WO2023203745A1 - Air-conditioning apparatus and air-conditioning method - Google Patents

Air-conditioning apparatus and air-conditioning method Download PDF

Info

Publication number
WO2023203745A1
WO2023203745A1 PCT/JP2022/018516 JP2022018516W WO2023203745A1 WO 2023203745 A1 WO2023203745 A1 WO 2023203745A1 JP 2022018516 W JP2022018516 W JP 2022018516W WO 2023203745 A1 WO2023203745 A1 WO 2023203745A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
water supply
heating
temperature
air conditioner
Prior art date
Application number
PCT/JP2022/018516
Other languages
French (fr)
Japanese (ja)
Inventor
章吾 玉木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/018516 priority Critical patent/WO2023203745A1/en
Publication of WO2023203745A1 publication Critical patent/WO2023203745A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously

Definitions

  • the present disclosure relates to an air conditioner and an air conditioning method.
  • multi-type air conditioners are known that selectively perform air conditioning operation that adjusts the temperature of indoor air and hot water supply operation that stores heat in the hot water storage tank by heating water in the hot water storage tank and boiling the water. .
  • Some multi-type air conditioners cannot perform air conditioning operation during the period when hot water supply operation is performed. In such a multi-type air conditioner, the longer the period in which the hot water supply operation cannot be performed, the longer the period in which the hot water supply operation is performed. If the hot water supply operation is carried out for a long period of time, the temperature of the indoor air changes, which impairs comfort.
  • the air conditioner disclosed in Patent Document 1 sets an upper limit time for continuing hot water supply operation. This air conditioner stops the hot water supply operation and returns to the cooling operation when the temperature of the water in the hot water storage tank does not reach the target temperature even after the upper limit time has passed.
  • the air conditioner boils water in the hot water storage tank by energizing an auxiliary heater provided in the hot water tank.
  • the air conditioner described in Patent Document 1 starts hot water supply operation using the auxiliary heater in response to returning to cooling operation, so there is a problem that the amount of electricity used increases.
  • the auxiliary heater is an electric heater, hot water supply operation using the auxiliary heater consumes more power than hot water supply operation using an air conditioner and has lower operating efficiency, resulting in an increase in electricity consumption.
  • the amount of change in indoor temperature may differ between the cooling operation and the heating operation. That is, if the air conditioning load is not the same between the cooling operation and the heating operation, the amount of change in indoor temperature will be different between the cooling operation and the heating operation even if the interruption time is the same between the cooling operation and the heating operation. Therefore, even if an upper limit time is set for hot water supply operation as in the air conditioner of Patent Document 1, indoor comfort may be impaired.
  • An object of the present invention is to provide an air conditioning device and an air conditioning method that can perform the following steps.
  • An air conditioner includes a heat source device including a refrigerant cycle that circulates a refrigerant, an air conditioning unit that performs heating operation and cooling operation by exchanging heat between the refrigerant and indoor air, and a hot water storage tank,
  • the hot water supply unit performs a hot water supply operation by heating with the refrigerant, and when a heating request and a hot water supply request are output at the same time, a first alternate operation is performed in which the heating operation and the hot water supply operation are alternately performed, and a cooling request and a first alternate operation are performed.
  • control unit that performs a second alternating operation in which the cooling operation and the hot water supply operation are alternately performed when the hot water supply request is output at the same time; Control is performed so that the first continuous operation time of the hot water supply operation is different from the second continuous operation time of the hot water supply operation in the second alternate operation.
  • the air conditioning method includes a heat source device including a refrigerant cycle that circulates a refrigerant, an air conditioning unit that performs heating operation and cooling operation by exchanging heat between the refrigerant and indoor air, and a hot water storage tank,
  • An air conditioning method in an air conditioner comprising: a hot water supply unit that performs a hot water supply operation by heating with the refrigerant, the heating operation and the hot water supply operation being alternately performed when a heating request and a hot water supply request are output at the same time. and a step of performing a second alternate operation in which the cooling operation and the hot water supply operation are alternately performed when the cooling request and the hot water supply request are output at the same time.
  • the first continuous operation time of the hot water supply operation in the first alternate operation is different from the second continuous operation time of the hot water supply operation in the second alternate operation.
  • FIG. 1 is a circuit diagram showing an example of the configuration of an air conditioner according to an embodiment.
  • FIG. 1 is a block diagram showing an example of a functional configuration of an air conditioner according to an embodiment. It is a flowchart which shows an example of the specific operation procedure by the air conditioner in embodiment.
  • FIG. 3 is a diagram for explaining the operation of the air conditioner according to the embodiment, in which (a) is a diagram showing a temporal change in the operation mode of a heat source unit, and (b) is a diagram showing a temporal change in water temperature in a hot water storage tank. (c) is a diagram showing changes in the operation of the electric heater over time. It is a figure showing an example of the relationship between outside temperature and threshold value Tmax (H) in an embodiment. It is a figure showing an example of the relationship between outside temperature and threshold value Tmax (C) in an embodiment.
  • FIG. 1 is a circuit diagram showing an example of the configuration of an air conditioner according to an embodiment.
  • the air conditioner includes, for example, a heat source unit 100, air conditioning units 200A and 200B, a hot water supply unit 300, an air conditioning controller 400, and a hot water supply controller 500.
  • the air conditioner is, for example, a multi-type air conditioner that performs hot water supply operation, cooling operation, and heating operation by performing vapor compression type refrigeration cycle operation.
  • the air conditioner is installed, for example, in a general home, but is not limited thereto.
  • the number of air conditioning units is two in the embodiment, the number is not limited to this, and may be one or three or more.
  • the refrigerant in the air conditioner may be, for example, a natural refrigerant such as R410A, R32, HFO-1234yf, or hydrocarbon, but is not limited thereto.
  • the heat source unit 100 functions as a heat source machine in an air conditioner.
  • the heat source unit 100 includes, for example, a compressor 102, a four-way valve 104, a heat source side heat exchanger 106, a heat source side blower 108, an accumulator 110, and a heat source control device 112.
  • the heat source unit 100 includes, for example, a pressure sensor 120 and temperature sensors 122, 124, 126, and 128.
  • a pressure sensor 120 and a temperature sensor 122 are provided in a refrigerant pipe on the discharge side of the compressor 102.
  • Pressure sensor 120 detects refrigerant pressure on the discharge side of compressor 102.
  • a temperature sensor 122, a temperature sensor 126, and a temperature sensor 124 are provided on the liquid side of the heat source side heat exchanger 106 to measure the refrigerant temperature at the installation location.
  • the temperature sensor for the refrigerant only needs to be able to detect a value that corresponds to the refrigerant temperature, such as the temperature of the refrigerant pipe, or a value that can be converted to the refrigerant temperature.
  • the temperature sensor 122 detects the temperature of the refrigerant pipe on the discharge side of the compressor 102.
  • the temperature sensor 124 detects the temperature of the refrigerant pipe near the heat source side heat exchanger 106.
  • the temperature sensor 126 detects the temperature of the refrigerant piping in the heat source side heat exchanger 106.
  • the temperature detected by temperature sensor 126 corresponds to the condensation temperature.
  • the temperature sensor 128 detects the temperature of the air blown by the heat source side blower 108.
  • the heat source unit 100 is connected to the air conditioning unit 200A via refrigerant pipes 1a and 2a.
  • Heat source unit 100 is connected to air conditioning unit 200B via refrigerant pipes 1b and 2b.
  • Heat source unit 100 is connected to hot water supply unit 300 via refrigerant pipes 1c and 2c.
  • a pressure reducing mechanism 130a is provided in the refrigerant pipe 2a.
  • a pressure reducing mechanism 130b is provided in the refrigerant pipe 2b.
  • a pressure reducing mechanism 130c is provided in the refrigerant pipe 2c.
  • the air conditioning units 200A and 200B include, for example, a heat exchanger 202, a blower 204, and an air conditioning control device 206.
  • the air blowing amount of the blower 204 can be adjusted.
  • Air conditioning units 200A, 200B are equipped with temperature sensors 210, 212, 214.
  • Temperature sensor 210 is provided on the gas side of heat exchanger 202.
  • Temperature sensor 212 is provided on the liquid side of heat exchanger 202.
  • Temperature sensors 210 and 212 detect the refrigerant temperature at the installation location.
  • Temperature sensor 214 is provided at the air intake port of blower 204 . The temperature sensor 214 measures the air temperature in the room corresponding to the installation location of the air conditioning units 200A, 200B.
  • the hot water supply unit 300 includes, for example, a heat exchanger 302, a hot water storage tank 304, an electric heater 306, a hot water supply control device 308, and temperature sensors 310 and 312.
  • the heat exchanger 302 exchanges heat between the water stored in the hot water storage tank 304 and the refrigerant.
  • the hot water storage tank 304 stores water to be heat exchanged.
  • Hot water storage tank 304 dispenses hot water from the top of the tank in response to a hot water supply request output from hot water supply control device 308 .
  • the hot water storage tank 304 is supplied with low-temperature water from the lower part of the tank in an amount equal to the amount of hot water discharged.
  • the hot water storage tank 304 is, for example, a liquid-filled tank.
  • the electric heater 306 is a heating unit that heats water in the hot water storage tank 304 by heating in response to supply of electric power.
  • the electric heater 306 functions as an auxiliary heater that assists the hot water supply operation by the heat source unit 100. Thereby, the hot water supply unit 300 can perform boiling operation using the electric heater 306.
  • Electric heater 306 functions as a second heat source in the air conditioner.
  • Temperature sensor 310 is installed in hot water storage tank 304 and measures the temperature of the water in hot water storage tank 304 .
  • the temperature sensor 312 is installed on the liquid side of the hot water storage tank 304 and detects the refrigerant temperature at the installation location.
  • FIG. 2 is a block diagram showing an example of the functional configuration of the air conditioner according to the embodiment.
  • the heat source control device 112 is a computer realized by, for example, a CPU (Central Processing Unit) executing a program.
  • the heat source control device 112 controls the heat source unit 100 based on the air conditioning request output from the air conditioning controller 400 or the hot water supply request output from the hot water supply controller 500.
  • the heat source control device 112 includes, for example, a measurement section 112a, a communication section 112b, a control section 112c, and a storage section 112d.
  • the measurement unit 112a measures various temperatures and pressures by inputting signals detected by the temperature sensors 122, 124, 126, 128 and the pressure sensor 120, and performing calculations based on the input signals.
  • the communication section 112b is connected to each section of the heat source unit 100 via communication lines, and transmits and receives various data and information.
  • the communication unit 112b inputs an air conditioning request output from the air conditioning controller 400 (for example, an air conditioning remote controller) via the air conditioning control device 206, and supplies it to the control unit 112c.
  • the air conditioning request is, for example, information indicating the operation mode of the air conditioner, such as a cooling request and a heating request.
  • the air conditioning request may include information indicating the target temperature in the operating mode.
  • the communication unit 112b inputs the hot water supply request output from the hot water supply controller 500 and supplies it to the control unit 112c.
  • a hot water supply request output from the hot water supply controller 500 (remote controller for hot water supply) is communicated via the hot water supply control device 308 and supplied to the control unit 112c.
  • the control unit 112c controls the compressor 102, the four-way valve 104, the pressure reducing mechanisms 130a, 130b, 130c, and the heat source side blower 108 based on the measured temperature and pressure, the air conditioning request, and the hot water supply request.
  • the storage unit 112d includes a semiconductor memory and the like.
  • the storage unit 112d stores, for example, the refrigerant temperature of each part in the air conditioner, the refrigerant pressure of each part in the air conditioner, air temperatures such as indoor temperature and outside temperature, operating state quantities such as water temperature, set values such as target temperature, It stores various information on the heat source unit 100.
  • the air conditioning control device 206 is, for example, a computer realized by a CPU executing a program.
  • the air conditioning control device 206 controls the air conditioning unit 200 based on the air conditioning request output from the air conditioning controller 400.
  • the air conditioning control device 206 includes, for example, a measurement section 206a, a control section 206b, and a communication section 206c.
  • the measurement unit 206a measures various temperatures by inputting signals detected by the temperature sensors 210, 212, and 214 and performing calculations based on the input signals.
  • the communication section 206c is connected to each section of the air conditioning unit 200 via communication lines, and transmits and receives various data and information.
  • the communication unit 206c receives an air conditioning request output from the air conditioning controller 400.
  • the control unit 206b controls the blower 204 based on the measured temperature and the air conditioning request.
  • the hot water supply control device 308 is, for example, a computer realized by a CPU executing a program. Hot water supply control device 308 controls hot water supply unit 300 based on the hot water supply request output from hot water supply controller 500.
  • the hot water supply control device 308 includes, for example, a measurement section 308a, a control section 308b, and a communication section 308c.
  • the measurement unit 308a measures various temperatures by inputting signals detected by the temperature sensors 310 and 312 and performing calculations based on the input signals.
  • the communication section 308c is connected to each section of the hot water supply unit 300 via communication lines, and transmits and receives various data and information.
  • the communication unit 308c receives a hot water supply request output from the hot water supply controller 500.
  • the control unit 308b controls the electric heater 306 based on the measured temperature and the hot water supply request. Specifically, the control unit 308b outputs a hot water supply request when detecting that the water temperature in the hot water storage tank 304 has become low based on information output from the hot water supply controller 500. For example, when the hot water supply setting temperature is set to 55°C and the water temperature based on the detection signal from the temperature sensor 310 becomes 45°C or less, resulting in a water temperature that is 10°C lower than the hot water supply setting temperature, the control unit 308b Output the request.
  • the air conditioning controller 400 is, for example, a remote controller for air conditioning, but is not limited to this, and may be a tablet, a personal computer, or a smartphone with application software installed.
  • the air conditioning controller 400 includes, for example, an input section 410, a communication section 420, and a display section 430.
  • the input unit 410 is an operation interface that accepts user operations.
  • the display unit 430 displays various information related to air conditioning, such as input results based on operations and the status of the air conditioning unit 200.
  • the communication unit 420 transmits information based on the operation received by the input unit 410 to the air conditioning control device 206 and the heat source control device 112.
  • the hot water supply controller 500 is, for example, a remote controller for hot water supply, but is not limited to this, and may be a tablet, a personal computer, or a smartphone on which application software is installed.
  • the hot water supply controller 500 includes, for example, an input section 510, a communication section 520, and a display section 530.
  • Input unit 510 is an operation interface that accepts user operations.
  • the display unit 530 displays various information related to hot water supply, such as input results based on operations and the status of the hot water supply unit 300.
  • Communication unit 520 transmits information based on the operation received by input unit 510 to hot water supply control device 308 and heat source control device 112.
  • the air conditioner supplies the cooling request or heating request selected by the air conditioning units 200A and 200B to the heat source control device 112, and supplies the hot water supply request of the hot water supply unit 300 to the heat source control device 112. Thereby, the air conditioner controls each part of the heat source unit 100, the air conditioning unit 200, and the hot water supply unit 300 by the heat source control device 112.
  • the air conditioner in the embodiment operates in a hot water supply operation mode according to a hot water supply request set by the hot water supply controller 500, a cooling operation mode according to a cooling request set by the air conditioning controller 400, and a heating request set by the air conditioning controller 400.
  • Implement heating operation mode The operation of the air conditioner and the flow state of the refrigerant in each operation mode will be described below. Note that when a hot water supply request and a cooling request occur at the same time, an alternate operation is performed in which the cooling operation and the hot water supply operation are alternately repeated. Cooling operation continues when there is no longer a demand for hot water supply.
  • an alternate operation is performed in which the heating operation and the hot water supply operation are alternately repeated, and when the hot water supply request disappears, the heating operation is continued.
  • an air conditioner performs hot water supply operation with priority over cooling operation and heating operation. The reason why the hot water supply operation is performed with priority is to avoid the occurrence of a hot water shortage condition in which the hot water storage tank 304 runs out of hot water.
  • the heat source control device 112 connects the discharge side of the compressor 102 and the refrigerant pipe 1 by controlling the four-way valve 104, and connects the suction side of the compressor 102 and the gas side of the heat source side heat exchanger 106. connect with. Furthermore, the heat source control device 112 controls the pressure reducing mechanisms 130a and 130b to be in a closed state (closed circuit). The high temperature and high pressure gas refrigerant discharged from the compressor 102 flows into the heat exchanger 302 after passing through the refrigerant pipe 1c via the four-way valve 104. Thereby, the gas medium heats the water in the hot water storage tank 304 via the wall surface of the hot water storage tank 304.
  • the refrigerant flows out of the heat exchanger 302, is depressurized by the pressure reduction mechanism 130c via the refrigerant pipe 2c, and flows into the heat source side heat exchanger 106.
  • the refrigerant becomes a low-pressure gas refrigerant by exchanging heat with the air (also referred to as heat source air) supplied by the heat source side blower 108.
  • the low-pressure gas refrigerant flowing out of the heat source side heat exchanger 106 passes through the four-way valve 104 and the accumulator 110, and then is sucked into the compressor 102 again.
  • heat may be exchanged between the refrigerant and a water circuit (not shown), and heat may be exchanged between the water circuit and the water in the hot water storage tank 304.
  • the heat source control device 112 controls the operating frequency of the compressor 102 to be the maximum frequency. Furthermore, the heat source control device 112 controls the rotation speed of the heat source side blower 108 to be fixed at a set value. Further, the heat source control device 112 controls the opening degree of the pressure reducing mechanism 130c so that the discharge temperature of the pressure reducing mechanism 130c becomes a set value.
  • the set value of the discharge temperature is, for example, the saturation temperature of the temperature sensor 122 provided on the discharge side of the compressor 102.
  • the heat source control device 112 connects the discharge side of the compressor 102 and the gas side of the heat source side heat exchanger 106 by controlling the four-way valve 104, and connects the suction side of the compressor 102 and the downstream side of the accumulator 110.
  • the high temperature and high pressure gas refrigerant discharged from the compressor 102 flows into the heat source side heat exchanger 106 via the four-way valve 104, and radiates heat to the heat source air blown by the heat source side blower 108, thereby converting the high pressure liquid refrigerant into high temperature liquid refrigerant. becomes. Thereafter, the high-pressure liquid refrigerant flows out from the heat source side heat exchanger 106, and is reduced in pressure by the pressure reduction mechanisms 130a and 130b to become a low-pressure two-phase refrigerant. The low-pressure two-phase refrigerant flows out of the heat source unit 100 and flows into the air conditioning units 200A and 200B via the refrigerant pipes 7a and 7b.
  • the low-pressure two-phase refrigerant is cooled by indoor air in each heat exchanger 202 and becomes a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant flows out from the air conditioning units 200A and 200B, flows into the heat source unit 100 via the refrigerant pipes 1a and 1b, flows into the accumulator 110, and is sucked into the compressor 102 again.
  • the heat source control device 112 controls the opening degrees of the pressure reducing mechanisms 130a and 130b so that the discharge temperature becomes the set value. Furthermore, the heat source control device 112 controls the operating frequency of the compressor 102 so that the evaporation temperature becomes a set value.
  • the evaporation temperature is the minimum temperature between the temperature detected by temperature sensor 210 and the temperature detected by temperature sensor 212.
  • the heat source control device 112 controls the heat source side blower 108 so that the condensation temperature becomes a set value.
  • the condensation temperature is, for example, the temperature detected by the temperature sensor 126.
