントローラ16は、給湯システム1の動作を制御する制御回路に相当する。第一コントローラ9及び第二コントローラ16の少なくとも一方は、時刻を管理するタイマー機能を有していてもよい。第一コントローラ9及び第二コントローラ16の少なくとも一方は、年月日を管理するカレンダー機能を有していてもよい。 The first controller 9 and the second controller 16 are connected by wire or wirelessly so as to be capable of bidirectional data communication. The first controller 9 and the second controller 16 correspond to control circuits that control the operation of the hot water supply system 1 . At least one of the first controller 9 and the second controller 16 may have a timer function for managing time. At least one of the first controller 9 and the second controller 16 may have a calendar function for managing dates.
 本実施の形態では、第一コントローラ9と第二コントローラ16とが連携して、給湯システム1の動作を制御する。本開示では、図示の例のように複数のコントローラが連携して給湯システム1の動作を制御する構成に限定されるものではなく、単一のコントローラにより給湯システム1の動作が制御される構成にしてもよい。 In this embodiment, the first controller 9 and the second controller 16 cooperate to control the operation of the hot water supply system 1 . The present disclosure is not limited to a configuration in which a plurality of controllers work together to control the operation of the hot water supply system 1 as in the illustrated example, but a configuration in which the operation of the hot water supply system 1 is controlled by a single controller. may
 本実施の形態の給湯システム1は、リモコン50を備える。リモコン50と第二コントローラ16とは、有線または無線により、双方向にデータ通信可能に接続されている。リモコン50は、部屋に設置されてもよい。リモコン50は、運転動作指令、設定値の変更、その他に関する使用者の操作を受け付ける機能を有する。リモコン50は、ヒューマンインターフェースに相当する。図示を省略するが、リモコン50には、給湯システム1の状態に関する情報を表示するディスプレイ、使用者が操作するスイッチ等の操作部、スピーカ、マイク等が搭載されていてもよい。給湯システム1は、異なる場所に設置される複数台のリモコン50を備えてもよい。 The hot water supply system 1 of the present embodiment includes a remote controller 50 . The remote control 50 and the second controller 16 are connected by wire or wirelessly so as to be capable of bidirectional data communication. The remote control 50 may be installed in the room. The remote controller 50 has a function of receiving user's operations related to operation commands, setting value changes, and others. The remote control 50 corresponds to a human interface. Although not shown, the remote control 50 may include a display for displaying information about the state of the hot water supply system 1, an operation unit such as a switch operated by the user, a speaker, a microphone, and the like. Hot water supply system 1 may include a plurality of remote controllers 50 installed at different locations.
 リモコン50に代えて、またはリモコン50に加えて、例えばスマートフォンまたはタブレット端末のような携帯端末を給湯システム1のヒューマンインターフェースとして使用できるように構成されていてもよい。以下の説明では、ヒューマンインターフェースの代表としてリモコン50が用いられる例を中心に説明するが、本開示において、リモコン50を用いた処理は、いずれも、上記携帯端末を用いた処理に置換可能である。 Instead of or in addition to the remote control 50, a mobile terminal such as a smart phone or a tablet terminal may be configured to be used as a human interface of the hot water supply system 1. In the following description, an example in which the remote control 50 is used as a representative of the human interface will be mainly described, but in the present disclosure, any processing using the remote control 50 can be replaced with processing using the mobile terminal. .
 図2は、実施の形態1による給湯システム1の機能ブロック図である。図2に示すように、圧縮機4、膨張弁6、送風機10、吐出温度センサ32、ヒートポンプ入口温度センサ37、ヒートポンプ出口温度センサ38、及び、外気温度センサ41のそれぞれは、第一コントローラ9に対して電気的に接続されている。熱媒体ポンプ13、水ポンプ14、流路切替弁15、貯湯温度センサ35、タンク流出温度センサ39、及び、タンク流入温度センサ40のそれぞれは、第二コントローラ16に対して電気的に接続されている。 FIG. 2 is a functional block diagram of hot water supply system 1 according to Embodiment 1. As shown in FIG. As shown in FIG. 2, the compressor 4, the expansion valve 6, the blower 10, the discharge temperature sensor 32, the heat pump inlet temperature sensor 37, the heat pump outlet temperature sensor 38, and the outside air temperature sensor 41 are each connected to the first controller 9. are electrically connected to each other. Each of the heat medium pump 13, the water pump 14, the channel switching valve 15, the stored hot water temperature sensor 35, the tank outflow temperature sensor 39, and the tank inflow temperature sensor 40 is electrically connected to the second controller 16. there is
 第一コントローラ9の各機能は、処理回路により実現されてもよい。第一コントローラ9の処理回路は、少なくとも1つのプロセッサ9aと少なくとも1つのメモリ9bとを備えてもよい。少なくとも1つのプロセッサ9aは、少なくとも1つのメモリ9bに記憶されたプログラムを読み出して実行することにより、第一コントローラ9のそれぞれの各機能を実現してもよい。第一コントローラ9の処理回路は、少なくとも1つの専用のハードウェアを備えてもよい。 Each function of the first controller 9 may be realized by a processing circuit. The processing circuitry of the first controller 9 may comprise at least one processor 9a and at least one memory 9b. The at least one processor 9a may realize each function of the first controller 9 by reading and executing a program stored in at least one memory 9b. The processing circuitry of the first controller 9 may comprise at least one piece of dedicated hardware.
 第二コントローラ16の各機能は、処理回路により実現されてもよい。第二コントローラ16の処理回路は、少なくとも1つのプロセッサ16aと少なくとも1つのメモリ16bとを備えてもよい。少なくとも1つのプロセッサ16aは、少なくとも1つのメモリ16bに記憶されたプログラムを読み出して実行することにより、第二コントローラ16のそれぞれの各機能を実現してもよい。第二コントローラ16の処理回路は、少なくとも1つの専用のハードウェアを備えてもよい。 Each function of the second controller 16 may be realized by a processing circuit. The processing circuitry of the second controller 16 may comprise at least one processor 16a and at least one memory 16b. The at least one processor 16a may implement each function of the second controller 16 by reading and executing a program stored in the at least one memory 16b. The processing circuitry of the second controller 16 may comprise at least one piece of dedicated hardware.
 第一コントローラ9は、例えばインバータ制御により、圧縮機4の回転速度が可変となるように制御することができる。第一コントローラ9は、圧縮機4の回転速度を調整する圧縮機制御手段に相当する。 The first controller 9 can control the rotational speed of the compressor 4 to be variable, for example, by inverter control. The first controller 9 corresponds to compressor control means for adjusting the rotational speed of the compressor 4 .
 第二コントローラ16は、例えばインバータ制御により、熱媒体ポンプ13の回転速度が可変となるように制御することができてもよい。第二コントローラ16は、例えばインバータ制御により、水ポンプ14の回転速度が可変となるように制御することができてもよい。 The second controller 16 may be able to control the rotation speed of the heat medium pump 13 to be variable, for example, by inverter control. The second controller 16 may be capable of controlling the rotation speed of the water pump 14 to be variable, for example, by inverter control.
 給湯システム1は、貯湯運転を実行できる。貯湯運転は、貯湯タンク11内の水の温度を上昇させるための運転である。第一コントローラ9及び第二コントローラ16は、貯湯運転を制御する。第一コントローラ9及び第二コントローラ16は、貯湯運転のときの動作を以下のように制御する。圧縮機4、熱媒体ポンプ13、及び水ポンプ14が駆動される。流路切替弁15では、aポートがcポートに連通し、dポートが閉じる。圧縮機4により圧縮されることで高温高圧となった冷媒が熱媒体熱交換器5の一次流路5aに流入する。一次流路5aを流れる冷媒は、二次流路5bを流れる熱媒体により冷却される。一次流路5aを通過した冷媒は、膨張弁6により減圧されることで低温低圧の冷媒となる。この低温低圧冷媒は、蒸発器7に流入する。蒸発器7では、送風機10によって導かれた外気と、低温低圧冷媒との間で熱を交換する。蒸発器7にて外気により加熱されることで冷媒が蒸発する。蒸発した冷媒が圧縮機4に吸入される。このようにして、冷凍サイクルが形成される。 The hot water supply system 1 can execute hot water storage operation. The hot water storage operation is an operation for increasing the temperature of the water in the hot water storage tank 11 . The first controller 9 and the second controller 16 control the hot water storage operation. The first controller 9 and the second controller 16 control operations during the hot water storage operation as follows. Compressor 4, heat medium pump 13, and water pump 14 are driven. In the channel switching valve 15, port a communicates with port c, and port d is closed. The high-temperature and high-pressure refrigerant compressed by the compressor 4 flows into the primary flow path 5 a of the heat medium heat exchanger 5 . The coolant flowing through the primary flow path 5a is cooled by the heat medium flowing through the secondary flow path 5b. The refrigerant that has passed through the primary flow path 5a is decompressed by the expansion valve 6 to become a low-temperature, low-pressure refrigerant. This low-temperature, low-pressure refrigerant flows into the evaporator 7 . In the evaporator 7, heat is exchanged between the outside air guided by the blower 10 and the low-temperature, low-pressure refrigerant. The refrigerant is evaporated by being heated by the outside air in the evaporator 7 . The evaporated refrigerant is sucked into the compressor 4 . Thus, a refrigeration cycle is formed.
 熱媒体熱交換器5にて冷媒により加熱された熱媒体は、通路28、流路切替弁15、及び通路29を通って、水熱交換器12の一次流路12aに流入する。一次流路12aを通過した熱媒体は、通路26、分岐部25、熱媒体ポンプ13、及び通路27を通って、熱媒体熱交換器5に戻る。このようにして熱媒体が熱媒体熱交換器5及び水熱交換器12を通って循環する回路を以下「熱媒体回路」と称する。 The heat medium heated by the refrigerant in the heat medium heat exchanger 5 flows through the passage 28, the flow path switching valve 15, and the passage 29 into the primary flow path 12a of the water heat exchanger 12. The heat medium that has passed through the primary flow path 12 a returns to the heat medium heat exchanger 5 through the passage 26 , the branch portion 25 , the heat medium pump 13 and the passage 27 . A circuit in which the heat medium circulates through the heat medium heat exchanger 5 and the water heat exchanger 12 in this manner is hereinafter referred to as a "heat medium circuit".
