JP3613856B2 - Thermal storage air conditioner - Google Patents

Thermal storage air conditioner Download PDF

Info

Publication number
JP3613856B2
JP3613856B2 JP29531795A JP29531795A JP3613856B2 JP 3613856 B2 JP3613856 B2 JP 3613856B2 JP 29531795 A JP29531795 A JP 29531795A JP 29531795 A JP29531795 A JP 29531795A JP 3613856 B2 JP3613856 B2 JP 3613856B2
Authority
JP
Japan
Prior art keywords
heat exchanger
expansion device
refrigerant
valve
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29531795A
Other languages
Japanese (ja)
Other versions
JPH09138025A (en
Inventor
大祐 嶋本
守也 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP29531795A priority Critical patent/JP3613856B2/en
Publication of JPH09138025A publication Critical patent/JPH09138025A/en
Application granted granted Critical
Publication of JP3613856B2 publication Critical patent/JP3613856B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、昼間電力の制御と平準化対策に係る蓄熱式空気調和装置に関するものである。
【0002】
【従来の技術】
従来、この種の蓄熱式空気調和装置は、例えば先願の特開平6−24158号に示すようなものであった。すなわち図54において、1は例えば5馬力の圧縮機、2は圧縮機用四方切換弁で、各々は冷媒回路101にて連結されている。3は、冷房時は凝縮器、暖房時は蒸発器として作用する室外側熱交換器であり、圧縮機用四方切換弁2と、冷媒回路102にて連結されている。
【0003】
6は第1の絞り装置で室外側熱交換器3と冷媒回路103で連結しており、7は第1のバルブ、8は第2のバルブで、第1の絞り装置6からの冷媒回路108を分岐して冷媒回路109と110を構成し、各々を第1のバルブ7と第2のバルブ8に連結している。9は蓄熱槽で、内部に多数本の伝熱管を縦に並べ、これを連結して形成した蓄熱用熱交換器10により、槽内に貯留した蓄熱媒体21例えば水を、冷房時は凍結、暖房時は貯湯できるようにしている。
【0004】
第2のバルブ8は、蓄熱槽9と冷媒回路111で連結されている。12はガス状冷媒を搬送する冷媒ポンプでポンプ容量は所定の運転条件にて圧縮機1の運転による冷媒循環量と同量の循環量が得られるものを選んでいる。11はその冷媒ポンプ12と冷媒回路114で連結された、冷媒ポンプ用四方切換弁を示す。13は冷媒ポンプ用アキュムレータ、14は第3のバルブで蓄熱槽9からの冷媒回路112を分岐して冷媒回路113と118を構成し、各々を冷媒ポンプ用四方切換弁11と第3のバルブ14に連結している。
【0005】
冷媒ポンプ用四方切換弁11と冷媒ポンプ用アキュムレータ13は、冷媒回路116で連結されており、冷媒ポンプ用アキュムレータ13は、冷媒回路路115で冷媒ポンプ12に連結されている。117は、冷媒ポンプ用四方切換弁11と冷媒回路120に接続された冷媒回路、119は第3のバルブ14と冷媒回路125に連結された冷媒回路、20は冷媒回路120と125を接続する第4のバルブであり、冷媒回路125の他端は前述の四方切換弁2に接続されている。
【0006】
121は前述の第1のバルブ7に連結された冷媒回路で、この回路と冷媒回路120間に複数の室内ユニット用冷媒回路系a,b,cを有し、各々の回路系は、冷媒回路122、第2の絞り装置15、冷媒回路123、室内側熱交換器16、冷媒回路124を順次連結してなる。尚各々の数字の末尾の英記号は前述の複数の各室内ユニット用冷媒回路系a,b,cの区別を表す。
【0007】
圧縮機用四方切換弁2と圧縮機用アキュムレータ17の間、圧縮機用アキュムレータ17と圧縮機1の間は、それぞれ冷媒回路126,127にて連結されている。
【0008】
次に作用について、図55から図70を用いて説明する。
図55に、例えば夜間の蓄冷運転、即ち製氷運転を示す。図において、第1のバルブ7、第4のバルブ20を閉じ、第2、第3のバルブ8,14を開き、圧縮機1を運転する。このとき、圧縮機1より吐出された冷媒は室外側熱交換器で凝縮し第1の絞り装置6で断熱膨張し蓄熱用熱交換器10で蒸発し、蓄熱媒体21例えば水より熱をうばい、蓄熱用熱交換器10の表面を凍結させるとともに気化冷媒がアキュムレータ17を経由して圧縮機にもどる。
【0009】
この蓄冷運転時の運転状態を図56に示す。図中数字にて表す運転点は、図中の同一数字で表す冷媒回路内の冷媒の状態を示しており、凝縮温度は約40℃、蒸発温度は−3℃程度である。本システムはかかる運転にて、例えば槽内の残水がないことを前提に、22:00より製氷を開始、翌朝8:00に製氷を終了する。
【0010】
以下昼間の冷房運転について述べる。図57は蓄冷熱は利用せずに圧縮機1のみで冷房運転した場合の、冷房運転を示す。図において第1のバルブ7、第4のバルブ20を開き、第2、第3のバルブ8,14を閉じて圧縮機1を運転する。図54と同様の作用にて凝縮液化した高圧冷媒は、各室内ユニット用冷媒回路系a,b,cに送られ、各々の第2の絞り装置15で冷媒流量調節しながら減圧し、約6kg/cm G程度の圧力で室内側熱交換器16内に流入し蒸発する。このとき周囲の室内空気より吸熱し、ガス化した冷媒は、圧縮機用アキュムレータ17を経由し、圧縮機1に戻る。このときの圧縮機の運転容量は、室内機の運転容量の総和により決定している。
【0011】
この一般冷房運転時の運転状態を図58に示す。図中の数字は図56にて述べた通りで、凝縮温度は約45℃、蒸発温度は約10℃である。本システムはかかる運転にて、例えば蓄冷熱消費後の冷房を行う。
【0012】
図59に、蓄冷熱利用による冷房、即ち放冷運転を示す。図において第1の絞り装置6、第3のバルブ14及び第4のバルブ20を閉じ、第1、第2のバルブ7,8を開いて、冷媒ポンプ12を運転する。このとき冷媒ポンプ12により送出されたガス冷媒は槽内の氷で冷却され20〜25℃で凝縮し、液化した約9kg/cm Gの冷媒が各室内ユニット用冷媒回路系a,b,cに送られ、図57と同様にして冷房する。このとき冷媒ポンプ12の冷媒循環量は、図57のときの圧縮機1による冷媒循環量と同等のため、室内側熱交換器16には同温同圧の冷媒が同量流れることとなり、動力としては差圧が約3kg/cm 程度の小容量にも拘らず、冷房能力としては圧縮機1の単独運転による図57の一般冷房運転と同等となる。このときのガスポンプの運転容量は、室内機の運転容量の総和により決定している。
【0013】
この放冷運転時の運転状態を図60に示す。図中の数字は図56にて述べた通りで、凝縮温度は約23℃程度、蒸発温度は約10℃である。本システムはかかる運転にて、例えば軽負荷時の冷房を行う。
【0014】
図61に、図57の一般冷房と、図59の放冷運転を同時に作用させた、蓄冷熱併用冷房運転を示す。図において第3のバルブ14を閉じ、第1、第2、第4のバルブ7,8,20を開いて、圧縮機1及び冷媒ポンプ12を運転する。このとき冷媒ポンプ12側の蓄熱用熱交換器10で凝縮した液冷媒は、圧縮機1側の第1の絞り装置6で減圧された冷媒と合流し、室内ユニット用冷媒回路系a,b,cへは、図57の一般冷房運転時あるいは図59の放冷運転時の約2倍の量の冷媒が循環して、能力も2倍となる。このときの第1の絞り装置6の開度は一定であり、上記合流部の圧力は8〜10kg/cm 程度となる。このときの運転容量は、ガスポンプは100%で圧縮機を容量制御して決定するが、その容量制御の割合は室内機の運転容量の総和により決定している。
【0015】
この蓄冷熱併用冷房運転時の運転状態を図62に示す。図中の数字は図56にて述べた通りである。蒸発温度は他の冷房運転と同様約10℃であるが、凝縮温度は、室内側熱交換器3では約45℃、蓄熱用熱交換器10では20〜25℃程度である。本システムはかかる運転にて、例えば冷房負荷時の冷房を行う。
【0016】
以上は冷房に関する作用について説明したが、以下は暖房に関する作用説明であり、従って特に断らない限り圧縮機用四方切換弁2、及び冷媒ポンプ用四方切換弁11は暖房モードに設定されている。図63に、例えば夜間の蓄熱運転、即ち貯湯運転を示す。図において第1、第4のバルブ7,20を閉じ、第2、第3のバルブ8,14を開き圧縮機1を運転する。このとき圧縮機1より吐出された高温ガス冷媒は図中の矢印の方向に流れ、蓄熱槽9の蓄熱用熱交換器10で凝縮し、貯留水を昇温する。凝縮冷媒は第1の絞り装置6で断熱膨張し、室外側熱交換器3で外気より吸熱して蒸発し気化冷媒がアキュムレータ17を経由して圧縮機1にもどる。
【0017】
この蓄熱運転時の運転状態を図64に示す。図中の数字は図56にて述べた通りで、槽水温の沸き上がり温度は約50℃、このときの凝縮温度は約55℃、蒸発温度は約0℃である。本システムはかかる運転にて、夜間電力時間帯内に貯湯し、所定の槽水温に到達次第運転を終了する。
【0018】
以下昼間の暖房運転について述べる。図65は蓄熱は利用せずに圧縮機1のみで暖房運転した場合の、一般暖房運転を示す。図において第1、第4のバルブ7,20を開き、第2、第3のバルブ8,14を閉じて圧縮機1を運転する。圧縮機1より17kg/cm G前後の圧力で吐出された高温高圧ガスは各室内ユニット用冷媒回路系a,b,cに送られ、各々の室内側熱交換器16で凝縮し、室内空気を加熱する。凝縮した液冷媒は第2の絞り装置15で若干の減圧をし、更に第1の絞り装置6で減圧して約4kg/cm Gの圧力で室外側熱交換器3内で蒸発し、以降図62と同作用にて圧縮機1にもどる。このときの圧縮機の運転容量は、室内機の運転容量の総和により決定している。
【0019】
この一般暖房運転時の運転状態を図66に示す。図中の数字は図56にて述べた通りで、凝縮温度は42〜43℃程度、蒸発温度は約0℃である。本システムはかかる運転にて、蓄熱消費後の日中の軽負荷時の暖房を行う。
【0020】
図67に、蓄熱利用による暖房、即ち放熱運転を示す。図において第1の絞り装置6及び第3、第4のバルブ14,20を閉じ、第1、第2のバルブ7,8を開いて冷媒ポンプ12を運転する。このとき冷媒ポンプ12は槽内で蒸発圧力約13kg/cm Gで加熱気化されたガス冷媒を冷媒ポンプ用アキュムレータ13を経由して吸引する。従って約4kg/cm G程度の昇圧で17kg/cm G前後の高温・高圧のガス冷媒を各室内ユニット用冷媒回路系a,b,cに送り、以降図73と同様の作用により室内空気の加熱を行う。凝縮した冷媒は第2の絞り装置15にて減圧し、約13kg/cm Gの気液二相冷媒となって蓄熱槽9にもどる。このときのガスポンプの運転容量は、室内機の運転容量の総和により決定している。
【0021】
この放熱運転時の運転状態を図68に示す。図中の数字は図56にて述べた通りで、凝縮温度は42〜43℃程度、蒸発温度は約35℃前後である。本システムはかかる運転にて、例えば軽負荷時の暖房を行う。
【0022】
図69に、図65の一般暖房運転と、図67の放熱運転を同時に作用させた蓄熱併用暖房運転を示す。図において第3のバルブ14を閉じ、第1、第2、第4のバルブ7,8,20を開き圧縮機1と冷媒ポンプ12を運転する。このとき冷媒ポンプ12より送出したガス冷媒は圧縮機1より吐出されたガス冷媒と合流し、室内ユニット用冷媒回路系a,b,cへは、図65の一般暖房運転時あるいは図66の放熱運転時の約2倍の量の圧力17kg/cm G前後の高温・高圧冷媒が循環して、能力も2倍となる。第2の絞り装置15で減圧した約13kg/cm G程度の冷媒は、約1/2が蓄熱用熱交換器10に流入し図67の放熱運転と同様の作用をなすとともに、他の1/2の冷媒は第1の絞り装置6にて更に減圧され、約4kg/cm Gの圧力となって室外側熱交換器3に流入し、図65の一般暖房運転と同様の作用をなす。このときの運転容量は、ガスポンプは100%で圧縮機を容量制御して決定するが、その容量制御の割合は室内機の運転容量の総和により決定している。
【0023】
この蓄熱併用暖房運転時の運転状態を図70に示す。図中の数字は図56にて述べた通りである。凝縮温度は他の暖房運転と同様42〜43℃程度であるが、蒸発温度は、蓄熱用熱交換器10では35℃前後、室外側熱交換器3では0℃前後である。本システムはかかる運転にて、暖房負荷の集中する例えば朝の立上り時の暖房を行う。
【0024】
【発明が解決しようとする課題】
上記のような各々の運転を行う従来の蓄熱式空気調和装置では、蓄冷運転時その中でも特に起動時において、冷媒が蓄冷熱用熱交換器またはアキュムレータへ寝込むために室外側熱交換器出口冷媒過冷却度がとれず、絞り装置3の入口で冷媒の過冷却度がとれずに、冷媒制御が不安定となり、能力の低下が起こる可能性があった。
【0025】
また、蓄冷熱併用冷房運転時、その中でも特に起動時において、冷媒が蓄冷熱用熱交換器またはアキュムレータへ寝込むために室外側熱交換器出口冷媒過冷却度がとれない、または過冷却度がとれていても冷媒合流部と室内ユニット間の高低差が大きい場合、冷媒合流M部と室内ユニットの間の配管内において、冷媒が二相状態となることがあり、室外ユニットと室内ユニットの間の冷媒分岐部では各室内ユニットに供給される冷媒の分配が室内ユニットの必要量に対して、不均一となり、各室内ユニットが要求する冷媒循環量が確保されず、能力が低下する問題があった。各室内ユニットの第2の絞り装置入口での冷媒が二相状態となり、第2の絞り装置を流れる冷媒循環量が室内ユニットの必要量流れないため、室内ユニットでの能力の低下や、二相状態の冷媒が絞り装置2を流れるときにキャビテーションにより、冷媒音が発生する可能性があった。
【0026】
また、一般冷房運転時、その中でも特に起動時において、冷媒が蓄冷熱用熱交換器またはアキュムレータへ寝込むために室外側熱交換器出口冷媒過冷却度がとれない、または過冷却度がとれていても冷媒合流部と室内ユニット間の高低差が大きい場合、室外ユニット出口と室内ユニットの間の配管内において、冷媒が二相状態となることがあり、室外ユニットと室内ユニットの間の冷媒分岐部では各室内ユニットに供給される冷媒の分配が室内ユニットの必要量に対して、不均一となり、各室内ユニットが要求する冷媒循環量が確保されず、能力が低下する問題があった。また、各室内ユニットでは、第2の絞り装置入口での冷媒が二相状態となり、第2の絞り装置を流れる冷媒循環量が室内ユニットの必要量流れないため、室内ユニットでの能力の低下や、二相状態の冷媒が絞り装置2を流れるときにキャビテーションにより、冷媒音が発生する可能性があった。
【0027】
また、蓄冷熱併用冷房起動時及び放冷運転起動時において、アキュムレータ等に冷媒が滞留している場合は、蓄冷熱熱交換器内の冷媒量が熱交換するに足るだけ確保されず、起動直後では、熱交換するに足るだけの冷媒量を確保するために蓄冷熱熱交換器内に冷媒を溜める。その時、圧縮機吸入圧力が低下し、圧縮機周波数や圧縮機能力が低下する可能性があった。また、蓄冷熱用熱交換器の冷媒過冷却度がとれず、室内ユニット内での第2の絞り装置入口で冷媒が二相状態となり、冷媒制御が不安定となり、能力の低下が起こる可能性があった。
【0028】
また、蓄冷熱併用冷房運転時及び放冷運転時において、運転容量が低下した場合、蓄冷熱熱交換器内の冷媒循環量が低下し、蓄冷熱熱交換器内に冷媒が寝込み、運転に蓄冷熱用熱交換器に必要な冷媒量が増加する。冷媒回路内の冷媒量が一定であるため、第2の絞り装置の入口で冷媒が二相状態となり、冷媒制御が不安定となり、能力が低下したり、二相状態の冷媒が絞り装置2を流れるときにキャビテーションにより、冷媒音が発生したりする可能性があった。
【0029】
また、放冷運転時においては、室外側熱交換器に冷媒が寝込むことにより、放冷運転での必要冷媒量が確保されず、蓄冷熱用熱交換器の冷媒過冷却度がとれず、室内ユニット内での第2の絞り装置入口で冷媒が二相状態となり、冷媒制御が不安定となり、能力が低下したり、二相状態の冷媒が絞り装置2を流れるときにキャビテーションにより、冷媒音が発生したりする可能性があった。
【0030】
また、一般暖房運転時に余剰冷媒がアキュムレータから溢れ出し、圧縮機の信頼性が低下する可能性があった。
【0031】
また、放熱暖房運転時、室外側熱交換器に冷媒が寝込み、アキュムレータ内の冷媒量が少なくなり、放熱暖房回路全体の冷媒量が不足して、能力の低下や室内側熱交換器での冷媒音の発生が起こる可能性があった。
【0032】
また、蓄冷運転中には冷房運転を行うことが交互でも同時でもできなかった。
【0033】
また、蓄冷運転中には冷房運転を同時に行うことができなかった。
【0034】
また、蓄冷運転と冷房運転を同時に行う場合、必要蓄冷能力を満足することができなかった。
【0035】
また、蓄冷運転と冷房運転を同時に行う場合、必要冷房能力を満足することができなかった。
【0036】
また、蓄熱運転中には暖房運転を行うことができなかった。
【0037】
また、蓄熱運転中には暖房運転を同時に行うことができなかった。
【0038】
また、蓄熱運転と暖房運転を同時に行う場合、必要蓄熱能力を満足することができなかった。
【0039】
また、蓄熱運転と暖房運転を同時に行う場合、必要暖房能力を満足することができなかった。
【0040】
また、低外気温度における蓄冷熱併用冷房運転及び一般冷房運転では、室外側熱交換器が過冷却状態にならないために冷媒制御が不安定になり、能力の低下や室内側熱交換器での冷媒音の発生が起こる可能性があった。
【0041】
【課題を解決するための手段】
この発明に係わる蓄熱式空気調和装置は、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された冷媒循環回路と、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、一端が上記第1の絞り装置と第2の絞り装置との間に接続され、他端が室内側熱交換器と切換弁との間に接続された第3の絞り装置、蓄冷熱用熱交換器、第3のバルブを有した直列回路と切換弁を順次接続して形成された蓄冷熱用回路と、蓄冷熱用熱交換器を収容する蓄熱槽、蓄熱槽に収納された蓄熱媒体、及び一端が圧縮機吸入側に接続され、他端が蓄冷熱用熱交換器と第3バルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、蓄冷熱用熱交換器、第3の絞り装置、第2の絞り装置、室内側熱交換器及び四方切換弁を順次接続して形成された放冷回路と室外側熱交換器出口冷媒過冷却度検出手段を有し、蓄冷時の室外側熱交換器出口冷媒過冷却度の検出値によって上記第3の絞り装置の開度を変更する調節手段を備えている。
【0042】
また、この発明にかかわる蓄熱式空気調和装置は、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された冷媒循環回路と、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、一端が第1の絞り装置と第2の絞り装置との間に接続され、他端が室内側熱交換器と切換弁との間に接続された第3の絞り装置、蓄冷熱用熱交換器、第3のバルブを有した直列回路と切換弁を順次接続して形成された蓄冷熱用回路と、蓄冷熱用熱交換器を収容する蓄熱槽、蓄熱槽に収納された蓄熱媒
体、及び一端が圧縮機吸入側に接続され、他端が蓄冷熱用熱交換器と第3バルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、蓄冷熱用熱交換器、第3の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された放冷回路と室外側熱交換器出口冷媒過冷却度検出手段を有し、冷媒循環回路と放冷用回路とを併用する蓄冷熱併用冷房運転時に室外側熱交換器出口冷媒過冷却度の検出値によって第1の絞り装置の開度を変更する調節手段を備えている。
【0043】
また、第3の発明にかかわる蓄熱式空気調和装置は、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された冷媒循環回路と、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、一端が第1の絞り装置と第2の絞り装置との間に接続され、他端が室内側熱交換器と切換弁との間に接続された第3の絞り装置、蓄冷熱用熱交換器、第3のバルブを有した直列回路と切換弁を順次接続して形成された蓄冷熱用回路と、蓄冷熱用熱交換器を収容する蓄熱槽、蓄熱槽に収納された蓄熱媒体、及び一端が圧縮機吸入側に接続され、他端が蓄冷熱用熱交換器と第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、蓄冷熱用熱交換器、第3の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された放冷回路と室外側熱交換器出口冷媒過冷却度検出手段を有し、冷房時に室外側熱交換器出口冷媒過冷却度の検出手段と室外側熱交換器出口冷媒過冷却度の検出値によって第2の絞り装置の開度を変更する調節手段を備えている。
【0044】
また、第4の発明にかかわる蓄熱式空気調和装置は、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された冷媒循環回路と、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、一端が第1の絞り装置と第2の絞り装置との間に接続され、他端が室内側熱交換器と切換弁との間に接続された第3の絞り装置、蓄冷熱用熱交換器、第3のバルブを有した直列回路と切換弁を順次接続して形成された蓄冷熱用回路と、蓄冷熱用熱交換器を収容する蓄熱槽、蓄熱槽に収納された蓄熱媒体、及び一端が圧縮機吸入側に接続され、他端が蓄冷熱用熱交換器と第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、圧縮機、一端が圧縮機と切換弁の間に接続され他端が冷媒ポンプと第6のバルブの間に接続された第7のバルブを有するバイパス回路、蓄冷熱用熱交換器、第3の絞り装置、第2の絞り装置、室内側熱交換器及び四方切換弁を順次接続して形成された放冷回路と冷媒ポンプ吐出圧力の検出手段を有し、冷媒ポンプ吐出圧力検出値によって第3の絞り装置の開度を調節する開度調節手段を備えている。
【0045】
また、第5の発明にかかわる蓄熱式空気調和装置は、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された冷媒循環回路と、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、一端が第1の絞り装置と第2の絞り装置との間に接続され、他端が室内側熱交換器と切換弁との間に接続された第3の絞り装置、蓄冷熱用熱交換器、第3のバルブを有した直列回路と切換弁を順次接続して形成された蓄冷熱用回路と、蓄冷熱用熱交換器を収容する蓄熱槽、蓄熱槽に収納された蓄熱媒体、及び一端が圧縮機吸入側に接続され、他端が蓄冷熱用熱交換器と第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、圧縮機、一端が圧縮機と切換弁の間に接続され他端が冷媒ポンプと第6のバルブの間に接続された第7のバルブを有するバイパス回路、蓄冷熱用熱交換器、第3の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された放冷回路、蓄冷熱用熱交換器を複数のパスで構成するとともにその複数のパスのうち少なくとも1パスの出入口に第8及び第9のバルブを設けるとともに冷媒回路M部の圧力検出手段を有し、冷媒回路M部の圧力検出値によって蓄冷熱用熱交換器第8及び第9のバルブの開閉手段を備えている。
【0046】
また、第6の発明にかかわる蓄熱式空気調和装置は、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁、アキュムレータを順次接続して形成された冷媒循環回路と、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、一端が第1の絞り装置と第2の絞り装置との間に接続され、他端が室内側熱交換器と切換弁との間に接続された第3の絞り装置、蓄冷用熱交換器、第3のバルブを有した直列回路と切換弁、アキュムレータを順次接続して形成された蓄冷用回路と、蓄冷用熱交換器を収容する蓄熱槽、蓄熱槽に収納された蓄熱媒体、及び一端がアキュムレータに接続され、他端が蓄冷用熱交換器と第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、圧縮機、一端が圧縮機と切換弁の間に接続され他端が冷媒ポンプと第6のバルブの間に接続された第7のバルブを有するバイパス回路、蓄冷熱用熱交換器、第3の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された放冷回路、一端が室外側熱交換器と第1の絞り装置の間に接続され、他端がアキュムレータの吸入側に接続された第4のバルブを有するバイパス回路を有し、アキュムレータ液面検出手段と放冷運転時の液面検出値によって第4のバルブを開閉する調節手段を備えている。
【0047】
また、第7の発明にかかわる蓄熱式空気調和装置は、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁、アキュムレータを順次接続して形成された冷媒循環回路と、圧縮機、切換弁、室外側熱交換器、第2の絞り装置、第1の絞り装置、室外側熱交換器及び切換弁、アキュムレータを順次接続して形成された暖房回路、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、一端が第1の絞り装置と第2の絞り装置との間に接続され、他端が室内側熱交換器と切換弁との間に接続された第3の絞り装置、蓄冷用熱交換器、第3のバルブを有した直列回路と切換弁、アキュムレータを順次接続して形成された蓄冷用回路と、蓄冷用熱交換器を収容する蓄熱槽、蓄熱槽に収納された蓄熱媒体、及び一端がアキュムレータに接続され、他端が蓄冷用熱交換器と第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、蓄冷用熱交換器、第3の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された放冷回路とアキュムレータ液面検出手段と液面検出値によって第3のバルブを開閉する調節手段を備えている。
【0048】
また、第8の発明にかかわる蓄熱式空気調和装置は、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁、アキュムレータを順次接続して形成された冷媒循環回路と、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、一端が第1の絞り装置と第2の絞り装置との間に接続され、他端が室内側熱交換器と切換弁との間に接続された第3の絞り装置、蓄冷用熱交換器、第3のバルブを有した直列回路と切換弁、アキュムレータを順次接続して形成された蓄冷用回路と、一端が切換弁と室内側熱交換器との間に接続され、他端が上記第1の絞り装置と第2の絞り装置との間に接続された第3のバルブ、蓄冷用熱交換器、第3の絞り装置を有した直列回路、第1の絞り装置、室外側熱交換器、切換弁を順次接続された蓄熱用回路、圧縮機、切換弁、室内側熱交換器、第2の絞り装置、一端が第1の絞り装置と第2の絞り装置との間に接続され、他端がアキュムレータに接続された第3の絞り装置、蓄冷用熱交換器、第5のバルブを有した直列回路とアキュムレータを順次接続して形成された放熱暖房用回路と、蓄冷用熱交換器を収容する蓄熱槽、上記蓄熱槽に収納された蓄熱媒体、及び一端が上記アキュムレータ吸入側に接続され、他端が蓄冷用熱交換器と記第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、圧縮機、一端が圧縮機と切換弁の間に接続され他端が冷媒ポンプと第6のバルブの間に接続された第7のバルブを有するバイパス回路、蓄冷用熱交換器、第3の絞り装置、第2の絞り装置、室内側熱交換器及び四方切換弁を順次接続して形成された放冷回路とアキュムレータ液面検出手段と液面検出値によって第1の絞り装置を開閉する調節手段を備えている。
【0049】
また、第9の発明にかかわる蓄熱式空気調和装置は、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された冷媒循環回路と、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、一端が第1の絞り装置と第2の絞り装置との間に接続され、他端が室内側熱交換器と切換弁との間に接続された第3の絞り装置、蓄冷用熱交換器、第3のバルブを有した直列回路と切換弁を順次接続された蓄冷用回路と、蓄冷用熱交換器を収容する蓄熱槽、蓄熱槽に収納された蓄熱媒体、及び一端が圧縮機吸入側に接続され、他端が蓄冷用熱交換器と第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、蓄冷用熱交換器、第3の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された放冷回路とを有し、運転モードを選択する運転モード切換手段を備えている。
【0050】
また、第10の発明にかかわる蓄熱式空気調和装置は、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された冷媒循環回路と、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、一端が第1の絞り装置と第2の絞り装置との間に接続され、他端が室内側熱交換器と切換弁との間に接続された第3の絞り装置、蓄冷用熱交換器、第3のバルブを有した直列回路と切換弁を順次接続された蓄冷用回路と、蓄冷用熱交換器を収容する蓄熱槽、上記蓄熱槽に収納された蓄熱媒体、及び一端が上記圧縮機吸入側に接続され、他端が蓄冷用熱交換器と第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、蓄冷用熱交換器、第3の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された放冷回路とを有している。
【0051】
また、第11及び12の発明にかかわる蓄熱式空気調和装置は、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された一般冷房回路と、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、一端が第1の絞り装置と第2の絞り装置との間に接続され、他端が室内側熱交換器と切換弁との間に接続された第3の絞り装置、蓄冷用熱交換器、第3のバルブを有した直列回路と上記四方切換弁を順次接続された蓄冷用回路と、蓄冷用熱交換器を収容する蓄熱槽、蓄熱槽に収納された蓄熱媒体、及び一端が圧縮機吸入側に接続され、他端が蓄冷用熱交換器と第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、蓄冷用熱交換器、第3の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された放冷回路とを有し、蓄冷・冷房運転比率管理手段を備えている。
【0052】
また、第13の発明にかかわる蓄熱式空気調和装置は、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された冷媒循環回路と、圧縮機、切換弁、室外側熱交換器、第2の絞り装置、第1の絞り装置、室外側熱交換器及び切換弁、アキュムレータを順次接続して形成された一般暖房回路、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、一端が第1の絞り装置と第2の絞り装置との間に接続され、他端が室内側熱交換器と切換弁との間に接続された第3の絞り装置、蓄冷用熱交換器、第3のバルブと切換弁を有した直列回路により構成された蓄冷用回路と、圧縮機、切換弁、一端が切換弁と室内側熱交換器との間に接続され、他端が第1の絞り装置と第2の絞り装置との間に接続された第3のバルブ、蓄冷用熱交換器、第3の絞り装置を有した直列回路、第1の絞り装置、室外側熱交換器、切換弁を順次接続された蓄熱用回路、蓄冷用熱交換器を収容する蓄熱槽、蓄熱槽に収納された蓄熱媒体、及び一端が圧縮機吸入側に接続され、他端が蓄冷用熱交換器と第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、蓄冷用熱交換器、第3の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された放冷回路とを有し、運転モードを選択する運転モード切換手段を備えている。
【0053】
また、第14の発明にかかわる蓄熱式空気調和装置は、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された冷媒循環回路と、圧縮機、切換弁、室外側熱交換器、第2の絞り装置、第1の絞り装置、室外側熱交換器及び切換弁、アキュムレータを順次接続して形成された暖房回路、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、一端が第1の絞り装置と第2の絞り装置との間に接続され、他端が室内側熱交換器と切換弁との間に接続された第3の絞り装置、蓄冷用熱交換器、第3のバルブと切換弁を有した直列回路により構成された蓄冷用回路と、一端が切換弁と室内側熱交換器との間に接続され、他端が第1の絞り装置と第2の絞り装置との間に接続された第3のバルブ、蓄冷用熱交換器、第3の絞り装置を有した直列回路、第1の絞り装置、室外側熱交換器、切換弁を順次接続された蓄熱用回路、蓄冷用熱交換器を収容する蓄熱槽、蓄熱槽に収納された蓄熱媒体、及び一端が圧縮機吸入側に接続され、他端が蓄冷用熱交換器と第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、蓄冷用熱交換器、第3の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された放冷回路とを有している。
【0054】
また、、第15、16の発明にかかわる蓄熱式空気調和装置は、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された冷媒循環回路と、圧縮機、切換弁、室内側熱交換器、第2の絞り装置、第1の絞り装置、室外側熱交換器及び切換弁、アキュムレータを順次接続して形成された暖房回路、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、一端が第1の絞り装置と第2の絞り装置との間に接続され、他端が室内側熱交換器と切換弁との間に接続された第3の絞り装置、蓄冷用熱交換器、第3のバルブと切換弁を有した直列回路により構成された蓄冷用回路と、一端が切換弁と室内側熱交換器との間に接続され、他端が第1の絞り装置と第2の絞り装置との間に接続された第3のバルブ、蓄冷用熱交換器、第3の絞り装置を有した直列回路、第1の絞り装置、室外側熱交換器、切換弁を順次接続された蓄熱用回路、蓄冷用熱交換器を収容する蓄熱槽、蓄熱槽に収納された蓄熱媒体、及び一端が圧縮機吸入側に接続され、他端が蓄冷用熱交換器と上記第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、蓄冷用熱交換器、第3の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された放冷回路とを有し、蓄熱・暖房運転比率管理手段を備えている。
【0055】
また、、第17の発明にかかわる蓄熱式空気調装置は、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された冷媒循環回路と、圧縮機、切換弁、室外側熱交換器、第1の絞り装置、一端が上記第1の絞り装置と第2の絞り装置との間に接続され、他端が室内側熱交換器と切換弁との間に接続された第3の絞り装置、蓄冷用熱交換器、第3のバルブを有した直列回路と切換弁により構成された蓄冷用回路と、蓄冷用熱交換器を収容する蓄熱槽、蓄熱槽に収納された蓄熱媒体、及び一端が圧縮機吸入側に接続され、他端が蓄冷用熱交換器と第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、圧縮機、一端が圧縮機と切換弁の間に接続され他端が冷媒ポンプと第6のバルブの間に接続された第7のバルブを有するバイパス回路、蓄冷用熱交換器、第3の絞り装置、第2の絞り装置、室内側熱交換器及び切換弁を順次接続して形成された放冷回路、室外側外気温度検知手段と運転モード切替手段を備えている。
【0056】
【発明の実施の形態】
発明の実施の形態1.
以下、本発明の第1の発明に係わる蓄熱式空気調和装置の実施の形態1を図面に基づき説明する。図1は蓄熱式空気調和装置の基本システムを示すものであり、同図において、従来例における図60と同一の構成要素については同一の符号を付し、その説明を省略する。図60と異なるのは以下の点である。すなわち、冷媒配管120と119の合流冷媒配管128aを構成しており、上記冷媒配管128aは四方切換弁28に接続する。冷媒配管129と130は冷媒配管139を分岐してそれぞれ圧縮機1と冷媒ポンプ12の吸入側に接続されている。また、アキュムレータ17には冷媒配管139,136,128bが接続され、上記冷媒配管128bは上記四方切換弁28に接続し、上記冷媒配管136は第5のバルブ23、冷媒配管137を介して、冷媒配管112と蓄冷熱用熱交換器10との接続部につながる。
冷媒ポンプ12の吐出側は冷媒配管133,132、第6のバルブ24及び冷媒配管131を介して冷媒配管112と118の合流部に接続されている。また、圧縮機1の吐出部の冷媒配管138は四方切換弁28に接続する冷媒配管104aと冷媒配管35に分岐し、上記冷媒配管135は第7のバルブ25を介して冷媒配管134に接続し、上記冷媒配管134はガスポンプ12の吐出部の冷媒配管133と冷媒配管132に分岐している。また、蓄冷熱用熱交換器を有する直列回路内は第3の絞り装置22を有している。また、上記四方切換弁28と室外側熱交換器3は配管104bで接続されている。
【0057】
また、上記システムの他に図2の如く室外側熱交換器出口冷媒過冷却度検出手段204、これは出口の冷媒の温度と圧力を検知し、圧力から冷媒の飽和温度を計算し、この飽和温度から温度を引いた量を過冷却度として出力する。すなわち、どれだけ同一圧力で飽和温度が変わったかを見ている。これと第3の絞り装置22の開度調節手段203が制御部として設けられている。
【0058】
先に述べたように、蓄冷運転時その中でも特に起動時において、冷媒が蓄冷熱用熱交換器またはアキュムレータへ寝込むために室外側熱交換器出口冷媒過冷却度がとれず、絞り装置3の入口で冷媒の過冷却度がとれずに、冷媒制御が不安定となり、能力の低下が起こる可能性がある。
【0059】
これに対し、本例の動作、基本的な冷媒の流れ、運転状態について説明する。まず、本実施例の蓄冷運転の回路図を図2に示す。図2において、第1及び第3の絞り装置6及び22を開き、第3のバルブ14及び第5のバルブ23はどちらか一方、もしくは両方が開き、その他の絞り装置及びバルブは閉じている。このとき、圧縮機1より吐出された冷媒は室外側熱交換器で凝縮し第1の絞り装置6及び第3の絞り装置22で断熱膨張し蓄熱用熱交換器10で蒸発し、蓄熱媒体21例えば水より熱をうばい、蓄熱用熱交換器10の表面を凍結させるとともに気化冷媒がアキュムレータ17を経由して圧縮機1にもどる。
【0060】
次に本例の運転状態図を図5に示す。なお、図5はモリエル線図で、冷媒の状態を表示しており、縦軸が冷媒の圧力、横軸は単位重量あたりのエンタルピを示す。図5中数字にて表す運転点は、図2中の同一数字で表す冷媒回路内の冷媒の状態を示している。横軸は比エンタルピといい、潜熱と顕熱を含めた物質のエネルギを示し、図の曲線の右側がガス状態、左側が液状態、中が二相状態である。上記蓄冷運転を基本として、凝縮温度は約40℃、蒸発温度は約−5℃である時、起動時は室外側熱交換器出口が過冷却状態に至らない状態Fにあり、第3の絞り装置の開度調節手段203により開度を小さい状態で維持しておき、上記室外側熱交換器出口過冷却度検出手段204の検出値が一旦5deg以上になった後に、第3の絞り装置の開度調節手段203により開度を変化させて、室外側熱交換器出口の冷媒過冷却度の状態F”を5degに制御する。この結果、蓄冷熱用熱交換器またはアキュムレータへ寝込んだ冷媒が冷媒回路に回収されて循環し、室外側熱交換器出口冷媒過冷却度がとれ、絞り装置3の入口で冷媒の過冷却度がとれるため、冷媒制御が安定となり、能力の低下が起さない。
絞り装置を絞ることによって、そこでせき止められる冷媒量が多くなり、室外側熱交換器出口過冷却度が大きくなる。絞り装置下流の蓄冷熱用熱交換器及びアキュムレータの冷媒は上流から入る冷媒より下流にでていく。図5では上流が縦軸上方で、下流が縦軸下方となり、圧力降下で冷媒が移動する。冷媒が多くなるために、蓄冷熱用熱交換器及びアキュムレータの冷媒量は減少する。
すなわち、絞り装置を絞ることによって、冷媒はそこでせき止められ、蒸発器出口の冷媒はガス状態となり、アキュムレータ内は入り口からガス(過熱度のある)、出口は(アキュムレータ内に飽和液面があるため)飽和ガスとなり、単位時間内の流入冷媒量A<単位時間内の流出冷媒量Bとなる。圧縮機入口圧力、入口冷媒温度、運転容量が一定の場合は、圧縮機の供給流量は一定の値Bとなる。
よって、A<Bにより、絞り上流に冷媒が溜り、過冷却が付く。
過冷却度5℃は絞り装置の入口が過冷却状態となり、冷媒音が発生しない最低条件である絞り装置部では、圧力損失によって冷媒の過冷却度が減少する。図5においては、F”から圧力が減少すると曲線部との間隔が小さくなり、絞り装置の入口が曲線の内側に入る可能性がでる。また、外側熱交換器出口部の過冷却度を大きくとるほど、熱交換量が小さくなるために室外側熱交換器出口部の過冷却度は大きくとれない。
【0061】
図2の他の冷媒の流れの例を図3、図4に示す。先に述べた如く、蓄冷時は、実際には両方のバルブが開いており、両方を冷媒が通過する(2回路が開いていると冷媒流量に対して、配管断面積が増加するため、配管抵抗が小さい)。
バルブ14を通る回路を図3、両方のバルブを通る回路を図4に示す。放冷回路は図13に示している。また、第6、第7のバルブ24,25を開けば圧縮機1によっても放冷可能である。
冷媒ポンプと圧縮機から吐出する冷媒を合流させて使用する場合は、冷媒ポンプと圧縮機の合計周波数(冷媒ポンプは圧縮機に対応する周波数)によって制御し、合計周波数が小さい領域では、圧縮機のみの運転とし、周波数が増加すると圧縮機の周波数を最低設定値にして冷媒ポンプの運転台数を1台にし(この切換点においては合計周波数は等しい)、圧縮機の周波数を上げていく。このようにして冷媒ポンプが3台になるまで同じ切換を行う。(ただし実際は、蓄冷時と蓄熱時においては冷媒ポンプ台数を3台一度に切換え、蓄冷熱併用冷房及び放熱、放冷は上記のように1台ずつ切換え、一般冷房と一般暖房は冷媒ポンプを使用しない。)
【0062】
以上の運転状態の制御を、制御ブロック図の図6に示す。
まず、ステップ11で起動時に第3の絞り装置を絞りぎみにし、ステップ12で室外側熱交換器冷媒過冷却度SCOを検知する。ステップ13で上記SCOが起動より一旦5degを越えるとSCO制御を開始する。SCOが5deg以上ならステップ14で第3の絞り装置の開度を開けるように第3の絞り装置の開度調節手段を操作する。SCOが5deg以下ならステップ15で第3の絞り装置の開度を絞るように第3の絞り装置の開度調節手段を操作する。ステップ16でSCOが5degなら第3の絞り装置の開度は、変更しないように第3の絞り装置の開度調節手段を操作する。
【0063】
上記のように図1の回路は、圧縮機1、四方切換弁28、室外側熱交換器3、第1の絞り装置6、第2の絞り装置15、室内側熱交換器16及び上記四方切換弁28を順次接続して形成された一般冷房回路と、圧縮機1、四方切換弁28、室外側熱交換器3、第1の絞り装置6、一端が上記第1の絞り装置6と第2の絞り装置15との間に接続され、他端が上記室内側熱交換器16と上記四方切換弁28との間に接続された第3の絞り装置22、蓄冷熱用熱交換器10、第3のバルブ14を有した直列回路と上記四方切換弁を順次接続して形成された蓄冷熱用回路と、上記蓄冷熱用熱交換器10を収容する蓄熱槽9、蓄熱槽に収納された蓄熱媒体21、及び一端が上記圧縮機吸入側に接続され、他端が蓄冷熱用熱交換器と上記第3のバルブ14との間に接続された冷媒ポンプ12、第6のバルブ24を有した直列回路、蓄冷熱用熱交換器10、第3の絞り装置22、第2の絞り装置15、室内側熱交換器16及び四方切換弁28を順次接続して形成された蓄冷を消費するための放冷回路と室外側熱交換器出口冷媒過冷却度検出手段204を有し、蓄冷時の上記室外側熱交換器出口冷媒過冷却度の検出値によって第3の絞り装置の開度を変更する調節手段を備えたものである。
以上のように構成されているので、蓄冷時は第3の絞り装置の開度を調節することにより、また特に蓄冷起動時には第3の絞り装置を小さく維持することによって、室外側熱交換器過冷却度を所定値以上に制御する。
これによって、冷媒制御の不安定動作を防止でき、能力を生かした制御が可能となる。
【0064】
発明の実施の形態2.
以下、本発明の第2の発明に係わる蓄熱式空気調和装置の実施の形態2を図7に基づき説明する。本例の蓄熱式空気調和装置の基本システムは第1の発明と同様なので、ここでは省略する。
【0065】
また、第1の発明の基本システムの他に第1の絞り装置6の開度調節手段201が制御部として設けられている。
【0066】
先に述べたように、蓄冷熱併用冷房運転時、その中でも特に起動時において、冷媒が蓄冷熱用熱交換器またはアキュムレータへ寝込むために室外側熱交換器出口冷媒過冷却度がとれない、または過冷却度がとれていても冷媒合流部と室内ユニット間の高低差が大きい場合、冷媒合流M部である配管108と105の合流部と室内ユニットの間の配管内において、冷媒が二相状態となることがあり、室外ユニットと室内ユニットの間の冷媒分岐部では各室内ユニットに供給される冷媒の分配が室内ユニットの必要量に対して、不均一となり、各室内ユニットが要求する冷媒循環量が確保されず、能力が低下する問題があった。各室内ユニットの第2の絞り装置入口での冷媒が二相状態となり、第2の絞り装置を流れる冷媒循環量が室内ユニットの必要量流れないため、室内ユニットでの能力の低下や、二相状態の冷媒が絞り装置2を流れるときにキャビテーションにより、冷媒音が発生する可能性がある。
【0067】
次いで、本実施の形態の例の動作、基本的な冷媒の流れ、運転状態について説明する。まず、蓄冷熱併用冷房運転の回路図を図7に示す。図7において、第1及び第3の絞り装置6及び22と第2の絞り装置15a,15b,15cと第6のバルブ24を開き、他のバルブを閉じている状態で圧縮機1及び冷媒ポンプ12を運転する。このとき冷媒ポンプ12側の蓄冷熱用熱交換器10で凝縮した液冷媒は、圧縮機1側の第1の絞り装置6で減圧された冷媒と合流し、室内ユニット用冷媒回路系a,b,cへは、一般冷房運転時の約2倍の量の冷媒が循環して、能力も2倍となる。そして冷媒は圧縮機1へ戻る。
【0068】
次に本例の運転状態図を図8に示す。なお、図8中数字にて表す運転点は、図7中の同一数字で表わす冷媒回路内の冷媒の状態を示している。上記蓄冷熱併用冷房運転を基本として、蒸発温度は約10℃で室内側熱交換器の凝縮温度は45℃、蓄冷熱用熱交換器の凝縮温度は22℃である時、起動時は室外側熱交換器出口が過冷却状態に至らない状態Fにあり、第1の絞り装置の開度調節手段201により開度を小さい状態で維持しておき、一旦上記室外側熱交換器出口過冷却度検出手段204の検出値が5deg以上になった後は、第1の絞り装置の開度調節手段201により開度を変化させて、室外側熱交換器出口過冷却度の状態F”を5degに制御する。この結果、蓄冷熱用熱交換器またはアキュムレータへ寝込んだ冷媒が冷媒回路に回収されて循環し、室外側熱交換器出口冷媒過冷却度がとれ、冷媒合流部と室内ユニット間の高低差が大きい場合でも、冷媒合流M部と室内ユニットの間の配管内において、冷媒が二相状態とならず、室外ユニットと室内ユニットの間の冷媒分岐部では各室内ユニットに供給される冷媒の分配が室内ユニットの必要量に対して、均一となり、各室内ユニットが要求する冷媒循環量が確保され、能力が低下する問題がなくなる。各室内ユニットの第2の絞り装置入口での冷媒が二相状態とならず、第2の絞り装置を流れる冷媒循環量が室内ユニットの必要量流れるため、室内ユニットでの能力の低下や、二相状態の冷媒が絞り装置2を流れるときにキャビテーションによる冷媒音が発生しなくなる。
【0069】
上記の説明において、二相状態とならない理由は次の通りである。過冷却度(モリエル線図の曲線左側からどれだけ左にある状態かを示す。)は室外側熱交換器出口部から冷媒回路下流(室内ユニット絞り装置入口)に行くに従って圧損や液ヘッド(室内ユニットが室外ユニットより上の場合のみ)により圧力が減少するために、小さくなる。よって、絞り装置入口部で過冷却度が0以上であるように、上流である室外側熱交換器出口部の過冷却度を大きくとってやればよい。
分配によるキャビテーション発生の度合いであるが、分配が悪いときは冷媒流量の小さい配管ができ、冷媒流量の小さい配管では冷媒の流速が大きくなる。そのため、流速の速い場所では、流速の上昇したエネルギの分圧力の降下が起き、気泡であるキャビテーションが発生し易くなる。
図8では103から圧力降下した冷媒と106から圧力降下した冷媒(105)が同じ位置(当然圧力も同じ)で合流し、合流した冷媒の状態は合流前と同じ圧力で、ただしエンタルピが違う冷媒となる。
【0070】
以上の運転状態の制御を、制御ブロック図の図9に示す。まず、ステップ21で第1の絞り装置の開度調節手段により起動時に第1の絞り装置を絞りぎみにする。ステップ22で室外側熱交換器冷媒過冷却度SCOを検知し、起動より一旦SCOが5deg以上になったら、ステップ23でSCO制御を開始する。SCOが5deg以上ならステップ24で第1の絞り装置の開度を開けるように第1の絞り装置の開度調節手段を操作する。SCOが5deg以下ならステップ25で第1の絞り装置の開度を絞るように第1の絞り装置の開度調節手段を操作する。ステップ26でSCOが5degなら第1の絞り装置の開度を変更しないように第1の絞り装置の開度調節手段を操作する。
【0071】
上記の放冷回路では、低外気温度の運転が安定する。蓄冷熱併用冷房時は第1の絞り装置の開度を調節することにより、また特に蓄冷熱併用冷房時には第1の絞り装置を小さく維持することによって、室外側熱交換器過冷却度を所定値以上に制御する。これにより定常時や起動のような過渡時の不安定動作を防止することができる。
【0072】
発明の実施の形態3.
以下、本発明の第3の発明に係わる蓄熱式空気調和装置の実施の形態3を図10に基づき説明する。本例の蓄熱式空気調和装置の基本システムは第1の発明と同様なので、ここでは省略する。
【0073】
また、第1の発明の基本システムの他に第2の絞り装置15a,15b,15cの開度調節手段202が制御部として設けられている。
【0074】
先に述べたように、一般冷房運転時、その中でも特に起動時において、冷媒が蓄冷熱用熱交換器またはアキュムレータへ寝込むために室外側熱交換器出口冷媒過冷却度がとれない、または過冷却度がとれていても冷媒合流部と室内ユニット間の高低差が大きい場合、室外ユニット出口と室内ユニットの間の配管内において、冷媒が二相状態となることがあり、室外ユニットと室内ユニットの間の冷媒分岐部では各室内ユニットに供給される冷媒の分配が室内ユニットの必要量に対して、不均一となり、各室内ユニットが要求する冷媒循環量が確保されず、能力が低下する問題があった。また、各室内ユニットでは、第2の絞り装置入口での冷媒が二相状態となり、第2の絞り装置を流れる冷媒循環量が室内ユニットの必要量流れないため、室内ユニットでの能力の低下や、二相状態の冷媒が絞り装置2を流れるときにキャビテーションにより、冷媒音が発生する可能性がある。
【0075】
次いで、本例の動作、基本的な冷媒の流れ、運転状態について説明する。第1の絞り装置6及び第2の絞り装置15a,15b,15cは開き、その他の絞り装置及びバルブは閉じている。圧縮機1及び冷媒ポンプ12より吐出された冷媒は室外側熱交換器にて凝縮液化した高圧冷媒は、各室内ユニット用冷媒回路系a,b,cに送られ、各々の第2の絞り装置15で冷媒流量調節しながら減圧し、約6kg/cm G程度の圧力で室内側熱交換器16内に流入し蒸発する。このとき周囲の室内空気より吸熱し、ガス化した冷媒は、圧縮機用アキュムレータ17を経由し、圧縮機1に戻る。
【0076】
次に本例の運転状態図を図11に示す。なお、図11中数字にて表す運転点は、図10中の同一数字で表わす冷媒回路内の冷媒の状態を示している。上記一般冷房を基本として、蒸発温度は約10℃で凝縮温度は45℃である時、起動時は室外側熱交換器出口が過冷却状態に至らない状態Fにあり、第2の絞り装置の開度調節手段202a,202b,202cにより開度を小さい状態で維持しておき、上記室外側熱交換器出口過冷却度検出手段204の検出値すなわち冷媒循環図11の左上の角が一旦5deg以上になった後は、第2の絞り装置の開度調節手段202a,202b,202cにより第2の絞り装置の開度を変化させて、室外側熱交換器出口の冷媒過冷却度の状態F”を5degに制御する。その結果、蓄冷熱用熱交換器またはアキュムレータへ寝込んだ冷媒が冷媒回路に回収されて循環し、室外側熱交換器出口冷媒過冷却度がとれ、冷媒合流部と室内ユニット間の高低差が大きい場合でも、室外ユニット出口と室内ユニットの間の配管内において、冷媒が二相状態となることがなく、室外ユニットと室内ユニットの間の冷媒分岐部では各室内ユニットに供給される冷媒の分配が室内ユニットの必要量に対して、均一となり、各室内ユニットが要求する冷媒循環量が確保され、能力が低下する問題がなくなる。また、各室内ユニットでは、第2の絞り装置入口での冷媒が二相状態とならず、第2の絞り装置を流れる冷媒循環量が室内ユニットの必要量流れるため、室内ユニットでの能力の低下が起こらず、二相状態の冷媒が絞り装置2を流れるときにキャビテーションにより、冷媒音が発生しなくなる。
【0077】
以上の運転状態の制御を、制御ブロック図の図12(a)に示す。まず、ステップ31で起動時に第2の絞り装置を絞りぎみにする。ステップ32で室外側熱交換器冷媒過冷却度SCOを検知し、一旦SCOが5deg以上になったら、ステップ33でSCO制御を開始する。SCOが5deg以上ならステップ34で第2の絞り装置の開度を開くるように第2の絞り装置の開度調節手段を操作する。SCOが5deg以下ならステップ35で第2の絞り装置の開度を絞るように第2の絞り装置の開度調節手段を操作する。SCOが5degならステップ36で第2の絞り装置の開度を変更しないように第2の絞り装置の開度調節手段を操作する。
【0078】
また、第2の絞り装置の役割を第1の絞り装置に行わせれば、同じ効果が得られる。
また、一般冷房時は第2の絞り装置の開度を調節することにより、また特に一般冷房起動時には第2の絞り装置を小さく維持することによって、室外側熱交換器過冷却度を所定値以上に制御する。
次に放冷運転から一般冷房運転への切替えをフローチャート図12(b)に示す。放冷運転(ステップ231)を行った後、冷媒ポンプと圧縮機の合計周波数が所定値にあるかまたはこれ以上かを確認し(ステップ232)、さらに水温が所定値以上かを確認し(ステップ233)、一般冷房に切り替える(ステップ234)。
【0079】
発明の実施の形態4.
以下、本発明の第4の発明に係わる蓄熱式空気調和装置の実施の形態4を図13に基づき説明する。本例の蓄熱式空気調和装置の基本システムは第1の発明と同様なので、ここでは省略する。
【0080】
また、第1の発明の基本システムの他に冷媒ポンプ吐出圧力検出手段205が設けられている。
【0081】
先に述べたように蓄冷熱併用冷房起動時及び放冷運転起動時において、アキュムレータ等に冷媒が滞留している場合は、蓄冷熱熱交換器内の冷媒量が熱交換するに足るだけ確保されず、起動直後では、熱交換するに足るだけの冷媒量を確保するために蓄冷熱熱交換器内に冷媒を溜める。その時、圧縮機吸入圧力が引込み、圧縮機周波数や圧縮機能力が低下する可能性があった。また、蓄冷熱用熱交換器の冷媒過冷却度がとれず、室内ユニット内での第2の絞り装置入口で冷媒が二相状態となり、冷媒制御が不安定となり、能力の低下が起こる可能性がある。
【0082】
次いで、本例の放冷運転の基本的動作を説明する。図13において第6及び第7のバルブ24,25と第2の絞り装置15a,15b,15cと第3の絞り装置22を開き、他の絞り装置及びバルブは閉じている状態で、圧縮機1及び冷媒ポンプ12を運転する。このとき圧縮機1及び冷媒ポンプ12により送出されたガス冷媒は槽内の氷で冷却されて凝縮し、液化した約9kg/cm Gの冷媒が各室内ユニット用冷媒回路系a,b,cに送られ、各々の第2の絞り装置15で冷媒流量調節しながら減圧し、約6kg/cm G程度の圧力で室内側熱交換器16内に流入し蒸発する。このとき周囲の室内空気より吸熱し、ガス化した冷媒は、アキュムレータ17を経由し、圧縮機1に戻る。
【0083】
次いで、本例の動作について説明する。まず、運転の状態図を図14に示す。なお、図14中数字にて表わす運転点は、図13中の同一数字で表わす冷媒回路内の冷媒の状態を示している。運転起動前には第3の絞り装置の開度は全閉または絞りぎみとして冷媒ポンプを運転し、冷媒ポンプ吐出圧力が10kgf/cm G以上まで上昇した時点で放冷運転の起動を始める。
【0084】
上記の結果、アキュムレータや蓄冷熱熱交換器内等に滞留している冷媒が冷媒回路に回収されて循環し、蓄冷熱熱交換器内の冷媒量が熱交換するに足るだけ確保されるため、起動直後に熱交換するに足るだけの冷媒量を確保するために蓄冷熱熱交換器内に冷媒を溜めて、その時、圧縮機吸入圧力が引込み低下して、圧縮機周波数や圧縮機能力が低下するという可能性がなくなる。また、蓄冷熱用熱交換器の冷媒過冷却度がとれ、室内ユニット内での第2の絞り装置入口で冷媒が二相状態とならず、冷媒制御が安定となり、能力の低下が起こる可能性がなくなる。
【0085】
以上の運転状態の制御を、制御ブロック図を図15に示す。まず、ステップ41で起動時に第3の絞り装置を全閉にしておく。ステップ42で冷媒ポンプ吐出圧力Pd1を検知する。ステップ43で一旦上記Pd1が10kgf/cm G以上になった時、ステップ44で第3の絞り装置の開度を開き、ステップ45で放冷運転を起動するように第3の絞り装置の開度調節手段を操作する。
【0086】
また、一般冷房運転時に第3の絞り装置の役割を第2の絞り装置に行わせれば、同じ効果が得られる。
【0087】
また、他の例においては、蓄冷熱併用冷房運転時に本例と同じ運転をすることで、同じ効果を得られる。
上記説明における圧縮機は、一般的に、例えば、外気35℃、槽内着氷時で、併用冷房時17kgf/cm G、放冷時11kgf/cm G位である。
また、放冷時は、放冷起動前にガスポンプ吐出圧力が一定の値以上になるまで第3の絞り装置を全閉または絞りぎみにした状態で予備運転し、上記ガスポンプ吐出圧力が一定の値以上になった後放冷運転を起動する。
【0088】
発明の実施の形態5.
以下、本発明の第5の発明に係わる蓄熱式空気調和装置の実施の形態の例5を図16に基づき説明する。本例の蓄熱式空気調和装置の基本システムは第1の発明と同様なので、ここでは省略する。
【0089】
また、第1の発明の基本システムの他に放冷運転時の冷媒合流M部の圧力検出手段206と複数のパスからなる蓄冷熱用熱交換器の少なくとも1パスの出入口に設けられた第8及び第9のバルブ26,27と第8及び第9のバルブの開閉手段207が制御部として設けられている。
図16におけるバルブ26,27が蓄熱槽ユニット中に含まれているが、これは電気信号により操作しているためにこの図示の例で示したが、蓄熱槽蓄熱材の中に入っていても外にいてもどちらでもよい。ただし蓄熱材と絶縁していればよいが、バルブ保護の為には蓄熱材の外に設けて、水には付けない構成が望ましい。
このように1つの蓄熱槽に複数のパスを設けることにより製品の高密度化や小形化が可能となる。2着氷の均一化も可能になる。
また一方、蓄熱槽を複数にわけ、それ様の蓄熱槽にバルブ26,27を設けてもよい。こうすると種々の氷が準備できる。
また、蓄冷熱併用冷房運転時及び放冷運転時は冷媒回路内の冷媒分布が安定し蓄冷熱用熱交換器出入口の圧力差を十分な値になるまで、冷媒合流M部の圧力が一定値以下では第8及び第9のバルブを閉じ、一定値以上になれば開ける。
【0090】
先に述べたように、蓄冷熱併用冷房運転時及び放冷運転時において、運転容量が低下した場合、蓄冷熱熱交換器内の冷媒循環量が低下し、蓄冷熱熱交換器内に冷媒が寝込み、運転に蓄冷熱用熱交換器に必要な冷媒量が増加する。冷媒回路内の冷媒量が一定であるため、第2の絞り装置の入口の冷媒が二相状態となり、冷媒制御が不安定となり、能力が低下したり、二相状態の冷媒が絞り装置2を流れるときにキャビテーションにより、冷媒音が発生したりする可能性がある。
【0091】
次いで、本例の動作、基本的な冷媒の流れ、運転状態を説明する。放冷運転の基本動作は、先の例4までと同じであるので省略する。本例の運転容量が低下した場合放冷運転時の冷媒回路図を図16に示し、状態図を図17に示す。
【0092】
図17において、運転容量が低下した直後の放冷運転時は第8及び第9のバルブ26,27を閉じ、冷媒回路が安定し蓄冷熱用熱交換器出入口の圧力差を十分な値になるまで、すなわち例えば冷媒合流部の圧力が10kgf/cm G以下の状態Fから、10kgf/cm G以上になるといった状態F’まで第8及び第9のバルブを閉じて上記運転容量が低下した直後の放冷運転時の上記蓄冷熱用熱交換器への冷媒の滞留量を小さくし、冷媒回路の状態が安定(状態F’)したと判断した時点で上記第8及び第9のバルブを開き、その後徐々に上記蓄冷熱熱交換器へ冷媒が滞留していく。その結果運転容量が低下した場合でも、蓄冷熱熱交換器内の冷媒循環量が低下して蓄冷熱熱交換器内に寝込む冷媒量を小さくし、運転時蓄冷熱用熱交換器に必要な冷媒量が少ししか増加しない。そのため、冷媒回路内の冷媒量が一定の場合、第2の絞り装置の入り口の冷媒が二相状態とならず、冷媒制御が安定となり、能力が低下したりせず、二相状態の冷媒が絞り装置2を流れる時にキャビテーションにより、冷媒音が発生したりすることもなくなる。
【0093】
以上の運転状態の制御を、制御ブロック図を図18に示す。まず、ステップ51で運転容量が低下した直後に第8及び第9のバルブを閉めておく。ステップ52で冷媒合流M部の圧力Pmを検知する。ステップ53で上記Pmが一旦10kgf/cm G以上になったらステップ54で冷媒回路の安定のため第8及び第9のバルブを開くように第8及び第9のバルブの開閉手段を操作する。
【0094】
蓄冷熱併用冷房起動時でも、同じ動作で、同じ効果が得られる。
上記の説明で、バルブ26,27の両方を閉める理由は、片方のみを開けると蓄冷熱用熱交換器内に冷媒が寝込むためである。ただし、どちらのバルブを開けるかで寝込み易さは違う。
冷媒の滞留量が小さくなるのは、蓄冷熱用熱交換器の容量を小さくするためと他の熱交換器の液量を上げるためである。
滞留量はアキュムレータの場合使用する。
【0095】
発明の実施の形態6.
以下、本発明の第6の発明に係わる蓄熱式空気調和装置の実施の形態6を図面に基づき説明する。本例の蓄熱式空気調和装置の基本システムは第1の発明と同様なので、ここでは省略する。
【0096】
また、第1の発明の基本システムの他に図19の如く冷媒合流M部と室外側熱交換器との間の配管部及びアキュムレータとを結ぶ第4のバルブ30を含んだ配管を有し、アキュムレータの液面検出手段208及び第4のバルブの開閉手段209が制御部として設けられている。
【0097】
先に述べたように、放冷運転時においては、室外側熱交換器に冷媒が寝込むことにより、放冷運転での必要冷媒量が確保されず、蓄冷熱用熱交換器の冷媒過冷却度がとれず、室内ユニット内での第2の絞り装置入口で冷媒が二相状態となり、冷媒制御が不安定となり、能力が低下したり、二相状態の冷媒が絞り装置2を流れるときにキャビテーションにより、冷媒音が発生したりする可能性がある。
【0098】
次いで、本例の放冷運転の回路図を図19、状態図を図20に示す。なお、図20中数字にて表わす運転点は、図19中の同一数字で表わす冷媒回路内の冷媒の状態を示している。本例の基本動作は、実施の形態4までの放冷運転の基本動作と同じであるので省略する。
【0099】
放冷時にアキュムレータの液面検出手段によってアキュムレータ内の冷媒が無くなった時、第4のバルブを開けることにより、室外側熱交換器に滞留する冷媒の圧力が4kgf/cm Gのアキュムレータに引き込まれ、循環冷媒量が増加し、蓄冷熱用熱交換器出口の過冷却度は状態FからF’に上昇、また室内側熱交換器出口の過熱度は状態FからF’に減少となる。その結果、室外側熱交換器に寝込んだ冷媒を冷媒回路に回収し循環させることにより、放冷運転での必要冷媒量が確保され、蓄冷熱用熱交換器の冷媒過冷却度がとれ、室内ユニット内での第2の絞り装置入口で冷媒が二相状態とならず、冷媒制御が安定となり、能力が低下したりせず、二相状態の冷媒が絞り装置2を流れるときにキャビテーションにより、冷媒音が発生したりすることもなくなる。なお、放冷運転には室外側熱交換器を使用しないので、作動主冷媒回路外より冷媒を回収できることになる。
【0100】
以上の運転状態の制御を、制御ブロック図の図21に示す。ステップ61でアキュムレータに液が存在する時は第4のバルブを閉めておく。ステップ62でアキュムレータ液面検知手段でアキュムレータ内の冷媒量を検知する。ステップ63でアキュムレータ内に冷媒がないときは、ステップ64で第4のバルブを開くように第4のバルブの開閉手段を操作する。ステップ63でアキュムレータ内に冷媒がある時はステップ65において第4のバルブが閉まるように第4のバルブの開閉手段を操作する。
なお、開したバルブ30は、アキュムレータの液面レベルを検出し、このレベルに応じた電気信号により閉されることとなる。
すなわち、放冷時はアキュムレータの液面検出手段によって検出した検出値が一定値以下の時、第4のバルブを開ける。
これにより、冷媒回路内の冷媒量調整が所望通り行なわれ、高能力運転の保持が可能である。
【0101】
発明の実施の形態7.
以下、本発明の第7の発明に係わる蓄熱式空気調和装置の実施の形態7を図面に基づき説明する。本例の蓄熱式空気調和装置の基本システムは第1の発明と同様なので、ここでは省略する。
【0102】
また、第1の発明の基本システムの他に図22の如く、アキュムレータの液面検出手段208及び第3のバルブの開閉手段210が制御部として設けられている。
【0103】
先に述べた如く、一般暖房運転時に余剰冷媒がアキュムレータから溢れ出し、圧縮機の信頼性が低下する可能性がある。
【0104】
次いで、本例の動作、基本的な冷媒の流れ、運転状態を説明する。本例の一般暖房運転の回路図を図22に示す。図22において、第1の絞り装置6及び第2の絞り装置15a,15b,15cは開き、その他の絞り装置及びバルブは閉っている状態で、圧縮機1を運転する。圧縮機1より17kg/cm G前後の圧力で吐出された高温高圧ガスは各室内ユニット用冷媒回路系a,b,cに送られ、各々の室内側熱交換器16で凝縮し、室内空気を加熱する。凝縮した液冷媒は第2の絞り装置15で若干の減圧をし、さらに第1の絞り装置6で減圧して約4kg/cm Gの圧力で室外側熱交換器3内で蒸発し、アキュムレータ17を経由して圧縮機1に戻る。
【0105】
本例の一般暖房運転の運転状態を図23に示す。なお、図23中数字にて表わす運転点は、図22中の同一数字で表わす冷媒回路内の冷媒の状態を示している。上記一般暖房運転を基本とし、運転時はアキュムレータの液面検出手段によってアキュムレータ内の冷媒がアキュムレータから溢れたと検知した時、第3のバルブを開けることにより、循環する高温・高圧の冷媒を低温・低圧の蓄冷熱用熱交換器に流入させて、アキュムレータ内の冷媒が減少するようにし、一般暖房冷媒回路の循環冷媒量が減少することで、室内側熱交換器出口の冷媒過冷却度が状態FからF’に減少し、室外側熱交換器出口の加熱度が状態FからF’上昇できる。その結果、アキュムレータから溢れ出す冷媒を冷媒回路から除去することで、圧縮機の信頼性が低下することがなくなる。
【0106】
冷房と暖房では、負荷の軽い暖房で冷媒が余る。また、蓄熱と一般冷房では、蓄冷熱用熱交換器に冷媒が寝込み易い。蓄冷熱用熱交換器は配管が上下に行き来しているため、蓄冷熱用熱交換器を持たない一般暖房が最も冷媒が余り易い。
また、アキュムレータは冷媒回路中の余った冷媒を溜めておく部位であるので、一般暖房においてアキュムレータがオーバーフローしやすい。
また、冷房ではアキュムレータに液はあまり残らず、蓄熱は蓄冷熱用熱交換器に溜まるので、アキュムレータのオーバーフローはほとんどない。ただし、初期の冷媒封入量が多い場合は有り得る。
また、延長配管では冷房時は液状冷媒が、暖房時は液状よりも少ない二相状態の冷媒が流れ、これも暖房時に冷媒があまる理由となる。
【0107】
以上の運転状態の制御を、制御ブロック図の図24に示す。ステップ71でアキュムレータに液が存在する時は第3のバルブを閉めておく。ステップ72でアキュムレータ液面検知手段により、アキュムレータ液面を検知する。ステップ73でアキュムレータの冷媒がアキュムレータから溢れたときはステップ74で第3のバルブを開くように第3のバルブの開閉手段を操作する。ステップ73でアキュムレータ内の冷媒がアキュムレータから溢れない時はステップ75で第3のバルブを閉めておくように、第3のバルブを開くように第3のバルブの開閉手段を操作する。
【0108】
図22にて第3のバルブ14をあけ、熱交換器10に冷媒を入れるとアキュムレータの冷媒が減少する。これは、蓄冷熱用熱交換器に冷媒を寝込ませると、蓄冷熱用熱交換器以外の回路である冷媒回路中の冷媒量が減少する。また、アキュムレータの冷媒量というのは、冷媒回路で循環しない余った冷媒量であるために、冷媒回路中の冷媒量が減少するとその分アキュムレータの冷媒量がそのまま減少する。
一般暖房時はアキュムレータの液面検出手段によって検出した検出値が一定値以上の時、第3のバルブを開ける。
これにより、信頼性の高冷媒循環システムを得ることができる。
【0109】
発明の実施の形態8.
以下、本発明の第8の発明に係わる蓄熱式空気調和装置の実施の形態8を図25に基づき説明する。本例の蓄熱式空気調和装置の基本システムは第1の発明と同様なので、ここでは省略する。
【0110】
また、第1の発明の基本システムの他にアキュムレータの液面検出手段208及び第1の絞り装置6の開度調節手段を設けている。
【0111】
先に述べた如く、放熱暖房運転時、室外側熱交換器に冷媒が寝込み、アキュムレータ内の冷媒量が少なくなり、放熱暖房回路全体の冷媒量が不足して、能力の低下や室内側熱交換器での冷媒音の発生が起こる可能性がある。
【0112】
次いで、本例の動作について説明する。本例の放熱暖房運転の回路図を図25に示す。図25において、第3のバルブ22と第2のバルブ15a,15b,15c、及び第5、第7のバルブ23,25は開き、その他の絞り装置及びバルブは閉じている状態で、圧縮機1及び冷媒ポンプ12を運転する。このとき圧縮機1及び冷媒ポンプ12は17kg/cm G前後の高温・高圧のガス冷媒を各室内ユニット用冷媒回路系a,b,cに送り、室内空気の加熱を行う。凝縮した冷媒は第2の絞り装置15にて減圧し、約13kg/cm Gの気液二相冷媒となって蓄熱槽9に戻り蒸発して、約4kg/cm Gでアキュムレータ17を経由して圧縮機1及び冷媒ポンプ12に戻る。
【0113】
本例の放熱暖房運転の状態図を図26に示す。なお、図26中数字にて表わす運転点は、図25中の同一数字で表わす冷媒回路内の冷媒の状態を示している。上記放熱運転を基本として、放熱暖房時はアキュムレータの液面検出手段によってアキュムレータ内に冷媒がなくなることを検知した時、第1の絞り装置の開度を開けることにより、室外側熱交換器から冷媒を流入させて、放熱暖房冷媒回路の循環冷媒量を増加させることで、室内側熱交換器出口の冷媒過冷却度が状態Fから状態F’に上昇、蓄冷熱用熱交換器出口の過熱度が状態Fから状態F’に減少する。その結果、室外側熱交換器に寝込んだ冷媒を冷媒回路に回収し循環させるため、放熱暖房回路全体の冷媒量が不足せず、能力の低下や室内側熱交換器での冷媒音の発生が起こることがなくなる。
【0114】
以上のような運転の制御を、制御ブロック図の図27に示す。ステップ81でアキュムレータに液が存在する時は第1の絞り装置は全閉にしておく。ステップ82でアキュムレータ液面検知手段でアキュムレータ内の冷媒量を検知する。ステップ83でアキュムレータ内に冷媒がないときはステップ84で第1の絞り装置を開くように第1の絞り装置の開度調整手段を操作する。ステップ83でアキュムレータ内に冷媒がある時はステップ85で第1の絞り装置は閉まったままになるように第1の絞り装置の開度調整手段を操作する。
放熱暖房回路には、室外側熱交換器は含んでおらず、そこからしか流入させる所がないため、作動主冷媒回路外より回収することができる。
放熱暖房時アキュムレータの液面検出手段によって検出した検出値が一定値以下の時、第1の絞り装置を開ける。これにより高い能力を維持可能である。
【0115】
発明の実施の形態9.
以下、本発明の第9の発明に係わる蓄熱式空気調和装置の実施の形態9を図28に基づき説明する。本例の蓄熱式空気調和装置の基本システムは第1の発明と同様なので、ここでは省略する。
【0116】
また、第1の発明の基本システムの他に蓄冷・暖房モードを選択する運転モード切換手段211を設けている。
【0117】
先に記すように、蓄冷運転中には冷房運転を行うことができないことがある。
【0118】
次いで、本例の動作について説明する。本例の冷媒回路図を図28に示すが、基本的な冷媒の流れ、運転状態は、実施の形態8までの蓄冷運転及び一般冷房と同様の作用なのでここでは省略する。本例の蓄冷及び冷房の運転時間帯は切換の図を図29に示す。また、蓄冷時間帯内の蓄冷利用冷房は禁止である。
【0119】
まず、図29の時点で冷房運転の要求に応じて一般冷房運転が開始する。
【0120】
A〜Bで冷房運転を30分行い、一般冷房開始から30分経過したBにおいて一般冷房運転を蓄冷運転に切り替える。この間は蓄冷は禁止である。
【0121】
B〜Cの蓄冷運転においては、一般冷房は禁止となるので室内側室温は、外気温度に近づいて上昇する。そして一般冷房運転時の時の目標室温より5℃高い値になった時点で、一般冷房運転に切り替える。
【0122】
Cの時点で再び冷房運転を再開する。一般冷房再開後は30分一般冷房運転をし、この間蓄冷は禁止となる。
【0123】
以上のようにして交互に一般冷房運転と蓄冷運転を実施する。
【0124】
この結果、蓄冷運転時間帯における他モードの運転や、冷房運転時間帯での蓄冷運転が可能となる。蓄冷・冷房モードを選択する運転モード切換手段によって、蓄冷及び冷房を運転時間帯を決めて交互に実施する。
【0125】
以上の運転状態の制御ブロック図を図30に示す。まず、ステップ91で冷房運転を開始し、ステップ92で冷房運転を30分運転の後、ステップ93で冷房運転が30分運転したかを判断し、ステップ94で蓄冷運転に切換る。ステップ95で蓄冷運転を行い、ステップ96で室内温度が冷房時の目標室内温度より5℃以上高くなったかを判断し、室内温度が冷房時の目標室内温度より5℃以上高くなった時点で冷房運転に切換える。例えば、1時間おきに蓄冷と冷房を設定温度の差とタイマーにより順次繰り返して、蓄冷時間内で簡単な制御で行える。
【0126】
発明の実施の形態10.
以下、本発明の第10の発明に係わる蓄熱式空気調和装置の実施の形態10を図31に基づき説明する。本例の蓄熱式空気調和装置の基本システムは第1の発明と同様なので、ここでは省略する。
【0127】
蓄冷運転中には冷房運転を同時に行うことができないことがあった。
【0128】
そこで、本例の動作について説明する。本例の蓄冷・冷房同時運転の回路図を図31に示すが、基本的な冷媒の流れ、運転状態は、実施の形態8までの蓄冷運転及び一般冷房と同様の作用なのでここでは省略する。本例の蓄冷・冷房同時運転状態を図32に示す。
【0129】
一般冷房運転時もしくは蓄冷時の第2、第3の絞り装置15a,15b,15c,22及び第3のバルブ14の開度を開けることにより、一般冷房運転の回路と蓄冷運転の回路は各々通じるようになり、圧縮機及び冷媒ポンプから吐出する冷媒は上記一般冷房回路と蓄冷回路を流れるようになる。蓄冷時に第2の絞り装置の開度を開けることによって、または冷房時に第3の絞り装置及び第3のバルブを開ける。
【0130】
ただし、室内ユニットの冷媒制御は蓄熱槽ユニット内の蓄熱媒体(例えば水)が氷になることができる程度に第2の絞り装置15a,15b,15cを絞る。
【0131】
この結果、蓄冷運転時間帯における冷房運転や、冷房運転時間帯での蓄冷運転が可能となる。どの時間帯においても同時に運転ができシステムの使い勝手がよくなり、使用者の条件に応じたフレキシブルなシステムが構築できる。
【0132】
発明の実施の形態11.
以下、本発明の第11の発明に係わる蓄熱式空気調和装置の実施の形態11を図33に基づき説明する。本例の蓄熱式空気調和装置の基本システムは第1の発明と同様なので、ここでは省略する。
【0133】
また、第1の発明の基本システムの他に蓄冷・冷房運転比率管理手段212を設けている。この蓄冷・冷房運転比率管理手段は必要蓄冷量及び冷房能力、圧縮機・冷媒ポンプ最大能力の管理をする。
【0134】
蓄冷運転と冷房運転を同時に行う場合、必要蓄冷能力を満足することができないことがあった。
【0135】
次いで、本例の動作について説明する。本例の蓄冷・冷房同時運転の回路図を図33に示すが、基本的な冷媒の流れ、運転状態は、実施の形態8までの蓄冷運転及び一般冷房と同様の作用なのでここでは省略する。本例の蓄冷・冷房同時運転の運転制御変化に対する能力変化図を図34に示す。
【0136】
次に図34の運転制御変化に対する能力変化の説明により、蓄冷主体の蓄冷及び一般冷房同時運転を説明する。図中の横軸はAの蓄冷開始時間を22:00を示し、D蓄冷終了時間8:00を示す。またQ1は、圧縮機及び冷媒ポンプの合計で出力できる最大の能力で、運転中は常に最大の能力を出す。Q2は必要蓄冷量を蓄冷時間で割った必要蓄冷能力であり、この値以下の蓄冷能力での運転はなされない。Q3は運転中出し得る最大の冷房能力である。Q2’及びQ3’は、運転中の蓄冷能力及び冷房能力である。
【0137】
ここで、Aは蓄冷開始の時間22:00である。この時点ではまだ冷房要求が大きく、この冷房要求能力がQ1−Q2より大きい場合は、冷房能力及び蓄冷能力は自動的にQ1−Q2及びQ2となるように、第3の絞り装置22を絞り、第2の絞り装置15を開く。この状態で深夜の睡眠時間帯に入る1:00のBまでこの運転が続く。
【0138】
次にBの状態で、一般冷房を禁止の状態、すなわちQ1=Q2’の状態にし、圧縮機及び冷媒ポンプの出す最大の能力を全て蓄冷に使用する従来の蓄冷運転をする。このとき、第2の絞り装置15は閉まった状態となる。この状態で明け方の起床時間6:00のCまでこの運転が続く。
【0139】