  • the heat source control device 112 connects the discharge side of the compressor 102 and the refrigerant pipe 1 and connects the suction side of the compressor 102 and the gas side of the heat source side heat exchanger 106 by controlling the four-way valve 104. .
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 102 passes through the four-way valve 104 and the refrigerant pipes 1a and 1b, and then flows into the heat exchanger 202, where it heats indoor air and becomes a high-pressure liquid refrigerant. .
  • the high-pressure liquid medium flows out from the air conditioning units 200A and 200B, is reduced in pressure by the pressure reduction mechanisms 130a and 130b, and flows into the heat source side heat exchanger 106.
  • the high-pressure liquid medium exchanges heat with the heat source air supplied by the heat source side blower 108 and becomes a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant flowing out from the heat source side heat exchanger 106 then passes through the four-way valve 104 and the accumulator 110, and then is sucked into the compressor 102 again.
  • the heat source control device 112 controls the opening degrees of the pressure reducing mechanisms 130a and 130b so that the discharge temperature becomes the set value, and controls the pressure reducing mechanism 130c to be in a closed state (closed path). Further, the heat source control device 112 controls the operating frequency of the compressor 102 so that the condensing temperature becomes a set value.
  • the condensation temperature is determined as the maximum temperature between the temperature detected by temperature sensor 210 and the temperature detected by temperature sensor 212.
  • the electric heater 306 is installed so as to be submerged inward from the inner wall surface of the hot water storage tank 304 .
  • Hot water supply unit 300 heats water in hot water storage tank 304 by energizing electric heater 306 . Therefore, the air conditioner can boil water by energizing the electric heater 306 even when the heat source unit 100 is not performing hot water supply operation.
  • the air conditioner is configured such that the water temperature rises to the set value during the hot water supply operation of the heat source unit 100.
  • boiling operation using the electric heater 306 is started.
  • the setting value for starting the boiling operation by the electric heater 306 is stored in the storage unit 112d. While the electric heater 306 is in the boiling operation, the hot water supply request from the hot water supply control device 308 to the heat source control device 112 continues to be output. If no air conditioning request is output to the heat source control device 112 during the heating operation by the electric heater 306, the heat source unit 100 stops.
  • the heat source control device 112 will be able to Restart air conditioning operation.
  • the air conditioner can quickly resume air conditioning operation, so that indoor comfort can be prevented from being impaired.
  • the set value (threshold value) for starting heating by the electric heater 306 during hot water supply operation is set, for example, to 55°C. This is because when R32 or R410A is used as the refrigerant gas, when the boiling temperature reaches 55° C., the refrigerant pressure approaches 4.0 MPaG and approaches the maximum allowable refrigerant pressure of the heat source unit 100.
  • FIG. 3 is a flowchart illustrating an example of a specific operation procedure by the air conditioner according to the embodiment.
  • the air conditioner performs heating operation based on the heating request output from the air conditioning controller 400 (step S10).
  • the water temperature in the hot water storage tank 304 decreases, and a hot water supply request is output from the hot water supply control device 308 to the heat source control device 112 (step S12).
  • the set value of the hot water supply temperature (also referred to as set hot water supply temperature) corresponding to the hot water supply request is, for example, 60°C.
  • the heat source control device 112 interrupts the heating operation and starts the hot water supply operation by the heat source unit 100 (step S14).
  • the heat source control device 112 determines whether the hot water supply request time by the heat source unit 100 is less than or equal to the maximum hot water supply continuous time (first continuous operation time) at the time of heating request (step S16). Note that the maximum continuous hot water supply time at the time of a heating request is also described as a threshold value Tmax (H). When the hot water supply operation time by the heat source unit 100 is equal to or less than the threshold value Tmax (H) (step S16: YES), the heat source control device 112 determines whether the water temperature in the hot water storage tank 304 is equal to or less than the threshold temperature (for example, 55° C.). Determination is made (step S18).
  • the threshold temperature of the water temperature is, for example, 55°C, which is lower than the set hot water supply temperature of 60°C.
  • the difference between the threshold temperature and the set hot water supply temperature is the temperature range to be increased by heating by the electric heater 306, and may be any range.
  • the heat source control device 112 returns the process to step S16.
  • the heat source control device 112 starts heating (boiling operation) by the electric heater 306, and starts (permits) heating operation by the heat source unit 100 ( Step S24).
  • the heat source control device 112 stops the electric heater 306 and continues the heating operation when there is no longer a request for hot water supply during the heating operation (step S26).
  • the heat source control device 112 ends the hot water supply operation by the heat source unit 100 and simultaneously starts boiling by the electric heater 306 when the water temperature rises due to the hot water supply operation and the water temperature reaches the threshold temperature. Thereby, the heat source control device 112 can restart the heating operation by the heat source unit 100. Thereafter, when the water temperature in the hot water storage tank 304 reaches the set hot water supply temperature and there is no longer a request for hot water supply, the air conditioner ends boiling by the electric heater 306 and continues the heating operation.
  • hot water supply requests are prioritized over air conditioning requests, so air conditioning cannot be performed during the period when hot water requests are being output, but air conditioning will resume before the water temperature reaches 60°C. be able to.
  • the air conditioner can suppress a decrease in indoor comfort.
  • step S16 If the requested hot water supply time by the heat source unit 100 is not equal to or less than the threshold Tmax (H) (step S16: NO), the heat source control device 112 interrupts the hot water supply operation by the heat source unit 100 and restarts the heating operation (step S20). After that, the heat source control device 112 determines whether the heating operation time by the heat source unit 100 is equal to or less than the maximum continuous air conditioning time (step S22). When the heating operation time is less than or equal to the maximum continuous air conditioning time at the time of the hot water supply request (step S22: YES), the heat source control device 112 maintains the interruption of the hot water supply operation and the continuation of the heating operation by the heat source unit 100. If the heating operation time is not equal to or less than the maximum continuous air conditioning time at the time of the hot water supply request (step S22: NO), the heat source control device 112 interrupts the heating operation and restarts the hot water supply operation (step S14).
  • step S18 it is determined whether or not to start the boiling operation using the electric heater 306 based on the water temperature in the hot water storage tank 304, but the present invention is not limited to this.
  • the air conditioner may determine whether to switch from the hot water supply operation using the heat source unit 100 to the boiling operation using the electric heater 306 when the condensation temperature during the hot water supply operation becomes equal to or higher than a set value.
  • the set value of the condensing temperature during hot water supply operation is, for example, 58°C.
  • the condensing temperature during the hot water supply operation is the saturation temperature at the pressure detected by the pressure sensor 120 (high pressure sensor) during the hot water supply operation.
  • the air conditioner can reduce the amount of power consumed for boiling water.
  • the boiling operation by the electric heater 306 is started based on the fact that the condensation temperature during the hot water supply operation becomes equal to or higher than the set value in step S18, when the rotation frequency of the compressor 102 is lowered, the heating capacity for water in the hot water storage tank 304 decreases. is smaller, so the condensation temperature during hot water supply operation becomes lower. If the condensing temperature during hot water supply operation becomes low, the hot water supply operation period becomes longer, and indoor temperature may change, leading to a decrease in comfort.
  • the lowest value of the rotational frequency of the compressor 102 during hot water supply operation is made larger than the lowest value of the rotational frequency during air conditioning operation. Thereby, the air conditioner can suppress the period until the condensation temperature reaches the set value during the hot water supply operation from becoming longer, thereby suppressing a decrease in indoor comfort.
  • the air conditioner suppresses a decrease in indoor comfort by restarting air conditioning operation at the same time as the electric heater 306 starts boiling operation, but the water temperature in the hot water storage tank 304 is low and the hot water supply operation period by the heat source unit 100 is interrupted. If the time period becomes longer, indoor comfort may decrease. To avoid this, the air conditioner interrupts the hot water supply operation by the heat source unit 100 and restarts the heating operation when the hot water supply operation period by the heat source unit 100 reaches the hot water supply continuous operation time at the time of heating request (step S18 , 20). Thereafter, when the heating operation period reaches the maximum continuous air conditioning time when hot water supply is requested, the air conditioner interrupts the heating operation again and restarts the hot water supply operation by the heat source unit 100.
  • the air conditioner can suppress a decrease in indoor comfort by alternately repeating heating operation and hot water supply operation.
  • the load of the heating operation is high, the rate of change in indoor temperature during the interruption of the heating operation is high, so that the air conditioner can restart the heating operation when the electric heater 306 starts the heating operation.
  • the air conditioner even if the load of air conditioning operation is high, it is possible to further suppress a decrease in indoor comfort.
  • FIGS. 4A and 4B are diagrams for explaining the operation of the air conditioner according to the embodiment, in which (a) is a diagram showing changes over time in the operation mode of the heat source unit 100, and (b) is a diagram showing the water temperature in the hot water storage tank 304. (c) is a diagram showing a change in the operation of the electric heater 306 over time.
  • the operation of the air conditioner will be explained together with the process in FIG. 3 described above.
  • the air conditioner suppresses a decrease in indoor comfort by permitting (resuming) the heating operation after starting the heating operation using the electric heater 306 (step S24). However, if the rate of increase in the water temperature in the electric heater 306 is slow, it takes time to restart the hot water supply operation, resulting in a decrease in indoor comfort.
  • the air conditioner starts hot water supply operation when a hot water supply request is output (t1) while performing heating operation due to a hot water supply request, and if the water temperature in the hot water storage tank 304 is 55 degrees Celsius or lower, Then, the hot water supply operation continues until the threshold value Tmax (H) is reached (steps S16 and 18).
  • the hot water supply operation time reaches the threshold value Tmax (H) (t2)
  • the hot water supply operation is interrupted and the heating operation is restarted (step S20).
  • the heating operation is continued (step S22).
  • the heating operation time reaches the threshold value THmax (t3)
  • the heating operation is interrupted and the hot water supply operation is restarted (step S14).
  • Step S24 When the electric heater 306 is turned on, the water temperature in the hot water storage tank 304 continues to rise, and when it reaches the set hot water supply temperature of 60° C. (t5), the hot water supply request disappears and heating by the electric heater 306 ends (step S26). Thereafter, the air conditioner continues to perform heating operation until there is no longer a demand for hot water supply.
  • the air conditioner even if the water temperature does not reach the set hot water supply temperature even if the heating operation and hot water supply operation are performed alternately, and the hot water supply operation time becomes longer, heating by the electric heater 306 can be performed. Heating operation can be resumed. As a result, the air conditioner can achieve both of suppressing a decrease in hot water in the hot water storage tank 304 and suppressing a decrease in indoor comfort.
  • the air conditioner prohibits heating by the electric heater 306 when performing the heating operation in the alternating operation of the heating operation and the hot water supply operation (step S20).
  • the air conditioner prohibits heating by the electric heater 306 when performing the cooling operation in the alternating operation between the cooling operation and the hot water supply operation (step S20).
  • the air conditioner can heat up the air with lower power than heating by the electric heater 306, and can improve energy saving performance.
  • the air conditioner can simultaneously suppress the amount of hot water in the hot water storage tank 304 from decreasing, suppress a decrease in indoor comfort, and improve energy-saving performance. I can do it.
  • the heating operation and the hot water supply operation are alternately operated (first alternate operation), but “heating request” is read as “cooling request”, “heating operation” is read as “cooling operation”, “Alternate operation between heating operation and hot water supply operation” should be read as “alternate operation between cooling operation and hot water supply operation (second alternate operation)”, and “maximum continuous hot water supply time when heating is requested (threshold value Tmax (H))” ” may be read as “maximum continuous hot water supply time (threshold value Tmax (C), second continuous operation time) at the time of cooling request”.
  • the air conditioner can suppress the amount of hot water in the hot water storage tank 304 from decreasing and suppress a decrease in indoor comfort even when a request for air conditioning and a request for hot water supply occur at the same time. It is possible to achieve both.
  • the continuous operation time of the hot water supply operation in the alternate operation will be explained below.
  • whether the load of heating operation in winter or the load of cooling operation in summer is higher depends on the installation environment of the air conditioner. For example, in the summer when sunlight enters the room well and the average temperature of the outside air is high, the rate of rise in the room temperature increases during the interruption period of the cooling operation in the alternate operation. On the other hand, when the average outside air temperature is low in winter, the rate of decrease in the room temperature increases during the interruption period of the heating operation in the alternate operation.
  • the air conditioner sets the threshold value Tmax (H) in the alternating operation between heating operation and hot water supply operation (step S14 to step S22) and the threshold value Tmax (H) in the alternating operation between cooling operation and hot water supply operation (step S14 to step S22). Control is performed so that Tmax(C) is different.
  • the air conditioner sets the threshold value Tmax(H) and the threshold value Tmax(C) to different times based on the installation environment of the air conditioner, and stores them in the storage unit 112d.
  • the air conditioner reads information on the threshold value Tmax (H) from the storage unit 112d, and limits the continuous operation time of the hot water supply operation.
  • the air conditioner When the air conditioner is performing the cooling operation, in step S16 in FIG. 3, the air conditioner reads information on the threshold value Tmax (C) from the storage unit 112d, and limits the continuous operation time of the hot water supply operation. Thereby, the air conditioner can separately adjust the maximum continuous hot water supply time in the alternate operation for the heating operation and the cooling operation based on the installation environment of the air conditioner. As a result, the air conditioner can ensure indoor comfort both in summer and winter.
  • the temperature difference between the indoor temperature and the outside air temperature will be 13°C.
  • the installation environment in summer is, for example, an indoor temperature of 27°C and an outside air temperature of 35°C
  • the temperature difference between the indoor temperature and the outside air temperature is 8°C.
  • the air conditioner sets the threshold value Tmax(H) shorter than the threshold value Tmax(C). As a result, the air conditioner can reduce indoor comfort during the heating season when there is a large difference in temperature between the inside and outside.
  • FIG. 5 is a diagram showing an example of the relationship between the outside air temperature and the threshold value Tmax(H) in the embodiment.
  • the air conditioner may change the threshold value Tmax(H) based on the outside temperature.
  • the air conditioner shortens the threshold value Tmax(H) as the outside air temperature decreases. This is because the lower the outside air temperature, the higher the heating load, and the greater the possibility that the room temperature will drop during hot water supply operation.
  • FIG. 6 is a diagram showing an example of the relationship between the outside air temperature and the threshold value Tmax (C) in the embodiment.
  • the air conditioner may change the threshold value Tmax(C) based on the outside temperature.
  • the air conditioner shortens the threshold value Tmax (C) as the outside temperature increases. This is because the higher the outside air temperature, the higher the cooling load, and the greater the possibility that the room temperature will rise during hot water supply operation.
  • the air conditioner stores the relationship between the outside air temperature and the threshold value Tmax(H) shown in FIG. 5 and the relationship between the outside air temperature and the threshold value Tmax(C) shown in FIG. 6 in the storage unit 112d. Thereby, the air conditioner can limit the hot water supply operation time in the alternate operation to a value corresponding to the detected value of the outside air temperature.
  • the threshold value Tmax(H) and the threshold value Tmax(C) for the outside air temperature are stored in the storage unit 112d of the heat source control device 112, and the threshold value Tmax(H) and the threshold value Tmax(C) are stored for the detected value of the outside air temperature. ) can be determined.
  • the air conditioner may change both of the threshold value Tmax(H) and the threshold value Tmax(C) based on the outside air temperature, or may change at least one of the threshold values Tmax(H) and Tmax(C).
  • the air conditioner may store the relationships and coefficients a, b, c, and d of the following equations.
  • the coefficients a and b are set based on the change in Tmax (H) with respect to the outside temperature as shown in FIG.
  • the air conditioner reduces the air conditioning load by changing the threshold Tmax (H) and the threshold Tmax (C) based on the outside air temperature. Appropriate hot water supply operation time can be set according to the change.
  • step S22 if the indoor temperature reaches the set temperature during the alternate operation, the air conditioner may restart the hot water supply operation even if the heating operation time has not reached the maximum continuous air conditioning time. As a result, the air conditioner can restart the hot water supply operation at an early stage without waiting for the maximum continuous air conditioning time to be reached. As a result, the air conditioner can suppress the amount of hot water in the hot water storage tank 304 from decreasing.
  • step S18 the air conditioner determines the heating start timing of the electric heater 306 based on the water temperature in the hot water storage tank, but instead of this, the air conditioner determines the heating start timing of the electric heater 306 based on the hot water condensing temperature.
  • the hot water supply condensing temperature is the saturation temperature of the pressure detected by the pressure sensor 120 (high pressure sensor) during hot water supply operation.
  • the hot water condensation temperature also increases.
  • the air conditioner starts heating by the electric heater 306 when the hot water condensing temperature becomes equal to or higher than the condensing temperature at which the electric heater 306 starts heating (threshold value, for example, 60° C.).
  • the air conditioner uses the hot water supply condensation temperature to determine the start of heating by the electric heater 306, and thereby maintains the hot water supply operation up to the operating range of the heat source unit 100. can be continued. Thereby, the air conditioner can further suppress power consumption during hot water supply operation.
  • the lowest frequency of the compressor 102 during the hot water supply operation after step S14 is set higher than the lowest frequency of the compressor 102 during the air conditioning operation after step S10.
  • the lowest frequency of the compressor 102 during the hot water supply operation may be set higher than the lowest frequency of the compressor 102 during at least one of the cooling operation and the heating operation.
  • the operating frequency of the compressor 102 increases as the air conditioning load increases.
  • the air conditioner sets the minimum frequency at which the compressor 102 operates to be higher during hot water supply operation than during air conditioning operation, for example, even if the outside temperature is the same during heating operation and cooling operation. do.
  • the air conditioner If the operating frequency of the compressor 102 is lowered during hot water supply operation, the heating capacity for boiling will be reduced and it will take a long time to complete hot water supply. On the other hand, it is necessary to be able to reduce the lowest frequency so as to suppress the operating frequency of the compressor 102 when the load during air conditioning operation is low.
  • the air conditioner by setting the minimum frequency of the compressor 102 high during hot water supply operation, it is possible to prevent the heating capacity from becoming extremely low. Further, according to the air conditioner, heating by the electric heater 306 can be started early by raising the hot water condensing temperature early. Thereby, according to the air conditioner, it is possible to suppress the amount of hot water in the hot water storage tank 304 from decreasing.
  • the air conditioner it is possible to provide a hot water supply air conditioning system that achieves both air conditioning performance and hot water supply performance and has high user satisfaction, even if the installation environment changes with the seasons.
  • Heat source side heat exchanger 108...Heat source side blower, 110...Accumulator, 112...Heat source control device, 112a...Measuring section, 112b...Communication section, 112c...Control section, 112d...Storage section, 120...Pressure sensor, 122, 124, 126, 128...Temperature Sensor, 130a, 130b, 130c...pressure reduction mechanism, 200, 200A, 200B...air conditioning unit, 202...heat exchanger, 204...air blower, 206...air conditioning control device, 206a...measuring unit, 206b...control unit, 206c...communication unit , 210, 212, 214...Temperature sensor, 300...Hot water supply unit, 302...Heat exchanger, 304...Hot water storage tank, 306...Electric heater, 308...Hot water supply control device, 308a...Measurement section, 308b...Control section, 308c...Communication Part, 310...Tempera