 貯湯タンク11の下部にある水は、流出口17及び水送り通路19を通って、水熱交換器12の二次流路12bに流入する。水熱交換器12では、一次流路12aを流れる熱媒体により、二次流路12bを流れる水が加熱される。その加熱された水は、水戻り通路20及び流入口18を通って、貯湯タンク11の上部に流入する。 The water in the lower part of the hot water storage tank 11 passes through the outlet 17 and the water feed passage 19 and flows into the secondary flow path 12b of the water heat exchanger 12. In the water heat exchanger 12, the water flowing through the secondary flow path 12b is heated by the heat medium flowing through the primary flow path 12a. The heated water flows into the upper part of the hot water storage tank 11 through the water return passage 20 and the inlet 18 .
 第二コントローラ16は、水回路21を流れる水の流量が比較的高くなるように、水ポンプ14の回転速度を比較的高くする。その結果、貯湯タンク11内では、水戻り通路20が接続される流入口18の高さから、水送り通路19が接続される流出口17の高さの範囲にわたって、温度境界層が形成されずに、ほぼ均一な温度に水が加熱される。また、水戻り通路20及び流入口18を通って貯湯タンク11内に流入した湯は、浮力によって、流入口18よりも高い位置へ上昇する。その結果、貯湯タンク11内の水全体が、ほぼ均一な温度に加熱される。ただし、水熱交換器12で加熱された水の温度よりも高温の湯が貯湯タンク11の最上部42に残っている場合には、その高温の湯が最上部42に残り続ける場合もある。 The second controller 16 makes the rotation speed of the water pump 14 relatively high so that the flow rate of water flowing through the water circuit 21 is relatively high. As a result, in the hot water storage tank 11, no temperature boundary layer is formed over the range from the height of the inlet 18 to which the water return passage 20 is connected to the height of the outlet 17 to which the water feed passage 19 is connected. , the water is heated to a substantially uniform temperature. Also, the hot water that has flowed into the hot water storage tank 11 through the water return passage 20 and the inlet 18 rises to a position higher than the inlet 18 due to buoyancy. As a result, the entire water in the hot water storage tank 11 is heated to a substantially uniform temperature. However, when hot water with a temperature higher than that of the water heated by the water heat exchanger 12 remains in the uppermost portion 42 of the hot water storage tank 11 , the hot water may continue to remain in the uppermost portion 42 .
 貯湯運転の開始から貯湯運転の完了にかけて、熱媒体回路を流れる熱媒体の温度は、連続的に上昇していく。貯湯運転の開始から貯湯運転の完了にかけて、水回路21を流れる水の温度は、連続的に上昇していく。 From the start of the hot water storage operation to the completion of the hot water storage operation, the temperature of the heat medium flowing through the heat medium circuit rises continuously. From the start of the hot water storage operation to the completion of the hot water storage operation, the temperature of the water flowing through the water circuit 21 rises continuously.
 第一コントローラ9は、吐出温度センサ32で検知される圧縮機吐出温度が所定の温度に等しくなるように、膨張弁6の開度を調整してもよい。膨張弁6の開度が大きいほど、冷媒流量が増加し、圧縮機吐出温度が低下する。 The first controller 9 may adjust the degree of opening of the expansion valve 6 so that the compressor discharge temperature detected by the discharge temperature sensor 32 becomes equal to a predetermined temperature. As the opening degree of the expansion valve 6 increases, the refrigerant flow rate increases and the compressor discharge temperature decreases.
 第二コントローラ16は、熱媒体回路を流れる熱媒体の流量が所定値に等しくなるような回転速度に、熱媒体ポンプ13の回転速度を固定してもよい。あるいは、第二コントローラ16は、ヒートポンプ出口温度センサ38で検知されるヒートポンプ出口温度と、ヒートポンプ入口温度センサ37で検知されるヒートポンプ入口温度との差が、目標温度差に等しくなるように、熱媒体ポンプ13の回転速度を調整してもよい。 The second controller 16 may fix the rotation speed of the heat medium pump 13 at a rotation speed that makes the flow rate of the heat medium flowing through the heat medium circuit equal to a predetermined value. Alternatively, the second controller 16 controls the heat medium so that the difference between the heat pump outlet temperature detected by the heat pump outlet temperature sensor 38 and the heat pump inlet temperature detected by the heat pump inlet temperature sensor 37 is equal to the target temperature difference. The rotation speed of the pump 13 may be adjusted.
 第二コントローラ16は、水回路21を流れる水の流量が所定値に等しくなるような回転速度に、水ポンプ14の回転速度を固定してもよい。あるいは、第二コントローラ16は、タンク流入温度センサ40で検知されるタンク流入温度と、タンク流出温度センサ39で検知されるタンク流出温度との差が、目標温度差に等しくなるように、水ポンプ14の回転速度を調整してもよい。 The second controller 16 may fix the rotation speed of the water pump 14 at a rotation speed that makes the flow rate of water flowing through the water circuit 21 equal to a predetermined value. Alternatively, the second controller 16 controls the water pump so that the difference between the tank inflow temperature detected by the tank inflow temperature sensor 40 and the tank outflow temperature detected by the tank outflow temperature sensor 39 is equal to the target temperature difference. 14 rotation speed may be adjusted.
 水熱交換器12として、例えば、プレート式熱交換器が用いられてもよい。プレート式熱交換器は、伝熱を促進する構造を有する。このため、プレート式熱交換器を水熱交換器12として用いた場合には、一次流路12aを流れる熱媒体の温度と、二次流路12bを流れる水の温度との差をより小さくすることが可能となり、より効率の高い貯湯運転を実施可能となる。 For example, a plate heat exchanger may be used as the water heat exchanger 12. A plate heat exchanger has a structure that facilitates heat transfer. Therefore, when a plate heat exchanger is used as the water heat exchanger 12, the difference between the temperature of the heat medium flowing through the primary flow path 12a and the temperature of the water flowing through the secondary flow path 12b is made smaller. This makes it possible to carry out more efficient hot water storage operation.
 次に、給湯システム1の暖房運転について説明する。第一コントローラ9及び第二コントローラ16は、暖房運転を制御する。第一コントローラ9及び第二コントローラ16は、暖房運転のときの動作を以下のように制御する。圧縮機4及び熱媒体ポンプ13が駆動される。水ポンプ14は、停止される。流路切替弁15では、aポートがdポートに連通し、cポートが閉じる。ヒートポンプ装置2の動作は、貯湯運転のときと、同一または類似である。熱媒体熱交換器5にて冷媒により加熱された熱媒体は、通路28、流路切替弁15、及び通路30を通って、暖房装置24に流入する。暖房装置24は、熱媒体の熱を用いて部屋を加熱する。暖房装置24を通過する間に熱媒体の温度が低下する。温度低下した熱媒体は、通路31、分岐部25、熱媒体ポンプ13、及び通路27を通って、熱媒体熱交換器5に戻る。このようにして熱媒体が熱媒体熱交換器5及び暖房装置24を通って循環する回路を以下「暖房回路」と称する。 Next, the heating operation of the hot water supply system 1 will be explained. The first controller 9 and the second controller 16 control heating operation. The first controller 9 and the second controller 16 control operations during heating operation as follows. Compressor 4 and heat medium pump 13 are driven. Water pump 14 is stopped. In the channel switching valve 15, port a communicates with port d, and port c is closed. The operation of the heat pump device 2 is the same as or similar to that during the hot water storage operation. The heat medium heated by the refrigerant in the heat medium heat exchanger 5 passes through the passage 28 , the flow switching valve 15 and the passage 30 and flows into the heating device 24 . The heating device 24 heats the room using the heat of the heat medium. The temperature of the heat medium decreases while passing through the heating device 24 . The heat medium whose temperature has decreased returns to the heat medium heat exchanger 5 through the passage 31 , the branch portion 25 , the heat medium pump 13 and the passage 27 . A circuit in which the heat medium circulates through the heat medium heat exchanger 5 and the heating device 24 in this manner is hereinafter referred to as a "heating circuit".
 本実施の形態では、流路切替弁15により暖房回路と熱媒体回路とを切り替えることで、暖房運転と貯湯運転とを切り替えることができる。よって、流路切替弁15は、暖房運転と貯湯運転とを切り替える切替弁に相当する。 In the present embodiment, switching between the heating circuit and the heat medium circuit by means of the channel switching valve 15 enables switching between the heating operation and the hot water storage operation. Therefore, the channel switching valve 15 corresponds to a switching valve that switches between the heating operation and the hot water storage operation.
 図3は、実施の形態1によるヒートポンプ装置2と、それを備えた給湯システム1を示す図である。図3に示す例では、図1と同じヒートポンプ装置2が、図1のタンクユニット3とは異なるタンクユニット45に接続されることで、給湯システム1が構成されている。以下、タンクユニット45について、タンクユニット3との相違点を中心に説明し、共通する点については説明を簡略化または省略する。 FIG. 3 is a diagram showing the heat pump device 2 according to Embodiment 1 and the hot water supply system 1 including the same. In the example shown in FIG. 3, the hot water supply system 1 is configured by connecting the same heat pump device 2 as in FIG. 1 to a tank unit 45 different from the tank unit 3 in FIG. In the following, the tank unit 45 will be described with a focus on differences from the tank unit 3, and descriptions of common points will be simplified or omitted.
 タンクユニット45は、水熱交換器12、水ポンプ14、水回路21、タンク流出温度センサ39、及び、タンク流入温度センサ40を備えていない。タンクユニット45は、貯湯タンク11の内部に配置された水熱交換器46を備える。水熱交換器46が有する熱媒体管47は、貯湯タンク11の中心軸を中心として、ヘリカル状あるいはコイル状に巻回された形状を有する。水熱交換器46は、貯湯タンク11内で水没している。鉛直方向の位置に関して、水熱交換器46の中心は、貯湯タンク11の中心よりも低い位置にある。 The tank unit 45 does not include the water heat exchanger 12, the water pump 14, the water circuit 21, the tank outflow temperature sensor 39, and the tank inflow temperature sensor 40. The tank unit 45 includes a water heat exchanger 46 arranged inside the hot water storage tank 11 . A heat medium pipe 47 of the water heat exchanger 46 has a shape wound in a helical shape or a coil shape around the central axis of the hot water storage tank 11 . The water heat exchanger 46 is submerged in the hot water tank 11 . Regarding the position in the vertical direction, the center of the water heat exchanger 46 is located lower than the center of the hot water storage tank 11 .
 水熱交換器46は、入口48及び出口49を有する。入口48は、出口49よりも高い位置にある。入口通路51は、流路切替弁15のcポートを水熱交換器46の入口48につなぐ。出口通路52は、水熱交換器46の出口49を分岐部25につなぐ。 The water heat exchanger 46 has an inlet 48 and an outlet 49 . The inlet 48 is positioned higher than the outlet 49 . The inlet passage 51 connects the c port of the flow switching valve 15 to the inlet 48 of the water heat exchanger 46 . An outlet passage 52 connects the outlet 49 of the water heat exchanger 46 to the branch 25 .