次にCの状態から人が活動を開始し、冷房要求が少し出てくるため、一般冷房運転が始まる。この冷房要求がQ1−Q2より小さい場合は、冷房能力Q3’は冷房要求に見合った能力になるように第2の絞り装置15が調節され、蓄冷能力はQ1−Q3’となるように、第3の絞り装置が調節される。この運転は蓄冷時間帯の終了時間8:00であるDまで続く。
【0140】
以上のような運転の制御を、制御ブロック図の図35に示す。まず、要求される目標冷房能力Q3”をステップ111で設定し、ステップ112で設定する蓄冷量からステップ113で最低必要とする蓄冷能力Q2を計算する。またステップ114で圧縮機1及び冷媒ポンプの出し得る最大の能力Q1を設定する。
【0141】
ステップ115で、上記設定値Q3”,Q1,Q2からQ3”がQ1−Q2より大きいかどうかを判断する。もしQ3”がQ1−Q2より大きければ、ステップ116で冷房能力はQ1−Q2、ステップ117で蓄冷能力はQ2とされ、冷房能力はステップ11Cの第2の絞り装置15の開度調整、蓄冷能力はステップ11Bの第3の絞り装置の開度調整により調節される。もしQ3”がQ1−Q2より小さければステップ118で冷房能力Q3”、ステップ119で蓄冷能力はQ1−Q3”とされ、冷房能力はステップ11Cの第2の絞り装置の開度調整、蓄冷能力はステップ11Cの第3の絞り装置の開度調整により調節される。また、ステップ11Aにおいて圧縮機の周波数を最大、冷媒ポンプの台数を最大にすることで圧縮機・冷媒ポンプ能力Q1も調節される。
【0142】
以上のように、蓄冷能力と、室内側熱交換器冷房能力は蓄冷・冷房運転比率管理手段によって、それぞれ第3の絞り装置(ステップ11B)、第2の絞り装置(ステップ11C)を制御することにより管理される。ただし、第3の絞り装置の制御は、圧縮機吐出圧力Pd、吸入圧力Ps及び上記蓄冷能力Q2’、蓄冷熱用熱交換器出口目標過熱度SHsmから以下の関数F3のように開度x3が決定する。
x3=F3(Pd,Ps.Q2’,SHsm)
【0143】
また、第2の絞り装置の制御は上記圧縮機吐出Pd、吸入圧力Ps及び上記室内側熱交換器冷房能力の合計Q3’、蓄冷熱用熱交換器出口目標過熱度SHam,SHbm,SHcmから、各室内ユニット毎に各ユニットの定格能力に見合った能力になるように比例分配されるような開度x2a,x2b,x2cとして以下の関数F2a,F2b,F2cから決定する。
x2a=F2a(Pd,Ps,Q3’,SHam)
x2b=F2b(Pd,Ps,Q3’,SHbm)
x2c=F2c(Pd,Ps,Q3’,SHcm)
【0144】
この結果、蓄冷運転と冷房運転とが同時運転でき、かつ必要な蓄冷量を得ることができるため、蓄冷運転時間帯での冷房運転が可能となる。
各能力については次の内容であることを記しておく。
Q1:所定値として、持っている値。
Q2:所定値として、入力する値である必要蓄冷量を蓄冷時間で割った値。
Q2’:図35上のステップ117,119で求まる値。
Q3”:ステップ11Cで求まる第2の絞り装置開度(この値がアウトプット値で、最初は初期開度)と室内側熱交換器出口目標過熱度SHam,SHbm,SHcm(データインプット値)、及び圧縮機吐出圧力・吸入圧力(検知インプット値)から求まる。
Q3’及びQ3:ステップ118,116で求まる値。
すなわち、蓄冷時に第2の絞り装置の開度を開けるかもしくは、冷房時に第3の絞り装置及び第3のバルブを開けて、蓄冷・冷房運転比率管理手段により、蓄冷能力を主体に蓄冷及び冷房の運転比率を制御する。
以上のように圧縮機と冷媒ポンプの能力Q1の管理、必要蓄冷量Q2の計算及びQ1−Q2によって冷房する運転により必要蓄冷能力(蓄冷量)を確実に確保でき、信頼性の高いシステムを得ることができる。
【0145】
発明の実施の形態12.
以下、本発明の第12の発明に係わる蓄熱式空気調和装置の実施の形態12を図36に基づき説明する。本例の蓄熱式空気調和装置の基本システムは第1の発明と同様なので、ここでは省略する。
【0146】
また、第1の発明の基本システムの他に蓄冷・冷房運転比率管理手段212を設けている。この蓄冷・冷房運転比率管理手段は蓄冷量及び冷房能力、圧縮機・冷媒ポンプ最大能力の管理をする。
【0147】
蓄冷運転と冷房運転を同時に行う場合、必要冷房能力を満足することができないことがあった。
【0148】
次いで、本例の動作について説明する。本例の蓄冷・冷房同時運転の回路図を図36に示すが、基本的な冷媒の流れ、運転状態は、実施の形態8までの蓄冷運転及び一般冷房と同様の作用なのでここでは省略する。本例の蓄冷・冷房同時運転の運転制御変化に対する能力変化図を図37に示す。
【0149】
次に図37の運転制御変化に対する能力変化の説明により、冷房主体の蓄冷及び一般冷房同時運転を説明する。図中の横軸は冷房の時間帯の中では冷房負荷が少ない19:00から蓄冷時間帯の始めの22:00の時間で、Q1は、圧縮機及び冷媒ポンプの合計で出力できる最大の能力で、運転中は常に最大の能力を出す。Q2’及びQ3’は、運転中の蓄冷能力及び一般冷房能力である。
【0150】
ここで、Aの19:00では冷房の要求が大きく、冷房の要求能力がQ1を越している状態で、Q3’=Q1となる。この状態が1時間続き、Bの20:00までは、蓄冷禁止の状態となる。
【0151】
次にBの22:00の時点で、冷房の要求能力がQ1より小さくなりだし、Cの21:30まで冷房の要求が徐々に減少し、冷房の要求能力がQ3’となる状態が続く。この時間帯では、Q1−Q3’=Q2’であり、蓄冷運転可能な状態となる。
【0152】
Cの状態で冷房の要求がなくなり、一般冷房禁止の状態となり、Q1を蓄冷に100%使用している。つまり、蓄冷時間帯の前に、従来の蓄冷運転を開始する。この状態で、蓄冷時間帯の22:00まで運転する。
【0153】
以上の運転状態の制御を、制御ブロック図の図38に示す。まず、要求される目標冷房能力Q3”をステップ121で設定し、圧縮機及び冷媒ポンプの出し得る最大の能力Q1をステップ122で設定する。
【0154】
ステップ123で、上記設定値Q3”,Q1からQ3”がQ1より大きいかどうかを判断する。もしQ3”がQ1より大きければ、ステップ124で冷房能力はQ1、ステップ125で蓄冷能力は0(蓄冷禁止)とされ、蓄冷能力はステップ129の第3の絞り装置の開度調整、冷房能力はステップ12Aの第2の絞り装置の開度調整により調節される。もしQ3”がQ1より小さければステップ126で冷房能力Q3”、ステップ127で蓄冷能力はQ1−Q3”とされ、冷房能力はステップ12Aの第3の絞り装置の開度調整、蓄冷能力はステップ129の第2の絞り装置の開度調整により調節される。また、ステップ128において圧縮機の周波数を最大、冷媒ポンプの台数を最大にすることで圧縮機・冷媒ポンプ能力Q1も調節される。
【0155】
以上のように、蓄冷能力、室内側熱交換器冷房能力は蓄冷・冷房運転比率管理手段によって、それぞれ第3の絞り装置(ステップ129)、第2の絞り装置(ステップ12A)を制御することにより管理する。ただし、第3の絞り装置の制御は、圧縮機吐出圧力のPd、吸入圧力Ps及び蓄冷能力Q2’、蓄冷熱用熱交換器出口目標過熱度SHsmから以下の式の関数F3によって開度x3が決定する。
x3=F3(Pd,Ps.Q2’,SHsm)
【0156】
また、第2の絞り装置の制御は上記圧縮機吐出Pd、吸入圧力Ps及び上記室内側熱交換器冷房能力の合計Q3’、蓄冷熱用熱交換器出口目標過熱度SHam,SHbm,SHcmから、各室内ユニット毎に各ユニットの定格能力に見合った能力になるように比例分配されるように、以下の関数F2a,F2b,F2cから開度x2a,x2b,x2cとして決定する。
x2a=F2a(Pd,Ps,Q3’,SHam)
x2b=F2b(Pd,Ps,Q3’,SHbm)
x2c=F2c(Pd,Ps,Q3’,SHcm)
Q1:所定値として、持っている値。
Q2’:図38上のステップ127,125で求まる値。
Q3”:ステップ12Aで求まる第2の絞り装置開度(この値がアウトプット値で、最初は初期開度)と室内側熱交換器出口目標過熱度SHam,SHbm,SHcm(データインプット値)、及び圧縮機吐出圧力・吸入圧力(検知インプット値)から求まる。
Q3’:ステップ124,126で求まる値。
すなわち、冷房時に第3の絞り装置及び第3のバルブを開けるかもしくは、蓄冷時に第2の絞り装置の開度を開けて、蓄冷・冷房運転比率管理手段により、冷房能力を主体に蓄冷及び冷房の運転比率を制御する。
Q1の管理と時々刻々要求される冷房能力Q3によりQ1−Q3で蓄冷分を行う運転により必要冷房能力を確保でき、高能力を維持できるシステムが得られる。
【0157】
この結果、蓄冷運転と冷房運転とが同時運転でき、かつ必要な冷房能力を得ることができるため、冷房運転時間帯での蓄冷運転が可能となる。
【0158】
発明の実施の形態13.
以下、本発明の第13の発明に係わる蓄熱式空気調和装置の実施の形態13を図39に基づき説明する。本例の蓄熱式空気調和装置の基本システムは第1の発明と同様なので、ここでは省略する。
【0159】
蓄熱運転中には暖房運転を行うことができないことがあった。
【0160】
次いで、本例の動作について説明する。回路図を図39に示すが、一般暖房については基本的な冷媒の流れ、運転状態は、実施の形態8まで同様の作用なのでここでは省略する。蓄熱運転については、図40に回路図を示す。図40において第1、第3の絞り装置6,22と第3のバルブ14は開き、他の絞り装置及びバルブは閉じている状態で、圧縮機1及び冷媒ポンプ12を運転する。このとき圧縮機1及び冷媒ポンプ12により送出されたガス冷媒は槽内で冷却され40℃程度で凝縮し、第3の絞り装置22及び第1の絞り装置6で絞られた冷媒が室外ユニット用冷媒回路に送られ、約6kg/cm G程度の圧力で室外側熱交換器3内に流入し蒸発する。このとき周囲の室外空気より吸熱し、ガス化した冷媒は、圧縮機用アキュムレータ17を経由し、圧縮機1に戻る。
【0161】
次に本例の蓄熱及び暖房の運転時間帯切換の図を図41に示す。
【0162】
まず、Aの時点で暖房運転の要求に応じて一般暖房運転が開始する。
【0163】
A〜Bで暖房運転を30分行い、一般暖房開始から30分経過したBにおいて一般暖房運転を蓄冷運転に切り替える。この間は蓄熱は禁止である。
【0164】
B〜Cの蓄熱運転においては、一般暖房は禁止となるので室内側室温は、外気温度に近づいて下降する。そして一般暖房運転時の目標室温より5℃低い値になった時点で、一般暖房運転に切り替える。
【0165】
Cの時点で再び暖房運転を再開する。一般暖房再開後は30分一般暖房運転をし、この間蓄熱は禁止となる。
【0166】
以上のようにして交互に一般暖房運転と蓄熱運転を実施する。
【0167】
この結果、蓄熱運転時間帯における他モードの運転や、暖房運転時間帯での蓄熱運転が可能となる。
【0168】
以上の運転状態の制御を、制御ブロック図の図42に示す。まず、ステップ131で暖房運転を開始し、ステップ132で暖房運転を30分運転の後、ステップ103で暖房運転が30分運転したかを判断し、ステップ104で蓄熱運転に切換る。ステップ105で蓄熱運転を行い、ステップ106で室内温度が暖房時の目標室内温度より5℃以上低くなったかを判断し、室内温度が暖房時の目標室内温度より5℃以上高くなった時点で暖房運転に切換える。
上記の時間は、冷房開始後、室内側温度が安定するまでの時間(部屋の大きさで決める)の間冷房をし、暑いと感じる温度(冷房時室内側設定温度より求める)に上昇するまで蓄冷する。
また、蓄熱時に第2の絞り装置の開度を開ける、または暖房時に第3の絞り装置及び第3のバルブを開ける。
【0169】
発明の実施の形態14.
以下、本発明の第14の発明に係わる蓄熱式空気調和装置の実施の形態14を図43に基づき説明する。本例の蓄熱式空気調和装置の基本システムは第1の発明と同様なので、ここでは省略する。
【0170】
蓄熱運転中には暖房運転を同時に行うことができないことがあった。
【0171】
次いで、本例の動作について説明する。本例の蓄熱・暖房同時運転の回路図を図43に示すが、基本的な冷媒の流れ、運転状態は、実施の形態8までの蓄熱運転及び一般暖房と同様の作用なのでここでは省略する。また、本例の蓄熱・暖房同時運転の状態図を図44に示す。なお、図44中数字にて表わす運転点は、図43中の同一数字で表わす冷媒回路中の冷媒の状態を示している。
【0172】
一般暖房運転時もしくは蓄熱時の第2、第3の絞り装置15,22及び第3のバルブ14の開度を開けることにより、一般暖房運転の回路と蓄熱運転の回路は各々通じるようになり、圧縮機及び冷媒ポンプから吐出する冷媒は上記一般暖房と蓄熱回路を流れるようになる。
【0173】
蓄熱運転時間帯における暖房運転や、暖房運転時間帯での蓄熱運転が可能となる。
図44において、圧縮機及び冷媒ポンプで吸入(129,130)された冷媒は(138,133)のガス状態に吐出され、その後分岐し、蓄冷熱用熱交換器入口112と室内側熱交換器入口124の状態となり(この間圧力損失あり)、それぞれの熱交換器で凝縮液化した冷媒は熱交換器出口で106,123となり、この2分岐した冷媒は108で合流後、室外側熱交換器で蒸発し、室外側熱交換器出口104bを通過し、圧縮機及び冷媒ポンプの吸入部(129,130)に戻る。
蓄熱時に第2の絞り装置の開度を開け、または暖房時に第3の絞り装置及び第3のバルブを開けて、蓄熱・暖房運転比率管理手段により、蓄熱能力を主体に蓄熱及び暖房の運転比率を制御する。
【0174】
発明の実施の形態15.
以下、本発明の第15の発明に係わる蓄熱式空気調和装置の実施の形態15を図45に基づき説明する。本例の蓄熱式空気調和装置の基本システムは第1の発明と同様なので、ここでは省略する。
【0175】
また、第1の発明の基本システムの他に蓄熱・暖房運転比率管理手段214を設けている。この蓄熱・暖房運転比率管理手段は必要蓄熱量及び暖房能力、圧縮機・冷媒ポンプ最大能力の管理をする。
【0176】
蓄熱運転と暖房運転を同時に行う場合、必要蓄熱能力を満足することができないことがあった。
【0177】
次いで、本例の動作について説明する。本例の蓄熱・暖房同時運転の回路図を図45に示すが、基本的な冷媒の流れ、運転状態は、実施の形態14までの蓄熱運転及び一般暖房と同様の作用なのでここでは省略する。本例の蓄熱・暖房同時運転の運転制御変化に対する能力変化図を図46に示す。
【0178】
次に図46の運転制御変化に対する能力変化の説明により、蓄熱主体の蓄熱及び一般暖房同時運転を説明する。図中の横軸はAの蓄熱開始時間帯22:00を示し、D蓄熱終了時間8:00を示す。またQ1は、圧縮機及び冷媒ポンプの合計で出力できる最大の能力で、運転中は常に最大の能力を出す。Q2は必要蓄熱量を蓄熱時間で割った必要蓄熱能力であり、この値以下の蓄熱能力での運転はなされない。Q3は運転中出し得る最大の暖房能力である。Q2’及びQ3’は、運転中の蓄熱能力及び暖房能力である。
【0179】
ここで、Aは蓄熱開始の時間22:00である。この時点ではまだ暖房要求が大きく、この暖房要求能力がQ1−Q2より大きい場合は、暖房能力及び蓄熱能力は自動的にQ1−Q2及びQ2となるように、第3の絞り装置を絞り、第2の絞り装置を開く。この状態で深夜の睡眠時間帯に入る1:00のBまでこの運転が続く。
【0180】
次にBの状態で、一般暖房を禁止の状態、すなわちQ1=Q2’の状態にし、圧縮機及び冷媒ポンプの出す最大の能力を全て蓄熱に使用する従来の蓄熱運転をする。このとき、第2の絞り装置は閉まった状態となる。この状態で明け方の起床時間6:00のCまでこの運転が続く。
【0181】
次にCの状態から人が活動を開始し、暖房要求が少し出てくるため、一般暖房運転が始まる。この暖房要求がQ1−Q2より小さい場合は、暖房能力Q3’は暖房要求に見合った能力になるように第2の絞り装置が調節され、蓄熱能力はQ1−Q3’となるように、第3の絞り装置が調節される。この運転は蓄熱時間帯の終了時間8:00であるDまで続く。
【0182】
以上のような運転の制御を、制御ブロック図の図47に示す。まず、要求される目標暖房能力Q3”をステップ151で設定し、ステップ152で設定する蓄熱量からステップ153で最低必要とする蓄熱能力Q2を計算する。またステップ154で圧縮機及び冷媒ポンプの出し得る最大の能力Q1を設定する。
【0183】
ステップ155で、上記設定値Q3”,Q1,Q2からQ3”がQ1−Q2より大きいかどうかを判断する。もしQ3”がQ1−Q2より大きければ、ステップ156で暖房能力はQ1−Q2、ステップ157で蓄熱能力はQ2とされ、暖房能力はステップ15Cの第2の絞り装置の開度調整、蓄熱能力はステップ15Bの第3の絞り装置の開度調整により調節される。もしQ3”がQ1−Q2より小さければステップ158で暖房能力Q3”、ステップ159で蓄熱能力はQ1−Q3”とされ、暖房能力はステップ15Cの第2の絞り装置の開度調整、蓄熱能力はステップ15Cの第3の絞り装置の開度調整により調節される。また、ステップ15Aにおいて圧縮機の周波数を最大、冷媒ポンプの台数を最大にすることで圧縮機・冷媒ポンプ能力Q1も調節される。
【0184】
また、以上のように、蓄熱能力と室内側熱交換器暖房能力は蓄熱・暖房運転比率管理手段によって、それぞれ第3の絞り装置(ステップ15B)、第2の絞り装置(ステップ15C)を制御することにより管理される。ただし、第3の絞り装置の制御は、圧縮機吐出圧力Pd、吸入圧力Ps及び上記蓄熱能力Q2’、蓄冷熱用熱交換器出口目標過冷却度SCsmから以下の関数F3のように開度x3が決定する。
x3=F3(Pd,Ps.Q2’,SCsm)
【0185】
第2の絞り装置の制御は上記圧縮機吐出Pd、吸入圧力Ps及び上記室内側熱交換器暖房能力の合計Q3’、蓄冷熱用熱交換器出口目標過冷却度SCam,SCbm,SCcmから、各室内ユニット毎に各ユニットの定格能力に見合った能力になるように比例分配されるような開度x2a,x2b,x2cとして以下の関数F2a,F2b,F2cから決定する。
x2a=F2a(Pd,Ps,Q3’,SCam)
x2b=F2b(Pd,Ps,Q3’,SCbm)
x2c=F2c(Pd,Ps,Q3’,SCcm)
Q1:所定値として、持っている値。
Q2:所定値として、入力する値である必要蓄熱量を蓄熱時間で割った値。
Q2’:図47上のステップ157,159で求まる値。
Q3”:ステップ15Cで求まる第2の絞り装置開度(この値がアウトプット値で、最初は初期開度)と室内側熱交換器出口目標過冷却度SCam,SCbm,SCcm(データインプット値)、及び圧縮機吐出圧力・吸入圧力(検知インプット値)から求まる。
Q3’及びQ3:ステップ156,158で求まる値。
すなわち、蓄熱・暖房モードを選択する運転モード切換手段によって、蓄熱及び暖房を運転時間帯を決めて交互に実施する。
図47においては、必要蓄熱量Q3”を決定する室内側熱交換器目標過冷却度等の(35)に記述の値をインプットし、絞り装置の開度と圧縮機・冷媒ポンプの周波数と冷媒ポンプの台数をアウトプットする。ただし、圧縮機・冷媒ポンプの周波数と冷媒ポンプの台数は最大値として、操作される。
【0186】
この結果、蓄熱運転と暖房運転とが同時運転でき、かつ必要な蓄熱量を得ることができるため、蓄熱運転時間帯での暖房運転が可能となる。
【0187】
発明の実施の形態16.
以下、本発明の第16の発明に係わる蓄熱式空気調和装置の実施の形態16を図48に基づき説明する。本例の蓄熱式空気調和装置の基本システムは第1の発明と同様なので、ここでは省略する。
【0188】
また、第1の発明の基本システムの他に蓄熱・暖房運転比率管理手段214を設けている。この蓄熱・暖房運転比率管理手段は蓄熱量及び暖房能力、圧縮機・冷媒ポンプ最大能力の管理をする。
【0189】
蓄熱運転と暖房運転を同時に行う場合、必要暖房能力を満足することができないことがあった。
【0190】
次いで、本例の動作について説明する。本例の蓄熱・暖房同時運転の回路図を図48に示すが、基本的な冷媒の流れ、運転状態は、実施の形態8までの蓄熱運転及び一般暖房と同様の作用なのでここでは省略する。本例の蓄熱・暖房同時運転の運転制御変化に対する能力変化図を図49に示す。
【0191】
次に図49の運転制御変化に対する能力変化の説明により、暖房主体の蓄熱及び一般暖房同時運転を説明する。図中の横軸はAの時間帯の中では暖房負荷が少ない19:00から蓄熱時間帯の始めの22:00の時間で、Q1は、圧縮機及び冷媒ポンプの合計で出力できる最大の能力で、運転中は常に最大の能力を出す。Q2’及びQ3’は、運転中の蓄熱能力及び一般暖房能力である。
【0192】
ここで、Aの19:00では暖房の能力が大きく、暖房の要求能力がQ1を越している状態で、Q3’=Q1となる。この状態が1時間続き、Bの20:00までは、蓄熱禁止の状態となる。
【0193】
次にBの22:00の時点で、暖房の要求能力がQ1より小さくなりだし、Cの21:30まで暖房の要求が徐々に減少し、暖房の要求能力がQ3’となる状態が続く。この時間帯では、Q1−Q3’=Q2’であり、蓄熱運転可能な状態となる。
【0194】
Cの状態で暖房の要求がなくなり、一般暖房禁止の状態となり、Q1を蓄熱に100%使用している。つまり、蓄熱時間帯の前に、従来の蓄熱運転を開始する。この状態で、蓄熱時間帯の22:00まで運転する。
【0195】
以上の運転状態の制御を、制御ブロック図の図50に示す。まず、要求される目標暖房能力Q3”をステップ161で設定し、圧縮機及び冷媒ポンプの出し得る最大の能力Q1をステップ162で設定する。
【0196】
ステップ163で、上記設定値Q3”,Q1からQ3”がQ1より大きいかどうかを判断する。もしQ3”がQ1より大きければ、ステップ164で暖房能力はQ1、ステップ165で蓄熱能力は0(蓄熱禁止)とされ、蓄熱能力はステップ169の第3の絞り装置の開度調整、暖房能力はステップ16Aの第2の絞り装置の開度調整により調節される。もしQ3”がQ1より小さければステップ166で暖房能力Q3”、ステップ167で蓄熱能力はQ1−Q3”とされ、暖房能力はステップ16Aの第3の絞り装置の開度調整、蓄熱能力はステップ169の第2の絞り装置の開度調整により調節される。また、ステップ168において圧縮機の周波数を最大、冷媒ポンプの台数を最大にすることで圧縮機・冷媒ポンプ能力Q1も調節される。
【0197】
以上のように、蓄熱能力、室内側熱交換器暖房能力は蓄熱・暖房運転比率管理手段によって、それぞれ第3の絞り装置(ステップ169)、第2の絞り装置(ステップ16A)を制御することにより管理される。ただし、第3の絞り装置の制御は、圧縮機吐出圧力のPd、吸入圧力Ps及び蓄熱能力Q2’、蓄冷熱用熱交換器出口目標過冷却度SCsmから以下の式の関数F3によって開度x3が決定する。
x3=F3(Pd,Ps.Q2’,SCsm)
【0198】
また、第2の絞り装置の制御は上記圧縮機吐出Pd、吸入圧力Ps及び上記室内側熱交換器暖房能力の合計Q3’、蓄冷熱用熱交換器出口目標過冷却度SCam,SCbm,SCcmから、各室内ユニット毎に各ユニットの定格能力に見合った能力になるように比例分配されるように、以下の関数F2a,F2b,F2cから開度x2a,x2b,x2cとして決定する。
x2a=F2a(Pd,Ps,Q3’,SCam)
x2b=F2b(Pd,Ps,Q3’,SCbm)
x2c=F2c(Pd,Ps,Q3’,SCcm)
Q1:所定値として、持っている値。
Q2’:図50上のステップ165,167で求まる値。
Q3”:ステップ16Aで求まる第2の絞り装置開度(この値がアウトプット値で、最初は初期開度)と室内側熱交換器出口目標過冷却度SCam,SCbm,SCcm(データインプット値)、及び圧縮機吐出圧力・吸入圧力(検知インプット値)から求まる。
Q3’:ステップ164,166で求まる値。
目標冷房(暖房)能力Q3”の決定要素は、圧縮機吐出圧力・吸入圧力(検知値)、第2の絞り装置開度、室内側熱交換器出口目標過冷却度(過熱度)である。
【0199】
この結果、蓄熱運転と暖房運転とが同時運転でき、かつ必要な暖房能力を得ることができるため、暖房運転時間帯での蓄熱運転が可能となる。
暖房時に第3の絞り装置及び第3のバルブを開け、または蓄熱時に第2の絞り装置の開度を開け、蓄熱・暖房運転比率管理手段により、暖房能力主体に蓄熱及び暖房の運転比率を制御する。
上記暖房に関する各発明により必要暖房能力を十分に確保することができる。
【0200】
発明の実施の形態17.
以下、本発明の第17の発明に係わる蓄熱式空気調和装置の実施の形態17を図51に基づき説明する。本例の蓄熱式空気調和装置の基本システムは第1の発明と同様なので、ここでは省略する。
【0201】
また、基本システムの他に室外側外気温度検出手段215を設けている。
【0202】
先に述べたように、低外気における蓄冷熱併用冷房運転及び一般冷房運転では、室外側熱交換器が過冷却状態にならないために冷媒制御が不安定になり、能力の低下や室内側熱交換器での冷媒音の発生が起こる可能性があった。
【0203】
次いで、本例の動作について説明する。本例の回路図を図51に示すが、基本的な冷媒の流れ、運転状態は、実施の形態8までの放冷運転と同様の作用なのでここでは省略する。
【0204】
外気温度−5℃で冷房を行う時は、この時の運転を放冷運転とすることにより、室外側熱交換器を使わないために外気に影響を受けない運転となる。
【0205】
以上の運転状態の制御を、制御ブロック図の図52に示す。まずステップ171で運転モードの設定をする。ステップ172で室外側外気温度検出手段により、室外側外気温度を検出し、ステップ173で室外側外気温度が0℃以下ならステップ174で放冷モードとし、ステップ173で室外側外気温度が0℃以上ならステップ175で最初に設定した運転モードで冷房運転をする。この結果、室外側熱交換器が適正な過冷却状態になり、冷媒制御が安定し、能力の低下や室内側熱交換器での冷媒音の発生が起こらなくなる。
一般冷房及び蓄冷熱併用冷房は室外側熱交換器を使用するために外気温度(低外気)の影響を受けるが、放冷の場合は室外側熱交換器を使用しないために外気温度(低外気)に関係なく運転できる。
このように、低外気時に冷房を行う時は、この時の室外側室温を検知し、上記室外側室温が一定値以下なら冷房運転を放冷運転とする。
【0206】
以上の各発明の実施の形態において説明したアキュムレータの具体的な配管接続や液面検知方法について、まとめて図53で説明する。
例えば、アキュムレータ最下部及び最上部に温度素子を付けており、両者の温度の違いで、オーバーフローを検知する(温度が同じとなればオーバーフロー)。
これはアキュムレータ上部と下部に付いた温度素子2つで一対の検出手段となり、この温度素子の温度差で、液面検知する。(ただし、オーバーフローと液面が底になるときの違いは、その時の検知温度で判断。)
図53に示すように、アキュムレータの液面検知回路から圧縮機吸入管に冷媒を戻し、この配管温度を検出し液面を検知する。ヒータで加熱することにより、液冷媒の場合はほぼ低圧圧力飽和温度、ガス冷媒の場合低圧圧力飽和温度より高めの温度となる。アキュムレータ入口部での低圧圧力飽和温度ET(温度素子aの検知温度)を比較し、温度差により冷媒液面を判断する。
アキュムレータ液面レベルは、低圧圧力飽和温度ETである温度素子aの検知温度、液面検知温度(温度素子b及びcの検知温度)により判断する。またアキュムレータ液面レベルは、温度素子cより上方、温度素子b及びcの間、温度素子bより下方の3段階に別れる。
温度素子b及びcがET+5℃未満は液、ET+5℃以上はガスと判断した上で、温度素子bの検知値と温度素子cの検知値を比較して液面レベルを判断する。
【0207】
【発明の効果】
この発明における蓄熱式空気調和装置は、発明1においては、蓄冷運転時その中でも特に起動時において、蓄冷熱用熱交換器またはアキュムレータへ寝込んだ冷媒が冷媒回路に回収されて循環し、室外側熱交換器出口冷媒過冷却度がとれ、絞り装置3の入口で冷媒の過冷却度がとれるため、冷媒制御が安定となり、能力の低下が起こさない。
【0208】
また、発明2においては、蓄冷熱併用冷房運転時、その中でも特に定常時だけでなく過度時例えば、起動時において、蓄冷熱用熱交換器またはアキュムレータへ寝込んだ冷媒が冷媒回路に回収されて循環し、室外側熱交換器出口冷媒過冷却度がとれ、冷媒合流部と室内ユニット間の高低差が大きい場合でも、冷媒合流M部と室内ユニットの間の配管内において、冷媒が二相状態とならず、室外ユニットと室内ユニットの間の冷媒分岐部では各室内ユニットに供給される冷媒の分配が室内ユニットの必要量に対して、均一となり、各室内ユニットが要求する冷媒循環量が確保され、能力が低下する問題がなくなる。各室内ユニットの第2の絞り装置入口での冷媒が二相状態とならず、第2の絞り装置を流れる冷媒循環量が室内ユニットの必要量流れるため、室内ユニットでの能力の低下や、二相状態の冷媒が絞り装置2を流れるときにキャビテーションにより、冷媒音が発生しなくなる。
【0209】
また、発明3においては、一般冷房運転時、その中でも特に定常時だけでなく、過度時、例えば特に起動時において、蓄冷熱用熱交換器またはアキュムレータへ寝込んだ冷媒が冷媒回路に回収されて循環し、室外側熱交換器出口冷媒過冷却度がとれ、冷媒合流部と室内ユニット間の高低差が大きい場合でも、室外ユニット出口と室内ユニットの間の配管内において、冷媒が二相状態となることがなく、室外ユニットと室内ユニットの間の冷媒分岐部では各室内ユニットに供給される冷媒の分配が室内ユニットの必要量に対して、均一となり、各室内ユニットが要求する冷媒循環量が確保され、能力が低下する問題がなくなる。また、各室内ユニットでは、第2の絞り装置入口での冷媒が二相状態とならず、第2の絞り装置を流れる冷媒循環量が室内ユニットの必要量流れるため、室内ユニットでの能力の低下が起こらず、二相状態の冷媒が絞り装置2を流れるときにキャビテーションにより、冷媒音が発生しなくなる。
【0210】
また、第4の発明においては、蓄冷熱併用冷房起動時及び放冷運転起動時において、アキュムレータ等に滞留している冷媒が冷媒回路に回収されて循環し、蓄冷熱熱交換器内の冷媒量が熱交換するに足るだけ確保されるため、起動直後に熱交換するに足るだけの冷媒量を確保するために蓄冷熱熱交換器内に冷媒を溜めて、その時、圧縮機吸入圧力が引込み、圧縮機周波数や圧縮機能力が低下するという可能性がなくなる。また、蓄冷熱用熱交換器の冷媒過冷却度がとれ、室内ユニット内での第2の絞り装置入口で冷媒が二相状態とならず、冷媒制御が安定となり、能力の低下が起こる可能性がなくなる。
【0211】
また、第5の発明においては、蓄冷熱併用冷房運転時及び放冷運転時において、運転容量が低下した場合でも、蓄冷熱熱交換器内の冷媒循環量が低下して蓄冷熱熱交換器内に寝込む冷媒量を小さくし、運転時蓄冷熱用熱交換器に必要な冷媒量が少ししか増加しない。そのため、冷媒回路内の冷媒量が一定の場合、第2の絞り装置の入口で冷媒が二相状態とならず、冷媒制御が安定となり、能力が低下したりせず、二相状態の冷媒が絞り装置2を流れるときにキャビテーションにより、冷媒音が発生したりすることもなくなる。
【0212】
また、第6の発明においては、放冷運転時に、室外側熱交換器に寝込んだ冷媒を冷媒回路に回収し循環させることにより、放冷運転での必要冷媒量が確保され、蓄冷熱用熱交換器の冷媒過冷却度がとれ、室内ユニット内での第2の絞り装置入口で冷媒が二相状態とならず、冷媒制御が安定となり、能力が低下したりせず、二相状態の冷媒が絞り装置2を流れるときにキャビテーションにより、冷媒音が発生したりすることもなくなる。
【0213】
また、第7の発明においては、一般暖房運転時にアキュムレータから溢れ出す冷媒を冷媒回路から除去することで、圧縮機の信頼性が低下することがなくなる。
【0214】
また、第8の発明においては、放熱暖房運転時、室外側熱交換器に寝込んだ冷媒を冷媒回路に回収して循環させるため、放熱暖房回路全体の冷媒量が不足せず、能力の低下や室内側熱交換器での冷媒音の発生が起こることがなくなる。
【0215】
また、第9と第10及び第11の発明においては、蓄冷運転中には冷房運転を行うことができ、蓄冷時間帯内の冷房要求に対応できる。
【0216】
また、第9と第10及び第12の発明においては、冷房運転中に蓄熱運転を行うことができ、冷房時間帯内の蓄冷要求に対応できる。
第9の発明では、蓄冷と冷房を複雑な制御なしに、両者を一定時間内に運転することができる。
第10の発明では、蓄冷と冷房を能力比に関係なく同時に運転できる。
第11の発明では、ユニットとして十分な蓄冷量を確保しながら、蓄冷と冷房を同時に運転できる。
第12の発明では、冷房要求に対してユニットとして最大の冷房能力を出せる。
【0217】
また、第13と第14及び第15の発明においては、蓄熱運転中に暖房運転を行うことができ、蓄熱時間帯内の暖房要求に対応できる。
第13の発明では、蓄熱と暖房を複雑な制御なしに、両者を一定時間内に運転することができる。
第14の発明では、蓄熱と暖房を能力比に関係なく同時に運転できる。
第15の発明では、ユニットとして十分な蓄熱量を確保しながら、蓄熱と暖房を同時に運転できる。
【0218】
また、第16の発明においては、暖房運転中は蓄熱運転を行うことができ、暖房時間帯内の蓄熱要求に対応できる。暖房要求に対しユニットとして、システムとして最大の暖房能力を引き出すことができる。
【0219】
また、第17の発明においては、低外気温度における冷房運転は、室外側熱交換器が適正な過冷却状態になり、冷媒制御が安定し、性能の低下や室内側熱交換器での冷媒音の発生が起こらなくなる。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例としてのビル用マルチエアコンの蓄熱式空気調和装置の冷媒回路図である。
【図2】図1の蓄冷運転時の第3の絞り装置制御の冷媒回路図である。
【図3】図2の他の冷媒の流れを示す冷媒回路図である。
【図4】図2のさらに他の冷媒の流れを示す冷媒回路図である。
【図5】図2における運転状態図である。
【図6】第3の絞り制御の制御ブロック図である。
【図7】本発明の実施の形態2の蓄冷併用冷房運転時の冷媒回路図である。
【図8】図7における運転状態図である。
【図9】本発明の制御ブロック図である。
【図10】本発明の実施の形態3の一般冷房運転時の第2の絞り制御の冷媒回路図である。
【図11】図10における運転状態図である。
【図12】第2の絞り制御の制御ブロック図である。
【図13】本発明の実施の形態4の放冷運転時の第3の絞り制御の冷媒回路図である。
【図14】図13における運転状態図である。
【図15】本発明の第3の絞り制御の制御ブロック図である。
【図16】本発明の実施の形態5の放冷運転起動時の冷媒回路図である。
【図17】図16における運転状態図である。
【図18】本発明の制御ブロック図である。
【図19】本発明の実施の形態6の放冷運転の回路図である。
【図20】図19における運転状態図である。
【図21】本発明の実施の形態6の制御ブロック図である。
【図22】本発明の実施の形態7の一般暖房運転時の冷媒回路図である。
【図23】図22における運転状態図である。
【図24】本発明の実施の形態7の制御ブロック図である。
【図25】本発明の実施の形態8の放熱暖房運転時の冷媒回路図である。
【図26】図25における運転状態図である。
【図27】本発明の実施の形態8の制御ブロック図である。
【図28】本発明の実施の形態9における冷媒回路図である。
【図29】本発明の蓄冷及び冷房の運転時間帯切換図である。
【図30】本発明の制御ブロック図である。
【図31】本発明の実施の形態10の蓄冷・冷房同時運転の冷媒回路図である。
【図32】図31における運転状態図である。
【図33】本発明の実施の形態11の蓄冷主体の蓄冷・冷房同時運転の冷媒回路図である。
【図34】本発明の運転時の蓄冷・冷房能力の説明図である。
【図35】本発明の制御ブロック図である。
【図36】本発明の実施の形態12の冷房主体の蓄冷・冷房同時運転の冷媒回路図である。
【図37】本発明の運転時の蓄冷・冷房能力の説明図である。
【図38】本発明の制御ブロック図である。
【図39】本発明の実施の形態13の冷媒回路図である。
【図40】本発明の蓄熱運転の冷媒回路図である。
【図41】本発明の実施の形態13の蓄熱及び暖房の運転時間帯切換図である。
【図42】本発明の制御ブロック図である。
【図43】本発明の実施の形態14の蓄熱・暖房同時運転の冷媒回路図である。
【図44】図43における運転状態図である。
【図45】本発明の実施の形態15の蓄熱主体の蓄熱・暖房同時運転の冷媒回路図である。
【図46】本発明の運転時の蓄熱・暖房能力の説明図である。
【図47】本発明の制御ブロック図である。
【図48】本発明の実施の形態16の暖房主体の蓄熱・暖房同時運転の冷媒回路図である。
【図49】本発明の運転時の蓄熱・暖房能力の説明図である。
【図50】本発明の制御ブロック図である。
【図51】本発明の実施の形態17の冷媒回路図である。
【図52】本発明の制御ブロック図である。
【図53】本発明のアキュムレータ説明図である。
【図54】従来例の冷媒回路図である。
【図55】従来の蓄冷運転時の冷媒回路図である。
【図56】図55の運転回路図である。
【図57】従来の一般冷房運転時の冷媒回路図である。
【図58】図57の運転状態図である。
【図59】従来例の放冷運転時の冷媒回路図である。
【図60】図59の運転状態図である。
【図61】従来例の蓄冷熱併用冷房運転時の冷媒回路図である。
【図62】図61の運転状態図である。
【図63】従来例の蓄熱運転時の冷媒回路図である。
【図64】図63の運転状態図である。
【図65】従来例の一般暖房運転時の冷媒回路図である。
【図66】図65の運転状態図である。
【図67】従来例の放熱運転時の冷媒回路図である。
【図68】図67の運転状態図である。
【図69】従来例の蓄熱併用暖房運転時の冷媒回路図である。
【図70】図69の運転状態図である。
【符号の説明】
1 圧縮機、3 室外側熱交換器、6 第1の絞り装置、9 蓄熱槽、10 蓄冷熱用熱交換器、12 冷媒ポンプ、14 第3のバルブ、15a 室内ユニットa内の、第2の絞り装置、15b 室内ユニットb内の、第2の絞り装置、15c 室内ユニットc内の、第2の絞り装置、16a 室内ユニットa内の、室内側熱交換器、16b 室内ユニットb内の、室内側熱交換器、16c 室内ユニットc内の、室内側熱交換器、17 アキュムレータ、21 蓄熱媒体、22 第3の絞り装置、23 第5のバルブ、24 第6のバルブ、25 第7のバルブ、26 第8のバルブ、27 第9のバルブ、28 四方切換弁、29 第4の絞り装置、30 第4のバルブ、103〜140a,140b 冷媒回路、201 第1の絞り装置の開度調節手段、202 第2の絞り装置の開度調節手段、203 第3の絞り装置の開度調節手段、204 室外側冷媒過冷却度検出手段、205 冷媒ポンプ吐出圧力検出手段、206 冷媒合流部Mの圧力検出手段、207 第8及び第9のバルブの開閉手段、208 アキュムレータ液面検出手段、209 第4のバルブの開閉手段、210 第3のバルブの開閉手段、211 蓄冷・冷房モード選択運転モード切換手段、212 蓄冷・冷房運転比率管理手段、213 蓄熱・暖房モード選択運転モード切換手段、214 蓄熱・暖房運転比率管理手段、215 室外側外気温度検出手段。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a regenerative air conditioner related to daytime power control and leveling measures.
[0002]
[Prior art]
Conventionally, this type of regenerative air conditioner has been disclosed in, for example, Japanese Patent Application Laid-Open No. 6-24158. That is, in FIG. 54, reference numeral 1 is a 5-hp compressor, for example, 2 is a compressor four-way switching valve, and each is connected by a refrigerant circuit 101. Reference numeral 3 denotes an outdoor heat exchanger that functions as a condenser during cooling and as an evaporator during heating, and is connected to the compressor four-way switching valve 2 by a refrigerant circuit 102.
[0003]
Reference numeral 6 denotes a first expansion device, which is connected to the outdoor heat exchanger 3 and the refrigerant circuit 103, 7 is a first valve, 8 is a second valve, and the refrigerant circuit 108 from the first expansion device 6. Are divided into refrigerant circuits 109 and 110, which are connected to the first valve 7 and the second valve 8, respectively. Reference numeral 9 denotes a heat storage tank, in which a large number of heat transfer tubes are arranged vertically, and the heat storage heat exchanger 10 formed by connecting them is used to heat the heat storage medium 21 stored in the tank, for example, water during cooling, Hot water can be stored during heating.
[0004]
The second valve 8 is connected to the heat storage tank 9 by a refrigerant circuit 111. Reference numeral 12 denotes a refrigerant pump that conveys a gaseous refrigerant. The pump capacity is selected so that a circulation amount equal to the refrigerant circulation amount obtained by the operation of the compressor 1 can be obtained under predetermined operating conditions. Reference numeral 11 denotes a refrigerant pump four-way switching valve connected to the refrigerant pump 12 by a refrigerant circuit 114. Reference numeral 13 denotes a refrigerant pump accumulator, and reference numeral 14 denotes a third valve which branches the refrigerant circuit 112 from the heat storage tank 9 to form refrigerant circuits 113 and 118, which are respectively constituted by the refrigerant pump four-way switching valve 11 and the third valve 14. It is linked to.
[0005]
The refrigerant pump four-way switching valve 11 and the refrigerant pump accumulator 13 are connected by a refrigerant circuit 116, and the refrigerant pump accumulator 13 is connected to the refrigerant pump 12 by a refrigerant circuit path 115. 117 is a refrigerant circuit connected to the refrigerant pump four-way switching valve 11 and the refrigerant circuit 120, 119 is a refrigerant circuit connected to the third valve 14 and the refrigerant circuit 125, and 20 is a first circuit connecting the refrigerant circuits 120 and 125. The other end of the refrigerant circuit 125 is connected to the above-described four-way switching valve 2.
[0006]
121 is a refrigerant circuit connected to the first valve 7 described above, and has a plurality of indoor unit refrigerant circuit systems a, b, c between this circuit and the refrigerant circuit 120. Each circuit system includes a refrigerant circuit. 122, the second expansion device 15, the refrigerant circuit 123, the indoor heat exchanger 16, and the refrigerant circuit 124 are sequentially connected. The alphabetical symbol at the end of each number represents the distinction between the plurality of indoor unit refrigerant circuit systems a, b, and c.
[0007]
Refrigerant circuits 126 and 127 are connected between the compressor four-way switching valve 2 and the compressor accumulator 17, and between the compressor accumulator 17 and the compressor 1, respectively.
[0008]
Next, the operation will be described with reference to FIGS. 55 to 70.
FIG. 55 shows, for example, nighttime cold storage operation, that is, ice making operation. In the figure, the first valve 7 and the fourth valve 20 are closed, the second and third valves 8 and 14 are opened, and the compressor 1 is operated. At this time, the refrigerant discharged from the compressor 1 condenses in the outdoor heat exchanger, adiabatically expands in the first expansion device 6, evaporates in the heat storage heat exchanger 10, and receives heat from the heat storage medium 21 such as water, The surface of the heat storage heat exchanger 10 is frozen and the vaporized refrigerant returns to the compressor via the accumulator 17.
[0009]
The operation state at the time of this cold storage operation is shown in FIG. The operating points represented by numerals in the figure indicate the state of the refrigerant in the refrigerant circuit represented by the same numerals in the figure, the condensation temperature is about 40 ° C., and the evaporation temperature is about −3 ° C. In this operation, for example, assuming that there is no residual water in the tank, the system starts ice making at 22:00 and ends ice making at 8:00 the next morning.
[0010]
The daytime cooling operation is described below. FIG. 57 shows the cooling operation when the cooling operation is performed only by the compressor 1 without using the cold storage heat. In the figure, the first valve 7 and the fourth valve 20 are opened, the second and third valves 8 and 14 are closed, and the compressor 1 is operated. The high-pressure refrigerant condensed and liquefied by the same action as in FIG. 54 is sent to each indoor unit refrigerant circuit system a, b, c, and is decompressed while adjusting the refrigerant flow rate by each second expansion device 15 to about 6 kg. / Cm 2 It flows into the indoor heat exchanger 16 at a pressure of about G and evaporates. At this time, the refrigerant that has absorbed heat and gasified from the surrounding indoor air returns to the compressor 1 via the compressor accumulator 17. The operating capacity of the compressor at this time is determined by the total operating capacity of the indoor units.
[0011]
The operating state during this general cooling operation is shown in FIG. The numbers in the figure are as described in FIG. 56, the condensation temperature is about 45 ° C., and the evaporation temperature is about 10 ° C. In this operation, the present system performs cooling after consumption of cold storage heat, for example.
[0012]
FIG. 59 shows cooling by the use of regenerative heat, that is, cooling operation. In the figure, the first expansion device 6, the third valve 14 and the fourth valve 20 are closed, the first and second valves 7 and 8 are opened, and the refrigerant pump 12 is operated. At this time, the gas refrigerant sent out by the refrigerant pump 12 is cooled by ice in the tank, condensed at 20 to 25 ° C., and liquefied, about 9 kg / cm. 2 The refrigerant G is sent to the indoor unit refrigerant circuit systems a, b, c, and is cooled in the same manner as in FIG. At this time, since the refrigerant circulation amount of the refrigerant pump 12 is equal to the refrigerant circulation amount by the compressor 1 in FIG. 57, the same amount of refrigerant of the same temperature and pressure flows through the indoor heat exchanger 16, As for the differential pressure is about 3kg / cm 2 Despite the small capacity, the cooling capacity is equivalent to the general cooling operation of FIG. The operating capacity of the gas pump at this time is determined by the total operating capacity of the indoor units.
[0013]
FIG. 60 shows the operating state during this cooling operation. The numbers in the figure are as described in FIG. 56, the condensation temperature is about 23 ° C., and the evaporation temperature is about 10 ° C. In this operation, the present system performs cooling at a light load, for example.
[0014]
FIG. 61 shows a cooling operation combined with regenerative heat in which the general cooling in FIG. 57 and the cooling operation in FIG. 59 are simultaneously performed. In the figure, the third valve 14 is closed, the first, second, and fourth valves 7, 8, and 20 are opened, and the compressor 1 and the refrigerant pump 12 are operated. At this time, the liquid refrigerant condensed in the heat storage heat exchanger 10 on the refrigerant pump 12 side merges with the refrigerant decompressed by the first expansion device 6 on the compressor 1 side, and the refrigerant circuit systems a, b, The amount of refrigerant circulates to c approximately twice as much as that in the general cooling operation of FIG. 57 or the cooling operation of FIG. 59, and the capacity is also doubled. The opening degree of the first expansion device 6 at this time is constant, and the pressure of the merging portion is 8 to 10 kg / cm. 2 It will be about. The operating capacity at this time is determined by controlling the capacity of the compressor with the gas pump being 100%, and the ratio of the capacity control is determined by the total operating capacity of the indoor units.
[0015]
FIG. 62 shows the operating state during the cooling operation combined with cold storage heat. The numbers in the figure are as described in FIG. The evaporation temperature is about 10 ° C. as in the other cooling operations, but the condensation temperature is about 45 ° C. for the indoor heat exchanger 3 and about 20-25 ° C. for the heat storage heat exchanger 10. In this operation, the present system performs cooling at the time of cooling load, for example.
[0016]
The above has described the operation related to cooling. The following is the description of the operation related to heating. Therefore, unless otherwise specified, the compressor four-way switching valve 2 and the refrigerant pump four-way switching valve 11 are set to the heating mode. FIG. 63 shows, for example, nighttime heat storage operation, that is, hot water storage operation. In the figure, the first and fourth valves 7 and 20 are closed, the second and third valves 8 and 14 are opened, and the compressor 1 is operated. At this time, the high-temperature gas refrigerant discharged from the compressor 1 flows in the direction of the arrow in the figure, condenses in the heat storage heat exchanger 10 of the heat storage tank 9, and raises the temperature of the stored water. The condensed refrigerant is adiabatically expanded in the first expansion device 6, absorbs heat from the outside air in the outdoor heat exchanger 3 and evaporates, and the vaporized refrigerant returns to the compressor 1 through the accumulator 17.
[0017]
The operation state at the time of this heat storage operation is shown in FIG. The numbers in the figure are as described in FIG. 56. The boiling temperature of the bath water temperature is about 50 ° C., the condensation temperature at this time is about 55 ° C., and the evaporation temperature is about 0 ° C. In this operation, the system stores hot water in the nighttime power hours and ends the operation as soon as a predetermined bath water temperature is reached.
[0018]
The daytime heating operation is described below. FIG. 65 shows a general heating operation when heating operation is performed only by the compressor 1 without using heat storage. In the figure, the first and fourth valves 7 and 20 are opened, the second and third valves 8 and 14 are closed, and the compressor 1 is operated. 17 kg / cm from compressor 1 2 The high-temperature and high-pressure gas discharged at a pressure around G is sent to each indoor unit refrigerant circuit system a, b, c and condensed in each indoor-side heat exchanger 16 to heat indoor air. The condensed liquid refrigerant is slightly depressurized by the second throttling device 15 and further depressurized by the first throttling device 6 to about 4 kg / cm. 2 It evaporates in the outdoor heat exchanger 3 with the pressure of G, and returns to the compressor 1 by the same action as FIG. The operating capacity of the compressor at this time is determined by the total operating capacity of the indoor units.
[0019]
The operation state at the time of this general heating operation is shown in FIG. The numbers in the figure are as described in FIG. 56, the condensation temperature is about 42 to 43 ° C., and the evaporation temperature is about 0 ° C. In this operation, the system performs heating during light loads during the day after consumption of heat storage.
[0020]
FIG. 67 shows heating by heat storage, that is, heat radiation operation. In the figure, the first expansion device 6 and the third and fourth valves 14 and 20 are closed, the first and second valves 7 and 8 are opened, and the refrigerant pump 12 is operated. At this time, the refrigerant pump 12 has an evaporation pressure of about 13 kg / cm in the tank. 2 The gas refrigerant heated and vaporized by G is sucked through the refrigerant pump accumulator 13. Therefore, about 4kg / cm 2 17kg / cm at a pressure of about G 2 The high-temperature and high-pressure gas refrigerant before and after G is sent to the indoor unit refrigerant circuit systems a, b, and c, and the indoor air is heated by the same action as in FIG. The condensed refrigerant is depressurized by the second expansion device 15 and is about 13 kg / cm. 2 It returns to the heat storage tank 9 as a gas-liquid two-phase refrigerant of G. The operating capacity of the gas pump at this time is determined by the total operating capacity of the indoor units.
[0021]
The operating state during this heat radiation operation is shown in FIG. The numbers in the figure are as described in FIG. 56, the condensation temperature is about 42 to 43 ° C., and the evaporation temperature is about 35 ° C. In this operation, the system performs heating at a light load, for example.
[0022]
FIG. 69 shows a heat storage combined heating operation in which the general heating operation of FIG. 65 and the heat dissipation operation of FIG. 67 are simultaneously applied. In the figure, the third valve 14 is closed, the first, second, and fourth valves 7, 8, and 20 are opened, and the compressor 1 and the refrigerant pump 12 are operated. At this time, the gas refrigerant delivered from the refrigerant pump 12 merges with the gas refrigerant discharged from the compressor 1, and the indoor unit refrigerant circuit systems a, b, c are dissipated during the general heating operation of FIG. 65 or the heat dissipation of FIG. Pressure about 17kg / cm, about twice the amount during operation 2 The high-temperature and high-pressure refrigerant around G circulates and the capacity doubles. About 13 kg / cm decompressed by the second expansion device 15 2 About 1/2 of the refrigerant of about G flows into the heat storage heat exchanger 10 and performs the same operation as the heat dissipation operation of FIG. 67, and the other 1/2 refrigerant is further reduced by the first expansion device 6. Depressurized, about 4kg / cm 2 It becomes the pressure of G, flows into the outdoor heat exchanger 3, and makes the same action as the general heating operation of FIG. The operating capacity at this time is determined by controlling the capacity of the compressor with the gas pump being 100%, and the ratio of the capacity control is determined by the total operating capacity of the indoor units.
[0023]
The operation state at the time of this heat storage combined heating operation is shown in FIG. The numbers in the figure are as described in FIG. The condensation temperature is about 42 to 43 ° C. as in other heating operations, but the evaporation temperature is about 35 ° C. for the heat storage heat exchanger 10 and about 0 ° C. for the outdoor heat exchanger 3. In this operation, the present system performs heating at the start-up in the morning where the heating load is concentrated.
[0024]
[Problems to be solved by the invention]
In the conventional regenerative air conditioner that performs each operation as described above, the refrigerant excessively flows into the regenerator heat storage heat exchanger or accumulator during the regenerative operation, particularly at the start-up. There was a possibility that the degree of cooling could not be obtained, the degree of supercooling of the refrigerant could not be obtained at the inlet of the expansion device 3, the refrigerant control became unstable, and the capacity could be reduced.
[0025]
In addition, during cooling operation with regenerative heat, especially during startup, the refrigerant sleeps in the regenerator heat exchanger or accumulator, so the refrigerant at the outlet of the outdoor heat exchanger cannot be subcooled or subcooled. However, if the height difference between the refrigerant junction and the indoor unit is large, the refrigerant may be in a two-phase state in the piping between the refrigerant junction M and the indoor unit, and between the outdoor unit and the indoor unit. In the refrigerant branch portion, the distribution of the refrigerant supplied to each indoor unit becomes uneven with respect to the required amount of the indoor unit, and there is a problem that the refrigerant circulation amount required by each indoor unit is not secured and the capacity is reduced. . Since the refrigerant at the inlet of the second expansion device of each indoor unit is in a two-phase state and the refrigerant circulation amount flowing through the second expansion device does not flow as much as the necessary amount of the indoor unit, When the refrigerant in the state flows through the expansion device 2, there is a possibility that a refrigerant sound is generated due to cavitation.
[0026]
Also, during general cooling operation, especially during startup, the refrigerant stagnates in the heat storage heat exchanger or accumulator, so the refrigerant at the outlet of the outdoor heat exchanger cannot be subcooled or the subcooled degree is taken. If the height difference between the refrigerant junction and the indoor unit is large, the refrigerant may be in a two-phase state in the pipe between the outdoor unit outlet and the indoor unit, and the refrigerant branch between the outdoor unit and the indoor unit. However, the distribution of the refrigerant supplied to each indoor unit becomes uneven with respect to the required amount of the indoor unit, and there is a problem that the refrigerant circulation amount required by each indoor unit is not secured and the capacity is lowered. Also, in each indoor unit, the refrigerant at the inlet of the second expansion device is in a two-phase state, and the refrigerant circulation amount flowing through the second expansion device does not flow in the required amount of the indoor unit. When the refrigerant in the two-phase state flows through the expansion device 2, there is a possibility that a refrigerant sound is generated due to cavitation.