Abstract

An air-conditioning apparatus according to a first embodiment comprises: a heat source device including a refrigerant cycle in which refrigerant is circulated; an air-conditioning unit for performing heat exchange between the refrigerant and indoor air to thereby carry out a warming operation and a cooling operation; a hot-water supply unit provided with a hot-water retention tank, the hot-water supply unit carrying out a hot-water supply operation through heating caused by the refrigerant; and a controller for carrying out a first alternation operation for alternating between the warming operation and the hot-water supply operation when a warming request and a hot-water supply request are outputted simultaneously, and carrying out a second alternation operation for alternating between the cooling operation and the hot-water supply operation when a cooling request and a hot-water supply request are outputted simultaneously. The controller performs control such that a first continuous operation time for the hot-water supply operation in the first alternation operation and a second continuous operation time for the hot-water supply operation in the second alternation operation are different from one another.

Description

空気調和装置、および空気調和方法Air conditioner and air conditioning method
 本開示は、空気調和装置、および空気調和方法に関する。 The present disclosure relates to an air conditioner and an air conditioning method.
 従来、室内空気を温度調整する空調運転と、貯湯タンクの水を加熱して湯を沸き上げることで貯湯タンクに蓄熱を行う給湯運転とを選択的に行うマルチ形空気調和装置が知られている。マルチ形空気調和装置において、給湯運転を実施している期間には空調運転を実施することができないものがある。このようなマルチ形空気調和装置は、給湯運転を実施することができない期間が長くなるほど、給湯運転を実施する期間が長くなってしまう。給湯運転を実施する期間が長くなると、室内空気の温度が変化して快適性を損なってしまう。 Conventionally, multi-type air conditioners are known that selectively perform air conditioning operation that adjusts the temperature of indoor air and hot water supply operation that stores heat in the hot water storage tank by heating water in the hot water storage tank and boiling the water. . Some multi-type air conditioners cannot perform air conditioning operation during the period when hot water supply operation is performed. In such a multi-type air conditioner, the longer the period in which the hot water supply operation cannot be performed, the longer the period in which the hot water supply operation is performed. If the hot water supply operation is carried out for a long period of time, the temperature of the indoor air changes, which impairs comfort.
 マルチ形空気調和装置において貯湯タンクにおける湯量が少なくなったことに応じて湯を沸き上げる給湯要求を発生しても、給湯要求中に室内の快適性が損なわないようにするため技術が知られている。例えば特許文献1の空気調和装置は、給湯運転を継続する上限時間を設ける。この空気調和装置は、上限時間を超えても貯湯タンクにおける水の温度が目標温度に達しない場合には、給湯運転を停止し、冷房運転に復帰する。給湯運転を停止した場合、空気調和装置は、給湯タンクに設けられた補助ヒータに通電することで貯湯タンクにおける水の沸き上げを行う。 Even if a hot water supply request to boil water is generated in response to a decrease in the amount of hot water in the hot water storage tank in a multi-type air conditioner, a technology is known to prevent indoor comfort from being impaired during the hot water supply request. There is. For example, the air conditioner disclosed in Patent Document 1 sets an upper limit time for continuing hot water supply operation. This air conditioner stops the hot water supply operation and returns to the cooling operation when the temperature of the water in the hot water storage tank does not reach the target temperature even after the upper limit time has passed. When the hot water supply operation is stopped, the air conditioner boils water in the hot water storage tank by energizing an auxiliary heater provided in the hot water tank.
国際公開第2018-189942号公報International Publication No. 2018-189942
 しかしながら、特許文献1に記載された空気調和装置は、冷房運転に戻ったことに応じて補助ヒータによる給湯運転を開始するので、電気使用量が増加する問題がある。特に、補助ヒータが電気ヒータであるので、補助ヒータによる給湯運転は空気調和装置による給湯運転よりも消費電力が大きく運転効率が低いため、電気使用量が増加してしまう。 However, the air conditioner described in Patent Document 1 starts hot water supply operation using the auxiliary heater in response to returning to cooling operation, so there is a problem that the amount of electricity used increases. In particular, since the auxiliary heater is an electric heater, hot water supply operation using the auxiliary heater consumes more power than hot water supply operation using an air conditioner and has lower operating efficiency, resulting in an increase in electricity consumption.
 また、特許文献1のように給湯運転に上限時間を設定することで空調運転の中断時間を上限時間に限定しても、冷房運転と暖房運転とで室内温度の変化量が異なる場合がある。すなわち冷房運転と暖房運転とで空調負荷が同じにならない場合には、冷房運転と暖房運転とで中断時間が同じでも室内温度の変化量は冷房運転と暖房運転とで異なってしまう。したがって、特許文献1の空気調和装置のように給湯運転に上限時間を設定しても室内の快適性を損なってしまう恐れがある。 Further, even if the interruption time of the air conditioning operation is limited to the upper limit time by setting an upper limit time for the hot water supply operation as in Patent Document 1, the amount of change in indoor temperature may differ between the cooling operation and the heating operation. That is, if the air conditioning load is not the same between the cooling operation and the heating operation, the amount of change in indoor temperature will be different between the cooling operation and the heating operation even if the interruption time is the same between the cooling operation and the heating operation. Therefore, even if an upper limit time is set for hot water supply operation as in the air conditioner of Patent Document 1, indoor comfort may be impaired.
 本開示は、上記のような課題を解決するためになされたもので、補助ヒータを用いて給湯運転を行う空気調和装置であっても消費電力の増加を抑制するとともに室内の快適性低下を抑制することができる空気調和装置、および空気調和方法を提供することを目的とする。 The present disclosure was made in order to solve the above-mentioned problems, and even in an air conditioner that uses an auxiliary heater to supply hot water, it suppresses an increase in power consumption and suppresses a decrease in indoor comfort. An object of the present invention is to provide an air conditioning device and an air conditioning method that can perform the following steps.
 第1の態様に係る空気調和装置は、冷媒を循環させる冷媒サイクルを含む熱源機と、前記冷媒と室内空気を熱交換することで暖房運転および冷房運転を行う空調ユニットと、貯湯タンクを備え、前記冷媒による加熱にて給湯運転を行う給湯ユニットと、暖房要求と給湯要求とが同時に出力された場合に前記暖房運転と前記給湯運転とを交互に行う第1の交互運転を行い、冷房要求と前記給湯要求とが同時に出力された場合に前記冷房運転と前記給湯運転とを交互に行う第2の交互運転を行う制御部と、を備え、前記制御部は、前記第1の交互運転における前記給湯運転の第1の連続運転時間と、前記第2の交互運転における前記給湯運転の第2の連続運転時間とが異なるように制御を行う。 An air conditioner according to a first aspect includes a heat source device including a refrigerant cycle that circulates a refrigerant, an air conditioning unit that performs heating operation and cooling operation by exchanging heat between the refrigerant and indoor air, and a hot water storage tank, The hot water supply unit performs a hot water supply operation by heating with the refrigerant, and when a heating request and a hot water supply request are output at the same time, a first alternate operation is performed in which the heating operation and the hot water supply operation are alternately performed, and a cooling request and a first alternate operation are performed. a control unit that performs a second alternating operation in which the cooling operation and the hot water supply operation are alternately performed when the hot water supply request is output at the same time; Control is performed so that the first continuous operation time of the hot water supply operation is different from the second continuous operation time of the hot water supply operation in the second alternate operation.
 第2の態様に係る空気調和方法は、冷媒を循環させる冷媒サイクルを含む熱源機と、前記冷媒と室内空気を熱交換することで暖房運転および冷房運転を行う空調ユニットと、貯湯タンクを備え、前記冷媒による加熱にて給湯運転を行う給湯ユニットと、を備える空気調和装置における空気調和方法であって、暖房要求と給湯要求とが同時に出力された場合に前記暖房運転と前記給湯運転とを交互に行う第1の交互運転を行うステップと、冷房要求と前記給湯要求とが同時に出力された場合に前記冷房運転と前記給湯運転とを交互に行う第2の交互運転を行うステップと、を有し、前記第1の交互運転における前記給湯運転の第1の連続運転時間と、前記第2の交互運転における前記給湯運転の第2の連続運転時間とは異なる。 The air conditioning method according to the second aspect includes a heat source device including a refrigerant cycle that circulates a refrigerant, an air conditioning unit that performs heating operation and cooling operation by exchanging heat between the refrigerant and indoor air, and a hot water storage tank, An air conditioning method in an air conditioner, comprising: a hot water supply unit that performs a hot water supply operation by heating with the refrigerant, the heating operation and the hot water supply operation being alternately performed when a heating request and a hot water supply request are output at the same time. and a step of performing a second alternate operation in which the cooling operation and the hot water supply operation are alternately performed when the cooling request and the hot water supply request are output at the same time. However, the first continuous operation time of the hot water supply operation in the first alternate operation is different from the second continuous operation time of the hot water supply operation in the second alternate operation.
 本開示によれば、補助ヒータを用いて給湯運転を行う空気調和装置であっても消費電力の増加を抑制するとともに室内の快適性低下を抑制することができる。 According to the present disclosure, even in an air conditioner that performs hot water supply operation using an auxiliary heater, it is possible to suppress an increase in power consumption and to suppress a decrease in indoor comfort.
実施の形態に係る空気調和装置の構成の一例を示す回路図である。FIG. 1 is a circuit diagram showing an example of the configuration of an air conditioner according to an embodiment. 実施の形態における空気調和装置の機能的な構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of a functional configuration of an air conditioner according to an embodiment. 実施の形態における空気調和装置による具体的な動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the specific operation procedure by the air conditioner in embodiment. 実施の形態における空気調和装置の動作を説明するための図であり、(a)は熱源ユニットの運転モードの時間変化を示す図であり、(b)は貯湯タンクにおける水温の時間変化を示す図であり、(c)は電気ヒータの動作の時間変化を示す図である。FIG. 3 is a diagram for explaining the operation of the air conditioner according to the embodiment, in which (a) is a diagram showing a temporal change in the operation mode of a heat source unit, and (b) is a diagram showing a temporal change in water temperature in a hot water storage tank. (c) is a diagram showing changes in the operation of the electric heater over time. 実施の形態における外気温度と閾値Tmax(H)との関係の一例を示す図である。It is a figure showing an example of the relationship between outside temperature and threshold value Tmax (H) in an embodiment. 実施の形態における外気温度と閾値Tmax(C)との関係の一例を示す図である。It is a figure showing an example of the relationship between outside temperature and threshold value Tmax (C) in an embodiment.
 以下、図面を参照しながら、本開示の実施の形態について説明する。なお、本開示の範囲は、以下の実施の形態に限定されず、本開示の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、各構造における縮尺および数などを、実際の構造における縮尺および数などと異ならせる場合がある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that the scope of the present disclosure is not limited to the following embodiments, and can be arbitrarily modified within the scope of the technical idea of the present disclosure. Further, in the following drawings, in order to make each structure easier to understand, the scale and number of each structure may be different from the scale and number of the actual structure.
(空気調和装置の構成)
 図1は、実施の形態に係る空気調和装置の構成の一例を示す回路図である。空気調和装置は、例えば、熱源ユニット100と、空調ユニット200Aおよび200Bと、給湯ユニット300と、空調コントローラ400と、給湯コントローラ500と、を備える。空気調和装置は、例えば、蒸気圧縮式の冷凍サイクル運転を行うことで、給湯運転、冷房運転、および暖房運転を行うマルチ形の空気調和装置である。空気調和装置は、空気調和装置は、例えば一般家庭に設置されるが、これに限定されない。なお、実施の形態において空調ユニットの数は2台であるが、これに限定されず、1台または3台以上であってよい。空気調和装置における冷媒は、例えば、R410A、R32、HFO-1234yf、炭化水素のような自然冷媒などの種類であってよいが、これに限定されない。
(Configuration of air conditioner)
FIG. 1 is a circuit diagram showing an example of the configuration of an air conditioner according to an embodiment. The air conditioner includes, for example, a heat source unit 100, air conditioning units 200A and 200B, a hot water supply unit 300, an air conditioning controller 400, and a hot water supply controller 500. The air conditioner is, for example, a multi-type air conditioner that performs hot water supply operation, cooling operation, and heating operation by performing vapor compression type refrigeration cycle operation. The air conditioner is installed, for example, in a general home, but is not limited thereto. Although the number of air conditioning units is two in the embodiment, the number is not limited to this, and may be one or three or more. The refrigerant in the air conditioner may be, for example, a natural refrigerant such as R410A, R32, HFO-1234yf, or hydrocarbon, but is not limited thereto.
 熱源ユニット100は、空気調和装置における熱源機として機能する。熱源ユニット100は、例えば、圧縮機102と、四方弁104と、熱源側熱交換器106と、熱源側送風機108と、アキュムレータ110と、熱源制御装置112とを備える。熱源ユニット100は、例えば、圧力センサ120と、温度センサ122、124、126、128とを備える。圧力センサ120および温度センサ122は、圧縮機102の吐出側における冷媒配管に設けられる。圧力センサ120は、圧縮機102の吐出側における冷媒圧力を検出する。温度センサ122、温度センサ126、温度センサ124が熱源側熱交換器106の液側に設けられ、設置場所の冷媒温度を計測する。なお、冷媒のための温度センサは、冷媒配管の温度などの冷媒温度に相当する値または冷媒温度に換算することができる値を検知できればよい。温度センサ122は、圧縮機102の吐出側における冷媒配管の温度を検出する。温度センサ124は、熱源側熱交換器106付近における冷媒配管の温度を検出する。温度センサ126は、熱源側熱交換器106における冷媒配管の温度を検出する。温度センサ126により検出された温度は、凝縮温度に相当する。温度センサ128は、熱源側送風機108により送風される空気の温度を検出する。 The heat source unit 100 functions as a heat source machine in an air conditioner. The heat source unit 100 includes, for example, a compressor 102, a four-way valve 104, a heat source side heat exchanger 106, a heat source side blower 108, an accumulator 110, and a heat source control device 112. The heat source unit 100 includes, for example, a pressure sensor 120 and temperature sensors 122, 124, 126, and 128. A pressure sensor 120 and a temperature sensor 122 are provided in a refrigerant pipe on the discharge side of the compressor 102. Pressure sensor 120 detects refrigerant pressure on the discharge side of compressor 102. A temperature sensor 122, a temperature sensor 126, and a temperature sensor 124 are provided on the liquid side of the heat source side heat exchanger 106 to measure the refrigerant temperature at the installation location. Note that the temperature sensor for the refrigerant only needs to be able to detect a value that corresponds to the refrigerant temperature, such as the temperature of the refrigerant pipe, or a value that can be converted to the refrigerant temperature. The temperature sensor 122 detects the temperature of the refrigerant pipe on the discharge side of the compressor 102. The temperature sensor 124 detects the temperature of the refrigerant pipe near the heat source side heat exchanger 106. The temperature sensor 126 detects the temperature of the refrigerant piping in the heat source side heat exchanger 106. The temperature detected by temperature sensor 126 corresponds to the condensation temperature. The temperature sensor 128 detects the temperature of the air blown by the heat source side blower 108.
 熱源ユニット100は、空調ユニット200Aと冷媒配管1aおよび2aを介して接続される。熱源ユニット100は、空調ユニット200Bと冷媒配管1bおよび2bを介して接続される。熱源ユニット100は、給湯ユニット300と冷媒配管1cおよび2cを介して接続される。冷媒配管2aには減圧機構130aが設けられる。冷媒配管2bには減圧機構130bが設けられる。冷媒配管2cには減圧機構130cが設けられる。 The heat source unit 100 is connected to the air conditioning unit 200A via refrigerant pipes 1a and 2a. Heat source unit 100 is connected to air conditioning unit 200B via refrigerant pipes 1b and 2b. Heat source unit 100 is connected to hot water supply unit 300 via refrigerant pipes 1c and 2c. A pressure reducing mechanism 130a is provided in the refrigerant pipe 2a. A pressure reducing mechanism 130b is provided in the refrigerant pipe 2b. A pressure reducing mechanism 130c is provided in the refrigerant pipe 2c.
 空調ユニット200A、200Bは、例えば、熱交換器202と、送風機204と、空調制御装置206と、を備える。送風機204は、送風量の調整が可能である。空調ユニット200A、200Bを総称する場合には単に「空調ユニット200」と記載する。空調ユニット200A、200Bは、温度センサ210、212、214を備える。温度センサ210は、熱交換器202のガス側に設けられる。温度センサ212は、熱交換器202の液側に設けられる。温度センサ210、212は、設置場所における冷媒温度を検知する。温度センサ214は、送風機204の空気吸込口に設けられる。温度センサ214は、空調ユニット200A、200Bの設置場所に対応した室内における空気温度を計測する。 The air conditioning units 200A and 200B include, for example, a heat exchanger 202, a blower 204, and an air conditioning control device 206. The air blowing amount of the blower 204 can be adjusted. When the air conditioning units 200A and 200B are collectively referred to, they are simply referred to as "air conditioning unit 200." Air conditioning units 200A, 200B are equipped with temperature sensors 210, 212, 214. Temperature sensor 210 is provided on the gas side of heat exchanger 202. Temperature sensor 212 is provided on the liquid side of heat exchanger 202. Temperature sensors 210 and 212 detect the refrigerant temperature at the installation location. Temperature sensor 214 is provided at the air intake port of blower 204 . The temperature sensor 214 measures the air temperature in the room corresponding to the installation location of the air conditioning units 200A, 200B.
 給湯ユニット300は、例えば、熱交換器302と、貯湯タンク304と、電気ヒータ306と、給湯制御装置308と、温度センサ310、312と、を備える。熱交換器302は、貯湯タンク304に蓄えられた水と冷媒との間で熱交換を行う。貯湯タンク304は、熱交換される水を貯留する。貯湯タンク304は、給湯制御装置308から出力された出湯要求に応じてタンク上部より湯を出水する。貯湯タンク304には、出水した湯量だけ低温の水がタンク下部から給水される。貯湯タンク304は、例えば満液式のタンクである。電気ヒータ306は、電力が供給されたことに応じて加熱することで、貯湯タンク304内の水を加熱する加熱部である。電気ヒータ306は、熱源ユニット100による給湯運転を補助する補助ヒータとして機能する。これにより給湯ユニット300は、電気ヒータ306による沸き上げ運転を行うことができる。電気ヒータ306は、空気調和装置における第2の熱源として機能する。温度センサ310は、貯湯タンク304に設置され、貯湯タンク304内の水の温度を計測する。温度センサ312は、貯湯タンク304の液側に設置され、設置場所における冷媒温度を検知する。 The hot water supply unit 300 includes, for example, a heat exchanger 302, a hot water storage tank 304, an electric heater 306, a hot water supply control device 308, and temperature sensors 310 and 312. The heat exchanger 302 exchanges heat between the water stored in the hot water storage tank 304 and the refrigerant. The hot water storage tank 304 stores water to be heat exchanged. Hot water storage tank 304 dispenses hot water from the top of the tank in response to a hot water supply request output from hot water supply control device 308 . The hot water storage tank 304 is supplied with low-temperature water from the lower part of the tank in an amount equal to the amount of hot water discharged. The hot water storage tank 304 is, for example, a liquid-filled tank. The electric heater 306 is a heating unit that heats water in the hot water storage tank 304 by heating in response to supply of electric power. The electric heater 306 functions as an auxiliary heater that assists the hot water supply operation by the heat source unit 100. Thereby, the hot water supply unit 300 can perform boiling operation using the electric heater 306. Electric heater 306 functions as a second heat source in the air conditioner. Temperature sensor 310 is installed in hot water storage tank 304 and measures the temperature of the water in hot water storage tank 304 . The temperature sensor 312 is installed on the liquid side of the hot water storage tank 304 and detects the refrigerant temperature at the installation location.
 図2は、実施の形態における空気調和装置の機能的な構成の一例を示すブロック図である。