 図示の例において、水熱交換器46の熱媒体管47は、貯湯タンク11の内壁面に接することなく配置されている。変形例として、水熱交換器46の熱媒体管47が、貯湯タンク11の内壁面に接していてもよい。 In the illustrated example, the heat medium pipes 47 of the water heat exchanger 46 are arranged without being in contact with the inner wall surface of the hot water storage tank 11 . As a modification, the heat medium pipe 47 of the water heat exchanger 46 may be in contact with the inner wall surface of the hot water storage tank 11 .
 タンクユニット45を用いた貯湯運転のときには、ヒートポンプ装置2の熱媒体熱交換器5で加熱された熱媒体が、通路28、流路切替弁15、入口通路51、及び入口48を通って、水熱交換器46の熱媒体管47に流入する。水熱交換器46の熱媒体管47を通過した熱媒体は、出口49、出口通路52、分岐部25、熱媒体ポンプ13、及び通路27を通って、熱媒体熱交換器5に戻る。水熱交換器46では、熱媒体管47の中を流れる熱媒体と、熱媒体管47の外壁に接している貯湯タンク11内の水との間で、熱が交換されることで、水が加熱される。熱媒体管47の外壁に接している水は、加熱されると、浮力によって上昇する。その結果、貯湯タンク11の内部に、自然対流によって循環する流れが形成される。それゆえ、タンクユニット3の場合と同様に、貯湯タンク11内の水全体が、ほぼ均一な温度に加熱される。ただし、高温の湯が貯湯タンク11の最上部42に残っている場合には、その高温の湯が最上部42に残り続ける場合もある。 During the hot water storage operation using the tank unit 45, the heat medium heated by the heat medium heat exchanger 5 of the heat pump device 2 passes through the passage 28, the flow path switching valve 15, the inlet passage 51, and the inlet 48 to become water. It flows into the heat medium tube 47 of the heat exchanger 46 . The heat medium that has passed through the heat medium pipe 47 of the water heat exchanger 46 returns to the heat medium heat exchanger 5 through the outlet 49 , the outlet passage 52 , the branch portion 25 , the heat medium pump 13 and the passage 27 . In the water heat exchanger 46, heat is exchanged between the heat medium flowing through the heat medium pipes 47 and the water in the hot water storage tank 11 that is in contact with the outer wall of the heat medium pipes 47. heated. When the water in contact with the outer wall of the heat medium pipe 47 is heated, it rises due to buoyancy. As a result, a circulating flow is formed inside the hot water storage tank 11 by natural convection. Therefore, as in the case of the tank unit 3, the entire water in the hot water storage tank 11 is heated to a substantially uniform temperature. However, when high-temperature hot water remains in the uppermost portion 42 of the hot water storage tank 11 , the high-temperature hot water may continue to remain in the uppermost portion 42 .
 以下の説明では、水熱交換器12あるいは水熱交換器46などのように、熱媒体と貯湯タンク11に貯留された水との間で熱を交換する水熱交換器の伝熱性能を単に「伝熱性能」と呼ぶ場合がある。 In the following description, the heat transfer performance of a water heat exchanger that exchanges heat between the heat medium and the water stored in the hot water storage tank 11, such as the water heat exchanger 12 or the water heat exchanger 46, is simply It is sometimes called "heat transfer performance".
 タンクユニット45の水熱交換器46の伝熱性能は、タンクユニット3の水熱交換器12の伝熱性能よりも低い。その主な要因は、水熱交換器12の水が強制対流となるのに対して、水熱交換器46の水が自然対流となるためである。本開示において、伝熱性能は、例えば、AK値によって表すことができる。AK値は、伝熱面積A[m]に熱通過率K[kW/(mK)]を乗じた値である。伝熱性能は、水熱交換器の構造によって、決定される。 The heat transfer performance of the water heat exchanger 46 of the tank unit 45 is lower than the heat transfer performance of the water heat exchanger 12 of the tank unit 3 . The main reason for this is that the water in the water heat exchanger 12 undergoes forced convection, whereas the water in the water heat exchanger 46 undergoes natural convection. In the present disclosure, heat transfer performance can be represented by, for example, an AK value. The AK value is a value obtained by multiplying the heat transfer area A [m 2 ] by the heat transfer coefficient K [kW/(m 2 K)]. Heat transfer performance is determined by the structure of the water heat exchanger.
 上述した伝熱性能の違いのため、タンクユニット45を用いた貯湯運転の効率は、タンクユニット3を用いた貯湯運転の効率よりも低くなる。その一方で、タンクユニット45は、水ポンプ14及び水回路21が不要であるため、タンクユニット3よりも安価であるという利点がある。 Due to the difference in heat transfer performance described above, the efficiency of the hot water storage operation using the tank unit 45 is lower than the efficiency of the hot water storage operation using the tank unit 3. On the other hand, since the tank unit 45 does not require the water pump 14 and the water circuit 21, it has the advantage of being cheaper than the tank unit 3.
 給湯システム1のユーザー、あるいは、給湯システム1を施工する施工者は、貯湯運転の効率を重視する観点から、タンクユニット3をヒートポンプ装置2と組み合わせる場合がある。その一方で、当該ユーザーまたは施工者は、設置費用を安くする観点から、タンクユニット45をヒートポンプ装置2と組み合わせる場合もある。このように、ヒートポンプ装置2は、比較的高い伝熱性能を有する水熱交換器12を備えたタンクユニット3と組み合わされて使用される場合もあれば、比較的低い伝熱性能を有する水熱交換器46を備えたタンクユニット45と組み合わされて使用される場合もある。 A user of the hot water supply system 1 or a builder who installs the hot water supply system 1 may combine the tank unit 3 with the heat pump device 2 from the viewpoint of emphasizing the efficiency of the hot water storage operation. On the other hand, the user or installer may combine the tank unit 45 with the heat pump device 2 from the viewpoint of reducing the installation cost. Thus, the heat pump device 2 may be used in combination with the tank unit 3 having the water heat exchanger 12 with relatively high heat transfer performance, or may be used in combination with the water heat exchanger 12 with relatively low heat transfer performance. It may be used in combination with a tank unit 45 having an exchanger 46 .
 貯湯温度センサ35で検知される貯湯温度が目標温度に達すると、貯湯運転が終了される。貯湯運転の所要時間は、貯湯運転の開始から、貯湯温度センサ35で検知される貯湯温度が目標温度に達するまでの時間である。 When the stored hot water temperature detected by the stored hot water temperature sensor 35 reaches the target temperature, the hot water storage operation is terminated. The time required for the hot water storage operation is the time from the start of the hot water storage operation until the stored hot water temperature detected by the stored hot water temperature sensor 35 reaches the target temperature.
 貯湯運転のときの圧縮機4の回転速度が同じであるとした場合、伝熱性能が低い水熱交換器46を有するタンクユニット45を用いた貯湯運転の所要時間は、伝熱性能が高い水熱交換器12を有するタンクユニット3を用いた貯湯運転の所要時間よりも長くなる。 Assuming that the rotational speed of the compressor 4 during the hot water storage operation is the same, the time required for the hot water storage operation using the tank unit 45 having the water heat exchanger 46 with low heat transfer performance is It is longer than the time required for the hot water storage operation using the tank unit 3 having the heat exchanger 12 .
 給湯システム1は、暖房運転の実施中に、貯湯タンク11の湯切れを防止するために、暖房運転を一時中断して貯湯運転を実施し、貯湯運転が終了次第、暖房運転を再開する場合がある。貯湯運転の所要時間が長いほど、暖房運転の中断期間が長くなる。暖房運転が中断されている間は、暖房装置24に熱が供給されないので、部屋の温度が低下していく。このため、貯湯運転の所要時間が長くなることは、好ましくない。 In order to prevent the hot water storage tank 11 from running out of hot water during the heating operation, the hot water supply system 1 may temporarily suspend the heating operation, perform the hot water storage operation, and resume the heating operation as soon as the hot water storage operation ends. be. The longer the time required for the hot water storage operation, the longer the period during which the heating operation is suspended. Since heat is not supplied to the heating device 24 while the heating operation is suspended, the temperature of the room decreases. Therefore, it is not preferable that the hot water storage operation takes a long time.
 本実施の形態のヒートポンプ装置2は、伝熱性能を判定する伝熱性能判定手段を備える。本実施の形態における伝熱性能判定手段は、第一コントローラ9により達成される。伝熱性能判定手段は、基準と比べて、伝熱性能が高いか低いかを判定してもよい。 The heat pump device 2 of the present embodiment includes heat transfer performance determination means for determining heat transfer performance. The heat transfer performance determination means in this embodiment is achieved by the first controller 9 . The heat transfer performance determining means may determine whether the heat transfer performance is high or low compared to a reference.
 第一コントローラ9は、伝熱性能が比較的低いと伝熱性能判定手段が判定した場合の圧縮機4の回転速度が、伝熱性能が比較的高いと伝熱性能判定手段が判定した場合の圧縮機4の回転速度よりも高くなるように、貯湯運転のときの圧縮機4の回転速度を調整する。これにより、伝熱性能が低い水熱交換器46を有するタンクユニット45を用いた貯湯運転の所要時間が、伝熱性能が高い水熱交換器12を有するタンクユニット3を用いた貯湯運転の所要時間よりも長くなることを回避できる。それゆえ、伝熱性能が低い水熱交換器46を有するタンクユニット45がヒートポンプ装置2と組み合わされた場合でも、暖房運転の中断期間が長くなることを回避できる。 The first controller 9 determines the rotation speed of the compressor 4 when the heat transfer performance determining means determines that the heat transfer performance is relatively low, and the rotational speed of the compressor 4 when the heat transfer performance determining means determines that the heat transfer performance is relatively high. The rotation speed of the compressor 4 during the hot water storage operation is adjusted so as to be higher than the rotation speed of the compressor 4. - 特許庁As a result, the time required for the hot water storage operation using the tank unit 45 having the water heat exchanger 46 with low heat transfer performance is reduced to the time required for the hot water storage operation using the tank unit 3 having the water heat exchanger 12 with high heat transfer performance. You can avoid being longer than time. Therefore, even when the tank unit 45 having the water heat exchanger 46 with low heat transfer performance is combined with the heat pump device 2, it is possible to avoid an increase in the interruption period of the heating operation.