[0027]
In addition, when refrigerant is stored in an accumulator or the like at the start of cooling combined heat storage and cooling operation, the amount of refrigerant in the cold storage heat exchanger is not secured enough to exchange heat, immediately after startup. Then, in order to secure the amount of refrigerant sufficient for heat exchange, the refrigerant is stored in the cold storage heat heat exchanger. At that time, the compressor suction pressure may decrease, and the compressor frequency and compression function may decrease. Moreover, the refrigerant supercooling degree of the heat storage heat exchanger cannot be obtained, the refrigerant becomes a two-phase state at the inlet of the second expansion device in the indoor unit, the refrigerant control becomes unstable, and the capability may be reduced. was there.
[0028]
In addition, if the operating capacity decreases during cooling operation combined with cold storage heat and cooling operation, the amount of refrigerant circulating in the cold storage heat exchanger decreases, the refrigerant stagnates in the cold storage heat exchanger, and cools during operation. The amount of refrigerant required for the heat exchanger increases. Since the amount of refrigerant in the refrigerant circuit is constant, the refrigerant enters the two-phase state at the inlet of the second throttling device, the refrigerant control becomes unstable, the capacity decreases, or the two-phase state refrigerant enters the throttling device 2. There is a possibility that refrigerant noise may occur due to cavitation when flowing.
[0029]
In addition, during the cooling operation, the refrigerant stagnates in the outdoor heat exchanger, so that the required amount of refrigerant in the cooling operation cannot be secured, and the refrigerant supercooling degree of the heat storage heat exchanger cannot be obtained. In the unit, the refrigerant enters the two-phase state at the inlet of the second expansion device, the refrigerant control becomes unstable, the capacity is reduced, and the refrigerant sound is generated by cavitation when the two-phase state refrigerant flows through the expansion device 2. Could occur.
[0030]
In addition, surplus refrigerant overflows from the accumulator during general heating operation, which may reduce the reliability of the compressor.
[0031]
In addition, during radiant heating operation, the refrigerant stagnates in the outdoor heat exchanger, the amount of refrigerant in the accumulator decreases, the refrigerant amount in the entire radiant heating circuit is insufficient, the capacity is reduced, and the refrigerant in the indoor heat exchanger There was a possibility of sound generation.
[0032]
Also, during the cold storage operation, the cooling operation could not be performed alternately or simultaneously.
[0033]
Further, the cooling operation could not be performed simultaneously during the cold storage operation.
[0034]
Moreover, when performing the cold storage operation and the cooling operation at the same time, the required cold storage capacity could not be satisfied.
[0035]
Moreover, when performing the cool storage operation and the cooling operation at the same time, the required cooling capacity could not be satisfied.
[0036]
Further, heating operation could not be performed during the heat storage operation.
[0037]
Moreover, heating operation could not be performed simultaneously during the heat storage operation.
[0038]
Moreover, when performing heat storage operation and heating operation simultaneously, the required heat storage capacity could not be satisfied.
[0039]
Further, when the heat storage operation and the heating operation are performed at the same time, the required heating capacity could not be satisfied.
[0040]
Also, in cooling operation combined with regenerative heat at low outside air temperature and general cooling operation, the outdoor heat exchanger does not become overcooled, so refrigerant control becomes unstable, resulting in reduced capacity and refrigerant in the indoor heat exchanger. There was a possibility of sound generation.
[0041]
[Means for Solving the Problems]
A regenerative air conditioner according to the present invention is formed by sequentially connecting a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and a switching valve. A refrigerant circulation circuit, a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, one end connected between the first expansion device and the second expansion device, and the other end on the indoor side. A third expansion device connected between the heat exchanger and the switching valve, a cold storage heat exchanger, a series circuit having the third valve, and a cold storage heat circuit formed by sequentially connecting the switching valve and the switching valve And a heat storage tank for storing the heat exchanger for cold storage heat, a heat storage medium stored in the heat storage tank, and one end connected to the compressor suction side, and the other end between the heat exchanger for cold storage heat and the third valve Refrigerant pump connected to, series circuit having sixth valve, heat exchanger for cold storage heat, third expansion device, second expansion device It has a cooling circuit formed by sequentially connecting an indoor heat exchanger and a four-way switching valve and an outdoor heat exchanger outlet refrigerant subcooling degree detection means, and an outdoor heat exchanger outlet refrigerant subcooling degree during cold storage Adjusting means for changing the opening of the third throttle device according to the detected value.
[0042]
The regenerative air conditioner according to the present invention includes a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and a switching valve that are sequentially connected. The formed refrigerant circulation circuit, compressor, switching valve, outdoor heat exchanger, first expansion device, one end is connected between the first expansion device and the second expansion device, and the other end is the chamber The third expansion device connected between the inner heat exchanger and the switching valve, the heat storage heat storage heat exchanger, the series circuit having the third valve and the switching valve are sequentially connected to the cold storage heat formed A heat storage tank for storing a circuit, a heat exchanger for cold storage heat, and a heat storage medium stored in the heat storage tank
Body, one end connected to the compressor suction side, the other end connected between the heat exchanger for cold storage heat and the third valve, a series circuit having a sixth valve, heat for cold storage heat A cooling circuit formed by sequentially connecting an exchanger, a third expansion device, a second expansion device, an indoor heat exchanger, and a switching valve, and an outdoor heat exchanger outlet refrigerant supercooling degree detection means; And adjusting means for changing the opening degree of the first expansion device according to the detected value of the refrigerant subcooling degree at the outlet of the outdoor heat exchanger at the time of the cooling operation using the regenerative heat combined with the refrigerant circulation circuit and the cooling circuit. .
[0043]
The heat storage air conditioner according to the third aspect of the invention sequentially connects a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and a switching valve. A refrigerant circulation circuit, a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, one end connected between the first expansion device and the second expansion device, and the other end Is formed by sequentially connecting a third expansion device connected between the indoor heat exchanger and the switching valve, a heat storage heat storage heat exchanger, a series circuit having the third valve, and the switching valve. A heat storage tank for storing a heat circuit, a heat storage heat exchanger, a heat storage medium housed in the heat storage tank, and one end connected to the compressor suction side, the other end of the heat storage heat exchanger and the third A refrigerant pump connected to the valve, a series circuit having a sixth valve, a heat exchanger for regenerative heat, a third expansion device, a second A cooling circuit formed by sequentially connecting a heating device, an indoor heat exchanger, and a switching valve, and an outdoor heat exchanger outlet refrigerant supercooling degree detecting means, and during cooling, the outdoor heat exchanger outlet refrigerant supercooling Adjusting means for changing the opening degree of the second expansion device according to the detected value of the degree and the detected value of the refrigerant subcooling degree at the outlet of the outdoor heat exchanger.
[0044]
The heat storage air conditioner according to the fourth aspect of the invention sequentially connects a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and a switching valve. A refrigerant circulation circuit, a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, one end connected between the first expansion device and the second expansion device, and the other end Is formed by sequentially connecting a third expansion device connected between the indoor heat exchanger and the switching valve, a heat storage heat storage heat exchanger, a series circuit having the third valve, and the switching valve. A heat storage tank for storing a heat circuit, a heat storage heat exchanger, a heat storage medium housed in the heat storage tank, and one end connected to the compressor suction side, the other end of the heat storage heat exchanger and the third Refrigerant pump connected between valves, series circuit with sixth valve, compressor, one end connected between compressor and switching valve A bypass circuit having a seventh valve having the other end connected between the refrigerant pump and the sixth valve, a heat storage heat exchanger, a third expansion device, a second expansion device, an indoor heat exchanger, A cooling circuit formed by sequentially connecting four-way switching valves and a refrigerant pump discharge pressure detecting means; and an opening degree adjusting means for adjusting the opening degree of the third throttle device according to the refrigerant pump discharge pressure detection value. ing.
[0045]
The heat storage air conditioner according to the fifth aspect of the invention sequentially connects a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and a switching valve. A refrigerant circulation circuit, a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, one end connected between the first expansion device and the second expansion device, and the other end Is formed by sequentially connecting a third expansion device connected between the indoor heat exchanger and the switching valve, a heat storage heat storage heat exchanger, a series circuit having the third valve, and the switching valve. A heat storage tank for storing a heat circuit, a heat storage heat exchanger, a heat storage medium housed in the heat storage tank, and one end connected to the compressor suction side, the other end of the heat storage heat exchanger and the third Refrigerant pump connected between valves, series circuit with sixth valve, compressor, one end connected between compressor and switching valve A bypass circuit having a seventh valve, the other end of which is connected between the refrigerant pump and the sixth valve, a heat storage heat storage heat exchanger, a third expansion device, a second expansion device, an indoor heat exchanger, and The cooler circuit formed by sequentially connecting the switching valves and the heat storage heat storage heat exchanger are configured by a plurality of paths, and the eighth and ninth valves are provided at the inlet / outlet of at least one of the paths. It has a pressure detection means for the refrigerant circuit M section, and is provided with open / close means for the heat storage heat exchanger eighth and ninth valves according to the pressure detection value of the refrigerant circuit M section.
[0046]
A heat storage air conditioner according to a sixth aspect of the present invention includes a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger and a switching valve, and an accumulator. Refrigerant circulation circuit formed by sequential connection, compressor, switching valve, outdoor heat exchanger, first expansion device, one end is connected between the first expansion device and the second expansion device, Formed by sequentially connecting a third expansion device having the other end connected between the indoor heat exchanger and the switching valve, a heat exchanger for cold storage, a series circuit having the third valve, a switching valve, and an accumulator A regenerator circuit, a heat storage tank for storing the heat storage heat exchanger, a heat storage medium stored in the heat storage tank, and one end connected to the accumulator, and the other end of the heat storage heat exchanger and the third valve Refrigerant pump connected between, series circuit with sixth valve, compressor, one end A bypass circuit having a seventh valve connected between the compressor and the switching valve and having the other end connected between the refrigerant pump and the sixth valve, a heat exchanger for regenerative heat, a third expansion device, a second The cooling device formed by sequentially connecting the expansion device, the indoor heat exchanger, and the switching valve, one end connected between the outdoor heat exchanger and the first expansion device, and the other end of the accumulator suction side The accumulator liquid level detecting means and the adjusting means for opening and closing the fourth valve according to the liquid level detection value during the cooling operation are provided.
[0047]
The heat storage air conditioner according to the seventh invention includes a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger and a switching valve, and an accumulator. A refrigerant circulation circuit formed by sequentially connecting, a compressor, a switching valve, an outdoor heat exchanger, a second expansion device, a first expansion device, an outdoor heat exchanger and a switching valve, and an accumulator are sequentially connected. A heating circuit, a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, one end connected between the first expansion device and the second expansion device, and the other end on the indoor side The third expansion device connected between the heat exchanger and the switching valve, the cold storage heat exchanger, the series circuit having the third valve, the switching valve, and the cold storage circuit formed by sequentially connecting the accumulator A heat storage tank for storing the heat exchanger for cold storage, a heat storage medium stored in the heat storage tank, and one Is connected to the accumulator, and the other end is connected between the regenerator heat exchanger and the third valve, the refrigerant pump, the series circuit having the sixth valve, the regenerator heat exchanger, and the third expansion device A cooling circuit formed by sequentially connecting the second expansion device, the indoor heat exchanger and the switching valve, an accumulator liquid level detection means, and an adjustment means for opening and closing the third valve according to the liquid level detection value. Yes.
[0048]
A heat storage type air conditioner according to an eighth aspect of the present invention includes a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger and a switching valve, and an accumulator. Refrigerant circuit formed by sequentially connecting, compressor, switching valve, outdoor heat exchanger, first expansion device, one end is connected between the first expansion device and the second expansion device, Formed by sequentially connecting a third expansion device having the other end connected between the indoor heat exchanger and the switching valve, a heat storage heat storage device, a series circuit having the third valve, a switching valve, and an accumulator A third valve having one end connected between the switching valve and the indoor heat exchanger and the other end connected between the first expansion device and the second expansion device. , Heat storage heat exchanger, series circuit having third expansion device, first expansion device, outdoor heat exchanger, switching valve Sequentially connected heat storage circuit, compressor, switching valve, indoor heat exchanger, second expansion device, one end connected between the first expansion device and the second expansion device, and the other end of the accumulator A third expansion device connected to the heat exchanger, a heat storage heat exchanger, a series circuit having a fifth valve, and a circuit for heat radiation formed by sequentially connecting an accumulator, and a heat storage housing the heat storage device for cold storage A refrigerant pump having a tank, a heat storage medium housed in the heat storage tank, and one end connected to the accumulator suction side and the other end connected between the cold storage heat exchanger and the third valve, A series circuit having a valve, a compressor, a bypass circuit having a seventh valve having one end connected between the compressor and the switching valve and the other end connected between the refrigerant pump and the sixth valve, heat for cold storage Exchanger, third expansion device, second expansion device, indoor heat exchange And a regulating means for opening and closing the first throttle device by vessels and the four-way selector cooling circuit formed by sequentially connecting the valve and the accumulator liquid level detecting means and the liquid level detection value.
[0049]
The heat storage air conditioner according to the ninth aspect of the invention sequentially connects a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and a switching valve. A refrigerant circulation circuit, a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, one end connected between the first expansion device and the second expansion device, and the other end A third expansion device connected between the indoor heat exchanger and the switching valve, a cold storage heat exchanger, a series circuit having a third valve, and a cold storage circuit in which the switching valve is sequentially connected; A heat storage tank for storing the heat storage heat exchanger, a heat storage medium stored in the heat storage tank, and one end connected to the compressor suction side, and the other end connected between the heat storage heat exchanger and the third valve. Refrigerant pump, series circuit having a sixth valve, heat storage heat exchanger, third expansion device, second expansion device, indoor heat And a cooling circuit formed by sequentially connecting the exchanger and the switching valve, and a driving mode switching means for selecting the operating mode.
[0050]
The heat storage air conditioner according to the tenth aspect of the invention sequentially connects a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and a switching valve. A refrigerant circulation circuit, a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, one end connected between the first expansion device and the second expansion device, and the other end A third expansion device connected between the indoor heat exchanger and the switching valve, a cold storage heat exchanger, a series circuit having a third valve, and a cold storage circuit in which the switching valve is sequentially connected; A heat storage tank for storing a heat storage heat exchanger, a heat storage medium stored in the heat storage tank, and one end connected to the compressor suction side, the other end between the heat storage heat exchanger and the third valve Refrigerant pump connected, series circuit having sixth valve, heat exchanger for cold storage, third expansion device, second expansion device And a cooling circuit formed of the indoor heat exchanger and the switching valve are sequentially connected.
[0051]
The heat storage air conditioner according to the eleventh and twelfth inventions includes a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and a switching valve. A general cooling circuit formed by sequential connection, a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, and one end connected between the first expansion device and the second expansion device; The third expansion device, the other end of which is connected between the indoor heat exchanger and the switching valve, the cold storage heat exchanger, the series circuit having the third valve, and the cold storage in which the four-way switching valve is sequentially connected Circuit, a heat storage tank for storing the heat storage heat exchanger, a heat storage medium stored in the heat storage tank, and one end connected to the compressor suction side, and the other end of the heat storage heat exchanger and the third valve A refrigerant pump connected in between, a series circuit having a sixth valve, a heat exchanger for cold storage, a third expansion device, a second Ri apparatus, and a cooling circuit formed by sequentially connecting the indoor heat exchanger and the switching valve, and a cold storage and cooling operation ratio management unit.
[0052]
The heat storage air conditioner according to the thirteenth aspect of the present invention sequentially connects a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and a switching valve. Formed by sequentially connecting the refrigerant circulation circuit formed in this way, the compressor, the switching valve, the outdoor heat exchanger, the second expansion device, the first expansion device, the outdoor heat exchanger and switching valve, and the accumulator. General heating circuit, compressor, switching valve, outdoor heat exchanger, first expansion device, one end connected between the first expansion device and the second expansion device, and the other end of the indoor heat A third expansion device connected between the exchanger and the switching valve, a heat storage heat storage device, a cold storage circuit constituted by a series circuit having the third valve and the switching valve, a compressor, and a switching valve , One end is connected between the switching valve and the indoor heat exchanger, and the other end is a first expansion device and a second expansion device A third valve connected in between, a heat storage heat storage device, a series circuit having a third expansion device, a first expansion device, an outdoor heat exchanger, a heat storage circuit sequentially connected with a switching valve, A heat storage tank for storing the heat storage heat exchanger, a heat storage medium stored in the heat storage tank, and one end connected to the compressor suction side, and the other end connected between the heat storage heat exchanger and the third valve. Cooling pump formed by sequentially connecting a refrigerant pump, a series circuit having a sixth valve, a heat storage heat exchanger, a third expansion device, a second expansion device, an indoor heat exchanger, and a switching valve And an operation mode switching means for selecting an operation mode.
[0053]
The heat storage air conditioner according to the fourteenth aspect of the present invention sequentially connects a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and a switching valve. Formed by sequentially connecting the refrigerant circulation circuit formed in this way, the compressor, the switching valve, the outdoor heat exchanger, the second expansion device, the first expansion device, the outdoor heat exchanger and switching valve, and the accumulator. Heating circuit, compressor, switching valve, outdoor heat exchanger, first expansion device, one end connected between the first expansion device and the second expansion device, and the other end indoor heat exchange A third expansion device connected between the condenser and the switching valve, a cold storage heat exchanger, a cold storage circuit configured by a series circuit having the third valve and the switching valve, and one end of the switching valve and the chamber A third one connected between the inner heat exchanger and the other end connected between the first expansion device and the second expansion device; A valve, a heat storage heat exchanger, a series circuit having a third expansion device, a first expansion device, an outdoor heat exchanger, a heat storage circuit sequentially connected with a switching valve, and a heat storage heat exchanger are accommodated. A heat storage tank, a heat storage medium housed in the heat storage tank, and a refrigerant pump having one end connected to the compressor suction side and the other end connected between the cold storage heat exchanger and the third valve, a sixth valve And a cool storage heat exchanger, a third expansion device, a second expansion device, an indoor heat exchanger, and a cooling circuit formed by sequentially connecting a switching valve.
[0054]
Further, the heat storage type air conditioner according to the fifteenth and sixteenth inventions includes a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and a switching valve. The refrigerant circulation circuit formed by sequentially connecting the compressor, the switching valve, the indoor heat exchanger, the second expansion device, the first expansion device, the outdoor heat exchanger and switching valve, and the accumulator are sequentially connected. A heating circuit, a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, one end connected between the first expansion device and the second expansion device, and the other end of the chamber One end is switched between a third expansion device connected between the inner heat exchanger and the switching valve, a cold storage heat exchanger, a cold storage circuit composed of a series circuit having the third valve and the switching valve, and one end Connected between the valve and the indoor heat exchanger, the other end is connected between the first expansion device and the second expansion device. A third valve, a heat storage heat exchanger, a series circuit having a third expansion device, a first expansion device, an outdoor heat exchanger, a heat storage circuit sequentially connected with a switching valve, a heat storage heat storage Heat storage tank for storing the storage device, a heat storage medium stored in the heat storage tank, and a refrigerant pump having one end connected to the compressor suction side and the other end connected between the cold storage heat exchanger and the third valve A series circuit having a sixth valve, a heat storage heat exchanger, a third expansion device, a second expansion device, an indoor heat exchanger, and a cooling circuit formed by sequentially connecting a switching valve. It has heat storage / heating operation ratio management means.
[0055]
The heat storage type air conditioner according to the seventeenth aspect of the invention sequentially includes a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and a switching valve. A refrigerant circulation circuit formed by connection, a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, and one end connected between the first expansion device and the second expansion device; A third expansion device, the other end of which is connected between the indoor heat exchanger and the switching valve, a cold storage heat exchanger, a series circuit having a third valve, and a cold storage circuit constituted by the switching valve; , A heat storage tank that houses the heat storage heat exchanger, a heat storage medium housed in the heat storage tank, and one end connected to the compressor suction side, and the other end connected between the heat storage heat exchanger and the third valve Refrigerant pump, series circuit having a sixth valve, compressor, one end connected between the compressor and the switching valve, and the other end cooled A bypass circuit having a seventh valve connected between the pump and the sixth valve, a regenerator heat exchanger, a third expansion device, a second expansion device, an indoor heat exchanger, and a switching valve are sequentially connected. A cooling circuit, an outdoor outdoor temperature detection means, and an operation mode switching means.
[0056]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 of the Invention
Hereinafter, Embodiment 1 of the regenerative air conditioner according to the first aspect of the present invention will be described with reference to the drawings. FIG. 1 shows a basic system of a heat storage type air conditioner. In FIG. 1, the same components as those in FIG. 60 in the conventional example are denoted by the same reference numerals, and the description thereof is omitted. 60 differs from FIG. 60 in the following points. That is, the refrigerant | coolant piping 120a and the 119 confluence | merging refrigerant | coolant piping 128a are comprised, and the said refrigerant | coolant piping 128a is connected to the four-way switching valve 28. FIG. The refrigerant pipes 129 and 130 branch from the refrigerant pipe 139 and are connected to the suction side of the compressor 1 and the refrigerant pump 12, respectively. The accumulator 17 is connected to refrigerant pipes 139, 136, 128b, the refrigerant pipe 128b is connected to the four-way switching valve 28, and the refrigerant pipe 136 is connected to the refrigerant via the fifth valve 23 and the refrigerant pipe 137. It connects with the connection part of the piping 112 and the heat exchanger 10 for cold storage heat.
The discharge side of the refrigerant pump 12 is connected to the junction of the refrigerant pipes 112 and 118 via the refrigerant pipes 133 and 132, the sixth valve 24 and the refrigerant pipe 131. Further, the refrigerant pipe 138 of the discharge portion of the compressor 1 branches into a refrigerant pipe 104a and a refrigerant pipe 35 connected to the four-way switching valve 28, and the refrigerant pipe 135 is connected to the refrigerant pipe 134 via the seventh valve 25. The refrigerant pipe 134 is branched into a refrigerant pipe 133 and a refrigerant pipe 132 of the discharge part of the gas pump 12. The series circuit having the heat exchanger for regenerative heat has a third expansion device 22. The four-way switching valve 28 and the outdoor heat exchanger 3 are connected by a pipe 104b.
[0057]
In addition to the above system, the outdoor heat exchanger outlet refrigerant supercooling degree detecting means 204 as shown in FIG. 2, which detects the refrigerant temperature and pressure at the outlet, calculates the refrigerant saturation temperature from the pressure, The amount obtained by subtracting the temperature from the temperature is output as the degree of supercooling. That is, how much the saturation temperature changes at the same pressure. This and the opening degree adjusting means 203 of the third expansion device 22 are provided as a control unit.
[0058]
As described above, at the time of cold storage operation, especially during startup, the refrigerant sleeps in the cold heat storage heat exchanger or accumulator, so the degree of refrigerant subcooling at the outdoor heat exchanger outlet cannot be obtained, and the inlet of the expansion device 3 In this case, the refrigerant cannot be supercooled, the refrigerant control becomes unstable, and the capacity may be reduced.
[0059]
On the other hand, the operation of this example, the basic refrigerant flow, and the operating state will be described. First, a circuit diagram of the cold storage operation of this embodiment is shown in FIG. In FIG. 2, the first and third throttling devices 6 and 22 are opened, either one or both of the third valve 14 and the fifth valve 23 are opened, and the other throttling devices and valves are closed. At this time, the refrigerant discharged from the compressor 1 condenses in the outdoor heat exchanger, adiabatically expands in the first expansion device 6 and the third expansion device 22, evaporates in the heat storage heat exchanger 10, and the heat storage medium 21. For example, heat is received from water, the surface of the heat storage heat exchanger 10 is frozen, and the vaporized refrigerant returns to the compressor 1 via the accumulator 17.
[0060]
Next, the operation state diagram of this example is shown in FIG. FIG. 5 is a Mollier diagram showing the state of the refrigerant, where the vertical axis represents the refrigerant pressure and the horizontal axis represents the enthalpy per unit weight. The operating points represented by numerals in FIG. 5 indicate the state of the refrigerant in the refrigerant circuit represented by the same numerals in FIG. The horizontal axis is called specific enthalpy and shows the energy of the substance including latent heat and sensible heat. The right side of the curve in the figure is the gas state, the left side is the liquid state, and the inside is the two-phase state. Based on the above cold storage operation, when the condensation temperature is about 40 ° C. and the evaporation temperature is about −5 ° C., the outdoor heat exchanger outlet is in a state F that does not reach a supercooled state at the time of startup, and the third throttle The opening degree is maintained in a small state by the opening degree adjusting means 203 of the apparatus, and after the detected value of the outdoor heat exchanger outlet supercooling degree detecting means 204 once becomes 5 deg or more, the third expansion device The opening degree is changed by the opening degree adjusting means 203 and the state F ″ of the refrigerant subcooling degree at the outlet of the outdoor heat exchanger is controlled to 5 deg. As a result, the refrigerant trapped in the heat storage heat exchanger or accumulator is stored. The refrigerant is recovered and circulated in the refrigerant circuit, and the degree of refrigerant subcooling at the outlet of the outdoor heat exchanger can be obtained, and the degree of refrigerant subcooling at the inlet of the expansion device 3 can be obtained, so that the refrigerant control becomes stable and the performance is not reduced. .
By throttling the throttling device, the amount of refrigerant blocked there increases, and the degree of subcooling at the outdoor heat exchanger outlet increases. The refrigerant of the heat storage heat storage heat accumulator and the accumulator downstream of the expansion device goes downstream from the refrigerant entering from the upstream. In FIG. 5, the upstream is above the vertical axis and the downstream is below the vertical axis, and the refrigerant moves due to a pressure drop. Since the amount of refrigerant increases, the amount of refrigerant in the heat storage heat accumulator and the accumulator decreases.