 熱源制御装置112は、例えばCPU(Central Processing Unit)がプログラムを実行することにより実現されるコンピュータである。熱源制御装置112は、空調コントローラ400から出力された空調要求または給湯コントローラ500から出力された給湯要求に基づいて熱源ユニット100を制御する。熱源制御装置112は、例えば、測定部112aと、通信部112bと、制御部112cと、記憶部112dと、を備える。測定部112aは、温度センサ122、124、126、128、および圧力センサ120によって検知された信号を入力し、入力した信号に基づいて演算を行うことで、各種の温度および圧力を測定する。通信部112bは、熱源ユニット100における各部と通信線を介して接続され、各種データおよび情報の送受信を行う。通信部112bは、空調制御装置206を介して空調コントローラ400(例えば空調用のリモートコントローラ)から出力された空調要求を入力して制御部112cに供給する。空調要求は、例えば、冷房要求および暖房要求などの空気調和装置の運転モードを示す情報である。空調要求は、運転モードにおける目標温度を示す情報を含んでよい。通信部112bは、給湯コントローラ500から出力された給湯要求を入力して制御部112cに供給する。または、給湯制御装置308を介して給湯コントローラ500(給湯用リモコン)により出力された給湯要求を通信して制御部112cに供給する。制御部112cは、測定された温度および圧力、空調要求、給湯要求に基づいて、圧縮機102、四方弁104、減圧機構130a、130b、130c、および熱源側送風機108を制御する。記憶部112dは、半導体メモリなどを備える。記憶部112dは、例えば、空気調和装置における各部の冷媒温度、空気調和装置における各部の冷媒圧力、室内温度および外気温度などの空気温度、水温などの運転状態量や、目標温度などの設定値、熱源ユニット100における各種の情報などを記憶する。
FIG. 2 is a block diagram showing an example of the functional configuration of the air conditioner according to the embodiment.
The heat source control device 112 is a computer realized by, for example, a CPU (Central Processing Unit) executing a program. The heat source control device 112 controls the heat source unit 100 based on the air conditioning request output from the air conditioning controller 400 or the hot water supply request output from the hot water supply controller 500. The heat source control device 112 includes, for example, a measurement section 112a, a communication section 112b, a control section 112c, and a storage section 112d. The measurement unit 112a measures various temperatures and pressures by inputting signals detected by the temperature sensors 122, 124, 126, 128 and the pressure sensor 120, and performing calculations based on the input signals. The communication section 112b is connected to each section of the heat source unit 100 via communication lines, and transmits and receives various data and information. The communication unit 112b inputs an air conditioning request output from the air conditioning controller 400 (for example, an air conditioning remote controller) via the air conditioning control device 206, and supplies it to the control unit 112c. The air conditioning request is, for example, information indicating the operation mode of the air conditioner, such as a cooling request and a heating request. The air conditioning request may include information indicating the target temperature in the operating mode. The communication unit 112b inputs the hot water supply request output from the hot water supply controller 500 and supplies it to the control unit 112c. Alternatively, a hot water supply request output from the hot water supply controller 500 (remote controller for hot water supply) is communicated via the hot water supply control device 308 and supplied to the control unit 112c. The control unit 112c controls the compressor 102, the four-way valve 104, the pressure reducing mechanisms 130a, 130b, 130c, and the heat source side blower 108 based on the measured temperature and pressure, the air conditioning request, and the hot water supply request. The storage unit 112d includes a semiconductor memory and the like. The storage unit 112d stores, for example, the refrigerant temperature of each part in the air conditioner, the refrigerant pressure of each part in the air conditioner, air temperatures such as indoor temperature and outside temperature, operating state quantities such as water temperature, set values such as target temperature, It stores various information on the heat source unit 100.
 空調制御装置206は、例えばCPUがプログラムを実行することにより実現されるコンピュータである。空調制御装置206は、空調コントローラ400から出力された空調要求に基づいて空調ユニット200を制御する。空調制御装置206は、例えば、測定部206aと、制御部206bと、通信部206cとを備える。測定部206aは、温度センサ210、212、および214によって検知された信号を入力し、入力した信号に基づいて演算を行うことで、各種の温度を測定する。通信部206cは、空調ユニット200における各部と通信線を介して接続され、各種データおよび情報の送受信を行う。通信部206cは、空調コントローラ400から出力された空調要求を入力する。制御部206bは、測定された温度、および空調要求に基づいて送風機204を制御する。 The air conditioning control device 206 is, for example, a computer realized by a CPU executing a program. The air conditioning control device 206 controls the air conditioning unit 200 based on the air conditioning request output from the air conditioning controller 400. The air conditioning control device 206 includes, for example, a measurement section 206a, a control section 206b, and a communication section 206c. The measurement unit 206a measures various temperatures by inputting signals detected by the temperature sensors 210, 212, and 214 and performing calculations based on the input signals. The communication section 206c is connected to each section of the air conditioning unit 200 via communication lines, and transmits and receives various data and information. The communication unit 206c receives an air conditioning request output from the air conditioning controller 400. The control unit 206b controls the blower 204 based on the measured temperature and the air conditioning request.
 給湯制御装置308は、例えばCPUがプログラムを実行することにより実現されるコンピュータである。給湯制御装置308は、給湯コントローラ500から出力された給湯要求に基づいて給湯ユニット300を制御する。給湯制御装置308は、例えば、測定部308aと、制御部308bと、通信部308cとを備える。測定部308aは、温度センサ310、および312によって検知された信号を入力し、入力した信号に基づいて演算を行うことで、各種の温度を測定する。通信部308cは、給湯ユニット300における各部と通信線を介して接続され、各種データおよび情報の送受信を行う。通信部308cは、給湯コントローラ500から出力された給湯要求を入力する。制御部308bは、測定された温度、および給湯要求に基づいて電気ヒータ306を制御する。具体的に、制御部308bは、給湯コントローラ500から出力された情報に基づいて貯湯タンク304における水温が低くなったことを検知した場合に給湯要求を出力する。例えば、給湯設定温度が55℃に設定され、温度センサ310による検知信号に基づく水温が45℃以下となることで給湯設定温度よりも10℃低い水温となった場合に、制御部308bは、給湯要求を出力する。 The hot water supply control device 308 is, for example, a computer realized by a CPU executing a program. Hot water supply control device 308 controls hot water supply unit 300 based on the hot water supply request output from hot water supply controller 500. The hot water supply control device 308 includes, for example, a measurement section 308a, a control section 308b, and a communication section 308c. The measurement unit 308a measures various temperatures by inputting signals detected by the temperature sensors 310 and 312 and performing calculations based on the input signals. The communication section 308c is connected to each section of the hot water supply unit 300 via communication lines, and transmits and receives various data and information. The communication unit 308c receives a hot water supply request output from the hot water supply controller 500. The control unit 308b controls the electric heater 306 based on the measured temperature and the hot water supply request. Specifically, the control unit 308b outputs a hot water supply request when detecting that the water temperature in the hot water storage tank 304 has become low based on information output from the hot water supply controller 500. For example, when the hot water supply setting temperature is set to 55°C and the water temperature based on the detection signal from the temperature sensor 310 becomes 45°C or less, resulting in a water temperature that is 10°C lower than the hot water supply setting temperature, the control unit 308b Output the request.
 空調コントローラ400は、例えば空調用のリモートコントローラであるが、これに限定されず、アプリケーションソフトをインストールしたタブレット、パーソナルコンピュータ、またはスマートフォンであってよい。空調コントローラ400は、例えば、入力部410と、通信部420と、表示部430とを備える。入力部410は、ユーザの操作を受け付ける操作インターフェースである。表示部430は、操作に基づく入力結果および空調ユニット200の状態などの空調に関する各種の情報を表示する。通信部420は、入力部410により受け付けた操作に基づく情報を空調制御装置206および熱源制御装置112に送信する。 The air conditioning controller 400 is, for example, a remote controller for air conditioning, but is not limited to this, and may be a tablet, a personal computer, or a smartphone with application software installed. The air conditioning controller 400 includes, for example, an input section 410, a communication section 420, and a display section 430. The input unit 410 is an operation interface that accepts user operations. The display unit 430 displays various information related to air conditioning, such as input results based on operations and the status of the air conditioning unit 200. The communication unit 420 transmits information based on the operation received by the input unit 410 to the air conditioning control device 206 and the heat source control device 112.
 給湯コントローラ500は、例えば給湯用のリモートコントローラであるが、これに限定されず、アプリケーションソフトをインストールしたタブレット、パーソナルコンピュータ、またはスマートフォンであってよい。給湯コントローラ500は、例えば、入力部510と、通信部520と、表示部530とを備える。入力部510は、ユーザの操作を受け付ける操作インターフェースである。表示部530は、操作に基づく入力結果および給湯ユニット300の状態などの給湯に関する各種の情報を表示する。通信部520は、入力部510により受け付けた操作に基づく情報を給湯制御装置308および熱源制御装置112に送信する。 The hot water supply controller 500 is, for example, a remote controller for hot water supply, but is not limited to this, and may be a tablet, a personal computer, or a smartphone on which application software is installed. The hot water supply controller 500 includes, for example, an input section 510, a communication section 520, and a display section 530. Input unit 510 is an operation interface that accepts user operations. The display unit 530 displays various information related to hot water supply, such as input results based on operations and the status of the hot water supply unit 300. Communication unit 520 transmits information based on the operation received by input unit 510 to hot water supply control device 308 and heat source control device 112.
 空気調和装置は、空調ユニット200Aおよび200Bにて選択された冷房要求又は暖房要求を熱源制御装置112に供給し、給湯ユニット300の給湯要求を熱源制御装置112に供給する。これにより空気調和装置は、熱源制御装置112により、熱源ユニット100の各部、空調ユニット200および給湯ユニット300を制御する。 The air conditioner supplies the cooling request or heating request selected by the air conditioning units 200A and 200B to the heat source control device 112, and supplies the hot water supply request of the hot water supply unit 300 to the heat source control device 112. Thereby, the air conditioner controls each part of the heat source unit 100, the air conditioning unit 200, and the hot water supply unit 300 by the heat source control device 112.
 以下、上述した空気調和装置における運転モードについて説明する。
 実施の形態における空気調和装置は、給湯コントローラ500にて設定された給湯要求による給湯運転モード、空調コントローラ400にて設定された冷房要求による冷房運転モード、および空調コントローラ400にて設定された暖房要求による暖房運転モードを実施する。以下、各運転モードにおける空気調和装置の動作、および冷媒の流れ状態を説明する。なお、給湯要求と冷房要求とが同時に発生した場合には、冷房運転と給湯運転とを交互に繰り返す交互運転が実施され。給湯要求がなくなった場合に冷房運転を継続する。給湯要求と暖房要求とが同時に発生した場合には、暖房運転と給湯運転とを交互に繰り返す交互運転が実施され、給湯要求がなくなった場合に暖房運転を継続する。空気調和装置は、原則として冷房運転および暖房運転よりも給湯運転が優先して実施される。給湯運転を優先して実施する理由は、貯湯タンク304に湯がなくなるという湯切れ状態の発生を回避するためである。
Hereinafter, the operation mode of the air conditioner mentioned above will be explained.
The air conditioner in the embodiment operates in a hot water supply operation mode according to a hot water supply request set by the hot water supply controller 500, a cooling operation mode according to a cooling request set by the air conditioning controller 400, and a heating request set by the air conditioning controller 400. Implement heating operation mode. The operation of the air conditioner and the flow state of the refrigerant in each operation mode will be described below. Note that when a hot water supply request and a cooling request occur at the same time, an alternate operation is performed in which the cooling operation and the hot water supply operation are alternately repeated. Cooling operation continues when there is no longer a demand for hot water supply. When a hot water supply request and a heating request occur at the same time, an alternate operation is performed in which the heating operation and the hot water supply operation are alternately repeated, and when the hot water supply request disappears, the heating operation is continued. In principle, an air conditioner performs hot water supply operation with priority over cooling operation and heating operation. The reason why the hot water supply operation is performed with priority is to avoid the occurrence of a hot water shortage condition in which the hot water storage tank 304 runs out of hot water.
 まず、給湯運転について説明する。給湯運転において、熱源制御装置112は、四方弁104を制御することで、圧縮機102の吐出側と冷媒配管1とを接続させ、圧縮機102の吸入側と熱源側熱交換器106のガス側とを接続させる。また、熱源制御装置112は、減圧機構130aおよび130bを閉状態(閉路)に制御する。圧縮機102から吐出した高温且つ高圧のガス冷媒は、四方弁104を経由して冷媒配管1cを通過後、熱交換器302に流入する。これにより、ガス媒体は、貯湯タンク304の壁面を介して貯湯タンク304内の水を加熱する。その後、冷媒は、熱交換器302から流出し、冷媒配管2cを経由して減圧機構130cにより減圧され、熱源側熱交換器106に流入する。これにより冷媒は、熱源側送風機108によって供給される空気(熱源空気とも記載する)と熱交換を行うことで低圧のガス冷媒となる。熱源側熱交換器106から流出した低圧のガス冷媒は、四方弁104を経由してアキュムレータ110を通過した後、再び圧縮機102に吸入される。なお、給湯運転は、冷媒と水回路(不図示)とで熱交換し、水回路と貯湯タンク304内の水とで熱交換してよい。 First, the hot water supply operation will be explained. During hot water supply operation, the heat source control device 112 connects the discharge side of the compressor 102 and the refrigerant pipe 1 by controlling the four-way valve 104, and connects the suction side of the compressor 102 and the gas side of the heat source side heat exchanger 106. connect with. Furthermore, the heat source control device 112 controls the pressure reducing mechanisms 130a and 130b to be in a closed state (closed circuit). The high temperature and high pressure gas refrigerant discharged from the compressor 102 flows into the heat exchanger 302 after passing through the refrigerant pipe 1c via the four-way valve 104. Thereby, the gas medium heats the water in the hot water storage tank 304 via the wall surface of the hot water storage tank 304. Thereafter, the refrigerant flows out of the heat exchanger 302, is depressurized by the pressure reduction mechanism 130c via the refrigerant pipe 2c, and flows into the heat source side heat exchanger 106. Thereby, the refrigerant becomes a low-pressure gas refrigerant by exchanging heat with the air (also referred to as heat source air) supplied by the heat source side blower 108. The low-pressure gas refrigerant flowing out of the heat source side heat exchanger 106 passes through the four-way valve 104 and the accumulator 110, and then is sucked into the compressor 102 again. Note that in the hot water supply operation, heat may be exchanged between the refrigerant and a water circuit (not shown), and heat may be exchanged between the water circuit and the water in the hot water storage tank 304.
 給湯運転において、熱源制御装置112は、圧縮機102の運転周波数が、最大周波数となるよう制御する。また、熱源制御装置112は、熱源側送風機108の回転数を、設定値に固定するよう制御する。さらに熱源制御装置112は、減圧機構130cの吐出温度が設定値となるように減圧機構130cの開度を制御する。吐出温度の設定値は、例えば圧縮機102の吐出側に設けられた温度センサ122の飽和温度である。 In the hot water supply operation, the heat source control device 112 controls the operating frequency of the compressor 102 to be the maximum frequency. Furthermore, the heat source control device 112 controls the rotation speed of the heat source side blower 108 to be fixed at a set value. Further, the heat source control device 112 controls the opening degree of the pressure reducing mechanism 130c so that the discharge temperature of the pressure reducing mechanism 130c becomes a set value. The set value of the discharge temperature is, for example, the saturation temperature of the temperature sensor 122 provided on the discharge side of the compressor 102.
 次に、冷房運転について説明する。熱源制御装置112は、四方弁104を制御することで、圧縮機102の吐出側と熱源側熱交換器106のガス側とを接続させ、圧縮機102の吸入側とアキュムレータ110下流側とを接続させる。 Next, the cooling operation will be explained. The heat source control device 112 connects the discharge side of the compressor 102 and the gas side of the heat source side heat exchanger 106 by controlling the four-way valve 104, and connects the suction side of the compressor 102 and the downstream side of the accumulator 110. let
 圧縮機102から吐出した高温且つ高圧のガス冷媒は、四方弁104を経由して熱源側熱交換器106に流入し、熱源側送風機108により送風される熱源空気に放熱を行って高圧の液冷媒となる。その後、高圧の液冷媒は、熱源側熱交換器106から流出し、減圧機構130aおよび130bにて減圧されて低圧二相冷媒となる。低圧二相冷媒は、熱源ユニット100から流出し、冷媒配管7a、7bを経由して空調ユニット200A、200Bに流入する。その後、低圧二相冷媒は、それぞれの熱交換器202にて室内空気により冷却されて低圧ガス冷媒となる。低圧ガス冷媒は、空調ユニット200A、200Bからそれぞれ流出し、冷媒配管1a、1bを経由して熱源ユニット100に流入し、アキュムレータ110に流れた後、再び圧縮機102に吸入される。 The high temperature and high pressure gas refrigerant discharged from the compressor 102 flows into the heat source side heat exchanger 106 via the four-way valve 104, and radiates heat to the heat source air blown by the heat source side blower 108, thereby converting the high pressure liquid refrigerant into high temperature liquid refrigerant. becomes. Thereafter, the high-pressure liquid refrigerant flows out from the heat source side heat exchanger 106, and is reduced in pressure by the pressure reduction mechanisms 130a and 130b to become a low-pressure two-phase refrigerant. The low-pressure two-phase refrigerant flows out of the heat source unit 100 and flows into the air conditioning units 200A and 200B via the refrigerant pipes 7a and 7b. Thereafter, the low-pressure two-phase refrigerant is cooled by indoor air in each heat exchanger 202 and becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant flows out from the air conditioning units 200A and 200B, flows into the heat source unit 100 via the refrigerant pipes 1a and 1b, flows into the accumulator 110, and is sucked into the compressor 102 again.
 冷房運転において、熱源制御装置112は、減圧機構130a、130bを、吐出温度が設定値となるように開度を制御する。また、熱源制御装置112は、蒸発温度が設定値となるように圧縮機102の運転周波数を制御する。蒸発温度は、温度センサ210の検知温度と温度センサ212の検出温度のうち最小の温度である。熱源制御装置112は、凝縮温度が設定値となるように熱源側送風機108を制御する。凝縮温度は、例えば温度センサ126の検出温度である。 In the cooling operation, the heat source control device 112 controls the opening degrees of the pressure reducing mechanisms 130a and 130b so that the discharge temperature becomes the set value. Furthermore, the heat source control device 112 controls the operating frequency of the compressor 102 so that the evaporation temperature becomes a set value. The evaporation temperature is the minimum temperature between the temperature detected by temperature sensor 210 and the temperature detected by temperature sensor 212. The heat source control device 112 controls the heat source side blower 108 so that the condensation temperature becomes a set value. The condensation temperature is, for example, the temperature detected by the temperature sensor 126.
 次に、暖房運転の運転状態について説明する。熱源制御装置112は、四方弁104を制御することで、圧縮機102の吐出側と冷媒配管1とを接続させ、圧縮機102の吸入側と熱源側熱交換器106のガス側とを接続させる。 Next, the operating state of the heating operation will be explained. The heat source control device 112 connects the discharge side of the compressor 102 and the refrigerant pipe 1 and connects the suction side of the compressor 102 and the gas side of the heat source side heat exchanger 106 by controlling the four-way valve 104. .
 圧縮機102から吐出した高温且つ高圧のガス冷媒は、四方弁104を経由して冷媒配管1a、1bを通過後、熱交換器202にそれぞれ流入し、室内空気を加熱して高圧液冷媒となる。高圧液媒体は、空調ユニット200Aおよび200Bからそれぞれ流出し、減圧機構130a、130bによりそれぞれ減圧され、熱源側熱交換器106に流入する。高圧液媒体は、熱源側送風機108によって供給される熱源空気と熱交換を行って低圧ガス冷媒となる。熱源側熱交換器106から流出した低圧ガス冷媒は、その後、四方弁104を経由して、アキュムレータ110を通過した後、再び圧縮機102に吸入される。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 102 passes through the four-way valve 104 and the refrigerant pipes 1a and 1b, and then flows into the heat exchanger 202, where it heats indoor air and becomes a high-pressure liquid refrigerant. . The high-pressure liquid medium flows out from the air conditioning units 200A and 200B, is reduced in pressure by the pressure reduction mechanisms 130a and 130b, and flows into the heat source side heat exchanger 106. The high-pressure liquid medium exchanges heat with the heat source air supplied by the heat source side blower 108 and becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant flowing out from the heat source side heat exchanger 106 then passes through the four-way valve 104 and the accumulator 110, and then is sucked into the compressor 102 again.