 貯湯運転の最中の圧縮機4の回転速度は、一定に保たれてもよいし、変動してもよい。貯湯運転の開始から終了までの圧縮機4の回転速度の平均値を「圧縮機4の平均回転速度」と称する。貯湯運転の最中に圧縮機4の回転速度が変動する場合においては、第一コントローラ9は、伝熱性能が比較的低いと伝熱性能判定手段が判定した場合の圧縮機4の平均回転速度が、伝熱性能が比較的高いと伝熱性能判定手段が判定した場合の圧縮機4の平均回転速度よりも高くなるように、貯湯運転のときの圧縮機4の回転速度を調整すればよい。 The rotational speed of the compressor 4 during the hot water storage operation may be kept constant or may vary. The average value of the rotation speed of the compressor 4 from the start to the end of the hot water storage operation is called "average rotation speed of the compressor 4". When the rotation speed of the compressor 4 fluctuates during the hot water storage operation, the first controller 9 adjusts the average rotation speed of the compressor 4 when the heat transfer performance determination means determines that the heat transfer performance is relatively low. However, the rotational speed of the compressor 4 during the hot water storage operation may be adjusted so as to be higher than the average rotational speed of the compressor 4 when the heat transfer performance determination means determines that the heat transfer performance is relatively high. .
 本実施の形態において、第一コントローラ9の伝熱性能判定手段は、貯湯運転が実行されたときに貯湯運転の所要時間を計測し、その計測された所要時間に応じて、伝熱性能を判定する。これにより、伝熱性能判定手段は、正確かつ簡単に、伝熱性能を判定できる。 In the present embodiment, the heat transfer performance determination means of the first controller 9 measures the time required for the hot water storage operation when the hot water storage operation is performed, and determines the heat transfer performance according to the measured required time. do. Thereby, the heat transfer performance determining means can accurately and easily determine the heat transfer performance.
 本実施の形態では、給湯システム1の設置後の初回の貯湯運転のときに、第一コントローラ9の伝熱性能判定手段が、貯湯運転の所要時間を計測し、その計測された所要時間に応じて、伝熱性能を判定する。そして、給湯システム1は、2回目以降の貯湯運転を通常貯湯運転として実施する。通常貯湯運転のとき、第一コントローラ9は、伝熱性能が比較的低いと伝熱性能判定手段が判定した場合の圧縮機4の回転速度が、伝熱性能が比較的高いと伝熱性能判定手段が判定した場合の圧縮機4の回転速度よりも高くなるように、圧縮機4の回転速度を調整する。 In the present embodiment, when hot water storage operation is performed for the first time after hot water supply system 1 is installed, the heat transfer performance determination means of first controller 9 measures the time required for hot water storage operation, and according to the measured required time, to determine the heat transfer performance. Then, the hot water supply system 1 performs the second and subsequent hot water storage operations as normal hot water storage operations. During the normal hot water storage operation, the first controller 9 determines the heat transfer performance when the rotational speed of the compressor 4 is relatively high when the heat transfer performance determination means determines that the heat transfer performance is relatively low. The rotational speed of the compressor 4 is adjusted so that it is higher than the rotational speed of the compressor 4 determined by the means.
 図4は、貯湯運転モードを選択するときに給湯システム1が実行する処理の例を示すフローチャートである。給湯システム1は、例えば、貯湯温度センサ35が検知する貯湯温度が所定の値より低い場合に、図4のフローチャートの処理を実行する。ステップS101で、第二コントローラ16は、過去に貯湯運転を完了した履歴があるかどうかを判定する。過去に貯湯運転を完了した履歴がない場合には、今回が初回であるため、処理はステップS102に進み、初回貯湯運転が実施される。過去に貯湯運転を完了した履歴がある場合には、今回が初回ではないため、処理はステップS103に進み、通常貯湯運転が実施される。 FIG. 4 is a flowchart showing an example of processing executed by the hot water supply system 1 when selecting the hot water storage operation mode. The hot water supply system 1 executes the process of the flowchart of FIG. 4, for example, when the stored hot water temperature detected by the stored hot water temperature sensor 35 is lower than a predetermined value. In step S101, the second controller 16 determines whether there is a history of completing the hot water storage operation in the past. If there is no record of completion of the hot water storage operation in the past, since this is the first time, the process proceeds to step S102 and the first hot water storage operation is performed. If there is a history of completing the hot water storage operation in the past, since this is not the first time, the process proceeds to step S103 and the normal hot water storage operation is performed.
 図5は、初回貯湯運転のときに給湯システム1が実行する処理の例を示すフローチャートである。初回貯湯運転が開始されると、ステップS201で、第一コントローラ9は、圧縮機4の回転速度を初期値に設定する。 FIG. 5 is a flowchart showing an example of processing executed by the hot water supply system 1 during the initial hot water storage operation. When the first hot water storage operation is started, the first controller 9 sets the rotation speed of the compressor 4 to an initial value in step S201.
 ステップS202で、第二コントローラ16は、目標貯湯温度Thwを設定する。目標貯湯温度Thwは、リモコン50を用いてユーザーが設定した値でもよい。 At step S202, the second controller 16 sets the target hot water storage temperature Thw. The target stored hot water temperature Thw may be a value set by the user using the remote controller 50 .
 ステップS203で、貯湯運転開始前の貯湯タンク11の水温Tcwを貯湯温度センサ35により検知する。本実施の形態において、貯湯運転開始前の貯湯タンク11の水温Tcwは、「第一温度」に相当する。目標貯湯温度Thwは、「第二温度」に相当する。 In step S203, the hot water temperature sensor 35 detects the water temperature Tcw of the hot water storage tank 11 before the hot water storage operation is started. In the present embodiment, the water temperature Tcw of the hot water storage tank 11 before the start of the hot water storage operation corresponds to the "first temperature". The target stored hot water temperature Thw corresponds to the "second temperature".
 ステップS204で、貯湯運転の所要時間を計測するためのカウントが開始される。ステップS205で、貯湯運転が実施される。ステップS206で、貯湯温度センサ35が検知する貯湯温度が、目標貯湯温度Thwに達したかどうかが判断される。貯湯温度センサ35が検知する貯湯温度がまだ目標貯湯温度Thwに達していない場合には、貯湯運転が継続される。 At step S204, counting is started to measure the time required for the hot water storage operation. At step S205, the hot water storage operation is performed. In step S206, it is determined whether or not the stored hot water temperature detected by the stored hot water temperature sensor 35 has reached the target stored hot water temperature Thw. If the stored hot water temperature detected by the stored hot water temperature sensor 35 has not yet reached the target stored hot water temperature Thw, the hot water storage operation is continued.
 貯湯温度センサ35が検知する貯湯温度が目標貯湯温度Thwに達すると、処理はステップS207に進み、貯湯運転を終了する。ステップS208で、貯湯運転の所要時間を計測するためのカウントを終了する。続いて、ステップS209で、標準貯湯運転時間が算出される。 When the stored hot water temperature detected by the stored hot water temperature sensor 35 reaches the target stored hot water temperature Thw, the process proceeds to step S207 to end the hot water storage operation. At step S208, the counting for measuring the time required for the hot water storage operation ends. Subsequently, in step S209, the standard hot water storage operation time is calculated.
 ここで、第一コントローラ9が標準貯湯運転時間を算出する方法の一例について、図6を用いて説明する。貯湯タンク11内の水の温度、すなわち貯湯温度は、前述したとおり、貯湯運転の開始から終了まで、連続的に上昇する。図6は、その連続的に上昇する貯湯温度と、そのときのヒートポンプ装置2の加熱能力[W]との関係を示す図である。ヒートポンプ装置2の加熱能力[W]は、単位時間当たりにヒートポンプ装置2が熱媒体に与える熱量である。図6は、圧縮機4の回転速度を一定に保った場合の関係を示す。圧縮機4の回転速度を一定に保った場合には、貯湯温度の上昇に伴い、加熱能力は徐々に低下する。 Here, an example of how the first controller 9 calculates the standard hot water storage operation time will be described using FIG. As described above, the temperature of the water in the hot water storage tank 11, that is, the stored hot water temperature rises continuously from the start to the end of the hot water storage operation. FIG. 6 is a diagram showing the relationship between the continuously rising stored hot water temperature and the heating capacity [W] of the heat pump device 2 at that time. The heating capacity [W] of the heat pump device 2 is the amount of heat given to the heat medium by the heat pump device 2 per unit time. FIG. 6 shows the relationship when the rotational speed of the compressor 4 is kept constant. When the rotational speed of the compressor 4 is kept constant, the heating capacity gradually decreases as the stored hot water temperature rises.
 図6では、貯湯温度を、想定される最低温度Ttsから、想定される最高温度Tteまでの間で、区間1から区間4の4つの区間に等分割している。区間1の中間の貯湯温度Tt1のときの加熱能力をQ1とする。区間2の中間の貯湯温度Tt2のときの加熱能力をQ2とする。区間3の中間の貯湯温度Tt3のときの加熱能力をQ3とする。区間4の中間の貯湯温度Tt4のときの加熱能力をQ4とする。 In FIG. 6, the stored hot water temperature is equally divided into four sections, section 1 to section 4, from the assumed minimum temperature Tts to the assumed maximum temperature Tte. Let Q1 be the heating capacity at the intermediate stored hot water temperature Tt1 in section 1 . Let Q2 be the heating capacity at the intermediate stored hot water temperature Tt2 in section 2 . Let Q3 be the heating capacity at the intermediate stored hot water temperature Tt3 in section 3 . Let Q4 be the heating capacity at the intermediate stored hot water temperature Tt4 in section 4 .
 第一コントローラ9は、図6のような貯湯温度と加熱能力の関係を予め記憶している。貯湯温度と加熱能力の関係は、実際には連続的に変化するが、第一コントローラ9が演算をする際は、離散値としてよい。例えば、貯湯温度がTt1-2からTt2-3の区間2では、貯湯温度の代表値をTt2とし、加熱能力をQ2とする。 The first controller 9 stores in advance the relationship between the stored hot water temperature and the heating capacity as shown in FIG. The relationship between the stored hot water temperature and the heating capacity actually changes continuously, but when the first controller 9 performs calculations, it may be a discrete value. For example, in section 2 where the stored hot water temperature is from Tt1-2 to Tt2-3, the representative value of the stored hot water temperature is Tt2 and the heating capacity is Q2.
 区間2において、貯湯温度がTt1-2からTt2-3まで上昇するために必要な、貯湯タンク11に対する加熱量H2[J]は、貯湯タンク11内の水量Mw[kg]と、水の比熱Cpw[J/kgK]とから、次の式(1)により算出できる。 In section 2, the heating amount H2 [J] for the hot water storage tank 11 required for the stored hot water temperature to rise from Tt1-2 to Tt2-3 is the water amount Mw [kg] in the hot water storage tank 11 and the water specific heat Cpw [J/kgK], it can be calculated by the following formula (1).