That is, when the throttle device is squeezed, the refrigerant is blocked there, the refrigerant at the outlet of the evaporator becomes a gas state, the inside of the accumulator is gas from the inlet (there is superheat), and the outlet (saturated liquid level in the accumulator) ) Saturated gas, and the inflow refrigerant amount A in unit time <outflow refrigerant amount B in unit time. When the compressor inlet pressure, inlet refrigerant temperature, and operating capacity are constant, the compressor supply flow rate is a constant value B.
Therefore, due to A <B, the refrigerant accumulates upstream of the throttle, and supercooling occurs.
When the degree of supercooling is 5 ° C., the inlet of the throttle device is in a supercooled state, and in the throttle device portion, which is the minimum condition in which no refrigerant noise is generated, the supercooling degree of the refrigerant decreases due to pressure loss. In FIG. 5, when the pressure decreases from F ″, the distance from the curved portion decreases, and the inlet of the expansion device may enter the inside of the curved line. Also, the degree of supercooling at the outer heat exchanger outlet increases. The larger the value, the smaller the amount of heat exchange, so the degree of supercooling at the outdoor heat exchanger outlet cannot be increased.
[0061]
Examples of other refrigerant flows in FIG. 2 are shown in FIGS. As mentioned above, during cold storage, both valves are actually open and the refrigerant passes through both. (If two circuits are open, the pipe cross-sectional area increases with respect to the refrigerant flow rate. Small resistance).
The circuit through valve 14 is shown in FIG. 3, and the circuit through both valves is shown in FIG. The cooling circuit is shown in FIG. Further, if the sixth and seventh valves 24 and 25 are opened, the compressor 1 can also be allowed to cool.
When the refrigerant discharged from the refrigerant pump and the compressor is used by being combined, it is controlled by the total frequency of the refrigerant pump and the compressor (the refrigerant pump is a frequency corresponding to the compressor). In the region where the total frequency is small, the compressor When the frequency increases, the compressor frequency is set to the lowest set value, the number of operating refrigerant pumps is set to one (the total frequency is equal at this switching point), and the compressor frequency is increased. In this way, the same switching is performed until there are three refrigerant pumps. (However, in actuality, the number of refrigerant pumps is switched to 3 at a time during cold storage and heat storage, and cooling and heat radiation and cooling and cooling are combined one by one as described above, and a refrigerant pump is used for general cooling and general heating. do not do.)
[0062]
The control of the above operation state is shown in FIG. 6 of the control block diagram.
First, at step 11, the third expansion device is narrowed at startup, and at step 12, the outdoor heat exchanger refrigerant supercooling degree SCO is detected. In step 13, once the SCO exceeds 5 deg from the start, SCO control is started. If the SCO is 5 degrees or more, the opening degree adjusting means of the third throttling device is operated so as to open the third throttling device in step 14. If the SCO is 5 deg or less, the opening degree adjusting means of the third throttling device is operated in step 15 so as to throttle the third throttling device. If the SCO is 5 deg in step 16, the opening adjusting means of the third expansion device is operated so as not to change the opening of the third expansion device.
[0063]
As described above, the circuit of FIG. 1 includes the compressor 1, the four-way switching valve 28, the outdoor heat exchanger 3, the first expansion device 6, the second expansion device 15, the indoor heat exchanger 16, and the four-way switching. The general cooling circuit formed by sequentially connecting the valves 28, the compressor 1, the four-way switching valve 28, the outdoor heat exchanger 3, the first expansion device 6, one end of which is the first expansion device 6 and the second expansion device. A third expansion device 22 connected between the indoor heat exchanger 16 and the four-way switching valve 28, a regenerator heat exchanger 10, A series circuit having three valves 14 and the four-way switching valve sequentially connected, a cold storage heat circuit, a heat storage tank 9 that houses the cold storage heat exchanger 10, and a heat storage housed in the heat storage tank A medium 21 and one end are connected to the compressor suction side, and the other end is a heat exchanger for cold storage heat and the third valve 1. The refrigerant pump 12 connected in between, the series circuit having the sixth valve 24, the heat exchanger 10 for cold storage heat, the third expansion device 22, the second expansion device 15, and the indoor heat exchanger 16 And a cooling circuit formed by connecting the four-way switching valve 28 in order and consuming the cold storage, and an outdoor heat exchanger outlet refrigerant supercooling degree detection means 204, and the outdoor heat exchanger outlet during cold storage. An adjusting means for changing the opening degree of the third expansion device according to the detected value of the refrigerant supercooling degree is provided.
Since it is configured as described above, by adjusting the opening of the third expansion device during cold storage, and by keeping the third expansion device small especially during cold storage startup, the outdoor heat exchanger excess The degree of cooling is controlled to a predetermined value or more.
As a result, an unstable operation of the refrigerant control can be prevented, and control utilizing the ability can be performed.
[0064]
Embodiment 2 of the Invention
Hereinafter, Embodiment 2 of the regenerative air conditioner according to the second aspect of the present invention will be described with reference to FIG. Since the basic system of the heat storage type air conditioner of this example is the same as that of the first invention, it is omitted here.
[0065]
In addition to the basic system of the first invention, the opening adjusting means 201 of the first expansion device 6 is provided as a control unit.
[0066]
As described above, during the cooling operation with regenerative heat, particularly during startup, the refrigerant sleeps in the regenerator heat exchanger or accumulator, so that the degree of refrigerant subcooling at the outdoor heat exchanger cannot be taken, or Even if the degree of supercooling is high, if the difference in height between the refrigerant junction and the indoor unit is large, the refrigerant is in a two-phase state in the pipe between the junction of the pipes 108 and 105 that are the refrigerant junction M and the indoor unit. In the refrigerant branching section between the outdoor unit and the indoor unit, the distribution of the refrigerant supplied to each indoor unit becomes uneven with respect to the required amount of the indoor unit, and the refrigerant circulation required by each indoor unit There was a problem that the amount was not secured and the capacity was lowered. Since the refrigerant at the inlet of the second expansion device of each indoor unit is in a two-phase state and the refrigerant circulation amount flowing through the second expansion device does not flow as much as the necessary amount of the indoor unit, When the refrigerant in the state flows through the expansion device 2, there is a possibility that refrigerant noise is generated due to cavitation.
[0067]
Next, the operation of the example of the present embodiment, the basic refrigerant flow, and the operation state will be described. First, FIG. 7 shows a circuit diagram of the cooling operation combined with regenerative heat. In FIG. 7, the first and third throttle devices 6 and 22, the second throttle devices 15a, 15b and 15c, the sixth valve 24 are opened, and the compressor 1 and the refrigerant pump are closed with the other valves closed. Drive 12 At this time, the liquid refrigerant condensed in the heat exchanger 10 for regenerative heat on the refrigerant pump 12 side merges with the refrigerant decompressed by the first expansion device 6 on the compressor 1 side, and refrigerant circuit systems a and b for indoor units. , C circulates about twice as much refrigerant as in general cooling operation, and the capacity is also doubled. Then, the refrigerant returns to the compressor 1.
[0068]
Next, the operation state diagram of this example is shown in FIG. In addition, the operating point represented by a number in FIG. 8 indicates the state of the refrigerant in the refrigerant circuit represented by the same number in FIG. Based on the cooling operation combined with the regenerative heat, when the evaporation temperature is about 10 ° C., the condensation temperature of the indoor heat exchanger is 45 ° C., and the condensation temperature of the regenerator heat exchanger is 22 ° C. The heat exchanger outlet is in a state F that does not reach the supercooling state, and the opening degree is maintained in a small state by the opening degree adjusting means 201 of the first expansion device. After the detection value of the detection means 204 becomes 5 degrees or more, the opening degree is changed by the opening degree adjustment means 201 of the first expansion device, and the outdoor heat exchanger outlet subcooling state F ″ is changed to 5 degrees. As a result, the refrigerant stagnated in the heat storage heat accumulator or accumulator is collected in the refrigerant circuit and circulated, and the degree of refrigerant subcooling at the outlet of the outdoor heat exchanger is taken, and the height between the refrigerant junction and the indoor unit is increased. Even if the difference is large, the refrigerant merge M section and the room In the piping between the units, the refrigerant does not enter a two-phase state, and the distribution of the refrigerant supplied to each indoor unit is uniform with respect to the required amount of the indoor unit at the refrigerant branching portion between the outdoor unit and the indoor unit. As a result, the refrigerant circulation amount required by each indoor unit is ensured, and the problem of reduced capacity is eliminated.The refrigerant at the inlet of the second expansion device of each indoor unit is not in a two-phase state, and the second expansion device is Since the refrigerant circulation amount that flows is the necessary amount of the indoor unit, the capacity of the indoor unit is reduced, and the refrigerant noise due to cavitation does not occur when the two-phase refrigerant flows through the expansion device 2.
[0069]
In the above description, the reason why the two-phase state is not achieved is as follows. The degree of supercooling (indicating how far to the left from the left side of the Mollier diagram curve) is the pressure loss and liquid head (indoors) as it goes from the outdoor heat exchanger outlet to the downstream of the refrigerant circuit (indoor unit throttle device inlet). Only if the unit is above the outdoor unit), the pressure will be reduced and so will be smaller. Therefore, the degree of supercooling at the upstream outdoor heat exchanger outlet may be increased so that the degree of supercooling at the inlet of the expansion device is 0 or more.
The degree of occurrence of cavitation due to distribution, when the distribution is poor, a pipe with a small refrigerant flow rate can be formed, and with a pipe with a low refrigerant flow rate, the flow rate of the refrigerant becomes large. Therefore, in a place where the flow velocity is high, the partial pressure of the energy with the increased flow velocity drops, and cavitation that is a bubble is likely to occur.
In FIG. 8, the refrigerant whose pressure has dropped from 103 and the refrigerant (105) whose pressure has dropped from 106 merge at the same position (of course, the same pressure), and the state of the merged refrigerant is the same pressure as before the merge, but with different enthalpy It becomes.
[0070]
The control of the above operation state is shown in FIG. 9 of the control block diagram. First, in step 21, the first throttle device is made to be narrowed at the time of activation by the opening adjusting means of the first throttle device. In step 22, the outdoor heat exchanger refrigerant supercooling degree SCO is detected. Once the SCO becomes 5 deg or more from the start, SCO control is started in step 23. If the SCO is 5 degrees or more, the opening degree adjusting means of the first throttling device is operated to open the first throttling device opening in step 24. If the SCO is 5 deg or less, in step 25, the opening adjusting means of the first throttle device is operated so as to throttle the opening of the first throttle device. If the SCO is 5 deg in step 26, the opening adjusting means of the first expansion device is operated so as not to change the opening of the first expansion device.
[0071]
In the above cooling circuit, operation at a low outside air temperature is stable. By adjusting the opening degree of the first expansion device during cooling using the regenerative heat, and by keeping the first expansion device small particularly during cooling using the regenerative heat, the outdoor heat exchanger subcooling degree is set to a predetermined value. Control above. As a result, it is possible to prevent an unstable operation at the time of transition such as steady state or startup.
[0072]
Embodiment 3 of the Invention
Hereinafter, Embodiment 3 of the regenerative air conditioner according to the third aspect of the present invention will be described with reference to FIG. Since the basic system of the heat storage type air conditioner of this example is the same as that of the first invention, it is omitted here.
[0073]
In addition to the basic system of the first invention, the opening adjusting means 202 of the second expansion devices 15a, 15b, 15c is provided as a control unit.
[0074]
As described above, during general cooling operation, and particularly during startup, the refrigerant is trapped in the heat storage heat accumulator or accumulator, so that the degree of refrigerant subcooling at the outdoor heat exchanger cannot be obtained, or supercooling is performed. However, if the height difference between the refrigerant junction and the indoor unit is large, the refrigerant may be in a two-phase state in the pipe between the outdoor unit outlet and the indoor unit. In the refrigerant branching section, the distribution of the refrigerant supplied to each indoor unit becomes uneven with respect to the required amount of the indoor unit, the amount of refrigerant circulation required by each indoor unit is not secured, and the capacity is lowered. there were. Also, in each indoor unit, the refrigerant at the inlet of the second expansion device is in a two-phase state, and the refrigerant circulation amount flowing through the second expansion device does not flow in the required amount of the indoor unit. When the two-phase refrigerant flows through the expansion device 2, there is a possibility that refrigerant noise is generated due to cavitation.
[0075]
Next, the operation of this example, the basic refrigerant flow, and the operating state will be described. The first throttling device 6 and the second throttling devices 15a, 15b, 15c are open, and the other throttling devices and valves are closed. The refrigerant discharged from the compressor 1 and the refrigerant pump 12 is condensed and liquefied in the outdoor heat exchanger, and the high-pressure refrigerant is sent to each indoor unit refrigerant circuit system a, b, c, and each second expansion device. The pressure is reduced while adjusting the refrigerant flow rate at 15, approximately 6 kg / cm 2 It flows into the indoor heat exchanger 16 at a pressure of about G and evaporates. At this time, the refrigerant that has absorbed heat from the surrounding indoor air and gasified returns to the compressor 1 via the compressor accumulator 17.
[0076]
Next, the operation state diagram of this example is shown in FIG. In addition, the operating point represented by a number in FIG. 11 indicates the state of the refrigerant in the refrigerant circuit represented by the same number in FIG. Based on the above general cooling, when the evaporation temperature is about 10 ° C. and the condensation temperature is 45 ° C., the outdoor heat exchanger outlet is in a state F that does not reach the supercooling state at the start-up, and the second throttling device The opening degree is kept small by the opening degree adjusting means 202a, 202b, 202c, and the detected value of the outdoor heat exchanger outlet supercooling degree detecting means 204, that is, the upper left corner of the refrigerant circulation diagram 11 is once more than 5 deg. After that, the opening degree of the second throttle device is changed by the opening degree adjusting means 202a, 202b, 202c of the second throttle device, and the state F ″ of the refrigerant subcooling degree at the outlet of the outdoor heat exchanger is changed. As a result, the refrigerant stagnated in the heat storage heat accumulator or the accumulator is collected and circulated in the refrigerant circuit to obtain the degree of subcooling of the refrigerant at the outdoor heat exchanger outlet, and the refrigerant junction and the indoor unit. Height difference between Even when the refrigerant is large, the refrigerant does not enter a two-phase state in the pipe between the outdoor unit outlet and the indoor unit, and the refrigerant branching portion between the outdoor unit and the indoor unit distributes the refrigerant supplied to each indoor unit. Becomes uniform with respect to the required amount of the indoor unit, the amount of refrigerant circulation required by each indoor unit is ensured, and there is no problem that the capacity is reduced, and in each indoor unit, the refrigerant at the inlet of the second expansion device Is not in a two-phase state, and the refrigerant circulation amount flowing through the second expansion device flows through the required amount of the indoor unit, so that the capacity in the indoor unit does not deteriorate and the refrigerant in the two-phase state flows through the expansion device 2 In addition, no refrigerant noise is generated by cavitation.
[0077]
The above operation state control is shown in FIG. First, at step 31, the second diaphragm device is set to the diaphragm when starting. In step 32, the outdoor heat exchanger refrigerant supercooling degree SCO is detected, and once the SCO becomes 5 degrees or more, SCO control is started in step 33. If the SCO is 5 degrees or more, the opening degree adjusting means of the second throttling device is operated so as to open the second throttling device in step 34. If the SCO is 5 deg or less, in step 35, the opening adjusting means of the second throttle device is operated so as to throttle the opening of the second throttle device. If the SCO is 5 degrees, the opening degree adjusting means of the second throttling device is operated in step 36 so as not to change the opening degree of the second throttling device.
[0078]
Further, the same effect can be obtained if the first diaphragm device performs the role of the second diaphragm device.
In addition, by adjusting the opening of the second expansion device during general cooling, and by keeping the second expansion device small particularly when starting general cooling, the degree of subcooling of the outdoor heat exchanger is greater than a predetermined value. To control.
Next, switching from the cooling operation to the general cooling operation is shown in the flowchart of FIG. After performing the cooling operation (step 231), it is confirmed whether the total frequency of the refrigerant pump and the compressor is at a predetermined value or higher (step 232), and further, whether the water temperature is higher than the predetermined value (step 232). 233), switching to general cooling (step 234).
[0079]
Embodiment 4 of the Invention
Embodiment 4 of the heat storage type air conditioner according to the fourth aspect of the present invention will be described below with reference to FIG. Since the basic system of the heat storage type air conditioner of this example is the same as that of the first invention, it is omitted here.
[0080]
In addition to the basic system of the first invention, a refrigerant pump discharge pressure detecting means 205 is provided.
[0081]
As described above, when refrigerant is accumulating in an accumulator or the like at the start of cooling with combined cold storage heat and at the start of cooling operation, the amount of refrigerant in the cold storage heat heat exchanger is ensured to be sufficient for heat exchange. Instead, immediately after startup, the refrigerant is stored in the cold-storage heat exchanger in order to secure an amount of refrigerant sufficient to exchange heat. At that time, there was a possibility that the compressor suction pressure was pulled in, and the compressor frequency and compression function were reduced. Moreover, the refrigerant supercooling degree of the heat storage heat exchanger cannot be obtained, the refrigerant becomes a two-phase state at the inlet of the second expansion device in the indoor unit, the refrigerant control becomes unstable, and the capability may be reduced. There is.
[0082]
Next, the basic operation of the cooling operation of this example will be described. In FIG. 13, the sixth and seventh valves 24, 25, the second throttle devices 15a, 15b, 15c, and the third throttle device 22 are opened, and the other throttle devices and valves are closed, and the compressor 1 is closed. And the refrigerant pump 12 is operated. At this time, the gas refrigerant sent out by the compressor 1 and the refrigerant pump 12 is cooled by the ice in the tank, condensed, and liquefied about 9 kg / cm. 2 The refrigerant of G is sent to the refrigerant circuit systems a, b, c for each indoor unit, and is decompressed while adjusting the refrigerant flow rate by each second expansion device 15, and is about 6 kg / cm. 2 It flows into the indoor heat exchanger 16 at a pressure of about G and evaporates. At this time, the refrigerant that has absorbed heat from the surrounding indoor air and gasified returns to the compressor 1 via the accumulator 17.
[0083]
Next, the operation of this example will be described. First, an operation state diagram is shown in FIG. Note that the operating points indicated by numerals in FIG. 14 indicate the state of the refrigerant in the refrigerant circuit indicated by the same numerals in FIG. Before starting the operation, the opening of the third throttle device is fully closed or the throttle pump is operated, and the refrigerant pump discharge pressure is 10 kgf / cm. 2 When the temperature rises to G or higher, the cooling operation starts.
[0084]
As a result of the above, the refrigerant staying in the accumulator, the cold storage heat exchanger, etc. is recovered and circulated in the refrigerant circuit, and the refrigerant amount in the cold storage heat exchanger is ensured to be sufficient for heat exchange. Refrigerant is stored in the regenerative heat exchanger to secure enough refrigerant to exchange heat immediately after startup. At that time, the compressor suction pressure is reduced and the compressor frequency and compression function are reduced. The possibility of doing is lost. Further, the degree of refrigerant supercooling of the heat storage heat exchanger can be taken, the refrigerant does not enter a two-phase state at the inlet of the second expansion device in the indoor unit, the refrigerant control becomes stable, and there is a possibility that the capacity is lowered. Disappears.
[0085]
FIG. 15 is a control block diagram showing the control of the above operating state. First, in step 41, the third diaphragm device is fully closed at the time of activation. In step 42, the refrigerant pump discharge pressure Pd1 is detected. In step 43, the Pd1 is once 10 kgf / cm. 2 When it becomes G or more, the opening degree of the third expansion device is opened in step 44, and the opening degree adjusting means of the third expansion device is operated so as to start the cooling operation in step 45.
[0086]
Further, if the second throttling device performs the role of the third throttling device during the general cooling operation, the same effect can be obtained.
[0087]
Moreover, in another example, the same effect can be acquired by performing the same operation as this example at the time of cooling operation combined with regenerative heat.
The compressor in the above description is generally, for example, outside air at 35 ° C., when icing in the tank, and 17 kgf / cm during combined cooling. 2 G, 11 kgf / cm when allowed to cool 2 G position.
Further, at the time of cooling, preliminary operation is performed with the third throttling device fully closed or closed until the gas pump discharge pressure becomes equal to or higher than a certain value before the start of cooling, and the gas pump discharge pressure is set to a constant value. After that, the cooling operation is started.
[0088]
Embodiment 5 of the Invention
Hereinafter, Example 5 of the embodiment of the heat storage type air conditioner according to the fifth aspect of the present invention will be described with reference to FIG. Since the basic system of the heat storage type air conditioner of this example is the same as that of the first invention, it is omitted here.
[0089]
Further, in addition to the basic system of the first invention, the pressure detecting means 206 of the refrigerant confluence M section during the cooling operation and the eighth at least provided in the inlet / outlet of the heat storage heat storage heat exchanger comprising a plurality of paths. The ninth valve 26, 27 and the opening / closing means 207 for the eighth and ninth valves are provided as a control unit.
Although the valves 26 and 27 in FIG. 16 are included in the heat storage tank unit, this is shown in the illustrated example because it is operated by an electric signal, but even if it is in the heat storage tank heat storage material You can stay outside. However, it may be insulated from the heat storage material, but for valve protection, a configuration that is provided outside the heat storage material and not attached to water is desirable.
Thus, by providing a plurality of paths in one heat storage tank, it becomes possible to increase the density and size of the product. It is also possible to make the two icing uniform.
On the other hand, a plurality of heat storage tanks may be provided, and valves 26 and 27 may be provided in such a heat storage tank. In this way, various ice can be prepared.
In addition, during the cooling operation combined with cold storage heat and during the cooling operation, the refrigerant distribution M section pressure is a constant value until the refrigerant distribution in the refrigerant circuit becomes stable and the pressure difference at the inlet / outlet of the cold storage heat exchanger becomes a sufficient value. In the following, the eighth and ninth valves are closed, and are opened when the value exceeds a certain value.
[0090]
As described above, when the operation capacity is reduced during cooling operation with cool storage heat and cooling operation, the amount of refrigerant circulating in the cool storage heat exchanger decreases, and the refrigerant is stored in the cool storage heat exchanger. The amount of refrigerant required for the heat exchanger for storing cold heat is increased for sleep and operation. Since the amount of refrigerant in the refrigerant circuit is constant, the refrigerant at the inlet of the second throttle device becomes a two-phase state, the refrigerant control becomes unstable, the capacity decreases, or the refrigerant in the two-phase state causes the throttle device 2 to There is a possibility that refrigerant noise may occur due to cavitation when flowing.
[0091]
Next, the operation of this example, the basic refrigerant flow, and the operating state will be described. Since the basic operation of the cooling operation is the same as that in Example 4 above, the description thereof is omitted. FIG. 16 shows a refrigerant circuit diagram during the cooling operation when the operating capacity of this example is reduced, and FIG. 17 shows a state diagram.
[0092]
In FIG. 17, the 8th and 9th valves 26 and 27 are closed during the cooling operation immediately after the operating capacity is reduced, the refrigerant circuit is stabilized, and the pressure difference at the inlet / outlet of the heat exchanger for cold storage heat becomes a sufficient value. Up to, for example, the pressure of the refrigerant junction is 10 kgf / cm 2 From state F below G, 10 kgf / cm 2 The refrigerant is retained in the heat storage heat exchanger during the cool-down operation immediately after the eighth and ninth valves are closed until the operating capacity is reduced until the state F ′ reaches G or more. When it is determined that the circuit state is stable (state F ′), the eighth and ninth valves are opened, and then the refrigerant gradually accumulates in the cold storage heat exchanger. As a result, even if the operating capacity is reduced, the amount of refrigerant circulating in the regenerative heat heat exchanger decreases, reducing the amount of refrigerant that falls into the regenerative heat heat exchanger, and the refrigerant necessary for the heat storage heat exchanger during operation The amount increases only slightly. Therefore, when the amount of refrigerant in the refrigerant circuit is constant, the refrigerant at the entrance of the second expansion device does not enter the two-phase state, the refrigerant control becomes stable, the capacity does not decrease, and the refrigerant in the two-phase state No refrigerant noise is generated by cavitation when flowing through the expansion device 2.
[0093]
FIG. 18 is a control block diagram showing the control of the above operating state. First, immediately after the operating capacity is reduced in step 51, the eighth and ninth valves are closed. In step 52, the pressure Pm of the refrigerant confluence M section is detected. In step 53, the Pm is once 10 kgf / cm. 2 When G is greater than or equal to G, the opening and closing means of the eighth and ninth valves are operated to open the eighth and ninth valves in order to stabilize the refrigerant circuit at step 54.
[0094]
The same effect can be obtained with the same operation even at the time of cooling start with cold storage heat.
In the above description, the reason why both the valves 26 and 27 are closed is that if only one of them is opened, the refrigerant stagnates in the heat exchanger for cold storage heat. However, the ease of falling asleep depends on which valve is opened.
The reason why the retention amount of the refrigerant is small is to reduce the capacity of the heat exchanger for cold storage heat and to increase the liquid amount of other heat exchangers.
The retention amount is used in the case of an accumulator.
[0095]
Embodiment 6 of the Invention
Embodiment 6 of the heat storage type air conditioner according to the sixth aspect of the present invention will be described below with reference to the drawings. Since the basic system of the heat storage type air conditioner of this example is the same as that of the first invention, it is omitted here.
[0096]
Further, in addition to the basic system of the first invention, as shown in FIG. 19, it has a pipe including a fourth valve 30 for connecting a pipe section between the refrigerant confluence M section and the outdoor heat exchanger and an accumulator, Accumulator liquid level detecting means 208 and fourth valve opening / closing means 209 are provided as a control unit.
[0097]
As described above, during the cooling operation, the refrigerant stagnates in the outdoor heat exchanger, so that the necessary amount of refrigerant in the cooling operation is not secured, and the refrigerant subcooling degree of the heat storage heat exchanger Cavitation occurs when the refrigerant enters a two-phase state at the inlet of the second throttle device in the indoor unit, the refrigerant control becomes unstable, the capacity decreases, or the refrigerant in the two-phase state flows through the throttle device 2 As a result, refrigerant noise may be generated.
[0098]
Next, FIG. 19 shows a circuit diagram of the cooling operation of this example, and FIG. 20 shows a state diagram. Note that the operating points represented by numerals in FIG. 20 indicate the state of the refrigerant in the refrigerant circuit represented by the same numerals in FIG. Since the basic operation of this example is the same as the basic operation of the cooling operation up to the fourth embodiment, a description thereof will be omitted.
[0099]
When the refrigerant in the accumulator is exhausted by the liquid level detection means of the accumulator during cooling, the pressure of the refrigerant staying in the outdoor heat exchanger is 4 kgf / cm by opening the fourth valve. 2 The refrigerant is drawn into the G accumulator, the amount of circulating refrigerant increases, the degree of supercooling at the heat exchanger outlet for cold storage heat rises from state F to F ′, and the degree of superheat at the outlet of the indoor heat exchanger changes from state F to F ′. Will decrease. As a result, the refrigerant sleeping in the outdoor heat exchanger is collected and circulated in the refrigerant circuit, so that the necessary amount of refrigerant in the cooling operation can be secured, and the degree of refrigerant supercooling in the heat storage heat exchanger can be obtained. The refrigerant does not enter a two-phase state at the inlet of the second expansion device in the unit, the refrigerant control becomes stable, the capacity does not decrease, and cavitation occurs when the two-phase state refrigerant flows through the expansion device 2. No refrigerant noise is generated. Since the outdoor heat exchanger is not used for the cooling operation, the refrigerant can be recovered from outside the operating main refrigerant circuit.
[0100]
The control of the above operation state is shown in FIG. 21 of the control block diagram. When the liquid is present in the accumulator at step 61, the fourth valve is closed. In step 62, the amount of refrigerant in the accumulator is detected by the accumulator liquid level detecting means. When there is no refrigerant in the accumulator in step 63, the fourth valve opening / closing means is operated to open the fourth valve in step 64. When the refrigerant is present in the accumulator at step 63, the fourth valve opening / closing means is operated so that the fourth valve is closed at step 65.
Note that the opened valve 30 detects the liquid level of the accumulator, and is closed by an electrical signal corresponding to this level.