 暖房運転において、熱源制御装置112は、減圧機構130a、130bを、吐出温度が設定値となるように開度を制御し、減圧機構130cを閉状態(閉路)に制御する。また、熱源制御装置112は、凝縮温度が設定値となるように圧縮機102の運転周波数を制御する。凝縮温度は、温度センサ210の検出温度と温度センサ212の検出温度のうち最大の温度として求められる。 In the heating operation, the heat source control device 112 controls the opening degrees of the pressure reducing mechanisms 130a and 130b so that the discharge temperature becomes the set value, and controls the pressure reducing mechanism 130c to be in a closed state (closed path). Further, the heat source control device 112 controls the operating frequency of the compressor 102 so that the condensing temperature becomes a set value. The condensation temperature is determined as the maximum temperature between the temperature detected by temperature sensor 210 and the temperature detected by temperature sensor 212.
 次に、電気ヒータ306による沸き挙げ運転について説明する。電気ヒータ306は、貯湯タンク304の内壁面から内側に水没した状態で設置される。給湯ユニット300は、電気ヒータ306を通電させることで貯湯タンク304内の水を加熱する。そのため、空気調和装置は、熱源ユニット100による給湯運転が行われていなくても電気ヒータ306に通電することで湯の沸き上げを行うことが可能となる。 Next, the boiling operation using the electric heater 306 will be explained. The electric heater 306 is installed so as to be submerged inward from the inner wall surface of the hot water storage tank 304 . Hot water supply unit 300 heats water in hot water storage tank 304 by energizing electric heater 306 . Therefore, the air conditioner can boil water by energizing the electric heater 306 even when the heat source unit 100 is not performing hot water supply operation.
 空気調和装置は、例えば、熱源ユニット100による給湯運転では沸き上げ完了が難しいほどの給湯温度が給湯コントローラ500により設定された場合において、熱源ユニット100の給湯運転中に水温が設定値まで高くなった場合に、電気ヒータ306による沸き上げ運転を開始する。電気ヒータ306による沸き上げ運転を開始する設定値は、記憶部112dに記憶されている。電気ヒータ306による沸き上げ運転中において、給湯制御装置308から熱源制御装置112への給湯要求は出力されたままである。電気ヒータ306による沸き上げ運転中に熱源制御装置112に空調要求が出力されてない場合、熱源ユニット100は停止する。これに対し、空調ユニット200A、200Bの何れか一つから熱源制御装置112に空調要求が出力されている場合、熱源制御装置112は、給湯要求が出力されたままであっても、熱源ユニット100による空調運転を再開する。これにより、空気調和装置は、空調運転を早期に再開することが可能となるので室内の快適性が損なわれることを抑制することができる。 For example, in the case where the hot water supply controller 500 has set a hot water temperature that is such that it is difficult to complete boiling in the hot water supply operation by the heat source unit 100, the air conditioner is configured such that the water temperature rises to the set value during the hot water supply operation of the heat source unit 100. In this case, boiling operation using the electric heater 306 is started. The setting value for starting the boiling operation by the electric heater 306 is stored in the storage unit 112d. While the electric heater 306 is in the boiling operation, the hot water supply request from the hot water supply control device 308 to the heat source control device 112 continues to be output. If no air conditioning request is output to the heat source control device 112 during the heating operation by the electric heater 306, the heat source unit 100 stops. On the other hand, if an air conditioning request is being output from either one of the air conditioning units 200A and 200B to the heat source control device 112, the heat source control device 112 will be able to Restart air conditioning operation. As a result, the air conditioner can quickly resume air conditioning operation, so that indoor comfort can be prevented from being impaired.
 なお、給湯運転における電気ヒータ306による加熱を開始する設定値(閾値)は、例えば55℃として設定される。冷媒ガスとしてR32やR410Aを用いている場合、沸き上げ温度が55℃に到達してくると冷媒圧力が4.0MPaGに近づき、熱源ユニット100の許容最大冷媒圧力に近づくためである。 Note that the set value (threshold value) for starting heating by the electric heater 306 during hot water supply operation is set, for example, to 55°C. This is because when R32 or R410A is used as the refrigerant gas, when the boiling temperature reaches 55° C., the refrigerant pressure approaches 4.0 MPaG and approaches the maximum allowable refrigerant pressure of the heat source unit 100.
 図3は、実施の形態における空気調和装置による具体的な動作手順の一例を示すフローチャートである。空気調和装置は、空調コントローラ400から出力された暖房要求に基づいて暖房運転を行う(ステップS10)。暖房運転中に貯湯タンク304における水温が低下し、給湯制御装置308から熱源制御装置112に給湯要求が出力される(ステップS12)。給湯要求に対応した給湯温度の設定値(設定給湯温度とも記載する。)は、例えば60℃である。熱源制御装置112は、給湯要求を受け付けたことに応じて暖房運転を中断し、熱源ユニット100による給湯運転を開始する(ステップS14)。 FIG. 3 is a flowchart illustrating an example of a specific operation procedure by the air conditioner according to the embodiment. The air conditioner performs heating operation based on the heating request output from the air conditioning controller 400 (step S10). During the heating operation, the water temperature in the hot water storage tank 304 decreases, and a hot water supply request is output from the hot water supply control device 308 to the heat source control device 112 (step S12). The set value of the hot water supply temperature (also referred to as set hot water supply temperature) corresponding to the hot water supply request is, for example, 60°C. In response to receiving the hot water supply request, the heat source control device 112 interrupts the heating operation and starts the hot water supply operation by the heat source unit 100 (step S14).
 熱源制御装置112は、熱源ユニット100による給湯要求時間が暖房要求時における最大給湯連続時間(第1の連続運転時間)以下であるか否かを判定する(ステップS16)。なお、暖房要求時における最大給湯連続時間を、閾値Tmax(H)とも記載する。熱源制御装置112は、熱源ユニット100による給湯運転時間が閾値Tmax(H)以下である場合(ステップS16:YES)、貯湯タンク304における水温が閾値温度(例えば55℃)以下であるか否かを判定する(ステップS18)。水温の閾値温度は、例えば設定給湯温度である60℃よりも低い55℃である。閾値温度と設定給湯温度との差は、電気ヒータ306による加熱で上昇させる温度幅であり、任意の幅でよい。貯湯タンク304における水温が閾値である場合(ステップS18:YES)、熱源制御装置112は、ステップS16に処理を戻す。貯湯タンク304における水温が閾値ではない場合(ステップS18:NO)、熱源制御装置112は、電気ヒータ306による加熱(沸き上げ運転)を開始し、熱源ユニット100による暖房運転を開始(許可)する(ステップS24)。熱源制御装置112は、沸き上げ運転中に給湯要求がなくなった場合に電気ヒータ306を停止し、暖房運転を継続する(ステップS26)。 The heat source control device 112 determines whether the hot water supply request time by the heat source unit 100 is less than or equal to the maximum hot water supply continuous time (first continuous operation time) at the time of heating request (step S16). Note that the maximum continuous hot water supply time at the time of a heating request is also described as a threshold value Tmax (H). When the hot water supply operation time by the heat source unit 100 is equal to or less than the threshold value Tmax (H) (step S16: YES), the heat source control device 112 determines whether the water temperature in the hot water storage tank 304 is equal to or less than the threshold temperature (for example, 55° C.). Determination is made (step S18). The threshold temperature of the water temperature is, for example, 55°C, which is lower than the set hot water supply temperature of 60°C. The difference between the threshold temperature and the set hot water supply temperature is the temperature range to be increased by heating by the electric heater 306, and may be any range. When the water temperature in the hot water storage tank 304 is the threshold value (step S18: YES), the heat source control device 112 returns the process to step S16. When the water temperature in the hot water storage tank 304 is not the threshold value (step S18: NO), the heat source control device 112 starts heating (boiling operation) by the electric heater 306, and starts (permits) heating operation by the heat source unit 100 ( Step S24). The heat source control device 112 stops the electric heater 306 and continues the heating operation when there is no longer a request for hot water supply during the heating operation (step S26).
 このように、熱源制御装置112は、給湯運転により水温が上昇し、水温が閾値温度に到達した場合に熱源ユニット100による給湯運転を終了すると同時に電気ヒータ306による沸き上げを開始する。これにより熱源制御装置112は、熱源ユニット100による暖房運転を再開することができる。その後、空気調和装置は、貯湯タンク304における水温が設定給湯温度に達して給湯要求がなくなると、電気ヒータ306による沸き上げを終了し、暖房運転を継続して実施する。 In this manner, the heat source control device 112 ends the hot water supply operation by the heat source unit 100 and simultaneously starts boiling by the electric heater 306 when the water temperature rises due to the hot water supply operation and the water temperature reaches the threshold temperature. Thereby, the heat source control device 112 can restart the heating operation by the heat source unit 100. Thereafter, when the water temperature in the hot water storage tank 304 reaches the set hot water supply temperature and there is no longer a request for hot water supply, the air conditioner ends boiling by the electric heater 306 and continues the heating operation.
 空気調和装置によれば、給湯要求を空調要求より優先としているために給湯要求が出力されている期間において空調運転を実施することはできないが、水温が60℃に達する前に空調運転を再開することができる。この結果、空気調和装置によれば、室内の快適性低下を抑制することができる。 According to the air conditioner, hot water supply requests are prioritized over air conditioning requests, so air conditioning cannot be performed during the period when hot water requests are being output, but air conditioning will resume before the water temperature reaches 60°C. be able to. As a result, the air conditioner can suppress a decrease in indoor comfort.
 熱源制御装置112は、熱源ユニット100による給湯要求時間が閾値Tmax(H)以下ではない場合(ステップS16:NO)、熱源ユニット100による給湯運転を中断し、暖房運転を再開する(ステップS20)。その後、熱源制御装置112は、熱源ユニット100による暖房運転時間が最大空調連続時間以下であるか否かを判定する(ステップS22)。熱源制御装置112は、暖房運転時間が給湯要求時における最大空調連続時間以下である場合(ステップS22:YES)、熱源ユニット100による給湯運転の中断および暖房運転の継続を維持する。熱源制御装置112は、暖房運転時間が給湯要求時における最大空調連続時間以下でない場合(ステップS22:NO)、暖房運転を中断し、給湯運転を再開する(ステップS14)。 If the requested hot water supply time by the heat source unit 100 is not equal to or less than the threshold Tmax (H) (step S16: NO), the heat source control device 112 interrupts the hot water supply operation by the heat source unit 100 and restarts the heating operation (step S20). After that, the heat source control device 112 determines whether the heating operation time by the heat source unit 100 is equal to or less than the maximum continuous air conditioning time (step S22). When the heating operation time is less than or equal to the maximum continuous air conditioning time at the time of the hot water supply request (step S22: YES), the heat source control device 112 maintains the interruption of the hot water supply operation and the continuation of the heating operation by the heat source unit 100. If the heating operation time is not equal to or less than the maximum continuous air conditioning time at the time of the hot water supply request (step S22: NO), the heat source control device 112 interrupts the heating operation and restarts the hot water supply operation (step S14).
 なお、ステップS18においては貯湯タンク304における水温に基づいて電気ヒータ306による沸き上げ運転を開始するか否かを判定しているが、これに限定されない。空気調和装置は、給湯運転時の凝縮温度が設定値以上となった場合に熱源ユニット100による給湯運転から電気ヒータ306による沸き上げ運転への切り換えを判定してよい。給湯運転時の凝縮温度の設定値は、例えば58℃である。給湯運転時の凝縮温度は、給湯運転中に圧力センサ120(高圧圧力センサ)により検出された圧力における飽和温度である。外気温度が低い場合は圧縮機102に吸入される冷媒圧力が低くなり、貯湯タンク304の水温に拘わらず外気温度が低いほど凝縮温度が低くなる。このため、給湯運転時の凝縮温度が設定値を超えたか否かに基づいて熱源ユニット100による給湯運転から電気ヒータ306による沸き上げ運転への切り換えを判定することで、より長い時間、熱源ユニット100による給湯運転を継続することができる。この結果、空気調和装置によれば、湯の沸き上げに要する消費電力量を抑制することができる。 Note that in step S18, it is determined whether or not to start the boiling operation using the electric heater 306 based on the water temperature in the hot water storage tank 304, but the present invention is not limited to this. The air conditioner may determine whether to switch from the hot water supply operation using the heat source unit 100 to the boiling operation using the electric heater 306 when the condensation temperature during the hot water supply operation becomes equal to or higher than a set value. The set value of the condensing temperature during hot water supply operation is, for example, 58°C. The condensing temperature during the hot water supply operation is the saturation temperature at the pressure detected by the pressure sensor 120 (high pressure sensor) during the hot water supply operation. When the outside air temperature is low, the pressure of the refrigerant sucked into the compressor 102 becomes low, and the lower the outside air temperature is, the lower the condensation temperature becomes, regardless of the water temperature in the hot water storage tank 304. Therefore, by determining whether to switch from the hot water supply operation by the heat source unit 100 to the boiling operation by the electric heater 306 based on whether the condensation temperature during the hot water supply operation exceeds the set value, the heat source unit 100 can be operated for a longer time. hot water supply operation can be continued. As a result, the air conditioner can reduce the amount of power consumed for boiling water.
 なお、ステップS18において給湯運転時の凝縮温度が設定値以上となることに基づいて電気ヒータ306による沸き上げ運転を開始した場合、圧縮機102の回転周波数を低くすると貯湯タンク304における水に対する加熱能力が小さくなるため、給湯運転時の凝縮温度が低くなる。給湯運転時の凝縮温度が低くなる場合、給湯運転期間が長くなり、室内温度が変化して快適性が低下する可能性がある。給湯運転時における圧縮機102の回転周波数の最低値を、空調運転時の回転周波数の最低値よりも大きくする。これにより空気調和装置は、給湯運転時の凝縮温度が設定値に達するまでの期間が長くなることを抑制して、室内の快適性が低下することを抑制することができる。 Note that when the boiling operation by the electric heater 306 is started based on the fact that the condensation temperature during the hot water supply operation becomes equal to or higher than the set value in step S18, when the rotation frequency of the compressor 102 is lowered, the heating capacity for water in the hot water storage tank 304 decreases. is smaller, so the condensation temperature during hot water supply operation becomes lower. If the condensing temperature during hot water supply operation becomes low, the hot water supply operation period becomes longer, and indoor temperature may change, leading to a decrease in comfort. The lowest value of the rotational frequency of the compressor 102 during hot water supply operation is made larger than the lowest value of the rotational frequency during air conditioning operation. Thereby, the air conditioner can suppress the period until the condensation temperature reaches the set value during the hot water supply operation from becoming longer, thereby suppressing a decrease in indoor comfort.
 空気調和装置は、電気ヒータ306による沸き上げ運転を開始すると同時に空調運転を再開することで室内の快適性の低下を抑制しているが、貯湯タンク304における水温が低く熱源ユニット100による給湯運転期間が長くなると室内の快適性が低下する場合がある。これを回避するため、空気調和装置は、熱源ユニット100による給湯運転期間が暖房要求時の給湯連続運転時間に達した場合に熱源ユニット100による給湯運転を中断して暖房運転を再開する(ステップS18、20)。その後、空気調和装置は、暖房運転期間が給湯要求時最大空調連続時間に達した場合、再度暖房運転を中断し、熱源ユニット100による給湯運転を再開する。このように空気調和装置は、暖房運転と給湯運転とを交互に繰り返すことで室内の快適性の低下を抑制することができる。しかし、暖房運転の負荷が高い場合には暖房運転の中断中における室内の温度変化速度が高いため、空気調和装置は、電気ヒータ306による沸き上げ運転の開始時に暖房運転を再開することができる。これにより空気調和装置によれば、空調運転の負荷が高くても室内の快適性の低下を更に抑制することができる。 The air conditioner suppresses a decrease in indoor comfort by restarting air conditioning operation at the same time as the electric heater 306 starts boiling operation, but the water temperature in the hot water storage tank 304 is low and the hot water supply operation period by the heat source unit 100 is interrupted. If the time period becomes longer, indoor comfort may decrease. To avoid this, the air conditioner interrupts the hot water supply operation by the heat source unit 100 and restarts the heating operation when the hot water supply operation period by the heat source unit 100 reaches the hot water supply continuous operation time at the time of heating request (step S18 , 20). Thereafter, when the heating operation period reaches the maximum continuous air conditioning time when hot water supply is requested, the air conditioner interrupts the heating operation again and restarts the hot water supply operation by the heat source unit 100. In this way, the air conditioner can suppress a decrease in indoor comfort by alternately repeating heating operation and hot water supply operation. However, when the load of the heating operation is high, the rate of change in indoor temperature during the interruption of the heating operation is high, so that the air conditioner can restart the heating operation when the electric heater 306 starts the heating operation. Thereby, according to the air conditioner, even if the load of air conditioning operation is high, it is possible to further suppress a decrease in indoor comfort.
 図4は、実施の形態における空気調和装置の動作を説明するための図であり、(a)は熱源ユニット100の運転モードの時間変化を示す図であり、(b)は貯湯タンク304における水温の時間変化を示す図であり、(c)は電気ヒータ306の動作の時間変化を示す図である。空気調和装置の動作を上述した図3における処理と共に説明する。 4A and 4B are diagrams for explaining the operation of the air conditioner according to the embodiment, in which (a) is a diagram showing changes over time in the operation mode of the heat source unit 100, and (b) is a diagram showing the water temperature in the hot water storage tank 304. (c) is a diagram showing a change in the operation of the electric heater 306 over time. The operation of the air conditioner will be explained together with the process in FIG. 3 described above.
 空気調和装置は、電気ヒータ306による沸き上げ運転を開始した後に暖房運転を許可(再開)すること室内の快適性の低下を抑制している(ステップS24)。しかし、電気ヒータ306における水温の上昇速度が遅いと給湯運転を再開するまでに時間がかかって室内の快適性が低下してしまう。これに対し空気調和装置は、給湯要求によって暖房運転をしている最中に給湯要求が出力された時(t1)には給湯運転を開始し、貯湯タンク304における水温が55℃以下である場合には閾値Tmax(H)に達するまで給湯運転を継続する(ステップS16、18)。給湯運転時間が閾値Tmax(H)に達した時(t2)には給湯運転を中断して暖房運転を再開する(ステップS20)。その後、暖房運転時間が閾値THmaxに達していない場合には暖房運転を継続する(ステップS22)。暖房運転時間が閾値THmaxに達した時(t3)には暖房運転を中断して給湯運転を再開する(ステップS14)。このような動作を繰り返すことで、空気調和装置は、暖房運転と給湯運転との交互運転を行うことができる。 The air conditioner suppresses a decrease in indoor comfort by permitting (resuming) the heating operation after starting the heating operation using the electric heater 306 (step S24). However, if the rate of increase in the water temperature in the electric heater 306 is slow, it takes time to restart the hot water supply operation, resulting in a decrease in indoor comfort. On the other hand, the air conditioner starts hot water supply operation when a hot water supply request is output (t1) while performing heating operation due to a hot water supply request, and if the water temperature in the hot water storage tank 304 is 55 degrees Celsius or lower, Then, the hot water supply operation continues until the threshold value Tmax (H) is reached (steps S16 and 18). When the hot water supply operation time reaches the threshold value Tmax (H) (t2), the hot water supply operation is interrupted and the heating operation is restarted (step S20). Thereafter, if the heating operation time has not reached the threshold value THmax, the heating operation is continued (step S22). When the heating operation time reaches the threshold value THmax (t3), the heating operation is interrupted and the hot water supply operation is restarted (step S14). By repeating such operations, the air conditioner can perform alternate operations of heating operation and hot water supply operation.