 H2=Mw×Cpw×(「Tt2-3」-「Tt1-2」) ・・・(1)  H2=Mw×Cpw×("Tt2-3"-"Tt1-2") (1)
 他の区間についても、同様に算出できる。また、貯湯運転前の貯湯タンク11の水温Tcwが区間1の間にあった場合には、区間1の加熱量H1は、次の式(2)により算出できる。 Other sections can be calculated in the same way. Further, when the water temperature Tcw of the hot water storage tank 11 before the hot water storage operation is in the interval 1, the heating amount H1 in the interval 1 can be calculated by the following equation (2).
  H1=Mw×Cpw×(「Tt1-2」-Tcw) ・・・(2)   H1=Mw×Cpw×("Tt1-2"-Tcw) (2)
 また、目標貯湯温度Thwが区間4の間にあった場合には、区間4の加熱量H4は、次の式(3)により算出できる。 Also, when the target hot water storage temperature Thw is in interval 4, the heating amount H4 in interval 4 can be calculated by the following equation (3).
 H4=Mw×Cpw×(Thw-「Tt3-4」) ・・・(3)  H4=Mw×Cpw×(Thw-"Tt3-4") (3)
 このように、貯湯タンク11内の水を水温Tcwから目標貯湯温度Thwまで加熱するのに必要な熱量を、区間毎に分割して算出する。その算出された必要加熱量を加熱能力で割ると、貯湯タンク11内の水を水温Tcwから目標貯湯温度Thwまで加熱するのに必要な時間を算出できる。よって、貯湯運転前の水温Tcwから目標貯湯温度Thwまで貯湯タンク11内の水を加熱するために必要な貯湯運転時間thuは、次の式(4)により算出できる。 In this way, the amount of heat required to heat the water in the hot water storage tank 11 from the water temperature Tcw to the target hot water storage temperature Thw is divided and calculated for each section. By dividing the calculated required heating amount by the heating capacity, the time required to heat the water in the hot water storage tank 11 from the water temperature Tcw to the target hot water storage temperature Thw can be calculated. Therefore, the hot water storage operation time thu required for heating the water in the hot water storage tank 11 from the water temperature Tcw before the hot water storage operation to the target hot water storage temperature Thw can be calculated by the following equation (4).
 thu=H1/Q1+H2/Q2+H3/Q3+H4/Q4 ・・・(4) thu=H1/Q1+H2/Q2+H3/Q3+H4/Q4 (4)
 上記の必要な貯湯運転時間thuが、標準貯湯運転時間に相当する。ここで、図6で示す貯湯温度と加熱能力の関係は、伝熱性能が比較的高い水熱交換器12を有するタンクユニット3が用いられた場合の数値である。よって、標準貯湯運転時間thuは、伝熱性能が比較的高い水熱交換器12を有するタンクユニット3が用いられた場合の数値となる。標準貯湯運転時間thuは、標準所要時間の例である。 The above required hot water storage operation time thu corresponds to the standard hot water storage operation time. Here, the relationship between the stored hot water temperature and the heating capacity shown in FIG. 6 is a numerical value when the tank unit 3 having the water heat exchanger 12 with relatively high heat transfer performance is used. Therefore, the standard hot water storage operation time thu is a numerical value when the tank unit 3 having the water heat exchanger 12 with relatively high heat transfer performance is used. The standard hot water storage operation time thu is an example of the standard required time.
 上記のようにして標準貯湯運転時間thuが算出されると、図5のステップS209からステップS210へ処理が進む。ステップS210で、第一コントローラ9の伝熱性能判定手段は、ステップS204からステップS208までの処理により計測された貯湯運転所要時間を、ステップS209で算出した標準貯湯運転時間thuと比較する。貯湯運転所要時間が標準貯湯運転時間thuよりも長いことは、伝熱性能が比較的低いことに相当する。貯湯運転所要時間が標準貯湯運転時間thuよりも長い場合には、処理はステップS211に進む。ステップS211では、第一コントローラ9は、次回以降に実施される通常貯湯運転のときの圧縮機4の回転速度を、ステップS201で設定した初期値に対して所定値を加算した値に設定する。 When the standard hot water storage operation time thu is calculated as described above, the process proceeds from step S209 in FIG. 5 to step S210. In step S210, the heat transfer performance determination means of the first controller 9 compares the required hot water storage operation time measured by the processing from steps S204 to S208 with the standard hot water storage operation time thu calculated in step S209. The fact that the required hot water storage operation time is longer than the standard hot water storage operation time thu corresponds to relatively low heat transfer performance. If the required hot water storage operation time is longer than the standard hot water storage operation time thu, the process proceeds to step S211. In step S211, the first controller 9 sets the rotation speed of the compressor 4 during the normal hot water storage operation to be performed next time onwards to a value obtained by adding a predetermined value to the initial value set in step S201.
 貯湯運転所要時間が標準貯湯運転時間thu以下であることは、伝熱性能が比較的高いことに相当する。貯湯運転所要時間が標準貯湯運転時間thu以下である場合には、処理はステップS212に進む。ステップS212では、第一コントローラ9は、次回以降に実施される通常貯湯運転のときの圧縮機4の回転速度を、ステップS201で設定した初期値のままに維持する。 The fact that the required hot water storage operation time is equal to or less than the standard hot water storage operation time thu corresponds to relatively high heat transfer performance. If the required hot water storage operation time is equal to or shorter than the standard hot water storage operation time thu, the process proceeds to step S212. In step S212, the first controller 9 maintains the rotation speed of the compressor 4 during the normal hot water storage operation to be performed next time and thereafter, at the initial value set in step S201.
 ステップS211,S212の処理は、2回目以降の通常貯湯運転において、伝熱性能が比較的低いと伝熱性能判定手段が判定した場合の圧縮機4の回転速度が、伝熱性能が比較的高いと伝熱性能判定手段が判定した場合の圧縮機4の回転速度よりも高くなるように、圧縮機4の回転速度を調整することに相当する。 In the processing of steps S211 and S212, the rotation speed of the compressor 4 when the heat transfer performance determination means determines that the heat transfer performance is relatively low in the normal hot water storage operation after the second time is relatively high. This corresponds to adjusting the rotation speed of the compressor 4 so as to be higher than the rotation speed of the compressor 4 when the heat transfer performance determination means determines that the rotation speed of the compressor 4 is higher.
 なお、第一コントローラ9は、ステップS201で設定する圧縮機4の回転速度の初期値を、外気温度センサ41が検知する外気温度に応じて、変えるようにしてもよい。 Note that the first controller 9 may change the initial value of the rotation speed of the compressor 4 set in step S201 according to the outside air temperature detected by the outside air temperature sensor 41 .
 第一コントローラ9は、貯湯運転の最中に、貯湯温度センサ35が検知する貯湯温度に応じて、圧縮機4の回転速度を変化させてもよい。例えば、貯湯温度の上昇に応じて、連続的または段階的に、圧縮機4の回転速度を上昇させてもよい。その際には、第一コントローラ9は、貯湯運転の最中の各時点において、伝熱性能が比較的低いと判定された場合の圧縮機4の回転速度が、伝熱性能が比較的高いと判定された場合の圧縮機4の回転速度よりも高くなるように、圧縮機4の回転速度を調整すればよい。 The first controller 9 may change the rotational speed of the compressor 4 according to the stored hot water temperature detected by the stored hot water temperature sensor 35 during the hot water storage operation. For example, the rotational speed of the compressor 4 may be increased continuously or stepwise as the stored hot water temperature rises. At that time, the first controller 9 determines that the rotational speed of the compressor 4 when the heat transfer performance is relatively low is determined to be relatively high at each time point during the hot water storage operation. The rotation speed of the compressor 4 may be adjusted so as to be higher than the rotation speed of the compressor 4 when it is determined.
 第一コントローラ9は、貯湯運転の最中に、ヒートポンプ出口温度センサ38が検知するヒートポンプ出口温度と、貯湯温度センサ35が検知する貯湯温度との差が、目標温度差に等しくなるように、圧縮機4の回転速度を調整するように構成されていてもよい。当該目標温度差が大きいほど、圧縮機4の回転速度は高くなる。よって、第一コントローラ9は、伝熱性能が比較的低いと判定された場合の当該目標温度差が、伝熱性能が比較的高いと判定された場合の当該目標温度差よりも大きくなるように、当該目標温度差を設定すればよい。このように、第一コントローラ9は、圧縮機4の回転速度の値自体を制御するものでなくてもよい。すなわち、伝熱性能が比較的低いと判定された場合の圧縮機4の回転速度が、伝熱性能が比較的高いと判定された場合の圧縮機4の回転速度と比べて、結果的に、高くなればよい。 During the hot water storage operation, the first controller 9 performs compression so that the difference between the heat pump outlet temperature detected by the heat pump outlet temperature sensor 38 and the stored hot water temperature detected by the stored hot water temperature sensor 35 becomes equal to the target temperature difference. It may be configured to adjust the rotational speed of the machine 4 . The rotation speed of the compressor 4 increases as the target temperature difference increases. Therefore, the first controller 9 sets the target temperature difference when it is determined that the heat transfer performance is relatively low to be larger than the target temperature difference when it is determined that the heat transfer performance is relatively high. , the target temperature difference may be set. Thus, the first controller 9 does not have to control the rotational speed value of the compressor 4 itself. That is, the rotation speed of the compressor 4 when the heat transfer performance is determined to be relatively low is compared with the rotation speed of the compressor 4 when the heat transfer performance is determined to be relatively high. It should be higher.
 伝熱性能が低い水熱交換器46を用いた貯湯運転の所要時間を、伝熱性能が高い水熱交換器12を用いた貯湯運転の所要時間に等しくするには、ヒートポンプ出口温度と貯湯温度との差を大きくする必要がある。本実施の形態であれば、2回目以降の通常貯湯運転のときには、伝熱性能が低いと判定された場合の圧縮機4の回転速度が、伝熱性能が比較的高いと判定された場合の圧縮機4の回転速度よりも高くなるので、ヒートポンプ出口温度と貯湯温度との差が大きくなる。それゆえ、伝熱性能が低い水熱交換器46を有するタンクユニット45がヒートポンプ装置2に接続されている場合でも、貯湯運転の所要時間が延びることを防止できる。このため、暖房運転の中断期間が長くなることを回避できる。 To equalize the time required for the hot water storage operation using the water heat exchanger 46 with low heat transfer performance to the time required for the hot water storage operation using the water heat exchanger 12 with high heat transfer performance, the heat pump outlet temperature and the hot water storage temperature need to increase the difference between In the present embodiment, during the second and subsequent normal hot water storage operations, the rotational speed of the compressor 4 when it is determined that the heat transfer performance is low is the rotational speed when it is determined that the heat transfer performance is relatively high. Since it is higher than the rotation speed of the compressor 4, the difference between the heat pump outlet temperature and the stored hot water temperature becomes large. Therefore, even when the tank unit 45 having the water heat exchanger 46 with low heat transfer performance is connected to the heat pump device 2, it is possible to prevent the time required for the hot water storage operation from being extended. Therefore, it is possible to avoid the interruption period of the heating operation from becoming longer.