That is, at the time of cooling, the fourth valve is opened when the detected value detected by the liquid level detecting means of the accumulator is below a certain value.
As a result, the amount of refrigerant in the refrigerant circuit is adjusted as desired, and high-performance operation can be maintained.
[0101]
Embodiment 7 of the Invention
Hereinafter, a heat storage type air conditioner according to a seventh embodiment of the present invention will be described with reference to the drawings. Since the basic system of the heat storage type air conditioner of this example is the same as that of the first invention, it is omitted here.
[0102]
In addition to the basic system of the first invention, as shown in FIG. 22, an accumulator liquid level detecting means 208 and a third valve opening / closing means 210 are provided as a control unit.
[0103]
As described above, surplus refrigerant overflows from the accumulator during general heating operation, which may reduce the reliability of the compressor.
[0104]
Next, the operation of this example, the basic refrigerant flow, and the operating state will be described. A circuit diagram of the general heating operation of this example is shown in FIG. In FIG. 22, the compressor 1 is operated in a state where the first throttle device 6 and the second throttle devices 15a, 15b, and 15c are open and the other throttle devices and valves are closed. 17 kg / cm from compressor 1 2 The high-temperature and high-pressure gas discharged at a pressure around G is sent to each indoor unit refrigerant circuit system a, b, c, and condensed in each indoor-side heat exchanger 16 to heat indoor air. The condensed liquid refrigerant is slightly depressurized by the second throttling device 15 and further depressurized by the first throttling device 6 to about 4 kg / cm. 2 It evaporates in the outdoor heat exchanger 3 with the pressure of G and returns to the compressor 1 via the accumulator 17.
[0105]
The operating state of the general heating operation of this example is shown in FIG. Note that the operating points represented by numerals in FIG. 23 indicate the state of the refrigerant in the refrigerant circuit represented by the same numerals in FIG. Based on the above general heating operation, during operation, when the refrigerant level detection means of the accumulator detects that the refrigerant in the accumulator has overflowed from the accumulator, the third valve is opened, so that the circulating high-temperature and high-pressure refrigerant The refrigerant in the accumulator is reduced by flowing it into the low-pressure heat storage heat exchanger, and the amount of circulating refrigerant in the general heating refrigerant circuit is reduced, so that the refrigerant subcooling degree at the outlet of the indoor heat exchanger is From F to F ′, the heating degree at the outlet of the outdoor heat exchanger can be increased from state F to F ′. As a result, the refrigerant overflowing from the accumulator is removed from the refrigerant circuit, so that the reliability of the compressor is not lowered.
[0106]
In cooling and heating, the refrigerant is left by light heating. Moreover, in heat storage and general cooling, a refrigerant | coolant tends to sleep in the heat exchanger for cold storage heat. Since the heat storage heat exchanger has pipes going up and down, general heating without a heat storage heat exchanger has the most refrigerant.
In addition, since the accumulator is a part that accumulates excess refrigerant in the refrigerant circuit, the accumulator tends to overflow during general heating.
Further, in cooling, there is not much liquid remaining in the accumulator, and heat storage is accumulated in the heat exchanger for cold storage heat, so there is almost no overflow of the accumulator. However, there may be a case where the initial refrigerant charging amount is large.
Further, in the extension pipe, a liquid refrigerant flows during cooling, and a two-phase refrigerant flows less than liquid during heating, which is also the reason for the refrigerant collecting during heating.
[0107]
FIG. 24 of the control block diagram shows the control of the above operation state. When there is liquid in the accumulator at step 71, the third valve is closed. In step 72, the accumulator liquid level detecting means detects the accumulator liquid level. When the refrigerant in the accumulator overflows from the accumulator in step 73, the third valve opening / closing means is operated to open the third valve in step 74. When the refrigerant in the accumulator does not overflow from the accumulator in step 73, the third valve opening / closing means is operated to open the third valve so that the third valve is closed in step 75.
[0108]
When the third valve 14 is opened in FIG. 22 and the refrigerant is put into the heat exchanger 10, the refrigerant in the accumulator decreases. This is because when the refrigerant is put in the heat storage heat exchanger, the amount of refrigerant in the refrigerant circuit, which is a circuit other than the heat storage heat exchanger, is reduced. In addition, since the refrigerant amount of the accumulator is an excess refrigerant amount that does not circulate in the refrigerant circuit, when the refrigerant amount in the refrigerant circuit decreases, the refrigerant amount of the accumulator decreases accordingly.
During general heating, the third valve is opened when the detection value detected by the liquid level detection means of the accumulator is a certain value or more.
Thereby, a highly reliable refrigerant circulation system can be obtained.
[0109]
Embodiment 8 of the Invention
Embodiment 8 of the heat storage type air conditioner according to the eighth aspect of the present invention will be described below with reference to FIG. Since the basic system of the heat storage type air conditioner of this example is the same as that of the first invention, it is omitted here.
[0110]
In addition to the basic system of the first aspect of the invention, accumulator liquid level detecting means 208 and opening degree adjusting means of the first throttling device 6 are provided.
[0111]
As mentioned above, during heat radiation heating operation, the refrigerant stagnates in the outdoor heat exchanger, the amount of refrigerant in the accumulator decreases, the amount of refrigerant in the entire heat radiation heating circuit is insufficient, the capacity is reduced, and the indoor heat exchange There is a possibility that refrigerant noise will occur in the container.
[0112]
Next, the operation of this example will be described. A circuit diagram of the heat radiation heating operation of this example is shown in FIG. In FIG. 25, the third valve 22 and the second valves 15a, 15b and 15c, and the fifth and seventh valves 23 and 25 are opened, and the other throttle devices and valves are closed. And the refrigerant pump 12 is operated. At this time, the compressor 1 and the refrigerant pump 12 are 17 kg / cm. 2 The high-temperature and high-pressure gas refrigerant before and after G is sent to each of the indoor unit refrigerant circuit systems a, b, and c to heat the indoor air. The condensed refrigerant is depressurized by the second expansion device 15 and is about 13 kg / cm. 2 It becomes a gas-liquid two-phase refrigerant of G, evaporates back to the heat storage tank 9, and is about 4 kg / cm 2 G returns to the compressor 1 and the refrigerant pump 12 via the accumulator 17.
[0113]
FIG. 26 shows a state diagram of the heat radiation heating operation of this example. Note that the operating points represented by numerals in FIG. 26 indicate the state of the refrigerant in the refrigerant circuit represented by the same numerals in FIG. Based on the above heat radiation operation, during heat radiation heating, when the refrigerant level detecting means of the accumulator detects that the refrigerant is exhausted in the accumulator, the refrigerant from the outdoor heat exchanger is opened by opening the opening of the first expansion device. To increase the amount of circulating refrigerant in the heat-dissipating heating refrigerant circuit, the refrigerant supercooling degree at the indoor heat exchanger outlet rises from state F to state F ′, and the degree of superheat at the heat exchanger outlet for cold storage heat Decreases from state F to state F ′. As a result, since the refrigerant stagnated in the outdoor heat exchanger is collected and circulated in the refrigerant circuit, the amount of refrigerant in the entire heat-dissipating heating circuit is not insufficient, resulting in a decrease in capacity and generation of refrigerant noise in the indoor heat exchanger. It never happens.
[0114]
The operation control as described above is shown in FIG. 27 of the control block diagram. When liquid is present in the accumulator at step 81, the first throttling device is fully closed. In step 82, the amount of refrigerant in the accumulator is detected by the accumulator liquid level detecting means. When there is no refrigerant in the accumulator at step 83, the opening degree adjusting means of the first throttling device is operated to open the first throttling device at step 84. When there is a refrigerant in the accumulator in step 83, the opening degree adjusting means of the first throttling device is operated so that the first throttling device remains closed in step 85.
The radiant heating circuit does not include an outdoor heat exchanger, and has no place for inflow only from the outdoor heat exchanger, so that it can be recovered from outside the operating main refrigerant circuit.
When the detection value detected by the liquid level detection means of the accumulator during heat radiation heating is below a certain value, the first expansion device is opened. This makes it possible to maintain a high capacity.
[0115]
Embodiment 9 of the Invention
The ninth embodiment of the regenerative air conditioner according to the ninth aspect of the present invention will be described below with reference to FIG. Since the basic system of the heat storage type air conditioner of this example is the same as that of the first invention, it is omitted here.
[0116]
In addition to the basic system of the first invention, an operation mode switching means 211 for selecting a cold storage / heating mode is provided.
[0117]
As described above, the cooling operation may not be performed during the cold storage operation.
[0118]
Next, the operation of this example will be described. The refrigerant circuit diagram of this example is shown in FIG. 28, but the basic refrigerant flow and operation state are the same as those in the cold storage operation and general cooling up to the eighth embodiment, and are therefore omitted here. FIG. 29 shows a switching diagram of the cold storage and cooling operation time zones in this example. Also, cold storage cooling within the cold storage time zone is prohibited.
[0119]
First, at the time of FIG. 29, the general cooling operation starts in response to the request for the cooling operation.
[0120]
The cooling operation is performed at A to B for 30 minutes, and the general cooling operation is switched to the cold storage operation at B after 30 minutes have elapsed from the start of the general cooling. During this time, cold storage is prohibited.
[0121]
In the cold storage operation of B to C, general cooling is prohibited, so that the room-side room temperature approaches the outside air temperature and rises. And when it becomes a value 5 degreeC higher than the target room temperature at the time of general cooling operation, it switches to general cooling operation.
[0122]
At time C, the cooling operation is resumed. After resuming general cooling, general cooling operation is performed for 30 minutes, and during this time, cold storage is prohibited.
[0123]
As described above, the general cooling operation and the cold storage operation are alternately performed.
[0124]
As a result, the operation in the other mode in the cold storage operation time zone and the cold storage operation in the cooling operation time zone are possible. The operation mode switching means for selecting the cold storage / cooling mode alternately performs cold storage and cooling by determining the operation time zone.
[0125]
FIG. 30 shows a control block diagram of the above operation state. First, cooling operation is started in step 91, and after cooling operation is performed for 30 minutes in step 92, it is determined in step 93 whether the cooling operation has been operated for 30 minutes. In step 95, a cold storage operation is performed. In step 96, it is determined whether the room temperature has become 5 ° C. or more higher than the target room temperature during cooling. Switch to driving. For example, cold storage and cooling are repeated every other hour by a set temperature difference and a timer, and simple control can be performed within the cold storage time.
[0126]
Embodiment 10 of the Invention
A heat storage air conditioner according to a tenth embodiment of the present invention will be described below with reference to FIG. Since the basic system of the heat storage type air conditioner of this example is the same as that of the first invention, it is omitted here.
[0127]
During the cold storage operation, the cooling operation could not be performed at the same time.
[0128]
Therefore, the operation of this example will be described. FIG. 31 shows a circuit diagram of the cold storage / cooling simultaneous operation of this example, but the basic refrigerant flow and operation state are the same as those in the cold storage operation and general cooling up to the eighth embodiment, and are therefore omitted here. The cold storage and cooling simultaneous operation state of this example is shown in FIG.
[0129]
By opening the opening of the second and third expansion devices 15a, 15b, 15c, 22 and the third valve 14 during the general cooling operation or during the cold storage, the general cooling operation circuit and the cold storage operation circuit are respectively connected. Thus, the refrigerant discharged from the compressor and the refrigerant pump flows through the general cooling circuit and the cold storage circuit. The third throttling device and the third valve are opened by opening the opening of the second throttling device during cold storage or during cooling.
[0130]
However, the refrigerant control of the indoor unit restricts the second expansion devices 15a, 15b, and 15c to such an extent that the heat storage medium (for example, water) in the heat storage tank unit can become ice.
[0131]
As a result, the cooling operation in the cold storage operation time zone and the cold storage operation in the cooling operation time zone are possible. The system can be operated simultaneously in any time zone, improving the usability of the system and building a flexible system according to the user's conditions.
[0132]
Embodiment 11 of the Invention
The heat storage type air conditioner according to an eleventh embodiment of the present invention will be described below with reference to FIG. Since the basic system of the heat storage type air conditioner of this example is the same as that of the first invention, it is omitted here.
[0133]
In addition to the basic system of the first invention, a cold storage / cooling operation ratio management means 212 is provided. This cold storage / cooling operation ratio management means manages the required cold storage amount, cooling capacity, and maximum capacity of the compressor / refrigerant pump.
[0134]
When performing the cold storage operation and the cooling operation at the same time, the required cold storage capacity may not be satisfied.
[0135]
Next, the operation of this example will be described. A circuit diagram of the cold storage and cooling simultaneous operation of this example is shown in FIG. 33, but the basic refrigerant flow and operation state are the same as those in the cold storage operation and general cooling up to the eighth embodiment, and are therefore omitted here. FIG. 34 shows a capability change diagram with respect to operation control change in the cold storage and cooling simultaneous operation of this example.
[0136]
Next, the cold storage mainly by the cold storage and the general cooling simultaneous operation will be described by explaining the capacity change with respect to the operation control change of FIG. The horizontal axis in the figure shows the cold storage start time of A at 22:00 and the cold storage end time of D at 8:00. Q1 is the maximum capacity that can be output by the total of the compressor and the refrigerant pump, and always outputs the maximum capacity during operation. Q2 is a required cool storage capacity obtained by dividing the required cool storage amount by the cool storage time, and operation with a cool storage capacity equal to or less than this value is not performed. Q3 is the maximum cooling capacity that can be delivered during operation. Q2 ′ and Q3 ′ are the cold storage capacity and the cooling capacity during operation.
[0137]
Here, A is the cold storage start time 22:00. If the cooling demand is still large at this point and this cooling demand capacity is larger than Q1-Q2, the third throttling device 22 is throttled so that the cooling capacity and the cold storage capacity automatically become Q1-Q2 and Q2. The second aperture device 15 is opened. In this state, the driving continues until 1:00 B when entering the late-night sleep period.
[0138]
Next, in the state of B, the general cooling is prohibited, that is, the state of Q1 = Q2 ′, and the conventional cold storage operation in which all the maximum capacities of the compressor and the refrigerant pump are used for cold storage is performed. At this time, the second expansion device 15 is closed. In this state, the operation continues until C at 6:00 in the morning.
[0139]
Next, since the person starts the activity from the state of C and the cooling request comes out a little, the general cooling operation starts. When this cooling requirement is smaller than Q1-Q2, the second expansion device 15 is adjusted so that the cooling capability Q3 ′ becomes a capability commensurate with the cooling requirement, and the cool storage capability becomes Q1-Q3 ′. 3 throttling device is adjusted. This operation continues until D, which is the end time 8:00 of the cold storage time zone.
[0140]
The operation control as described above is shown in FIG. 35 of the control block diagram. First, the required target cooling capacity Q3 ″ is set in step 111, and the minimum required cool storage capacity Q2 is calculated in step 113 from the cool storage amount set in step 112. In step 114, the compressor 1 and the refrigerant pump are calculated. The maximum ability Q1 that can be produced is set.
[0141]
In step 115, it is determined whether or not the set values Q3 ", Q1, Q2 to Q3" are larger than Q1-Q2. If Q3 "is larger than Q1-Q2, the cooling capacity is set to Q1-Q2 in step 116, the cool storage capacity is set to Q2 in step 117, and the cooling capacity is adjusted to the opening degree of the second expansion device 15 in step 11C, and the cool storage capacity. Is adjusted by adjusting the opening of the third throttling device in step 11B. If Q3 "is smaller than Q1-Q2, the cooling capacity is set to Q3" in step 118, and the cool storage capacity is set to Q1-Q3 "in step 119. The capacity is adjusted by adjusting the opening of the second expansion device in step 11C, and the cold storage capacity is adjusted by adjusting the opening of the third expansion device in step 11C. In step 11A, the compressor / refrigerant pump capacity Q1 is also adjusted by maximizing the frequency of the compressor and maximizing the number of refrigerant pumps.
[0142]
As described above, the cold storage capacity and the indoor heat exchanger cooling capacity are respectively controlled by the third expansion device (step 11B) and the second expansion device (step 11C) by the cold storage / cooling operation ratio management means. It is managed by. However, the control of the third expansion device is based on the degree of opening x3 as shown in the following function F3 from the compressor discharge pressure Pd, the suction pressure Ps, the cold storage capacity Q2 ′, and the cold storage heat heat exchanger outlet target superheat degree SHsm. decide.
x3 = F3 (Pd, Ps.Q2 ′, SHsm)
[0143]
Further, the control of the second expansion device is based on the compressor discharge Pd, the suction pressure Ps and the total Q3 ′ of the indoor heat exchanger cooling capacity, the heat storage outlet heat exchanger outlet target superheat degree SHam, SHbm, SHcm, Openings x2a, x2b, and x2c are determined from the following functions F2a, F2b, and F2c so as to be proportionally distributed so that each indoor unit has a capacity corresponding to the rated capacity of each unit.
x2a = F2a (Pd, Ps, Q3 ′, SHam)
x2b = F2b (Pd, Ps, Q3 ′, SHbm)
x2c = F2c (Pd, Ps, Q3 ′, SHcm)
[0144]
As a result, the cold storage operation and the cooling operation can be performed simultaneously, and the necessary amount of cold storage can be obtained, so that the cooling operation in the cold storage operation time zone is possible.
Note that each ability has the following content:
Q1: A value held as a predetermined value.
Q2: A value obtained by dividing the necessary cold storage amount, which is an input value, by the cold storage time as a predetermined value.
Q2 ': Value obtained in steps 117 and 119 on FIG.
Q3 ″: second throttle device opening obtained in step 11C (this value is the output value, initially the initial opening) and the indoor heat exchanger outlet target superheat degree SHam, SHbm, SHcm (data input values), And the compressor discharge pressure and suction pressure (detected input value).
Q3 ′ and Q3: values obtained in steps 118 and 116.
That is, the opening of the second expansion device is opened at the time of cold storage, or the third expansion device and the third valve are opened at the time of cooling, and the cold storage / cooling operation ratio management means mainly stores the cold storage and cooling. To control the operation ratio.
As described above, the necessary cold storage capacity (cold storage volume) can be reliably ensured by managing the compressor and refrigerant pump capacity Q1, calculating the required cold storage volume Q2, and cooling the operation by Q1-Q2, and obtain a highly reliable system. be able to.
[0145]
Embodiment 12 of the Invention
Hereinafter, Embodiment 12 of the regenerative air conditioner according to the twelfth aspect of the present invention will be described with reference to FIG. Since the basic system of the heat storage type air conditioner of this example is the same as that of the first invention, it is omitted here.
[0146]
In addition to the basic system of the first invention, a cold storage / cooling operation ratio management means 212 is provided. This cold storage / cooling operation ratio management means manages the cold storage amount, the cooling capacity, and the maximum capacity of the compressor / refrigerant pump.
[0147]
When performing the cold storage operation and the cooling operation at the same time, the required cooling capacity may not be satisfied.
[0148]
Next, the operation of this example will be described. A circuit diagram of the cold storage and cooling simultaneous operation of this example is shown in FIG. 36, but the basic refrigerant flow and operation state are the same as those in the cold storage operation and general cooling up to the eighth embodiment, and are therefore omitted here. FIG. 37 shows a capability change diagram with respect to the operation control change of the cold storage and cooling simultaneous operation of this example.
[0149]
Next, the cooling main storage and general cooling simultaneous operation will be described with reference to the capability change with respect to the operation control change in FIG. The horizontal axis in the figure is the time from 19:00 when the cooling load is low in the cooling time zone to 22:00 at the beginning of the cold storage time zone, and Q1 is the maximum capacity that can be output in total for the compressor and refrigerant pump And always put out the maximum ability while driving. Q2 ′ and Q3 ′ are a cold storage capacity and a general cooling capacity during operation.
[0150]
Here, at 19:00 of A, the request for cooling is large, and Q3 ′ = Q1 in a state where the required cooling capacity exceeds Q1. This state continues for 1 hour, and until 20:00 of B, the cold storage is prohibited.
[0151]
Next, at 22:00 of B, the required cooling capacity begins to become smaller than Q1, the cooling request gradually decreases until 21:30 of C, and the cooling required capacity continues to be Q3 ′. In this time zone, Q1−Q3 ′ = Q2 ′, and the cold storage operation is possible.
[0152]
In the state of C, there is no request for cooling, general cooling is prohibited, and Q1 is used 100% for storing cold. That is, the conventional cold storage operation is started before the cold storage time period. In this state, it operates until 22:00 of the cold storage time zone.
[0153]
The control of the above operation state is shown in FIG. 38 of the control block diagram. First, the required target cooling capacity Q3 ″ is set in step 121, and the maximum capacity Q1 that can be delivered by the compressor and the refrigerant pump is set in step 122.
[0154]
In step 123, it is determined whether or not the set values Q3 ″, Q1 to Q3 ″ are larger than Q1. If Q3 ″ is greater than Q1, the cooling capacity is set to Q1 in step 124, the cool storage capacity is set to 0 (cold storage prohibition) in step 125, and the cool storage capacity is adjusted to the opening degree of the third expansion device in step 129, and the cooling capacity is It is adjusted by adjusting the opening of the second throttling device in step 12A. If Q3 "is smaller than Q1, the cooling capacity is Q3" in step 126, the cool storage capacity is Q1-Q3 "in step 127, and the cooling capacity is step. The opening adjustment and the cold storage capacity of the third expansion device of 12A are adjusted by the adjustment of the opening of the second expansion device in step 129. In step 128, the compressor / refrigerant pump capacity Q1 is also adjusted by maximizing the frequency of the compressor and maximizing the number of refrigerant pumps.
[0155]
As described above, the cold storage capacity and the indoor heat exchanger cooling capacity are controlled by controlling the third expansion device (step 129) and the second expansion device (step 12A), respectively, by the cold storage / cooling operation ratio management means. to manage. However, the control of the third throttling device is that the opening degree x3 is determined from the compressor discharge pressure Pd, the suction pressure Ps and the cold storage capacity Q2 ′, the heat storage outlet target superheat degree SHsm for cold storage heat by the function F3 of the following equation. decide.
x3 = F3 (Pd, Ps.Q2 ′, SHsm)
[0156]
Further, the control of the second expansion device is based on the compressor discharge Pd, the suction pressure Ps and the total Q3 ′ of the indoor heat exchanger cooling capacity, the heat storage outlet heat exchanger outlet target superheat degree SHam, SHbm, SHcm, The opening degrees x2a, x2b, and x2c are determined from the following functions F2a, F2b, and F2c so that each indoor unit is proportionally distributed so as to have a capacity corresponding to the rated capacity of each unit.
x2a = F2a (Pd, Ps, Q3 ′, SHam)
x2b = F2b (Pd, Ps, Q3 ′, SHbm)
x2c = F2c (Pd, Ps, Q3 ′, SHcm)
Q1: A value held as a predetermined value.
Q2 ′: value obtained in steps 127 and 125 on FIG.
Q3 ″: the second throttle device opening (this value is the output value, initially the initial opening) obtained in step 12A and the indoor heat exchanger outlet target superheat degree SHam, SHbm, SHcm (data input values), And the compressor discharge pressure and suction pressure (detected input value).
Q3 ′: The value obtained in steps 124 and 126.
That is, the third throttle device and the third valve are opened during cooling, or the opening of the second throttle device is opened during cold storage, and the cool storage / cooling operation ratio management means mainly cools and cools the cooling capacity. To control the operation ratio.
With the management of Q1 and the cooling capacity Q3 that is required every moment, the cooling capacity required by the operation of storing the cold storage in Q1-Q3 can be secured, and a system that can maintain high capacity is obtained.
[0157]
As a result, the regenerative operation and the refrigerating operation can be performed simultaneously, and the necessary refrigerating capacity can be obtained, so that the regenerative operation can be performed in the refrigerating operation time zone.
[0158]
Embodiment 13 of the Invention
A heat storage air conditioner according to a thirteenth aspect of the present invention will be described below with reference to FIG. Since the basic system of the heat storage type air conditioner of this example is the same as that of the first invention, it is omitted here.
[0159]
During the heat storage operation, the heating operation could not be performed.
[0160]
Next, the operation of this example will be described. Although a circuit diagram is shown in FIG. 39, the basic refrigerant flow and operation state for general heating are the same as those up to the eighth embodiment, and are omitted here. FIG. 40 shows a circuit diagram for the heat storage operation. In FIG. 40, the compressor 1 and the refrigerant pump 12 are operated with the first and third throttle devices 6 and 22 and the third valve 14 open and the other throttle devices and valves closed. At this time, the gas refrigerant sent out by the compressor 1 and the refrigerant pump 12 is cooled in the tank and condensed at about 40 ° C., and the refrigerant throttled by the third throttle device 22 and the first throttle device 6 is used for the outdoor unit. Sent to the refrigerant circuit, about 6kg / cm 2 It flows into the outdoor heat exchanger 3 at a pressure of about G and evaporates. At this time, the refrigerant that has absorbed heat from the surrounding outdoor air and gasified returns to the compressor 1 via the compressor accumulator 17.
[0161]
Next, FIG. 41 shows a diagram of switching between operation time zones of heat storage and heating in this example.
[0162]
First, the general heating operation starts at time A in response to the request for the heating operation.
[0163]
The heating operation is performed for 30 minutes in A to B, and the general heating operation is switched to the cold storage operation in B after 30 minutes have elapsed from the start of the general heating. During this time, heat storage is prohibited.
[0164]
In the heat storage operation of B to C, general heating is prohibited, so the room temperature on the indoor side approaches the outside air temperature and falls. And when it becomes a value 5 degreeC lower than the target room temperature at the time of general heating operation, it switches to general heating operation.
[0165]
At time C, the heating operation is resumed. After resuming general heating, the general heating operation is performed for 30 minutes, during which heat storage is prohibited.
[0166]
The general heating operation and the heat storage operation are alternately performed as described above.
[0167]
As a result, operation in another mode in the heat storage operation time zone and heat storage operation in the heating operation time zone are possible.
[0168]
The control of the above operation state is shown in FIG. 42 of the control block diagram. First, heating operation is started in step 131, and after heating operation is performed for 30 minutes in step 132, it is determined in step 103 whether the heating operation has been operated for 30 minutes. In step 105, a heat storage operation is performed, and in step 106, it is determined whether the room temperature has become 5 ° C. or more lower than the target room temperature during heating, and heating is performed when the room temperature becomes 5 ° C. or more higher than the target room temperature during heating. Switch to driving.
The above time is from the start of cooling until the room temperature stabilizes (determined by the size of the room) until it rises to a temperature that is felt hot (determined from the indoor set temperature during cooling) Cold storage.
Further, the opening degree of the second expansion device is opened during heat storage, or the third expansion device and the third valve are opened during heating.
[0169]
Embodiment 14 of the Invention
The fourteenth embodiment of the regenerative air conditioner according to the fourteenth aspect of the present invention will be described below with reference to FIG. Since the basic system of the heat storage type air conditioner of this example is the same as that of the first invention, it is omitted here.
[0170]
During the heat storage operation, the heating operation could not be performed at the same time.
[0171]
Next, the operation of this example will be described. A circuit diagram of the simultaneous heat storage / heating operation of this example is shown in FIG. 43, but the basic refrigerant flow and operation state are the same as those in the heat storage operation and general heating up to the eighth embodiment, and are therefore omitted here. Further, FIG. 44 shows a state diagram of the simultaneous heat storage / heating operation of this example. Note that the operating points indicated by numerals in FIG. 44 indicate the state of the refrigerant in the refrigerant circuit indicated by the same numerals in FIG.
[0172]
By opening the second and third expansion devices 15 and 22 and the third valve 14 during general heating operation or heat storage, the general heating operation circuit and the heat storage operation circuit can be communicated with each other. The refrigerant discharged from the compressor and the refrigerant pump flows through the general heating and heat storage circuit.
[0173]
Heating operation in the heat storage operation time zone and heat storage operation in the heating operation time zone are possible.
In FIG. 44, the refrigerant sucked (129, 130) by the compressor and the refrigerant pump is discharged into the gas state of (138, 133) and then branched, and the heat storage inlet 112 for cold storage heat and the indoor heat exchanger. The refrigerant enters the state of the inlet 124 (with pressure loss during this period), and the refrigerant condensed and liquefied in the respective heat exchangers becomes 106 and 123 at the outlet of the heat exchanger. It evaporates, passes through the outdoor heat exchanger outlet 104b, and returns to the compressor and refrigerant pump suction portions (129, 130).
Opening the opening of the second expansion device during heat storage, or opening the third expansion device and the third valve during heating, and using the heat storage / heating operation ratio management means, the heat storage and heating operation ratio mainly based on the heat storage capacity To control.