 暖房運転と給湯運転との交互運転において、貯湯タンク304における水温が55℃に達した時(t4、ステップS18)、電気ヒータ306をオンに切り換えて沸き上げ運転を開始し、暖房運転を再開する(ステップS24)。電気ヒータ306をオンにすると貯湯タンク304における水温は上昇し続けて設定給湯温度である60℃に達した時(t5)、給湯要求がなくなり電気ヒータ306による加熱を終了する(ステップS26)。その後、空気調和装置は、給湯要求がなくなるまで暖房運転を継続して行う。 During the alternating operation between the heating operation and the hot water supply operation, when the water temperature in the hot water storage tank 304 reaches 55° C. (t4, step S18), the electric heater 306 is turned on to start the boiling operation and restart the heating operation. (Step S24). When the electric heater 306 is turned on, the water temperature in the hot water storage tank 304 continues to rise, and when it reaches the set hot water supply temperature of 60° C. (t5), the hot water supply request disappears and heating by the electric heater 306 ends (step S26). Thereafter, the air conditioner continues to perform heating operation until there is no longer a demand for hot water supply.
 以上のように空気調和装置によれば、暖房運転と給湯運転との交互運転を行っても水温が設定給湯温度に達せずに給湯運転時間が長くなっても電気ヒータ306による加熱を行うことで暖房運転を再開することができる。この結果、空気調和装置は、貯湯タンク304中の湯が少なくなることを抑制することと、室内の快適性の低下を抑制することとの両立を実現することができる。 As described above, according to the air conditioner, even if the water temperature does not reach the set hot water supply temperature even if the heating operation and hot water supply operation are performed alternately, and the hot water supply operation time becomes longer, heating by the electric heater 306 can be performed. Heating operation can be resumed. As a result, the air conditioner can achieve both of suppressing a decrease in hot water in the hot water storage tank 304 and suppressing a decrease in indoor comfort.
 一方で、空気調和装置は、暖房運転と給湯運転との交互運転において暖房運転を行っている場合には電気ヒータ306による加熱を禁止する(ステップS20)。空気調和装置は、冷房運転と給湯運転との交互運転において冷房運転を行っている場合には電気ヒータ306による加熱を禁止する(ステップS20)。これにより空気調和装置は、電気ヒータ306による加熱よりも低い電力で沸き上げを行うことができ、省エネルギー性能を高くすることができる。この結果、空気調和装置によれば、貯湯タンク304中の湯が少なくなることを抑制することと、室内の快適性の低下を抑制することと、省エネルギー性能を高くすることとを同時に達成することができる。 On the other hand, the air conditioner prohibits heating by the electric heater 306 when performing the heating operation in the alternating operation of the heating operation and the hot water supply operation (step S20). The air conditioner prohibits heating by the electric heater 306 when performing the cooling operation in the alternating operation between the cooling operation and the hot water supply operation (step S20). As a result, the air conditioner can heat up the air with lower power than heating by the electric heater 306, and can improve energy saving performance. As a result, the air conditioner can simultaneously suppress the amount of hot water in the hot water storage tank 304 from decreasing, suppress a decrease in indoor comfort, and improve energy-saving performance. I can do it.
 上述した実施の形態において暖房運転と給湯運転との交互運転(第1の交互運転)を行うが、「暖房要求」を「冷房要求」と読み替え、「暖房運転」を「冷房運転」と読み替え、「暖房運転と給湯運転との交互運転」を、「冷房運転と給湯運転との交互運転(第2の交互運転)」と読み替え、「暖房要求時における最大給湯連続時間(閾値Tmax(H))」を「冷房要求時における最大給湯連続時間(閾値Tmax(C)、第2の連続運転時間)」と読み替えてよい。これにより空気調和装置は、冷房要求と給湯要求とが同時に発生した場合であっても、貯湯タンク304中の湯が少なくなることを抑制することと、室内の快適性の低下を抑制することとの両立を実現することができる。 In the embodiment described above, the heating operation and the hot water supply operation are alternately operated (first alternate operation), but "heating request" is read as "cooling request", "heating operation" is read as "cooling operation", "Alternate operation between heating operation and hot water supply operation" should be read as "alternate operation between cooling operation and hot water supply operation (second alternate operation)", and "maximum continuous hot water supply time when heating is requested (threshold value Tmax (H))" ” may be read as “maximum continuous hot water supply time (threshold value Tmax (C), second continuous operation time) at the time of cooling request”. As a result, the air conditioner can suppress the amount of hot water in the hot water storage tank 304 from decreasing and suppress a decrease in indoor comfort even when a request for air conditioning and a request for hot water supply occur at the same time. It is possible to achieve both.
 以下、交互運転における給湯運転の連続運転時間について説明する。
 空気調和装置において、冬期における暖房運転の負荷と夏期における冷房運転の負荷との何れかが高いかは、空気調和装置の設置環境により変わる。例えば、夏期に室内に日光が良く入り外気温度の平均が高い場合、交互運転における冷房運転の中断期間において室温の上昇速度が高くなる。一方、冬期に外気温度の平均が低い場合、交互運転における暖房運転の中断期間において室温の下降速度が高くなる。
The continuous operation time of the hot water supply operation in the alternate operation will be explained below.
In an air conditioner, whether the load of heating operation in winter or the load of cooling operation in summer is higher depends on the installation environment of the air conditioner. For example, in the summer when sunlight enters the room well and the average temperature of the outside air is high, the rate of rise in the room temperature increases during the interruption period of the cooling operation in the alternate operation. On the other hand, when the average outside air temperature is low in winter, the rate of decrease in the room temperature increases during the interruption period of the heating operation in the alternate operation.
 このため、空気調和装置は、暖房運転と給湯運転との交互運転(ステップS14~ステップS22)における閾値Tmax(H)と、冷房運転と給湯運転との交互運転(ステップS14~ステップS22)における閾値Tmax(C)とが異なるように制御を行う。空気調和装置は、例えば、閾値Tmax(H)と、閾値Tmax(C)とを、空気調和装置の設置環境に基づいて異なる時間に設定しておき、記憶部112dに記憶しておく。空気調和装置は、暖房運転を行っている場合、図3におけるステップS16において閾値Tmax(H)の情報を記憶部112dから読み出し、給湯運転の連続運転時間を制限する。空気調和装置は、冷房運転を行っている場合、図3におけるステップS16において閾値Tmax(C)の情報を記憶部112dから読み出し、給湯運転の連続運転時間を制限する。これにより空気調和装置は、空気調和装置の設置環境に基づいて交互運転における最大給湯連続時間を、暖房運転と冷房運転とを別々に調整することができる。この結果、空気調和装置は、夏期と冬期の両方で室内の快適性を確保することができる。 Therefore, the air conditioner sets the threshold value Tmax (H) in the alternating operation between heating operation and hot water supply operation (step S14 to step S22) and the threshold value Tmax (H) in the alternating operation between cooling operation and hot water supply operation (step S14 to step S22). Control is performed so that Tmax(C) is different. For example, the air conditioner sets the threshold value Tmax(H) and the threshold value Tmax(C) to different times based on the installation environment of the air conditioner, and stores them in the storage unit 112d. When the air conditioner is performing the heating operation, in step S16 in FIG. 3, the air conditioner reads information on the threshold value Tmax (H) from the storage unit 112d, and limits the continuous operation time of the hot water supply operation. When the air conditioner is performing the cooling operation, in step S16 in FIG. 3, the air conditioner reads information on the threshold value Tmax (C) from the storage unit 112d, and limits the continuous operation time of the hot water supply operation. Thereby, the air conditioner can separately adjust the maximum continuous hot water supply time in the alternate operation for the heating operation and the cooling operation based on the installation environment of the air conditioner. As a result, the air conditioner can ensure indoor comfort both in summer and winter.
 冬期(暖房シーズン)における設置環境が、例えば、室内温度を20℃、外気温度を7℃であると想定した場合、室内温度と外気温度の温度差は13℃となる。夏季(冷房シーズン)における設置環境が、例えば、室内温度を27℃、外気温度を35℃であると想定した場合、室内温度と外気温度の温度差は8℃となる。このように、夏季よりも冬期の方が内外の温度差が高いために、空調負荷は冷房運転よりも暖房運転の方が高くなる。このため、空気調和装置は、閾値Tmax(C)よりも、閾値Tmax(H)を短くする。これにより空気調和装置は、内外温度差が大きい暖房シーズンにおける室内の快適性低下を実現することができる。 Assuming that the installation environment in winter (heating season) is, for example, an indoor temperature of 20°C and an outside air temperature of 7°C, the temperature difference between the indoor temperature and the outside air temperature will be 13°C. Assuming that the installation environment in summer (cooling season) is, for example, an indoor temperature of 27°C and an outside air temperature of 35°C, the temperature difference between the indoor temperature and the outside air temperature is 8°C. In this way, since the temperature difference between inside and outside is higher in winter than in summer, the air conditioning load is higher in heating operation than in cooling operation. Therefore, the air conditioner sets the threshold value Tmax(H) shorter than the threshold value Tmax(C). As a result, the air conditioner can reduce indoor comfort during the heating season when there is a large difference in temperature between the inside and outside.
 図5は、実施の形態における外気温度と閾値Tmax(H)との関係の一例を示す図である。空気調和装置は、閾値Tmax(H)を、外気温度に基づいて変化させてよい。空気調和装置は、外気温度が低いほど閾値Tmax(H)を短くする。外気温度が低いほど暖房負荷が高くなり、給湯運転中に室温が低下する可能性が大きくなるためである。 FIG. 5 is a diagram showing an example of the relationship between the outside air temperature and the threshold value Tmax(H) in the embodiment. The air conditioner may change the threshold value Tmax(H) based on the outside temperature. The air conditioner shortens the threshold value Tmax(H) as the outside air temperature decreases. This is because the lower the outside air temperature, the higher the heating load, and the greater the possibility that the room temperature will drop during hot water supply operation.
 図6は、実施の形態における外気温度と閾値Tmax(C)との関係の一例を示す図である。空気調和装置は、閾値Tmax(C)を、外気温度に基づいて変化させてよい。空気調和装置は、外気温度が高いほど閾値Tmax(C)を短くする。外気温度が高いほど冷房負荷が高くなり、給湯運転中に室温が上昇する可能性が大きくなるためである。 FIG. 6 is a diagram showing an example of the relationship between the outside air temperature and the threshold value Tmax (C) in the embodiment. The air conditioner may change the threshold value Tmax(C) based on the outside temperature. The air conditioner shortens the threshold value Tmax (C) as the outside temperature increases. This is because the higher the outside air temperature, the higher the cooling load, and the greater the possibility that the room temperature will rise during hot water supply operation.
 空気調和装置は、図5に示した外気温度と閾値Tmax(H)との関係、および図6に示した外気温度と閾値Tmax(C)との関係を、記憶部112dに記憶しておく。これにより空気調和装置は、交互運転における給湯運転時間を、外気温度の検出値に対応した値に制限することができる。外気温度に対する閾値Tmax(H)と、閾値Tmax(C)とは、熱源制御装置112における記憶部112dに記憶しておき、外気温度の検出値に対して閾値Tmax(H)および閾値Tmax(C)を決定できるようにしておく。なお、空気調和装置は、閾値Tmax(H)および閾値Tmax(C)のうち双方を外気温度に基づいて変化させてよいが、少なくとも一方を変化させてよい。 The air conditioner stores the relationship between the outside air temperature and the threshold value Tmax(H) shown in FIG. 5 and the relationship between the outside air temperature and the threshold value Tmax(C) shown in FIG. 6 in the storage unit 112d. Thereby, the air conditioner can limit the hot water supply operation time in the alternate operation to a value corresponding to the detected value of the outside air temperature. The threshold value Tmax(H) and the threshold value Tmax(C) for the outside air temperature are stored in the storage unit 112d of the heat source control device 112, and the threshold value Tmax(H) and the threshold value Tmax(C) are stored for the detected value of the outside air temperature. ) can be determined. Note that the air conditioner may change both of the threshold value Tmax(H) and the threshold value Tmax(C) based on the outside air temperature, or may change at least one of the threshold values Tmax(H) and Tmax(C).
 具体的に、空気調和装置は、以下の式の関係性と係数a、b、cおよびdを記憶してよい。係数aおよびbは、図5のような外気温度に対するTmax(H)の変化により設定される。係数cおよびdは、図6のような外気温度に対するTmax(C)の変化により設定される。
 Tmax(H)=b+a×外気温度
 Tmax(C)=d-c×外気温度
 空気調和装置は、閾値Tmax(H)および閾値Tmax(C)を外気温度に基づいて変更することで、空調負荷の変化に応じて適切な給湯運転時間を設定することができる。
Specifically, the air conditioner may store the relationships and coefficients a, b, c, and d of the following equations. The coefficients a and b are set based on the change in Tmax (H) with respect to the outside temperature as shown in FIG. The coefficients c and d are set based on the change in Tmax (C) with respect to the outside temperature as shown in FIG.
Tmax (H) = b + a x outside air temperature Tmax (C) = d - c x outside air temperature The air conditioner reduces the air conditioning load by changing the threshold Tmax (H) and the threshold Tmax (C) based on the outside air temperature. Appropriate hot water supply operation time can be set according to the change.
 空気調和装置は、ステップS22において、交互運転中に室内温度が設定温度に達した場合、暖房運転時間が最大空調連続時間に達していなくても給湯運転を再開してよい。これにより空気調和装置によれば、最大空調連続時間に達することを待つことなく早期に給湯運転を再開することができる。この結果、空気調和装置によれば、貯湯タンク304における湯量が少なくなることを抑制することができる。 In step S22, if the indoor temperature reaches the set temperature during the alternate operation, the air conditioner may restart the hot water supply operation even if the heating operation time has not reached the maximum continuous air conditioning time. As a result, the air conditioner can restart the hot water supply operation at an early stage without waiting for the maximum continuous air conditioning time to be reached. As a result, the air conditioner can suppress the amount of hot water in the hot water storage tank 304 from decreasing.
 空気調和装置は、ステップS18において、電気ヒータ306の加熱開始タイミングを貯湯タンクの水温で判定しているが、これに代えて、給湯凝縮温度に基づいて電気ヒータ306の加熱開始タイミングを判定してよい。給湯凝縮温度は、給湯運転中の圧力センサ120(高圧圧力センサ)による検出圧力の飽和温度である。給湯運転において貯湯タンク304における水温が高くなってくると給湯凝縮温度も増加する。空気調和装置は、給湯凝縮温度が電気ヒータ306による加熱を開始する凝縮温度以上(閾値、例えば60℃)となった場合に、電気ヒータ306による加熱を開始する。熱源ユニット100において運転可能な圧力には上限値があるため、空気調和装置は、給湯凝縮温度を用いて電気ヒータ306による加熱開始を判定とすることで熱源ユニット100の運転可能な範囲まで給湯運転を継続することができる。これにより空気調和装置は、給湯運転における消費電力を更に抑制することができる。 In step S18, the air conditioner determines the heating start timing of the electric heater 306 based on the water temperature in the hot water storage tank, but instead of this, the air conditioner determines the heating start timing of the electric heater 306 based on the hot water condensing temperature. good. The hot water supply condensing temperature is the saturation temperature of the pressure detected by the pressure sensor 120 (high pressure sensor) during hot water supply operation. During hot water supply operation, as the water temperature in the hot water storage tank 304 increases, the hot water condensation temperature also increases. The air conditioner starts heating by the electric heater 306 when the hot water condensing temperature becomes equal to or higher than the condensing temperature at which the electric heater 306 starts heating (threshold value, for example, 60° C.). Since there is an upper limit to the operating pressure in the heat source unit 100, the air conditioner uses the hot water supply condensation temperature to determine the start of heating by the electric heater 306, and thereby maintains the hot water supply operation up to the operating range of the heat source unit 100. can be continued. Thereby, the air conditioner can further suppress power consumption during hot water supply operation.
 さらに、空気調和装置において、ステップS10以降の空調運転時の圧縮機102の最低周波数よりも、ステップS14以降の給湯運転時の圧縮機102の最低周波数を高くする。空気調和装置は、冷房運転と暖房運転の少なくとも一方における圧縮機102の最低周波数よりも、給湯運転時における圧縮機102の最低周波数を高くすればよい。圧縮機102の運転周波数は空調負荷が高くなるほど高くなる。これに対し、空気調和装置は、例えば暖房運転時と冷房運転時とで外気温度が同じであっても、圧縮機102が運転する最低周波数を、空調運転時よりも給湯運転時の方を高くする。 Further, in the air conditioner, the lowest frequency of the compressor 102 during the hot water supply operation after step S14 is set higher than the lowest frequency of the compressor 102 during the air conditioning operation after step S10. In the air conditioner, the lowest frequency of the compressor 102 during the hot water supply operation may be set higher than the lowest frequency of the compressor 102 during at least one of the cooling operation and the heating operation. The operating frequency of the compressor 102 increases as the air conditioning load increases. In contrast, the air conditioner sets the minimum frequency at which the compressor 102 operates to be higher during hot water supply operation than during air conditioning operation, for example, even if the outside temperature is the same during heating operation and cooling operation. do.
 給湯運転時において圧縮機102の運転周波数を低くしてしまうと沸き上げの加熱能力が低くなってしまい、給湯が完了するための長い時間を要してしまう。一方、空調運転における負荷が低い時に圧縮機102の運転周波数を抑えるように最低周波数を小さくできるようにしておく必要がある。空気調和装置によれば、給湯運転時における圧縮機102の最低周波数を高く設定しておくことで、加熱能力が極端に低くなることを抑制することができる。また、空気調和装置によれば、給湯凝縮温度を早めに高くすることで、電気ヒータ306による加熱を早期に開始することができる。これにより空気調和装置によれば、貯湯タンク304における湯量が少なくなることを抑制することができる。 If the operating frequency of the compressor 102 is lowered during hot water supply operation, the heating capacity for boiling will be reduced and it will take a long time to complete hot water supply. On the other hand, it is necessary to be able to reduce the lowest frequency so as to suppress the operating frequency of the compressor 102 when the load during air conditioning operation is low. According to the air conditioner, by setting the minimum frequency of the compressor 102 high during hot water supply operation, it is possible to prevent the heating capacity from becoming extremely low. Further, according to the air conditioner, heating by the electric heater 306 can be started early by raising the hot water condensing temperature early. Thereby, according to the air conditioner, it is possible to suppress the amount of hot water in the hot water storage tank 304 from decreasing.
 以上のように、空気調和装置によれば、設置環境に季節の変化があっても、空調性能および給湯性能を両立したユーザの満足度が高い給湯空調システムを提供することが可能となる。 As described above, according to the air conditioner, it is possible to provide a hot water supply air conditioning system that achieves both air conditioning performance and hot water supply performance and has high user satisfaction, even if the installation environment changes with the seasons.
 以上、本開示の実施の形態について図面を参照して詳述してきたが、具体的な構成は上述の実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiments of the present disclosure have been described above in detail with reference to the drawings, the specific configuration is not limited to the above-described embodiments, and includes designs within the scope of the gist of the present disclosure. It will be done.
1、1a、1b、1c…冷媒配管、2a、2b、2c…冷媒配管、7a、7b…冷媒配管、100…熱源ユニット、102…圧縮機、104…四方弁、106…熱源側熱交換器、108…熱源側送風機、110…アキュムレータ、112…熱源制御装置、112a…測定部、112b…通信部、112c…制御部、112d…記憶部、120…圧力センサ、122、124、126、128…温度センサ、130a、130b、130c…減圧機構、200、200A、200B…空調ユニット、202…熱交換器、204…送風機、206…空調制御装置、206a…測定部、206b…制御部、206c…通信部、210、212、214…温度センサ、300…給湯ユニット、302…熱交換器、304…貯湯タンク、306…電気ヒータ、308…給湯制御装置、308a…測定部、308b…制御部、308c…通信部、310…温度センサ、312…温度センサ、400…空調コントローラ、410…入力部、420…通信部、430…表示部、500…給湯コントローラ、510…入力部、520…通信部、530…表示部 1, 1a, 1b, 1c... Refrigerant piping, 2a, 2b, 2c... Refrigerant piping, 7a, 7b... Refrigerant piping, 100... Heat source unit, 102... Compressor, 104... Four-way valve, 106... Heat source side heat exchanger, 108...Heat source side blower, 110...Accumulator, 112...Heat source control device, 112a...Measuring section, 112b...Communication section, 112c...Control section, 112d...Storage section, 120...Pressure sensor, 122, 124, 126, 128...Temperature Sensor, 130a, 130b, 130c...pressure reduction mechanism, 200, 200A, 200B...air conditioning unit, 202...heat exchanger, 204...air blower, 206...air conditioning control device, 206a...measuring unit, 206b...control unit, 206c...communication unit , 210, 212, 214...Temperature sensor, 300...Hot water supply unit, 302...Heat exchanger, 304...Hot water storage tank, 306...Electric heater, 308...Hot water supply control device, 308a...Measurement section, 308b...Control section, 308c...Communication Part, 310...Temperature sensor, 312...Temperature sensor, 400...Air conditioning controller, 410...Input section, 420...Communication section, 430...Display section, 500...Hot water supply controller, 510...Input section, 520...Communication section, 530...Display Department