 本実施の形態であれば、ヒートポンプ装置2に接続されるタンクユニットの水熱交換器の伝熱性能に応じて、貯湯運転のときの圧縮機4の回転速度を、自動で、適切に調整できる。それゆえ、ヒートポンプ装置2であれば、水熱交換器の伝熱性能が異なる複数のタイプのタンクユニットとの組み合わせに、容易に対応できる。設置時に、タンクユニットのタイプに応じた特別な調整をヒートポンプ装置2に対して施す必要もない。 In this embodiment, the rotation speed of the compressor 4 during the hot water storage operation can be automatically and appropriately adjusted according to the heat transfer performance of the water heat exchanger of the tank unit connected to the heat pump device 2. . Therefore, the heat pump device 2 can easily be combined with a plurality of types of tank units having different heat transfer performances of water heat exchangers. At the time of installation, there is no need to make special adjustments to the heat pump device 2 according to the type of tank unit.
 貯湯タンク11の外部に配置された水熱交換器12を貯湯タンク11につなぐ循環回路である水回路21に水を水ポンプ14により循環させるタイプのタンクユニットを以下「外部熱交換タイプ」と称する。図1のタンクユニット3は、外部熱交換タイプに該当する。 A tank unit of a type in which water is circulated by a water pump 14 in a water circuit 21, which is a circulation circuit that connects the water heat exchanger 12 arranged outside the hot water storage tank 11 to the hot water storage tank 11, is hereinafter referred to as an "external heat exchange type." . The tank unit 3 of FIG. 1 corresponds to the external heat exchange type.
 水熱交換器46が有する熱媒体管47が貯湯タンク11の内部に配置されたタイプのタンクユニットを以下「内コイルタイプ」と称する。図3のタンクユニット45は、内コイルタイプに該当する。 The type of tank unit in which the heat medium pipe 47 of the water heat exchanger 46 is arranged inside the hot water storage tank 11 is hereinafter referred to as the "inner coil type". The tank unit 45 in FIG. 3 corresponds to the inner coil type.
 図示を省略するが、水熱交換器が有する熱媒体管が貯湯タンク11の外壁に接しているタイプのタンクユニットも存在する。そのようなタンクユニットを以下「外コイルタイプ」と称する。外コイルタイプのタンクユニットでは、水熱交換器が有する熱媒体管が、貯湯タンク11の外周に、ヘリカル状あるいはコイル状に巻き付けられている。貯湯タンク11の外壁に接する熱媒体管の中を流れる熱媒体の熱で、貯湯タンク11の壁が加熱される。貯湯タンク11の内壁から、当該内壁に接する水に熱が伝わることで、貯湯タンク11内の水が加熱される。貯湯タンク11の内壁に接する水が、加熱されて、浮上することで、自然対流が発生する。本実施の形態のヒートポンプ装置2は、外コイルタイプのタンクユニットと接続して使用することも可能である。第一コントローラ9の伝熱性能判定手段は、外コイルタイプのタンクユニットの水熱交換器の伝熱性能を判定することも可能である。 Although not shown, there is also a type of tank unit in which the heat medium pipes of the water heat exchanger are in contact with the outer wall of the hot water storage tank 11. Such a tank unit is hereinafter referred to as an "outer coil type". In the outer coil type tank unit, the heat medium pipe of the water heat exchanger is wound around the outer periphery of the hot water storage tank 11 in a helical or coiled manner. The wall of the hot water storage tank 11 is heated by the heat of the heat medium flowing through the heat medium pipes that are in contact with the outer wall of the hot water storage tank 11 . Heat is transferred from the inner wall of the hot water storage tank 11 to the water in contact with the inner wall, thereby heating the water in the hot water storage tank 11 . Water in contact with the inner wall of the hot water storage tank 11 is heated and floats, thereby generating natural convection. The heat pump device 2 of the present embodiment can also be used by being connected to an outer coil type tank unit. The heat transfer performance determining means of the first controller 9 can also determine the heat transfer performance of the water heat exchanger of the outer coil type tank unit.
 本実施の形態では、ステップS201の圧縮機4の回転速度の初期値を比較的低い値にしており、伝熱性能が低いと判定された場合に、ステップS211で、圧縮機4の回転速度を増加させるようにしている。このように、圧縮機4の回転速度の初期値を比較的低い値にしているので、初回の貯湯運転のときに、ヒートポンプ出口温度が高くなりすぎることをより確実に防止できる。それゆえ、初回の貯湯運転のときに、ヒートポンプ装置2が強制停止するなど、製品を保護する制御が動作することをより確実に防止できる。 In the present embodiment, the initial value of the rotational speed of the compressor 4 in step S201 is set to a relatively low value, and when it is determined that the heat transfer performance is low, in step S211, the rotational speed of the compressor 4 is reduced to I am trying to increase it. Since the initial value of the rotation speed of the compressor 4 is set to a relatively low value in this way, it is possible to more reliably prevent the heat pump outlet temperature from becoming too high during the first hot water storage operation. Therefore, it is possible to more reliably prevent the operation of the control for protecting the product, such as the forced stop of the heat pump device 2, during the first hot water storage operation.
実施の形態2.
 次に、図7及び図8を参照して、実施の形態2について説明するが、前述した実施の形態1との相違点を中心に説明し、共通する説明を簡略化または省略する。また、前述した要素と共通または対応する要素には、同一の符号を付す。
Embodiment 2.
Next, the second embodiment will be described with reference to FIGS. 7 and 8. The description will focus on the differences from the above-described first embodiment, and the common description will be simplified or omitted. Moreover, the same code|symbol is attached|subjected to the element which is common with the element mentioned above, or corresponds.
 本実施の形態において、ヒートポンプ装置2の伝熱性能判定手段は、タンクユニットのタイプに関する複数の選択肢をヒューマンインターフェースにより提示する。給湯システム1のユーザー、あるいは、給湯システム1を施工する施工者は、その提示された複数の選択肢のうちから、施工されるタンクユニットに対応する選択肢を選択する。伝熱性能判定手段は、選択された選択肢に応じて、伝熱性能を判定する。ヒューマンインターフェースは、例えば、リモコン50でもよいし、携帯端末でもよい。前述したように、伝熱性能は、水熱交換器の構造によって、決定される。このため、タンクユニットのタイプをユーザーあるいは施工者に選択させることで、伝熱性能判定手段は、貯湯運転の所要時間を計測することなく、伝熱性能を判定できる。 In this embodiment, the heat transfer performance determination means of the heat pump device 2 presents a plurality of options regarding the type of tank unit through a human interface. A user of the hot water supply system 1 or a builder who constructs the hot water supply system 1 selects an option corresponding to the tank unit to be constructed from among the presented options. The heat transfer performance determination means determines heat transfer performance according to the selected option. The human interface may be, for example, the remote control 50 or a mobile terminal. As described above, the heat transfer performance is determined by the structure of the water heat exchanger. Therefore, by allowing the user or the builder to select the type of tank unit, the heat transfer performance determining means can determine the heat transfer performance without measuring the time required for the hot water storage operation.
 伝熱性能判定手段が提示する複数の選択肢は、外部熱交換タイプのタンクユニットを示す選択肢と、内コイルタイプのタンクユニットを示す選択肢と、外コイルタイプのタンクユニットを示す選択肢とのうちの、少なくとも二つの選択肢を含む。外部熱交換タイプは、第一タイプに相当する。内コイルタイプは、第二タイプに相当する。外コイルタイプは、第三タイプに相当する。 The plurality of options presented by the heat transfer performance determination means are selected from options indicating an external heat exchange type tank unit, options indicating an inner coil type tank unit, and options indicating an outer coil type tank unit. Contains at least two options. The external heat exchange type corresponds to the first type. The inner coil type corresponds to the second type. The outer coil type corresponds to the third type.
 前述したように、タンクユニット45のような内コイルタイプの水熱交換器46の伝熱性能は、タンクユニット3のような外部熱交換タイプの水熱交換器12の伝熱性能よりも低い。また、外コイルタイプのタンクユニットの水熱交換器の伝熱性能は、その構造上、内コイルタイプのタンクユニットの水熱交換器の伝熱性能よりも低いことが普通である。 As described above, the heat transfer performance of the inner coil type water heat exchanger 46 like the tank unit 45 is lower than the heat transfer performance of the external heat exchange type water heat exchanger 12 like the tank unit 3 . Further, the heat transfer performance of the water heat exchanger of the outer coil type tank unit is generally lower than that of the water heat exchanger of the inner coil type tank unit due to its structure.
 ヒートポンプ装置2の伝熱性能判定手段は、外部熱交換タイプの伝熱性能が最も高いと判定し、内コイルタイプの伝熱性能がその次に高いと判定し、外コイルタイプの伝熱性能が最も低いと判定する。これにより、伝熱性能判定手段は、ユーザーあるいは施工者が選択したタンクユニットのタイプに応じて、伝熱性能を正確に判定できる。 The heat transfer performance determining means of the heat pump device 2 determines that the external heat exchange type has the highest heat transfer performance, determines that the inner coil type has the second highest heat transfer performance, and determines that the outer coil type has the highest heat transfer performance. determined to be the lowest. Thereby, the heat transfer performance determining means can accurately determine the heat transfer performance according to the type of tank unit selected by the user or the builder.
 第一コントローラ9は、内コイルタイプの選択肢が選択された場合の貯湯運転のときの圧縮機4の回転速度を、外部熱交換タイプの選択肢が選択された場合の貯湯運転のときの圧縮機4の回転速度よりも高くする。また、第一コントローラ9は、外コイルタイプの選択肢が選択された場合の貯湯運転のときの圧縮機4の回転速度を、内コイルタイプの選択肢が選択された場合の貯湯運転のときの圧縮機4の回転速度よりも高くする。 The first controller 9 controls the rotational speed of the compressor 4 during the hot water storage operation when the inner coil type option is selected, and the compressor 4 during the hot water storage operation when the external heat exchange type option is selected. higher than the rotation speed of In addition, the first controller 9 sets the rotational speed of the compressor 4 during the hot water storage operation when the outer coil type option is selected, to the compressor speed during the hot water storage operation when the inner coil type option is selected. Make it higher than the rotation speed of 4.