[0174]
Embodiment 15 of the Invention
The fifteenth embodiment of the heat storage type air conditioner according to the fifteenth aspect of the present invention will be described below with reference to FIG. Since the basic system of the heat storage type air conditioner of this example is the same as that of the first invention, it is omitted here.
[0175]
In addition to the basic system of the first invention, heat storage / heating operation ratio management means 214 is provided. This heat storage / heating operation ratio management means manages the necessary heat storage amount, heating capacity, and maximum capacity of the compressor / refrigerant pump.
[0176]
When performing the heat storage operation and the heating operation at the same time, the required heat storage capacity may not be satisfied.
[0177]
Next, the operation of this example will be described. A circuit diagram of the simultaneous heat storage / heating operation of this example is shown in FIG. 45, but the basic refrigerant flow and operation state are the same as those in the heat storage operation and general heating up to the fourteenth embodiment, and are therefore omitted here. FIG. 46 shows a capability change diagram with respect to the operation control change in the simultaneous heat storage / heating operation of this example.
[0178]
Next, heat storage mainly performed by heat storage and general heating simultaneous operation will be described by explaining the capacity change with respect to the operation control change of FIG. The horizontal axis in the figure indicates the A heat storage start time zone 22:00 and the D heat storage end time 8:00. Q1 is the maximum capacity that can be output by the total of the compressor and the refrigerant pump, and always outputs the maximum capacity during operation. Q2 is a required heat storage capacity obtained by dividing the required heat storage amount by the heat storage time, and operation with a heat storage capacity equal to or less than this value is not performed. Q3 is the maximum heating capacity that can be delivered during operation. Q2 ′ and Q3 ′ are the heat storage capacity and heating capacity during operation.
[0179]
Here, A is the heat storage start time 22:00. If the heating demand is still large at this point, and this heating demand capacity is greater than Q1-Q2, the third throttling device is throttled so that the heating capacity and the heat storage capacity automatically become Q1-Q2 and Q2. Open the throttle device of 2. In this state, the driving continues until 1:00 B when entering the late-night sleep period.
[0180]
Next, in the state of B, the general heating is prohibited, that is, the state of Q1 = Q2 ′, and the conventional heat storage operation in which all the maximum capacities of the compressor and the refrigerant pump are used for heat storage is performed. At this time, the second diaphragm device is closed. In this state, the operation continues until C at 6:00 in the morning.
[0181]
Next, since the person starts the activity from the state of C and a heating request comes out a little, the general heating operation starts. When this heating request is smaller than Q1-Q2, the second throttling device is adjusted so that the heating capacity Q3 ′ becomes a capacity commensurate with the heating request, and the third heat storage capacity is Q1-Q3 ′. The throttle device is adjusted. This operation continues until D, which is the end time 8:00 of the heat storage time zone.
[0182]
The operation control as described above is shown in FIG. 47 of the control block diagram. First, the required target heating capacity Q3 ″ is set in step 151, and the minimum required heat storage capacity Q2 is calculated in step 153 from the heat storage amount set in step 152. Also, in step 154, the compressor and the refrigerant pump are discharged. Set the maximum ability Q1 to be obtained.
[0183]
In step 155, it is determined whether or not the set values Q3 ", Q1, Q2 to Q3" are larger than Q1-Q2. If Q3 ″ is larger than Q1-Q2, the heating capacity is set to Q1-Q2 in step 156, the heat storage capacity is set to Q2 in step 157, and the heating capacity is adjusted to the opening degree of the second expansion device in step 15C. It is adjusted by adjusting the opening of the third expansion device in step 15B. If Q3 "is smaller than Q1-Q2, the heating capacity Q3" is set in step 158, and the heat storage capacity is set to Q1-Q3 "in step 159. Is adjusted by adjusting the opening of the second expansion device in step 15C, and the heat storage capacity is adjusted by adjusting the opening of the third expansion device in step 15C. In step 15A, the compressor / refrigerant pump capacity Q1 is also adjusted by maximizing the frequency of the compressor and maximizing the number of refrigerant pumps.
[0184]
Further, as described above, the heat storage capacity and the indoor heat exchanger heating capacity control the third expansion device (step 15B) and the second expansion device (step 15C), respectively, by the heat storage / heating operation ratio management means. Is managed. However, the control of the third throttling device is based on the opening degree x3 as shown in the following function F3 from the compressor discharge pressure Pd, the suction pressure Ps, the heat storage capacity Q2 ', and the heat storage outlet heat exchanger outlet target supercooling degree SCsm. Will be determined.
x3 = F3 (Pd, Ps.Q2 ′, SCsm)
[0185]
The control of the second throttle device is based on the compressor discharge Pd, the suction pressure Ps, the total Q3 ′ of the indoor heat exchanger heating capacity, the heat storage outlet heat exchanger outlet target supercooling degree SCam, SCbm, SCcm. Openings x2a, x2b, and x2c are determined from the following functions F2a, F2b, and F2c so as to be proportionally distributed so that the indoor unit has a capacity corresponding to the rated capacity of each unit.
x2a = F2a (Pd, Ps, Q3 ′, SCam)
x2b = F2b (Pd, Ps, Q3 ′, SCbm)
x2c = F2c (Pd, Ps, Q3 ′, SCcm)
Q1: A value held as a predetermined value.
Q2: A value obtained by dividing the necessary heat storage amount, which is an input value, by the heat storage time as a predetermined value.
Q2 ′: Value obtained in steps 157 and 159 on FIG.
Q3 ″: second throttle device opening obtained in step 15C (this value is the output value, initially the initial opening) and the indoor side heat exchanger outlet target subcooling degree SCam, SCbm, SCcm (data input values) And the compressor discharge pressure / suction pressure (detected input value).
Q3 ′ and Q3: values obtained in steps 156 and 158.
That is, the operation mode switching means for selecting the heat storage / heating mode alternately performs heat storage and heating by determining the operation time zone.
In FIG. 47, the values described in (35) such as the indoor heat exchanger target subcooling degree for determining the required heat storage amount Q3 ″ are input, the opening degree of the expansion device, the frequency of the compressor / refrigerant pump, and the refrigerant The number of pumps is output, but the frequency of the compressor / refrigerant pump and the number of refrigerant pumps are operated at the maximum value.
[0186]
As a result, the heat storage operation and the heating operation can be performed simultaneously, and a necessary heat storage amount can be obtained, so that the heating operation can be performed in the heat storage operation time zone.
[0187]
Embodiment 16 of the Invention
A heat storage type air conditioner according to a sixteenth embodiment of the present invention will be described below with reference to FIG. Since the basic system of the heat storage type air conditioner of this example is the same as that of the first invention, it is omitted here.
[0188]
In addition to the basic system of the first invention, heat storage / heating operation ratio management means 214 is provided. This heat storage / heating operation ratio management means manages the heat storage amount and heating capacity, and the maximum capacity of the compressor / refrigerant pump.
[0189]
When performing the heat storage operation and the heating operation at the same time, the required heating capacity may not be satisfied.
[0190]
Next, the operation of this example will be described. FIG. 48 shows a circuit diagram of the simultaneous heat storage and heating operation of this example, but the basic refrigerant flow and operation state are the same as those in the heat storage operation and general heating up to the eighth embodiment, and are omitted here. FIG. 49 shows a capability change diagram with respect to the operation control change in the simultaneous heat storage / heating operation of this example.
[0191]
Next, the heating main heat storage and the general heating simultaneous operation will be described with reference to the capability change with respect to the operation control change in FIG. The horizontal axis in the figure is the time from 19:00 when the heating load is low in the time zone A to 22:00 at the beginning of the heat storage time zone, and Q1 is the maximum capacity that can be output by the total of the compressor and refrigerant pump And always put out the maximum ability while driving. Q2 ′ and Q3 ′ are a heat storage capacity and a general heating capacity during operation.
[0192]
Here, at 19:00 of A, the heating capacity is large, and Q3 ′ = Q1 in a state where the required heating capacity exceeds Q1. This state lasts for 1 hour, and until 20:00 of B, heat storage is prohibited.
[0193]
Next, at 22:00 of B, the required heating capacity begins to become smaller than Q1, and the required heating capacity gradually decreases to 21:30 of C, and the required heating capacity continues to be Q3 ′. In this time zone, Q1−Q3 ′ = Q2 ′, and the heat storage operation is possible.
[0194]
In the state of C, there is no request for heating, the state of general heating is prohibited, and Q1 is used 100% for heat storage. That is, the conventional heat storage operation is started before the heat storage time zone. In this state, it operates until 22:00 of the heat storage time zone.
[0195]
The control of the above operation state is shown in FIG. 50 of the control block diagram. First, the required target heating capacity Q3 ″ is set in step 161, and the maximum capacity Q1 that can be delivered by the compressor and the refrigerant pump is set in step 162.
[0196]
In step 163, it is determined whether or not the set values Q3 ″, Q1 to Q3 ″ are larger than Q1. If Q3 ″ is greater than Q1, the heating capacity is set to Q1 in step 164, the heat storage capacity is set to 0 (heat storage prohibited) in step 165, the heat storage capacity is adjusted by opening the third expansion device in step 169, and the heating capacity is It is adjusted by adjusting the opening of the second expansion device in step 16A. If Q3 "is smaller than Q1, the heating capacity Q3" is set in step 166, the heat storage capacity is set to Q1-Q3 "in step 167, and the heating capacity is set in step. The opening adjustment and heat storage capacity of the third expansion device of 16A are adjusted by adjustment of the opening of the second expansion device in step 169. In step 168, the compressor / refrigerant pump capacity Q1 is also adjusted by maximizing the frequency of the compressor and maximizing the number of refrigerant pumps.
[0197]
As described above, the heat storage capacity and the indoor heat exchanger heating capacity are controlled by the third expansion device (step 169) and the second expansion device (step 16A), respectively, by the heat storage / heating operation ratio management means. Managed. However, the control of the third throttling device is based on the opening degree x3 by the function F3 of the following equation from the compressor discharge pressure Pd, the suction pressure Ps and the heat storage capacity Q2 ′, and the heat storage outlet heat exchanger outlet target supercooling degree SCsm. Will be determined.
x3 = F3 (Pd, Ps.Q2 ′, SCsm)
[0198]
Further, the control of the second expansion device is based on the compressor discharge Pd, the suction pressure Ps, the total Q3 ′ of the indoor heat exchanger heating capacity, the heat storage outlet heat exchanger outlet target supercooling degree SCam, SCbm, SCcm. The opening degrees x2a, x2b, and x2c are determined from the following functions F2a, F2b, and F2c so that each indoor unit is proportionally distributed so as to have a capacity corresponding to the rated capacity of each unit.
x2a = F2a (Pd, Ps, Q3 ′, SCam)
x2b = F2b (Pd, Ps, Q3 ′, SCbm)
x2c = F2c (Pd, Ps, Q3 ′, SCcm)
Q1: A value held as a predetermined value.
Q2 ′: The value obtained in steps 165 and 167 on FIG.
Q3 ″: second throttle device opening obtained in step 16A (this value is the output value, initially the initial opening) and the indoor side heat exchanger outlet target subcooling degree SCam, SCbm, SCcm (data input values) And the compressor discharge pressure / suction pressure (detected input value).
Q3 ′: value obtained in steps 164 and 166.
Determinants of the target cooling (heating) capacity Q3 ″ are the compressor discharge pressure / suction pressure (detected value), the second throttle device opening degree, and the indoor side heat exchanger outlet target supercooling degree (superheating degree).
[0199]
As a result, the heat storage operation and the heating operation can be performed simultaneously, and the necessary heating capacity can be obtained, so that the heat storage operation can be performed in the heating operation time zone.
Open the third expansion device and the third valve during heating, or open the second expansion device during heat storage, and control the heat storage and heating operation ratio mainly for the heating capacity by the heat storage / heating operation ratio management means. To do.
Each invention relating to the heating can ensure sufficient heating capacity.
[0200]
Embodiment 17 of the Invention
A heat storage type air conditioner according to a seventeenth embodiment of the present invention will be described below with reference to FIG. Since the basic system of the heat storage type air conditioner of this example is the same as that of the first invention, it is omitted here.
[0201]
In addition to the basic system, outdoor outdoor temperature detection means 215 is provided.
[0202]
As mentioned earlier, in cooling operation combined with cold storage heat in low outside air and general cooling operation, the outdoor heat exchanger does not become overcooled, so refrigerant control becomes unstable, resulting in reduced capacity and indoor heat exchange. There was a possibility that refrigerant noise would occur in the vessel.
[0203]
Next, the operation of this example will be described. A circuit diagram of this example is shown in FIG. 51, but the basic refrigerant flow and operation state are the same as those in the cooling operation up to the eighth embodiment, and are therefore omitted here.
[0204]
When cooling is performed at an outdoor temperature of −5 ° C., the operation at this time is a cooling operation, so that the outdoor heat exchanger is not used and the operation is not affected by the outside air.
[0205]
The control of the above operation state is shown in FIG. 52 of the control block diagram. First, in step 171, the operation mode is set. In step 172, the outdoor outdoor temperature is detected by the outdoor outdoor temperature detection means. If the outdoor outdoor temperature is 0 ° C. or lower in step 173, the cooling mode is set in step 174, and the outdoor outdoor temperature is 0 ° C. or higher in step 173. Then, the cooling operation is performed in the operation mode initially set in step 175. As a result, the outdoor heat exchanger is brought into an appropriate supercooled state, the refrigerant control is stabilized, and the performance is not reduced and the generation of refrigerant noise in the indoor heat exchanger does not occur.
General cooling and cooling combined with regenerative heat are affected by the outside air temperature (low outside air) because the outdoor heat exchanger is used, but in the case of cooling, the outside air temperature (low outside air) is not used because the outside heat exchanger is not used. You can drive regardless of).
As described above, when cooling is performed in the low outside air, the outdoor room temperature at this time is detected, and if the outdoor room temperature is equal to or lower than a certain value, the cooling operation is set as the cooling operation.
[0206]
The specific piping connection and liquid level detection method of the accumulator described in the above embodiments of the invention will be described together with FIG.
For example, temperature elements are attached to the lowermost part and the uppermost part of the accumulator, and an overflow is detected by the difference in temperature between the two (overflow if the temperature is the same).
This is a pair of detection means with two temperature elements attached to the upper and lower parts of the accumulator, and the liquid level is detected by the temperature difference between the temperature elements. (However, the difference between the overflow and the bottom of the liquid level is determined by the detected temperature at that time.)
As shown in FIG. 53, the refrigerant is returned to the compressor suction pipe from the liquid level detection circuit of the accumulator, and the pipe temperature is detected to detect the liquid level. By heating with a heater, in the case of liquid refrigerant, the temperature is substantially lower than the low pressure saturation temperature, and in the case of gas refrigerant, the temperature is higher than the low pressure saturation temperature. The low-pressure pressure saturation temperature ET (the temperature detected by the temperature element a) at the inlet of the accumulator is compared, and the coolant level is determined from the temperature difference.
The accumulator liquid level is determined by the detection temperature of the temperature element a, which is the low pressure saturation temperature ET, and the liquid level detection temperature (detection temperatures of the temperature elements b and c). Further, the accumulator liquid level is divided into three stages above the temperature element c, between the temperature elements b and c, and below the temperature element b.
When the temperature elements b and c are less than ET + 5 ° C., the liquid level is determined by comparing the detected value of the temperature element b and the detected value of the temperature element c after determining that the liquid is ET + 5 ° C.
[0207]
【The invention's effect】
In the heat storage type air conditioner according to the present invention, in the first aspect of the invention, during the cold storage operation, especially during startup, the refrigerant that has fallen into the cold storage heat exchanger or the accumulator is recovered and circulated in the refrigerant circuit, and the outdoor heat The refrigerant outlet refrigerant supercooling degree can be obtained, and the refrigerant subcooling degree can be obtained at the inlet of the expansion device 3, so that the refrigerant control becomes stable and the capacity is not lowered.
[0208]
In the second aspect of the invention, during the cooling operation combined with the regenerative heat, the refrigerant that is trapped in the regenerative heat exchanger or the accumulator is recovered and circulated in the regenerative heat exchanger or the accumulator, not only in the steady state but also in the excessive time, for example, at the start-up. However, even when the degree of supercooling of the refrigerant at the outlet of the outdoor heat exchanger can be taken and the height difference between the refrigerant junction and the indoor unit is large, the refrigerant is in a two-phase state in the pipe between the refrigerant junction M and the indoor unit. In addition, in the refrigerant branching section between the outdoor unit and the indoor unit, the distribution of the refrigerant supplied to each indoor unit is uniform with respect to the required amount of the indoor unit, and the refrigerant circulation amount required by each indoor unit is ensured. , The problem of reduced ability is eliminated. The refrigerant at the inlet of the second expansion device of each indoor unit does not enter a two-phase state, and the refrigerant circulation amount flowing through the second expansion device flows through the required amount of the indoor unit. When the phase-state refrigerant flows through the expansion device 2, no refrigerant noise is generated due to cavitation.
[0209]
Further, in the invention 3, during the general cooling operation, in particular, not only in the steady state, but also in the excessive time, for example, at the start-up time, the refrigerant stagnated in the heat storage heat accumulator or the accumulator is collected in the refrigerant circuit and circulated However, even when the degree of subcooling of the refrigerant at the outlet of the outdoor heat exchanger can be taken and the height difference between the refrigerant junction and the indoor unit is large, the refrigerant is in a two-phase state in the pipe between the outlet of the outdoor unit and the indoor unit. In the refrigerant branch between the outdoor unit and the indoor unit, the distribution of the refrigerant supplied to each indoor unit is uniform with respect to the required amount of the indoor unit, and the amount of refrigerant circulation required by each indoor unit is ensured. This eliminates the problem of reduced ability. Further, in each indoor unit, the refrigerant at the inlet of the second expansion device does not enter a two-phase state, and the refrigerant circulation amount flowing through the second expansion device flows through the required amount of the indoor unit, so the capacity of the indoor unit is reduced. When the two-phase refrigerant flows through the expansion device 2, no refrigerant noise is generated by cavitation.
[0210]
Further, in the fourth invention, at the time of cooling start with combined cold storage heat and at the start of cooling operation, the refrigerant staying in the accumulator is collected and circulated in the refrigerant circuit, and the amount of refrigerant in the cold storage heat exchanger Therefore, immediately after startup, the refrigerant is stored in the cold storage heat exchanger to secure the amount of refrigerant sufficient for heat exchange.At that time, the compressor suction pressure is drawn, The possibility that the compressor frequency and the compression function are reduced is eliminated. Further, the degree of refrigerant supercooling of the heat storage heat exchanger can be taken, the refrigerant does not enter a two-phase state at the inlet of the second expansion device in the indoor unit, the refrigerant control becomes stable, and there is a possibility that the capacity is lowered. Disappears.
[0211]
In addition, in the fifth aspect of the invention, the refrigerant circulation amount in the cold storage heat heat exchanger is reduced even in the case where the operation capacity is reduced during the cooling operation combined with the cold storage heat and during the cooling operation. The amount of refrigerant that falls into the heat exchanger is reduced, and the amount of refrigerant necessary for the heat exchanger for cold storage during operation increases only slightly. Therefore, when the amount of refrigerant in the refrigerant circuit is constant, the refrigerant does not enter the two-phase state at the inlet of the second expansion device, the refrigerant control becomes stable, and the capacity is not reduced. No refrigerant noise is generated by cavitation when flowing through the expansion device 2.
[0212]
In the sixth aspect of the invention, during the cool-down operation, the refrigerant sleeping in the outdoor heat exchanger is collected and circulated in the refrigerant circuit, so that the necessary amount of refrigerant in the cool-down operation is secured, and the heat for regenerative heat The refrigerant is supercooled in the exchanger, and the refrigerant does not enter a two-phase state at the inlet of the second throttle device in the indoor unit, the refrigerant control becomes stable, the capacity does not decrease, and the refrigerant in the two-phase state As a result, no refrigerant noise is generated due to cavitation when flowing through the expansion device 2.
[0213]
In the seventh invention, the refrigerant overflowing from the accumulator during the general heating operation is removed from the refrigerant circuit, so that the reliability of the compressor is not lowered.
[0214]
In the eighth aspect of the invention, during the heat radiation heating operation, the refrigerant stagnated in the outdoor heat exchanger is collected and circulated in the refrigerant circuit. No refrigerant noise is generated in the indoor heat exchanger.
[0215]
In the ninth, tenth and eleventh aspects, the cooling operation can be performed during the cold storage operation, and the cooling request within the cold storage time zone can be met.
[0216]
In the ninth, tenth and twelfth inventions, the heat storage operation can be performed during the cooling operation, and the cold storage request within the cooling time zone can be met.
In the ninth aspect of the invention, both the cold storage and the cooling can be operated within a certain time without complicated control.
In the tenth invention, cold storage and cooling can be operated simultaneously regardless of the capacity ratio.
In the eleventh aspect of the invention, cold storage and cooling can be operated simultaneously while securing a sufficient cold storage amount as a unit.
In the twelfth aspect, the maximum cooling capacity can be obtained as a unit in response to a cooling request.
[0217]
In the thirteenth, fourteenth and fifteenth aspects, the heating operation can be performed during the heat storage operation, and the heating request within the heat storage time zone can be met.
In the thirteenth invention, heat storage and heating can be operated within a certain time without complicated control.
In the fourteenth invention, heat storage and heating can be operated simultaneously regardless of the capacity ratio.
In the fifteenth aspect, heat storage and heating can be operated simultaneously while securing a sufficient amount of heat storage as a unit.
[0218]
In the sixteenth aspect, the heat storage operation can be performed during the heating operation, and the heat storage request within the heating time zone can be met. As a unit for heating requirements, the maximum heating capacity of the system can be extracted.
[0219]
In the seventeenth aspect of the invention, in the cooling operation at a low outside air temperature, the outdoor heat exchanger is in an appropriate supercooling state, the refrigerant control is stable, the performance is deteriorated, and the refrigerant sound in the indoor heat exchanger is Will not occur.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram of a heat storage type air conditioner of a building multi-air conditioner as an example of an embodiment of the present invention.
FIG. 2 is a refrigerant circuit diagram of third throttle device control during the cold storage operation of FIG. 1;
FIG. 3 is a refrigerant circuit diagram illustrating another refrigerant flow in FIG. 2;
4 is a refrigerant circuit diagram showing still another refrigerant flow of FIG. 2. FIG.
5 is an operation state diagram in FIG. 2. FIG.
FIG. 6 is a control block diagram of third aperture control.
[Fig. 7] Fig. 7 is a refrigerant circuit diagram at the time of cold storage combined cooling operation of the second embodiment of the present invention.
8 is an operational state diagram in FIG. 7. FIG.
FIG. 9 is a control block diagram of the present invention.
FIG. 10 is a refrigerant circuit diagram of second throttle control during general cooling operation according to Embodiment 3 of the present invention.
11 is an operation state diagram in FIG.
FIG. 12 is a control block diagram of second aperture control.
FIG. 13 is a refrigerant circuit diagram of third throttle control during a cooling operation according to Embodiment 4 of the present invention.
14 is an operational state diagram in FIG. 13. FIG.
FIG. 15 is a control block diagram of third aperture control according to the present invention.
FIG. 16 is a refrigerant circuit diagram at the start of the cooling operation according to the fifth embodiment of the present invention.
17 is an operation state diagram in FIG. 16. FIG.
FIG. 18 is a control block diagram of the present invention.
FIG. 19 is a circuit diagram of a cooling operation according to Embodiment 6 of the present invention.
20 is an operation state diagram in FIG. 19. FIG.
FIG. 21 is a control block diagram according to the sixth embodiment of the present invention.
FIG. 22 is a refrigerant circuit diagram during general heating operation according to the seventh embodiment of the present invention.
23 is an operational state diagram in FIG. 22. FIG.
FIG. 24 is a control block diagram according to Embodiment 7 of the present invention.
FIG. 25 is a refrigerant circuit diagram at the time of heat radiation heating operation according to the eighth embodiment of the present invention.
26 is an operational state diagram in FIG. 25. FIG.
FIG. 27 is a control block diagram according to the eighth embodiment of the present invention.
FIG. 28 is a refrigerant circuit diagram according to Embodiment 9 of the present invention.
FIG. 29 is an operation time zone switching diagram for cold storage and cooling according to the present invention.
FIG. 30 is a control block diagram of the present invention.
FIG. 31 is a refrigerant circuit diagram of a cold storage and cooling simultaneous operation according to the tenth embodiment of the present invention.
32 is an operational state diagram in FIG. 31. FIG.
FIG. 33 is a refrigerant circuit diagram for simultaneous cold storage and cooling operation mainly for cold storage according to Embodiment 11 of the present invention.
FIG. 34 is an explanatory diagram of cold storage / cooling capacity during operation according to the present invention.
FIG. 35 is a control block diagram of the present invention.
FIG. 36 is a refrigerant circuit diagram for simultaneous cooling storage and cooling operation mainly performed for cooling according to the twelfth embodiment of the present invention;
FIG. 37 is an explanatory diagram of cold storage / cooling capacity during operation of the present invention.
FIG. 38 is a control block diagram of the present invention.
FIG. 39 is a refrigerant circuit diagram according to the thirteenth embodiment of the present invention.
FIG. 40 is a refrigerant circuit diagram of the heat storage operation of the present invention.
FIG. 41 is an operation time zone switching diagram for heat storage and heating according to the thirteenth embodiment of the present invention.
FIG. 42 is a control block diagram of the present invention.
FIG. 43 is a refrigerant circuit diagram of the simultaneous heat storage and heating operation of Embodiment 14 of the present invention.
44 is an operation state diagram in FIG. 43. FIG.
FIG. 45 is a refrigerant circuit diagram of simultaneous heat storage / heating operation mainly of heat storage according to the fifteenth embodiment of the present invention.
FIG. 46 is an explanatory diagram of heat storage / heating capacity during operation according to the present invention.
FIG. 47 is a control block diagram of the present invention.
FIG. 48 is a refrigerant circuit diagram of simultaneous heating storage and heating simultaneous operation mainly performed by the heating according to the sixteenth embodiment of the present invention.
FIG. 49 is an explanatory diagram of heat storage / heating capacity during operation according to the present invention.
FIG. 50 is a control block diagram of the present invention.
FIG. 51 is a refrigerant circuit diagram according to the seventeenth embodiment of the present invention.
FIG. 52 is a control block diagram of the present invention.
FIG. 53 is an explanatory diagram of an accumulator of the present invention.
FIG. 54 is a refrigerant circuit diagram of a conventional example.
FIG. 55 is a refrigerant circuit diagram during a conventional cold storage operation.
56 is an operation circuit diagram of FIG. 55. FIG.
FIG. 57 is a refrigerant circuit diagram during conventional general cooling operation.
58 is an operation state diagram of FIG. 57. FIG.
FIG. 59 is a refrigerant circuit diagram during a cooling operation of a conventional example.
60 is an operational state diagram of FIG. 59. FIG.
FIG. 61 is a refrigerant circuit diagram at the time of cooling operation combined with cold storage heat according to a conventional example.
62 is an operational state diagram of FIG. 61. FIG.
FIG. 63 is a refrigerant circuit diagram during a heat storage operation of a conventional example.
64 is an operation state diagram of FIG. 63. FIG.
FIG. 65 is a refrigerant circuit diagram during general heating operation of a conventional example.
66 is an operation state diagram of FIG. 65. FIG.
FIG. 67 is a refrigerant circuit diagram during heat dissipation operation of a conventional example.
68 is an operational state diagram of FIG. 67. FIG.
FIG. 69 is a refrigerant circuit diagram in a conventional heat storage combined heating operation.
70 is an operational state diagram of FIG. 69. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor, 3 Outdoor heat exchanger, 6 1st expansion device, 9 Thermal storage tank, 10 Cold storage heat exchanger, 12 Refrigerant pump, 14 3rd valve, 15a 2nd in indoor unit a Expansion device, 15b Second expansion device in the indoor unit b, 15c Second expansion device in the indoor unit c, 16a Indoor heat exchanger in the indoor unit a, 16b Chamber in the indoor unit b Inner heat exchanger, 16c Indoor unit heat exchanger, 17 accumulator, 21 heat storage medium, 22 third expansion device, 23 fifth valve, 24 sixth valve, 25 seventh valve in indoor unit c, 26 eighth valve, 27 ninth valve, 28 four-way switching valve, 29 fourth throttle device, 30 fourth valve, 103 to 140a, 140b refrigerant circuit, 201 opening adjusting means of first throttle device, 202 Second aperture Opening degree adjusting means of the device, 203 opening degree adjusting means of the third throttling device, 204 outdoor refrigerant supercooling degree detecting means, 205 refrigerant pump discharge pressure detecting means, 206 pressure detecting means of the refrigerant confluence M, 207 eighth And ninth valve opening / closing means, 208 accumulator liquid level detection means, 209 fourth valve opening / closing means, 210 third valve opening / closing means, 211 cool storage / cooling mode selection operation mode switching means, 212 cool storage / cooling operation Ratio management means, 213 heat storage / heating mode selection operation mode switching means, 214 heat storage / heating operation ratio management means, 215 outdoor outside air temperature detection means.