Claims (10)

  1.  冷媒を循環させる冷媒サイクルを含む熱源機と、
     前記冷媒と室内空気を熱交換することで暖房運転および冷房運転を行う空調ユニットと、
     貯湯タンクを備え、前記冷媒による加熱にて給湯運転を行う給湯ユニットと、
     暖房要求と給湯要求とが同時に出力された場合に前記暖房運転と前記給湯運転とを交互に行う第1の交互運転を行い、冷房要求と前記給湯要求とが同時に出力された場合に前記冷房運転と前記給湯運転とを交互に行う第2の交互運転を行う制御部と、を備え、
     前記制御部は、前記第1の交互運転における前記給湯運転の第1の連続運転時間と、前記第2の交互運転における前記給湯運転の第2の連続運転時間とが異なるように制御を行う、空気調和装置。
    a heat source machine including a refrigerant cycle that circulates refrigerant;
    an air conditioning unit that performs heating operation and cooling operation by exchanging heat between the refrigerant and indoor air;
    a hot water supply unit that includes a hot water storage tank and performs hot water supply operation by heating with the refrigerant;
    When a heating request and a hot water supply request are output at the same time, a first alternate operation is performed in which the heating operation and the hot water supply operation are performed alternately, and when a cooling request and the hot water supply request are output at the same time, the cooling operation is performed. and a control unit that performs a second alternate operation that alternately performs the hot water supply operation,
    The control unit performs control such that a first continuous operation time of the hot water supply operation in the first alternate operation is different from a second continuous operation time of the hot water supply operation in the second alternate operation. Air conditioner.
  2.  前記制御部は、前記第1の連続運転時間を、前記第2の連続運転時間より短くする、請求項1に記載の空気調和装置。 The air conditioner according to claim 1, wherein the control unit makes the first continuous operation time shorter than the second continuous operation time.
  3.  前記制御部は、外気温度に基づいて、前記第1の連続運転時間、および前記第2の連続運転時間の少なくとも一方を変化させる、請求項1または2に記載の空気調和装置。 The air conditioner according to claim 1 or 2, wherein the control unit changes at least one of the first continuous operation time and the second continuous operation time based on outside temperature.
  4.  前記給湯ユニットは加熱部を備え、
     前記制御部は、前記第1の交互運転において前記加熱部により加熱を開始するとともに前記暖房運転を開始し、前記第2の交互運転において前記加熱部により加熱を開始するとともに前記冷房運転を開始する、請求項1または2に記載の空気調和装置。
    The hot water supply unit includes a heating section,
    The control unit causes the heating unit to start heating and starts the heating operation in the first alternate operation, and starts the heating unit to start heating and starts the cooling operation in the second alternate operation. , The air conditioner according to claim 1 or 2.
  5.  前記制御部は、前記貯湯タンクにおける水温が閾値に達した場合に、前記加熱部による加熱を開始する請求項4に記載の空気調和装置。 The air conditioner according to claim 4, wherein the control unit starts heating by the heating unit when the water temperature in the hot water storage tank reaches a threshold value.
  6.  前記制御部は、前記給湯運転中における前記冷媒の凝縮温度が閾値に達した場合に前記加熱部による加熱を開始する請求項4に記載の空気調和装置。 The air conditioner according to claim 4, wherein the control unit starts heating by the heating unit when the condensation temperature of the refrigerant during the hot water supply operation reaches a threshold value.
  7.  前記制御部は、前記第1の交互運転において前記暖房運転を行っている場合、または前記第2の交互運転において前記冷房運転を行っている場合に、前記加熱部による加熱の開始を禁止する、請求項5または6に記載の空気調和装置。 The control unit prohibits the heating unit from starting heating when the heating operation is performed in the first alternate operation or when the cooling operation is performed in the second alternate operation. The air conditioner according to claim 5 or 6.
  8.  前記制御部は、前記第1の交互運転において前記暖房運転を行っている場合、または前記第2の交互運転において前記冷房運転を行っている場合において、室内温度が目標温度に達した場合に前記加熱部による加熱を許可する、請求項7に記載の空気調和装置。 The control unit is configured to control the control unit when the indoor temperature reaches the target temperature when the heating operation is performed in the first alternate operation or when the cooling operation is performed in the second alternate operation. The air conditioner according to claim 7, which allows heating by the heating section.
  9.  前記熱源機は圧縮機を有し、
     前記給湯運転における前記圧縮機の最小周波数は、前記暖房運転における前記圧縮機の最小周波数よりも大きく、前記給湯運転における前記圧縮機の最小周波数は、前記冷房運転における前記圧縮機の最小周波数よりも大きい、
     請求項1または2に記載の空気調和装置。
    The heat source machine has a compressor,
    The minimum frequency of the compressor in the hot water supply operation is higher than the minimum frequency of the compressor in the heating operation, and the minimum frequency of the compressor in the hot water supply operation is higher than the minimum frequency of the compressor in the cooling operation. big,
    The air conditioner according to claim 1 or 2.
  10.  冷媒を循環させる冷媒サイクルを含む熱源機と、前記冷媒と室内空気を熱交換することで暖房運転および冷房運転を行う空調ユニットと、貯湯タンクを備え、前記冷媒による加熱にて給湯運転を行う給湯ユニットと、を備える空気調和装置における空気調和方法であって、
     暖房要求と給湯要求とが同時に出力された場合に前記暖房運転と前記給湯運転とを交互に行う第1の交互運転を行うステップと、
     冷房要求と前記給湯要求とが同時に出力された場合に前記冷房運転と前記給湯運転とを交互に行う第2の交互運転を行うステップと、を有し、
     前記第1の交互運転における前記給湯運転の第1の連続運転時間と、前記第2の交互運転における前記給湯運転の第2の連続運転時間とは異なる、空気調和方法。
    A hot water supply device that includes a heat source device including a refrigerant cycle that circulates a refrigerant, an air conditioning unit that performs heating and cooling operations by exchanging heat between the refrigerant and indoor air, and a hot water storage tank, and that performs hot water supply operation by heating with the refrigerant. An air conditioning method in an air conditioner comprising a unit,
    performing a first alternate operation in which the heating operation and the hot water supply operation are alternately performed when a heating request and a hot water supply request are output at the same time;
    performing a second alternate operation in which the cooling operation and the hot water supply operation are alternately performed when the cooling request and the hot water supply request are output at the same time;
    An air conditioning method, wherein a first continuous operation time of the hot water supply operation in the first alternate operation is different from a second continuous operation time of the hot water supply operation in the second alternate operation.
PCT/JP2022/018516 2022-04-22 2022-04-22 Air-conditioning apparatus and air-conditioning method WO2023203745A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018516 WO2023203745A1 (en) 2022-04-22 2022-04-22 Air-conditioning apparatus and air-conditioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018516 WO2023203745A1 (en) 2022-04-22 2022-04-22 Air-conditioning apparatus and air-conditioning method