 ヒートポンプ装置2の伝熱性能判定手段は、タンクユニットのタイプに関する複数の選択肢を提示するときに、複数の選択肢のそれぞれに対応するアイコンをヒューマンインターフェースのディスプレイ53に表示させてもよい。図7は、ディスプレイ53によるアイコンの表示例を示す図である。ディスプレイ53は、例えば、リモコン50の表示部でもよいし、携帯端末の表示部でもよい。ディスプレイ53は、タッチスクリーンでもよい。 The heat transfer performance determination means of the heat pump device 2 may display icons corresponding to each of the multiple options on the display 53 of the human interface when presenting multiple options regarding the type of tank unit. FIG. 7 is a diagram showing a display example of icons on the display 53. As shown in FIG. The display 53 may be, for example, the display section of the remote controller 50 or the display section of the portable terminal. Display 53 may be a touch screen.
 図7に示す例では、外部熱交換タイプの選択肢を示すアイコン54と、内コイルタイプの選択肢を示すアイコン55と、「タンクの種類を選んでください」というメッセージ56とが、ディスプレイ53に表示されている。アイコン54は、貯湯タンク11の外部に水熱交換器12が配置された構造を示すピクトグラムに相当する。アイコン55は、水熱交換器46が有する熱媒体管47が貯湯タンク11の内部に配置された構造を示すピクトグラムに相当する。図示を省略するが、外コイルタイプの選択肢をピクトグラムにより示すアイコンがディスプレイ53にさらに表示されてもよい。 In the example shown in FIG. 7, the display 53 displays an icon 54 indicating options for the external heat exchange type, an icon 55 indicating options for the inner coil type, and a message 56 "Please select a tank type." ing. The icon 54 corresponds to a pictogram showing the structure in which the water heat exchanger 12 is arranged outside the hot water storage tank 11 . The icon 55 corresponds to a pictogram showing the structure in which the heat medium pipes 47 of the water heat exchanger 46 are arranged inside the hot water storage tank 11 . Although illustration is omitted, the display 53 may further display an icon indicating options for the outer coil type using pictograms.
 図7に示す例では、左選択ボタン57と、右選択ボタン58と、決定ボタン59と、選択中のしるし60とが、ディスプレイ53にさらに表示されている。ユーザーあるいは施工者は、左選択ボタン57あるいは右選択ボタン58にタッチすることで、選択中のしるし60の位置を左あるいは右に動かす。選択中のしるし60が、アイコン54あるいはアイコン55に重なった状態で、決定ボタン59がタッチされると、選択が確定する。 In the example shown in FIG. 7 , a left selection button 57 , a right selection button 58 , an enter button 59 , and a selection indicator 60 are additionally displayed on the display 53 . The user or builder touches the left selection button 57 or the right selection button 58 to move the position of the selected indicia 60 left or right. When the decision button 59 is touched while the mark 60 being selected is overlaid on the icon 54 or the icon 55, the selection is confirmed.
 本実施の形態であれば、タンクユニットのタイプに関する複数の選択肢のそれぞれに対応するアイコン54及びアイコン55をディスプレイ53に表示させることで、ユーザーあるいは施工者は、施工するタンクユニットのタイプに対応した適切な選択肢をすぐに理解できる。 In this embodiment, the display 53 displays the icons 54 and 55 corresponding to a plurality of options regarding the type of tank unit, so that the user or the builder can select the type of tank unit to be constructed. You can quickly understand the right options.
 ヒートポンプ装置2の伝熱性能判定手段は、タンクユニットのタイプに関する複数の選択肢を提示するときに、タンクユニットのタイプに関する複数の選択肢のそれぞれに対応するアイコン54及びアイコン55をディスプレイ53に表示させることに代えて、複数の選択肢のそれぞれに対応する名称をディスプレイ53に表示させてもよい。あるいは、アイコン54及びアイコン55と、それぞれに対応する名称との両方をディスプレイ53に表示させてもよい。 The heat transfer performance determining means of the heat pump device 2 causes the display 53 to display the icon 54 and the icon 55 corresponding to each of the plurality of options regarding the tank unit type when presenting the plurality of options regarding the tank unit type. Alternatively, the name corresponding to each of the plurality of options may be displayed on the display 53 . Alternatively, both the icons 54 and 55 and their corresponding names may be displayed on the display 53 .
 図8は、実施の形態2において給湯システム1が実行する処理の例を示すフローチャートである。本実施の形態において、給湯システム1は、例えば、貯湯温度センサ35が検知する貯湯温度が所定の値より低い場合に、図8のフローチャートの処理を実行する。換言すれば、給湯システム1は、貯湯運転を開始する前に、図8のフローチャートの処理を実行する。ステップS301で、第二コントローラ16は、過去に貯湯運転を完了した履歴があるかどうかを判定する。ステップS301で、過去に貯湯運転を完了した履歴がある場合には、タンクユニットのタイプの選択がすでに完了していると考えられる。この場合には、処理はステップS303に進み、給湯システム1は、本フローチャートの処理を終了し、貯湯運転を実施する。 FIG. 8 is a flowchart showing an example of processing executed by the hot water supply system 1 in the second embodiment. In the present embodiment, hot water supply system 1 executes the process of the flowchart of FIG. 8, for example, when the stored hot water temperature detected by stored hot water temperature sensor 35 is lower than a predetermined value. In other words, the hot water supply system 1 executes the process of the flowchart of FIG. 8 before starting the hot water storage operation. In step S301, the second controller 16 determines whether there is a history of completing the hot water storage operation in the past. In step S301, if there is a history of completion of the hot water storage operation in the past, it is considered that selection of the tank unit type has already been completed. In this case, the process proceeds to step S303, the hot water supply system 1 ends the process of this flowchart, and performs the hot water storage operation.
 ステップS301で、過去に貯湯運転を完了した履歴がない場合には、今回が初めての貯湯運転であり、タンクユニットのタイプがまだ選択されていないと考えられる。この場合には、処理はステップS302に進み、給湯システム1は、タンクユニットのタイプに関する複数の選択肢のそれぞれに対応するアイコン54及びアイコン55をディスプレイ53に表示させる。 If it is determined in step S301 that there is no history of completion of the hot water storage operation in the past, it is considered that this is the first hot water storage operation and the tank unit type has not yet been selected. In this case, the process proceeds to step S302, and hot water supply system 1 causes display 53 to display icon 54 and icon 55 corresponding to each of a plurality of options regarding the type of tank unit.
 処理はステップS302からステップS304に進み、ユーザーあるいは施工者は、施工するタンクユニットのタイプに対応したアイコンを選択する。内コイルタイプのアイコン55が選択された場合は、水熱交換器の伝熱性能が比較的低いと伝熱性能判定手段が判定する。この場合には、処理はステップS305に進む。ステップS305では、第一コントローラ9は、貯湯運転のときの圧縮機4の回転速度を、初期値に対して所定値を加算した値に設定する。初期値は、図5のステップS201で設定した初期値と同じである。その後、給湯システム1は、その設定された圧縮機4の回転速度にしたがって、貯湯運転を実施する。 The process proceeds from step S302 to step S304, and the user or builder selects an icon corresponding to the type of tank unit to be constructed. When the inner coil type icon 55 is selected, the heat transfer performance determining means determines that the heat transfer performance of the water heat exchanger is relatively low. In this case, the process proceeds to step S305. In step S305, the first controller 9 sets the rotation speed of the compressor 4 during the hot water storage operation to a value obtained by adding a predetermined value to the initial value. The initial value is the same as the initial value set in step S201 of FIG. After that, the hot water supply system 1 performs the hot water storage operation according to the set rotational speed of the compressor 4 .
 外部熱交換タイプのアイコン54が選択された場合は、水熱交換器の伝熱性能が比較的高いと伝熱性能判定手段が判定する。この場合には、処理はステップS306に進む。ステップS306では、第一コントローラ9は、貯湯運転のときの圧縮機4の回転速度を、上記初期値のままに維持する。その後、給湯システム1は、初期値のままに維持された圧縮機4の回転速度にしたがって、貯湯運転を実施する。 When the external heat exchange type icon 54 is selected, the heat transfer performance determination means determines that the heat transfer performance of the water heat exchanger is relatively high. In this case, the process proceeds to step S306. In step S306, the first controller 9 maintains the rotational speed of the compressor 4 during the hot water storage operation at the initial value. After that, the hot water supply system 1 performs the hot water storage operation according to the rotational speed of the compressor 4 maintained at the initial value.
 ステップS305,S306の処理は、伝熱性能が比較的低いと伝熱性能判定手段が判定した場合の圧縮機4の回転速度が、伝熱性能が比較的高いと伝熱性能判定手段が判定した場合の圧縮機4の回転速度よりも高くなるように、貯湯運転のときの圧縮機4の回転速度を第一コントローラ9が調整することに相当する。 In the processing of steps S305 and S306, the rotational speed of the compressor 4 when the heat transfer performance determination means determines that the heat transfer performance is relatively low is relatively high, and the heat transfer performance determination means determines that the heat transfer performance is relatively high. This corresponds to the first controller 9 adjusting the rotational speed of the compressor 4 during the hot water storage operation so that it becomes higher than the rotational speed of the compressor 4 in this case.
 なお、上述した複数の実施の形態が有する特徴のうち、組み合わせることが可能な二つ以上の特徴を組み合わせて実施してもよい。 It should be noted that, among the features of the above-described multiple embodiments, two or more features that can be combined may be combined for implementation.