Claims (17)

圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び上記切換弁を順次接続して形成された冷媒循環回路と、上記圧縮機、上記切換弁、上記室外側熱交換器、上記第1の絞り装置、一端が上記第1の絞り装置と第2の絞り装置との間に接続され、他端が上記室内側熱交換器と上記切換弁との間に接続された第3の絞り装置、蓄冷熱用熱交換器、第3のバルブを有した直列回路と上記切換弁を順次接続して形成された蓄冷熱用回路と、上記蓄冷熱用熱交換器を収容する蓄熱槽、上記蓄熱槽に収納された蓄熱媒体、及び一端が上記圧縮機吸入側に接続され、他端が蓄冷熱用熱交換器と上記第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、上記蓄冷熱用熱交換器、上記第3の絞り装置、第2の絞り装置、上記室内側熱交換器及び上記切換弁を順次接続して形成された放冷回路と室外側熱交換器出口冷媒過冷却度検出手段を有し、蓄冷時の上記室外側熱交換器出口冷媒過冷却度の検出値によって上記第3の絞り装置の開度を変更する調節手段を備えたことを特徴とする蓄熱式空気調和装置。A refrigerant circuit formed by sequentially connecting a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and the switching valve; and the compressor, The switching valve, the outdoor heat exchanger, the first expansion device, one end is connected between the first expansion device and the second expansion device, and the other end is connected to the indoor heat exchanger and the above A third expansion device connected between the switching valve, a regenerator heat exchanger, a series circuit having a third valve, and a regenerative heat circuit formed by sequentially connecting the changeover valve; A heat storage tank for storing a heat storage heat exchanger, a heat storage medium housed in the heat storage tank, one end connected to the compressor suction side, and the other end a heat storage heat exchanger and the third valve A refrigerant pump connected between, a series circuit having a sixth valve, the heat storage heat storage heat exchanger, and the third throttle , A second expansion device, a cooling circuit formed by sequentially connecting the indoor heat exchanger and the switching valve, and an outdoor heat exchanger outlet refrigerant supercooling degree detecting means, A regenerative air conditioner comprising adjusting means for changing the opening of the third expansion device according to a detected value of the degree of refrigerant subcooling at the outdoor heat exchanger outlet. 圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び上記切換弁を順次接続して形成された冷媒循環回路と、上記圧縮機、上記切換弁、上記室外側熱交換器、上記第1の絞り装置、一端が上記第1の絞り装置と第2の絞り装置との間に接続され、他端が上記室内側熱交換器と上記切換弁との間に接続された第3の絞り装置、蓄冷熱用熱交換器、第3のバルブを有した直列回路と上記切換弁を順次接続して形成された蓄冷熱用回路と、上記蓄冷熱用熱交換器を収容する蓄熱槽、上記蓄熱槽に収納された蓄熱媒体、及び一端が上記圧縮機吸入側に接続され、他端が蓄冷熱用熱交換器と上記第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、上記蓄冷熱用熱交換器、上記第3の絞り装置、第2の絞り装置、上記室内側熱交換器及び上記切換弁を順次接続して形成された放冷回路と室外側熱交換器出口冷媒過冷却度検出手段を有し、上記冷媒循環回路と放冷用回路とを併用する蓄冷熱併用冷房運転時に上記室外側熱交換器出口冷媒過冷却度の検出値によって第1の絞り装置の開度を変更する調節手段を備えたことを特徴とする蓄熱式空気調和装置。A refrigerant circuit formed by sequentially connecting a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and the switching valve; and the compressor, The switching valve, the outdoor heat exchanger, the first expansion device, one end is connected between the first expansion device and the second expansion device, and the other end is connected to the indoor heat exchanger and the above A third expansion device connected between the switching valve, a regenerator heat exchanger, a series circuit having a third valve, and a regenerative heat circuit formed by sequentially connecting the changeover valve; A heat storage tank for storing a heat storage heat exchanger, a heat storage medium housed in the heat storage tank, one end connected to the compressor suction side, and the other end a heat storage heat exchanger and the third valve A refrigerant pump connected between, a series circuit having a sixth valve, the heat storage heat storage heat exchanger, and the third throttle A cooling circuit formed by sequentially connecting the second expansion device, the indoor heat exchanger and the switching valve, and an outdoor heat exchanger outlet refrigerant supercooling degree detecting means, and the refrigerant circulation circuit And an adjusting means for changing the opening of the first expansion device according to the detected value of the refrigerant subcooling degree at the outlet of the outdoor heat exchanger at the time of cooling operation combined with regenerative heat using a circuit for cooling and cooling. Regenerative air conditioner. 圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び上記四方切換弁を順次接続して形成された冷媒循環回路と、上記圧縮機、上記切換弁、上記室外側熱交換器、上記第1の絞り装置、一端が上記第1の絞り装置と第2の絞り装置との間に接続され、他端が上記室内側熱交換器と上記切換弁との間に接続された第3の絞り装置、蓄冷熱用熱交換器、第3のバルブを有した直列回路と上記切換弁を順次接続して形成された蓄冷熱用回路と、上記蓄冷熱用熱交換器を収容する蓄熱槽、上記蓄熱槽に収納された蓄熱媒体、及び一端が上記圧縮機吸入側に接続され、他端が蓄冷熱用熱交換器と上記第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、上記蓄冷熱用熱交換器、上記第3の絞り装置、第2の絞り装置、上記室内側熱交換器及び上記四方切換弁を順次接続して形成された放冷回路と室外側熱交換器出口冷媒過冷却度検出手段を有し、冷房時に室外側熱交換器出口冷媒過冷却度の検出手段と上記室外側熱交換器出口冷媒過冷却度の検出値によって第2の絞り装置の開度を変更する調節手段を備えたことを特徴とする蓄熱式空気調和装置。A refrigerant circuit formed by sequentially connecting a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and the four-way switching valve; and the compressor , The switching valve, the outdoor heat exchanger, the first expansion device, one end connected between the first expansion device and the second expansion device, and the other end of the indoor heat exchanger. A third expansion device connected between the switching valve, a cold storage heat exchanger, a series circuit having a third valve, and a cold storage heat circuit formed by sequentially connecting the switching valve; A heat storage tank for storing the heat storage heat exchanger, a heat storage medium stored in the heat storage tank, one end connected to the compressor suction side, and the other end for the heat storage heat exchanger and the third valve A refrigerant pump connected between and a series circuit having a sixth valve, the heat exchanger for regenerative heat, the third A cooling circuit formed by sequentially connecting the indoor device, the second expansion device, the indoor heat exchanger and the four-way switching valve, and an outdoor heat exchanger outlet refrigerant supercooling degree detecting means, and during cooling An outdoor heat exchanger outlet refrigerant supercooling degree detection means and an adjusting means for changing the opening degree of the second expansion device according to the detected value of the outdoor heat exchanger outlet refrigerant supercooling degree are provided. Thermal storage air conditioner. 圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び上記切換弁を順次接続して形成された冷媒循環回路と、上記圧縮機、上記切換弁、上記室外側熱交換器、上記第1の絞り装置、一端が上記第1の絞り装置と第2の絞り装置との間に接続され、他端が上記室内側熱交換器と上記切換弁との間に接続された第3の絞り装置、蓄冷熱用熱交換器、第3のバルブを有した直列回路と上記切換弁を順次接続して形成された蓄冷熱用回路と、上記蓄冷熱用熱交換器を収容する蓄熱槽、上記蓄熱槽に収納された蓄熱媒体、及び一端が上記圧縮機吸入側に接続され、他端が蓄冷熱用熱交換器と上記第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、上記圧縮機、一端が上記圧縮機と切換弁の間に接続され他端が上記冷媒ポンプと上記第6のバルブの間に接続された第7のバルブを有するバイパス回路、上記蓄冷熱用熱交換器、上記第3の絞り装置、第2の絞り装置、上記室内側熱交換器及び上記切換弁を順次接続して形成された放冷回路と冷媒ポンプ吐出圧力の検出手段を有し、上記冷媒ポンプ吐出圧力検出値によって第3の絞り装置の開度を変更する開度調節手段を備えたことを特徴とする蓄熱式空気調和装置。A refrigerant circuit formed by sequentially connecting a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and the switching valve; and the compressor, The switching valve, the outdoor heat exchanger, the first expansion device, one end is connected between the first expansion device and the second expansion device, and the other end is connected to the indoor heat exchanger and the above A third expansion device connected between the switching valve, a regenerator heat exchanger, a series circuit having a third valve, and a regenerative heat circuit formed by sequentially connecting the changeover valve; A heat storage tank for storing a heat storage heat exchanger, a heat storage medium housed in the heat storage tank, one end connected to the compressor suction side, and the other end a heat storage heat exchanger and the third valve A refrigerant pump connected between, a series circuit having a sixth valve, the compressor, one end of the compressor and a switching valve A bypass circuit having a seventh valve connected between the refrigerant pump and the sixth valve at the other end, the heat storage heat storage heat exchanger, the third expansion device, and the second restriction A cooling circuit formed by sequentially connecting the apparatus, the indoor heat exchanger, and the switching valve, and a refrigerant pump discharge pressure detection means, and the third expansion device is opened by the refrigerant pump discharge pressure detection value. A regenerative air conditioner comprising opening degree adjusting means for changing the degree. 圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び上記切換弁を順次接続して形成された冷媒循環回路と、上記圧縮機、上記切換弁、上記室外側熱交換器、上記第1の絞り装置、一端が上記第1の絞り装置と第2の絞り装置との間に接続され、他端が上記室内側熱交換器と上記切換弁との間に接続された第3の絞り装置、蓄冷熱用熱交換器、第3のバルブを有した直列回路と上記切換弁を順次接続して形成された蓄冷熱用回路と、上記蓄冷熱用熱交換器を収容する蓄熱槽、上記蓄熱槽に収納された蓄熱媒体、及び一端が上記圧縮機吸入側に接続され、他端が蓄冷熱用熱交換器と上記第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、上記圧縮機、一端が上記圧縮機と切換弁の間に接続された他端が上記冷媒ポンプと上記第6のバルブの間に接続された第7のバルブを有するバイパス回路、上記蓄冷熱用熱交換器、上記第3の絞り装置、第2の絞り装置、上記室内側熱交換器及び上記切換弁を順次接続して形成された放冷回路、蓄冷熱用熱交換器を複数のパスで構成するとともにその複数のパスのうち少なくとも1パスの出入口に第8及び第9のバルブを設けるとともに冷媒回路M部の圧力検出手段を有し、冷媒回路M部の圧力検出値によって蓄冷熱用熱交換器第8及び第9のバルブの開閉手段を備えたことを特徴とする蓄熱式空気調和装置。A refrigerant circuit formed by sequentially connecting a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and the switching valve; and the compressor, The switching valve, the outdoor heat exchanger, the first expansion device, one end is connected between the first expansion device and the second expansion device, and the other end is connected to the indoor heat exchanger and the above A third expansion device connected between the switching valve, a regenerator heat exchanger, a series circuit having a third valve, and a regenerative heat circuit formed by sequentially connecting the changeover valve; A heat storage tank for storing a heat exchanger for cold storage heat, a heat storage medium housed in the heat storage tank, and one end connected to the compressor suction side, the other end being a heat exchanger for cold storage heat and the third valve; A refrigerant pump connected between, a series circuit having a sixth valve, the compressor, one end of the compressor and a switching valve A bypass circuit having a seventh valve connected between the refrigerant pump and the sixth valve, the other end connected in between, the heat exchanger for cold storage heat, the third expansion device, the second The expansion device, the cooler circuit formed by sequentially connecting the indoor heat exchanger and the switching valve, and the heat storage heat storage heat exchanger are configured by a plurality of paths, and at least one of the plurality of paths has an entrance / exit And 8th and 9th valves and pressure detecting means for the refrigerant circuit M part, and the open / close means for the regenerative heat heat exchangers 8 and 9 according to the pressure detection value of the refrigerant circuit M part. A regenerative air conditioner characterized by that. 圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び上記切換弁、アキュムレータを順次接続して形成された冷媒循環回路と、上記圧縮機、上記切換弁、室外側熱交換器、第1の絞り装置、一端が上記第1の絞り装置と第2の絞り装置との間に接続され、他端が上記室内側熱交換器と上記切換弁との間に接続された第3の絞り装置、蓄冷用熱交換器、第3のバルブを有した直列回路と上記切換弁、アキュムレータを順次接続して形成された蓄冷用回路と、上記蓄冷用熱交換器を収容する蓄熱槽、上記蓄熱槽に収納された蓄熱媒体、及び一端が上記アキュムレータに接続され、他端が蓄冷用熱交換器と上記第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、上記圧縮機、一端が上記圧縮機と切換弁の間に接続された他端が上記冷媒ポンプと上記第6のバルブの間に接続された第7のバルブを有するバイパス回路、上記蓄冷用熱交換器、上記第3の絞り装置、第2の絞り装置、上記室内側熱交換器及び上記切換弁を順次接続して形成された放冷回路、一端が室外側熱交換器と第1の絞り装置の間に接続され、他端がアキュムレータの吸入側に接続された第4のバルブを有するバイパス回路を有し、アキュムレータ液面検出手段と放冷運転時の液面検出値によって第4のバルブを開閉する調節手段を備えたことを特徴とする蓄熱式空気調和装置。A refrigerant circuit formed by sequentially connecting a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, the switching valve, and an accumulator; and the compression Machine, the switching valve, the outdoor heat exchanger, the first expansion device, one end is connected between the first expansion device and the second expansion device, and the other end is connected to the indoor heat exchanger and the above A third expansion device connected between the switching valve, a heat storage heat storage device, a series circuit having a third valve, the switching valve, a cold storage circuit formed by sequentially connecting the accumulator, and the above A heat storage tank that houses the heat storage heat exchanger, a heat storage medium housed in the heat storage tank, and one end connected to the accumulator, and the other end connected between the heat storage heat exchanger and the third valve. Refrigerant pump, series circuit with sixth valve, compressor, one end A bypass circuit having a seventh valve connected between the refrigerant pump and the sixth valve, the other end connected between the compressor and the switching valve, the heat storage heat exchanger, the third A cooling device formed by sequentially connecting the expansion device, the second expansion device, the indoor heat exchanger and the switching valve, one end is connected between the outdoor heat exchanger and the first expansion device, A bypass circuit having a fourth valve with the other end connected to the suction side of the accumulator, and an accumulator liquid level detection means and an adjustment means for opening and closing the fourth valve according to the liquid level detection value during the cooling operation A regenerative air conditioner characterized by that. 圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び上記四方切換弁、アキュムレータを順次接続して形成された冷媒循環回路と、上記圧縮機、上記切換弁、上記室外側熱交換器、上記第2の絞り装置、上記第1の絞り装置、上記室外側熱交換器及び上記四方切換弁、アキュムレータを順次接続して形成された暖房回路、上記圧縮機、四方切換弁、室外側熱交換器、第1の絞り装置、一端が上記第1の絞り装置と第2の絞り装置との間に接続され、他端が上記室内側熱交換器と上記四方切換弁との間に接続された第3の絞り装置、蓄冷用熱交換器、第3のバルブを有した直列回路と上記四方切換弁、アキュムレータを順次接続して形成された蓄冷用回路と、上記蓄冷用熱交換器を収容する蓄熱槽、上記蓄熱槽に収納された蓄熱媒体、及び一端が上記アキュムレータに接続され、他端が蓄冷用熱交換器と上記第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、上記蓄冷用熱交換器、上記第3の絞り装置、第2の絞り装置、上記室内側熱交換器及び上記四方切換弁を順次接続して形成された放冷回路とアキュムレータ液面検出手段と液面検出値によって第3のバルブを開閉する調節手段を備えたことを特徴とする蓄熱式空気調和装置。A refrigerant circuit formed by sequentially connecting a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, the four-way switching valve, and an accumulator; Heating formed by sequentially connecting a compressor, the switching valve, the outdoor heat exchanger, the second expansion device, the first expansion device, the outdoor heat exchanger, the four-way switching valve, and an accumulator A circuit, the compressor, a four-way switching valve, an outdoor heat exchanger, a first expansion device, one end connected between the first expansion device and the second expansion device, and the other end of the indoor heat A third expansion device connected between the exchanger and the four-way switching valve, a heat storage device for cold storage, a series circuit having a third valve, the four-way switching valve, and an accumulator are sequentially connected. A regenerator circuit, a heat storage tank for housing the regenerator heat exchanger, and the regenerator A heat storage medium housed in a tank, a refrigerant pump having one end connected to the accumulator and the other end connected between the cold storage heat exchanger and the third valve, and a series circuit having a sixth valve A cooling circuit formed by sequentially connecting the heat storage heat exchanger, the third expansion device, the second expansion device, the indoor heat exchanger, and the four-way switching valve, and an accumulator liquid level detection means, A regenerative air conditioner comprising adjusting means for opening and closing the third valve according to a liquid level detection value. 圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び上記切換弁、アキュムレータを順次接続して形成された冷媒循環回路と、上記圧縮機、上記切換弁、上記室外側熱交換器、上記第1の絞り装置、一端が上記第1の絞り装置と第2の絞り装置との間に接続され、他端が上記室内側熱交換器と上記切換弁との間に接続された第3の絞り装置、蓄冷用熱交換器、第3のバルブを有した直列回路と上記切換弁、アキュムレータを順次接続して形成された蓄冷用回路と、一端が上記切換弁と室内側熱交換器との間に接続され、他端が上記第1の絞り装置と第2の絞り装置との間に接続された第3のバルブ、蓄冷用熱交換器、第3の絞り装置を有した直列回路、第1の絞り装置、室外側熱交換器、切換弁を順次接続された蓄熱用回路、上記圧縮機、切換弁、室内側熱交換器、第2の絞り装置、一端が上記第1の絞り装置と第2の絞り装置との間に接続され、他端が上記アキュムレータに接続された第3の絞り装置、蓄冷用熱交換器、第5のバルブを有した直列回路と上記アキュムレータを順次接続して形成された放熱暖房用回路と、上記蓄冷用熱交換器を収容する蓄熱槽、上記蓄熱槽に収納された蓄熱媒体、及び一端が上記アキュムレータ吸入側に接続され、他端が蓄冷用熱交換器と上記第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、上記圧縮機、一端が上記圧縮機と切換弁の間に接続され他端が上記冷媒ポンプと上記第6のバルブの間に接続された第7のバルブを有するバイパス回路、上記蓄冷用熱交換器、上記第3の絞り装置、第2の絞り装置、上記室内側熱交換器及び上記切換弁を順次接続して形成された放冷回路とアキュムレータ液面検出手段と液面検出値によって第1の絞り装置を開閉する調節手段を備えたことを特徴とする蓄熱式空気調和装置。A refrigerant circuit formed by sequentially connecting a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, the switching valve, and an accumulator; and the compression Machine, the switching valve, the outdoor heat exchanger, the first expansion device, one end connected between the first expansion device and the second expansion device, and the other end of the indoor heat exchanger. A third expansion device, a regenerative heat exchanger, a series circuit having a third valve, and a regenerative circuit formed by sequentially connecting the reversing valve and the accumulator. A third valve having one end connected between the switching valve and the indoor heat exchanger and the other end connected between the first expansion device and the second expansion device, heat storage for cold storage A series circuit having a third expansion device, a first expansion device, an outdoor heat exchanger, and a switching valve in this order. The heat storage circuit, the compressor, the switching valve, the indoor heat exchanger, the second expansion device, one end connected between the first expansion device and the second expansion device, and the other end A third expansion device connected to the accumulator, a regenerator heat exchanger, a series circuit having a fifth valve, a circuit for radiating and heating formed by sequentially connecting the accumulators, and the regenerator heat exchanger A heat storage tank to be housed, a heat storage medium housed in the heat storage tank, and a refrigerant pump having one end connected to the accumulator suction side and the other end connected between the cold storage heat exchanger and the third valve, A series circuit having a sixth valve, the compressor, and a seventh valve having one end connected between the compressor and the switching valve and the other end connected between the refrigerant pump and the sixth valve. A bypass circuit having the above, a heat exchanger for cold storage, and the third The first throttling device is opened and closed by a cooling circuit, an accumulator liquid level detecting means, and a liquid level detection value formed by sequentially connecting the throttling device, the second throttling device, the indoor heat exchanger and the switching valve. A regenerative air conditioner comprising adjusting means. 圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び上記切換弁を順次接続して形成された冷媒循環回路と、上記圧縮機、上記切換弁、上記室外側熱交換器、上記第1の絞り装置、一端が上記第1の絞り装置と第2の絞り装置との間に接続され、他端が上記室内側熱交換器と上記切換弁との間に接続された第3の絞り装置、蓄冷用熱交換器、第3のバルブを有した直列回路と切換弁を順次接続された蓄冷用回路と、上記蓄冷用熱交換器を収容する蓄熱槽、上記蓄熱槽に収納された蓄熱媒体、及び一端が上記圧縮機吸入側に接続され、他端が蓄冷用熱交換器と上記第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、上記蓄冷用熱交換器、上記第3の絞り装置、第2の絞り装置、上記室内側熱交換器及び上記切換弁を順次接続して形成された放冷回路とを有し、運転モードを選択する運転モード切換手段を設けていることを特徴とする蓄熱式空気調和装置。A refrigerant circuit formed by sequentially connecting a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and the switching valve; and the compressor, The switching valve, the outdoor heat exchanger, the first expansion device, one end is connected between the first expansion device and the second expansion device, and the other end is connected to the indoor heat exchanger and the above A third expansion device connected between the switching valve, a heat storage heat exchanger, a series circuit having a third valve, a cold storage circuit sequentially connected with the switching valve, and the cold storage heat exchanger. A heat storage tank to be stored, a heat storage medium stored in the heat storage tank, and a refrigerant pump having one end connected to the compressor suction side and the other end connected between the cold storage heat exchanger and the third valve , A series circuit having a sixth valve, the heat storage heat exchanger, the third expansion device, the second expansion device, Serial chamber and a cooling circuit formed by sequentially connecting the inner heat exchanger and the switching valve, the heat storage type air conditioner which is characterized in that is provided with the operation mode switching means for selecting the operating mode. 圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び上記切換弁を順次接続して形成された冷媒循環回路と、上記圧縮機、上記切換弁、上記室外側熱交換器、上記第1の絞り装置、一端が上記第1の絞り装置と第2の絞り装置との間に接続され、他端が上記室内側熱交換器と上記切換弁との間に接続された第3の絞り装置、蓄冷用熱交換器、第3のバルブを有した直列回路と上記切換弁を順次接続された蓄冷用回路と、上記蓄冷用熱交換器を収容する蓄熱槽、上記蓄熱槽に収納された蓄熱媒体、及び一端が上記圧縮機吸入側に接続され、他端が蓄冷用熱交換器と上記第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、上記蓄冷用熱交換器、上記第3の絞り装置、第2の絞り装置、上記室内側熱交換器及び上記切換弁を順次接続して形成された放冷回路とを有し、蓄冷運転及び冷房運転を同時に運転することを特徴とする蓄熱式空気調和装置。A refrigerant circuit formed by sequentially connecting a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and the switching valve; and the compressor, The switching valve, the outdoor heat exchanger, the first expansion device, one end is connected between the first expansion device and the second expansion device, and the other end is connected to the indoor heat exchanger and the above A third expansion device connected between the switching valve, a heat storage heat exchanger, a series circuit having a third valve, a cold storage circuit in which the switching valve is sequentially connected, and the cold storage heat exchanger , A heat storage medium stored in the heat storage tank, and a refrigerant having one end connected to the compressor suction side and the other end connected between the cold storage heat exchanger and the third valve Pump, series circuit having sixth valve, heat storage heat exchanger, third expansion device, second expansion device , And a cooling circuit formed by sequentially connecting the interior side heat exchanger and the switching valve, the heat storage type air conditioning apparatus characterized by operating the cold-storage operation and the cooling operation at the same time. 蓄冷・冷房運転比率管理手段を備え、上記蓄冷・冷房運転比率管理手段によって蓄冷運転主体の制御で上記蓄冷運転及び冷房運転を同時に運転することを特徴とする請求項10記載の蓄熱式空気調和装置。11. The regenerative air conditioning apparatus according to claim 10, further comprising a regenerator / cooling operation ratio management unit, wherein the regenerator operation and the refrigerating operation are simultaneously performed by the regenerator / cooling operation ratio management unit under the control of the regenerator operation. . 蓄冷・冷房運転比率管理手段を備え、蓄冷・冷房運転比率管理手段によって冷房運転主体の制御で上記蓄冷運転及び冷房運転を同時に運転することを特徴とする請求項10記載の蓄熱式空気調和装置。11. The regenerative air conditioner according to claim 10, further comprising a regenerator / cooling operation ratio management unit, wherein the regenerative operation and the refrigerating operation are simultaneously performed by the regenerative / cooling operation ratio management unit under the control of a cooling operation main body. 圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び上記切換弁を順次接続して形成された冷媒循環回路と、上記圧縮機、上記切換弁、上記室内側熱交換器、上記第2の絞り装置、上記第1の絞り装置、上記室外側熱交換器及び上記切換弁、アキュムレータを順次接続して形成された暖房回路、上記圧縮機、切換弁、室外側熱交換器、第1の絞り装置、一端が上記第1の絞り装置と第2の絞り装置との間に接続され、他端が上記室内側熱交換器と上記切換弁との間に接続された第3の絞り装置、蓄冷用熱交換器、第3のバルブと上記切換弁を有した直列回路により構成された蓄冷用回路と、上記圧縮機、切換弁、一端が上記切換弁と室内側熱交換器との間に接続され、他端が上記第1の絞り装置と第2の絞り装置との間に接続された第3のバルブ、蓄冷用熱交換器、第3の絞り装置を有した直列回路、第1の絞り装置、室外側熱交換器、切換弁を順次接続された蓄熱用回路、上記蓄冷用熱交換器を収容する蓄熱槽、上記蓄熱槽に収納された蓄熱媒体、及び一端が上記圧縮機吸入側に接続され、他端が蓄冷用熱交換器と上記第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、上記蓄冷用熱交換器、上記第3の絞り装置、第2の絞り装置、上記室内側熱交換器及び上記切換弁を順次接続して形成された放冷回路とを有し、運転モードを選択する運転モード切換手段を設けていることを特徴とする蓄熱式空気調和装置。A refrigerant circuit formed by sequentially connecting a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and the switching valve; and the compressor, The heating circuit formed by sequentially connecting the switching valve, the indoor heat exchanger, the second expansion device, the first expansion device, the outdoor heat exchanger, the switching valve, and an accumulator, the compression Machine, switching valve, outdoor heat exchanger, first expansion device, one end is connected between the first expansion device and the second expansion device, and the other end is switched between the indoor heat exchanger and the switching device. A third expansion device connected to the valve, a heat storage heat storage device, a cold storage circuit composed of a third valve and a series circuit having the switching valve, the compressor, the switching valve, one end Is connected between the switching valve and the indoor heat exchanger, and the other end is connected to the first expansion device and the second expansion device. The third valve, the heat storage heat storage device, the series circuit having the third expansion device, the first expansion device, the outdoor heat exchanger, and the switching valve were connected in sequence. A heat storage circuit, a heat storage tank for storing the heat storage heat exchanger, a heat storage medium stored in the heat storage tank, and one end connected to the compressor suction side, and the other end to the heat storage heat exchanger and the third A refrigerant pump connected to the other valve, a series circuit having a sixth valve, the heat storage heat exchanger, the third expansion device, the second expansion device, the indoor heat exchanger, and the A regenerative air conditioner having a cooling circuit formed by sequentially connecting switching valves and provided with an operation mode switching means for selecting an operation mode. 圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び上記切換弁を順次接続して形成された冷媒循環回路と、上記圧縮機、切換弁、室外側熱交換器、第2の絞り装置、第1の絞り装置、室内側熱交換器及び上記切換弁、アキュムレータを順次接続して形成された暖房回路、上記圧縮機、上記切換弁、上記室外側熱交換器、上記第1の絞り装置、一端が上記第1の絞り装置と第2の絞り装置との間に接続され、他端が上記室内側熱交換器と上記切換弁との間に接続された第3の絞り装置、蓄冷用熱交換器、第3のバルブと上記切換弁を有した直列回路により構成された蓄冷用回路と、一端が上記切換弁と室内側熱交換器との間に接続され、他端が上記第1の絞り装置と第2の絞り装置との間に接続された第3のバルブ、蓄冷用熱交換器、第3の絞り装置を有した直列回路、第1の絞り装置、室外側熱交換器、切換弁を順次接続された蓄熱用回路、上記蓄冷用熱交換器を収容する蓄熱槽、上記蓄熱槽に収納された蓄熱媒体、及び一端が上記圧縮機吸入側に接続され、他端が蓄冷用熱交換器と上記第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、上記蓄冷用熱交換器、上記第3の絞り装置、第2の絞り装置、上記室内側熱交換器及び上記切換弁を順次接続して形成された放冷回路とを有し、蓄熱運転及び暖房運転を同時に運転することを特徴とする蓄熱式空気調和装置。A refrigerant circuit formed by sequentially connecting a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and the switching valve; and the compressor, A switching valve, an outdoor heat exchanger, a second expansion device, a first expansion device, an indoor heat exchanger, the switching valve, a heating circuit formed by sequentially connecting accumulators, the compressor, and the switching valve The outdoor heat exchanger, the first expansion device, one end connected between the first expansion device and the second expansion device, and the other end of the indoor heat exchanger and the switching valve. A third expansion device, a heat storage heat exchanger, a third valve and a series circuit having the switching valve connected between them, one end of the switching valve and the indoor heat exchange And the other end is connected between the first diaphragm device and the second diaphragm device. Valve, cool storage heat exchanger, series circuit having a third throttle device, first throttle device, outdoor heat exchanger, heat storage circuit sequentially connected with a switching valve, and the heat storage heat exchanger A heat storage tank to be stored, a heat storage medium stored in the heat storage tank, and a refrigerant pump having one end connected to the compressor suction side and the other end connected between the cold storage heat exchanger and the third valve , A series circuit having a sixth valve, the heat storage heat exchanger, the third expansion device, the second expansion device, the indoor heat exchanger, and the switching valve, which are sequentially connected. A regenerative air conditioner having a cold circuit and simultaneously performing a regenerative operation and a heating operation. 蓄熱・暖房運転比率管理手段を備え、蓄熱・暖房運転比率管理手段によって蓄熱運転主体の制御で上記蓄熱運転及び暖房運転を同時に運転することを特徴とする請求項14記載の蓄熱式空気調和装置。The regenerative air conditioning apparatus according to claim 14, further comprising a heat storage / heating operation ratio management means, wherein the heat storage operation and the heating operation are simultaneously performed by the heat storage / heating operation ratio management means under the control of the heat storage operation main body. 蓄熱・暖房運転比率管理手段を備え、蓄熱・暖房運転比率管理手段によって蓄熱運転主体の制御で上記蓄熱運転及び暖房運転を同時に運転することを特徴とする請求項14記載の蓄熱式空気調和装置。The regenerative air conditioning apparatus according to claim 14, further comprising a heat storage / heating operation ratio management means, wherein the heat storage operation and the heating operation are simultaneously performed by the heat storage / heating operation ratio management means under the control of the heat storage operation main body. 圧縮機、切換弁、室外側熱交換器、第1の絞り装置、第2の絞り装置、室内側熱交換器及び上記切換弁を順次接続して形成された冷媒循環回路と、上記圧縮機、上記切換弁、上記室外側熱交換器、上記第1の絞り装置、一端が上記第1の絞り装置と第2の絞り装置との間に接続され、他端が上記室内側熱交換器と上記切換弁との間に接続された第3の絞り装置、蓄冷用熱交換器、第3のバルブを有した直列回路と上記切換弁により構成された蓄冷用回路と、上記蓄冷用熱交換器を収容する蓄熱槽、上記蓄熱槽に収納された蓄熱媒体、及び一端が上記圧縮機吸入側に接続され、他端が蓄冷用熱交換器と上記第3のバルブとの間に接続された冷媒ポンプ、第6のバルブを有した直列回路、上記圧縮機、一端が上記圧縮機と切換弁の間に接続され他端が上記冷媒ポンプと上記第6のバルブの間に接続された第7のバルブを有するバイパス回路、上記蓄冷用熱交換器、上記第3の絞り装置、第2の絞り装置、上記室内側熱交換器及び上記切換弁を順次接続して形成された放冷回路、室外側外気温度検知手段と運転モード切替手段を備えたことを特徴とする蓄熱式空気調和装置。A refrigerant circuit formed by sequentially connecting a compressor, a switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and the switching valve; and the compressor, The switching valve, the outdoor heat exchanger, the first expansion device, one end is connected between the first expansion device and the second expansion device, and the other end is connected to the indoor heat exchanger and the above A third expansion device connected between the switching valve, a regenerator heat exchanger, a series circuit having a third valve, a regenerator circuit constituted by the changeover valve, and the regenerator heat exchanger. A heat storage tank to be stored, a heat storage medium stored in the heat storage tank, and a refrigerant pump having one end connected to the compressor suction side and the other end connected between the cold storage heat exchanger and the third valve , A series circuit having a sixth valve, the compressor, one end connected between the compressor and the switching valve, etc. Is a bypass circuit having a seventh valve connected between the refrigerant pump and the sixth valve, the heat storage heat exchanger, the third expansion device, the second expansion device, and the indoor heat exchange. A regenerative air conditioner comprising a cooler circuit formed by sequentially connecting a heat exchanger and the switching valve, outdoor outdoor temperature detecting means, and operation mode switching means.
JP29531795A 1995-11-14 1995-11-14 Thermal storage air conditioner Expired - Lifetime JP3613856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29531795A JP3613856B2 (en) 1995-11-14 1995-11-14 Thermal storage air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29531795A JP3613856B2 (en) 1995-11-14 1995-11-14 Thermal storage air conditioner