Publications (1)

Publication Number Publication Date
WO2023203745A1 true WO2023203745A1 (en) 2023-10-26

Family

ID=88419642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018516 WO2023203745A1 (en) 2022-04-22 2022-04-22 Air-conditioning apparatus and air-conditioning method

Country Status (1)

Country Link
WO (1) WO2023203745A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067937A (en) * 2010-09-21 2012-04-05 Mitsubishi Electric Corp Air conditioning and hot-water supply device
JP2012097910A (en) * 2010-10-29 2012-05-24 Mitsubishi Electric Corp Refrigeration cycle device and refrigeration cycle control method
WO2018189942A1 (en) * 2017-04-11 2018-10-18 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067937A (en) * 2010-09-21 2012-04-05 Mitsubishi Electric Corp Air conditioning and hot-water supply device
JP2012097910A (en) * 2010-10-29 2012-05-24 Mitsubishi Electric Corp Refrigeration cycle device and refrigeration cycle control method
WO2018189942A1 (en) * 2017-04-11 2018-10-18 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
JP5865482B2 (en) Refrigeration cycle equipment
JP5642207B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
WO2012056739A1 (en) Refrigeration cycle device and refrigeration cycle control method
JP5657110B2 (en) Temperature control system and air conditioning system
CN102168899A (en) Heat pump system and control method thereof
JP5951397B2 (en) Air conditioner
CN111780362B (en) Air conditioner and control method thereof
CN109716035B (en) System for air conditioning and hot water supply
US11739950B2 (en) Hot water supply apparatus
JP2011257098A (en) Heat pump cycle device
JP5677198B2 (en) Air cooling heat pump chiller
JP3668750B2 (en) Air conditioner
WO2023203745A1 (en) Air-conditioning apparatus and air-conditioning method
JP7097989B2 (en) Air conditioner
JP6890706B1 (en) Air conditioning system and control method
JP7315434B2 (en) Heat pump hot water heating system
JP2003336897A (en) Heat pump bath hot water supply system
JP5772665B2 (en) Heat pump type water heater
US20240085042A1 (en) Refrigeration cycle device and refrigerant leakage determination system
CN114909699B (en) Defrosting control method, central controller and heating system
JP7232746B2 (en) Heat pump hot water heating system
WO2023179340A1 (en) Multi-split air conditioner and control method therefor, storage medium, and electronic device
JP2005147608A (en) Heat pump water heater
KR100487384B1 (en) Method for Controling compressor of air conditioner having two capacity
CN115614814A (en) Air conditioner and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938545

Country of ref document: EP

Kind code of ref document: A1