1 給湯システム、 2 ヒートポンプ装置、 3 タンクユニット、 4 圧縮機、 5 熱媒体熱交換器、 5a 一次流路、 5b 二次流路、 6 膨張弁、 7 蒸発器、 9 第一コントローラ、 9a プロセッサ、 9b メモリ、 10 送風機、 11 貯湯タンク、 12 水熱交換器、 12a 一次流路、 12b 二次流路、 13 熱媒体ポンプ、 14 水ポンプ、 15 流路切替弁、 16 第二コントローラ、 16a プロセッサ、 16b メモリ、 17 流出口、 18 流入口、 19 通路、 20 通路、 21 水回路、 22 給水管、 23 給湯管、 24 暖房装置、 25 分岐部、 26 通路、 27 通路、 28 通路、 29 通路、 30 通路、 31 通路、 32 吐出温度センサ、 35 貯湯温度センサ、 37 ヒートポンプ入口温度センサ、 38 ヒートポンプ出口温度センサ、 39 タンク流出温度センサ、 40 タンク流入温度センサ、 41 外気温度センサ、 42 最上部、 43 筐体、 44 筐体、 45 タンクユニット、 46 水熱交換器、 47 熱媒体管、 48 入口、 49 出口、 50 リモコン、 51 入口通路、 52 出口通路、 53 ディスプレイ、 54 アイコン、 55 アイコン、 56 メッセージ、 57 左選択ボタン、 58 右選択ボタン、 59 決定ボタン 1 hot water system, 2 heat pump device, 3 tank unit, 4 compressor, 5 heat medium heat exchanger, 5a primary flow path, 5b secondary flow path, 6 expansion valve, 7 evaporator, 9 first controller, 9a processor, 9b memory, 10 blower, 11 hot water storage tank, 12 water heat exchanger, 12a primary flow path, 12b secondary flow path, 13 heat medium pump, 14 water pump, 15 flow switching valve, 16 second controller, 16a processor, 16b Memory, 17 Outlet, 18 Inlet, 19 Passage, 20 Passage, 21 Water circuit, 22 Water supply pipe, 23 Hot water supply pipe, 24 Heating device, 25 Branch, 26 Passage, 27 Passage, 28 Passage, 29 Passage, 30 Passage, 31 Passage, 32 Discharge temperature sensor, 35 Hot water storage temperature sensor, 37 Heat pump inlet temperature sensor, 38 Heat pump outlet temperature sensor, 39 Tank outflow temperature sensor, 40 Tank inflow temperature sensor, 41 Outside air temperature sensor, 42 Top, 43 Housing body, 44 housing, 45 tank unit, 46 water heat exchanger, 47 heat medium tube, 48 inlet, 49 outlet, 50 remote controller, 51 inlet passage, 52 outlet passage, 53 display, 54 icon, 55 icon, 56 message, 57 Left selection button, 58 Right selection button, 59 Decision button

Claims (7)

  1.  熱媒体と、貯湯タンクに貯留された水との間で熱を交換する水熱交換器を有するタンクユニットに対して前記熱媒体を供給するヒートポンプ装置であって、
     冷媒を圧縮する圧縮機と、
     前記冷媒と前記熱媒体との間で熱を交換する熱媒体熱交換器と、
     前記水熱交換器の伝熱性能を判定する伝熱性能判定手段と、
     前記貯湯タンク内の水の温度を上昇させる運転である貯湯運転のときの前記圧縮機の回転速度を調整する圧縮機制御手段と、
     を備え、
     前記圧縮機制御手段は、前記水熱交換器の前記伝熱性能が比較的低いと判定された場合の前記圧縮機の回転速度が、前記水熱交換器の前記伝熱性能が比較的高いと判定された場合の前記圧縮機の回転速度よりも高くなるように、前記貯湯運転のときの前記圧縮機の回転速度を調整するヒートポンプ装置。
    A heat pump device for supplying the heat medium to a tank unit having a water heat exchanger that exchanges heat between the heat medium and water stored in a hot water storage tank,
    a compressor that compresses a refrigerant;
    a heat medium heat exchanger that exchanges heat between the refrigerant and the heat medium;
    heat transfer performance determination means for determining the heat transfer performance of the water heat exchanger;
    Compressor control means for adjusting the rotation speed of the compressor during hot water storage operation, which is an operation for increasing the temperature of water in the hot water storage tank;
    with
    The compressor control means controls the rotation speed of the compressor when the heat transfer performance of the water heat exchanger is relatively low is determined to be relatively high when the heat transfer performance of the water heat exchanger is relatively high. A heat pump device that adjusts the rotational speed of the compressor during the hot water storage operation so as to be higher than the rotational speed of the compressor in the determined case.
  2.  前記伝熱性能判定手段は、前記貯湯運転が実行されたときに前記貯湯運転の所要時間を計測し、前記計測された所要時間に応じて、前記伝熱性能を判定する請求項1に記載のヒートポンプ装置。 2. The heat transfer performance determination means according to claim 1, wherein the heat transfer performance determination means measures the time required for the hot water storage operation when the hot water storage operation is performed, and determines the heat transfer performance according to the measured time required. heat pump equipment.
  3.  前記伝熱性能判定手段は、前記貯湯タンク内の水の温度を第一温度から第二温度まで上昇させる前記貯湯運転が実行されたときに前記貯湯運転の所要時間を計測し、前記貯湯タンク内の水の温度を前記第一温度から前記第二温度まで上昇させる前記貯湯運転の標準所要時間を計算し、前記計測された所要時間を前記標準所要時間と比較することにより、前記伝熱性能を判定する請求項1に記載のヒートポンプ装置。 The heat transfer performance determination means measures the time required for the hot water storage operation when the hot water storage operation for increasing the temperature of water in the hot water storage tank from a first temperature to a second temperature is performed, and measures the time required for the hot water storage operation. The heat transfer performance is calculated by calculating the standard required time for the hot water storage operation to raise the temperature of the water from the first temperature to the second temperature, and comparing the measured required time with the standard required time. The heat pump device of claim 1, wherein the heat pump device determines.
  4.  前記伝熱性能判定手段は、前記タンクユニットのタイプに関する複数の選択肢をヒューマンインターフェースにより提示し、前記複数の選択肢のうちから選択された選択肢に応じて、前記伝熱性能を判定する請求項1に記載のヒートポンプ装置。 2. The heat transfer performance determining means presents a plurality of options regarding the type of the tank unit through a human interface, and determines the heat transfer performance according to an option selected from the plurality of options. A heat pump device as described.
  5.  前記伝熱性能判定手段は、前記複数の選択肢を提示するときに、前記複数の選択肢のそれぞれに対応するアイコンを前記ヒューマンインターフェースのディスプレイに表示させる請求項4に記載のヒートポンプ装置。 5. The heat pump device according to claim 4, wherein when presenting the plurality of options, the heat transfer performance determination means displays icons corresponding to each of the plurality of options on the display of the human interface.
  6.  前記複数の選択肢は、前記貯湯タンクの外部に配置された前記水熱交換器を前記貯湯タンクにつなぐ循環回路に水をポンプにより循環させる第一タイプの前記タンクユニットを示す選択肢と、前記水熱交換器が有する熱媒体管が前記貯湯タンクの内部に配置された第二タイプの前記タンクユニットを示す選択肢と、前記水熱交換器が有する熱媒体管が前記貯湯タンクの外壁に接している第三タイプの前記タンクユニットを示す選択肢とのうちの、少なくとも二つの選択肢を含む請求項4または請求項5に記載のヒートポンプ装置。 The plurality of options are a first type tank unit that circulates water by a pump in a circulation circuit that connects the water heat exchanger arranged outside the hot water storage tank to the hot water storage tank, and the water heat. A second type of tank unit in which the heat medium pipes of the exchanger are arranged inside the hot water tank, and a second type in which the heat medium pipes of the water heat exchanger are in contact with the outer wall of the hot water tank. 6. A heat pump apparatus according to claim 4 or 5, comprising at least two options among options indicating three types of said tank units.
  7.  前記伝熱性能判定手段は、前記第一タイプ、前記第二タイプ、及び、前記第三タイプのうちで、前記第一タイプの前記伝熱性能が最も高いと判定し、前記第二タイプの前記伝熱性能がその次に高いと判定し、前記第三タイプの前記伝熱性能が最も低いと判定する請求項6に記載のヒートポンプ装置。 The heat transfer performance determination means determines that the heat transfer performance of the first type is the highest among the first type, the second type, and the third type, and the heat transfer performance of the second type is determined to be the highest. 7. The heat pump device according to claim 6, wherein the heat transfer performance is determined to be the next highest, and the heat transfer performance of the third type is determined to be the lowest.
PCT/JP2021/048010 2021-12-23 2021-12-23 Heat pump device WO2023119590A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/048010 WO2023119590A1 (en) 2021-12-23 2021-12-23 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/048010 WO2023119590A1 (en) 2021-12-23 2021-12-23 Heat pump device

Publications (1)

Publication Number Publication Date
WO2023119590A1 true WO2023119590A1 (en) 2023-06-29

Family

ID=86901857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048010 WO2023119590A1 (en) 2021-12-23 2021-12-23 Heat pump device

Country Status (1)

Country Link
WO (1) WO2023119590A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184663A (en) * 1995-10-31 1997-07-15 Mitsubishi Electric Corp Heat storage type air conditioner
JP2008145003A (en) * 2006-12-07 2008-06-26 Sharp Corp Heat pump unit
JP2014142100A (en) * 2013-01-23 2014-08-07 Denso Corp Heating system
JP2015163834A (en) * 2014-01-31 2015-09-10 ダイキン工業株式会社 temperature control system
JP2018063094A (en) * 2016-10-14 2018-04-19 株式会社コロナ Air conditioner with hot water supply function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184663A (en) * 1995-10-31 1997-07-15 Mitsubishi Electric Corp Heat storage type air conditioner
JP2008145003A (en) * 2006-12-07 2008-06-26 Sharp Corp Heat pump unit
JP2014142100A (en) * 2013-01-23 2014-08-07 Denso Corp Heating system
JP2015163834A (en) * 2014-01-31 2015-09-10 ダイキン工業株式会社 temperature control system
JP2018063094A (en) * 2016-10-14 2018-04-19 株式会社コロナ Air conditioner with hot water supply function

Similar Documents

Publication Publication Date Title
JP6377093B2 (en) Air conditioner
KR101626675B1 (en) An air conditioning system and a method for controlling the same
JP6636048B2 (en) Air conditioner
KR20140052778A (en) Heat pump and control method thereof
JP2019529855A (en) Air conditioning and hot water supply system
JP2014219143A (en) Hot water storage water heater
JP2017133775A (en) Heat pump device
JP2019534437A (en) Air conditioning and hot water supply system
WO2023119590A1 (en) Heat pump device
JP2008075962A (en) Heat pump type water heater
JP7295779B2 (en) Heat pump hot water heating system
JP7302659B2 (en) hot water system
JP5413328B2 (en) Water heater
KR101517234B1 (en) Hot water circulation system associated with heat pump and method for controlling the same
KR20140112681A (en) Method of controlling an air conditioner
JP6711451B2 (en) Heat medium circulation system
WO2023209868A1 (en) Heat pump device and hot water supply system
JP6044626B2 (en) Temperature control system
JP7413782B2 (en) Hot water storage type water heater
JP6067189B2 (en) Heating hot water system
JP2019529856A (en) Air conditioning and hot water supply system
JP2009002622A (en) Heat pump type water heater
JP5764938B2 (en) Water heater
JP7232746B2 (en) Heat pump hot water heating system
WO2023203745A1 (en) Air-conditioning apparatus and air-conditioning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969025

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023568963

Country of ref document: JP