Publications (2)

Publication Number Publication Date
JPH09138025A JPH09138025A (en) 1997-05-27
JP3613856B2 true JP3613856B2 (en) 2005-01-26

Family

ID=17819051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29531795A Expired - Lifetime JP3613856B2 (en) 1995-11-14 1995-11-14 Thermal storage air conditioner

Country Status (1)

Country Link
JP (1) JP3613856B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138108A1 (en) * 2016-02-10 2017-08-17 三菱電機株式会社 Air conditioning device

Also Published As

Publication number Publication date
JPH09138025A (en) 1997-05-27

Similar Documents

Publication Publication Date Title
JP2894421B2 (en) Thermal storage type air conditioner and defrosting method
KR101175451B1 (en) Hot water supply device associated with heat pump
EP2933588B1 (en) Air conditioning hot water supply composite system
JP2009198099A (en) Air conditioner
JP2022020605A (en) Multi-air conditioner for cooling and heating
CN114151934B (en) Air conditioner
JP3956674B2 (en) Refrigerant circuit
JP2004108597A (en) Heat pump system
CN112880049B (en) Air conditioning system
JP3613856B2 (en) Thermal storage air conditioner
JP4334818B2 (en) Cooling system
JP3814877B2 (en) Thermal storage air conditioner
JP2787882B2 (en) Heat storage type cooling device
JP3370501B2 (en) Cooling system
JP2757660B2 (en) Thermal storage type air conditioner
JP3903292B2 (en) Thermal storage air conditioner
US20240027077A1 (en) Hybrid multi-air conditioning system and method for controlling a hybrid multi-air conditioning system
CN212566000U (en) Air conditioner waste heat recovery system and air conditioner system
KR20110066780A (en) Water circulation system associated with refrigerant system
JP2870392B2 (en) Thermal storage type air conditioner
JP2855954B2 (en) Thermal storage type air conditioner
JP3020384B2 (en) Thermal storage type air conditioner
JP2004361000A (en) Refrigerating system
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
JP4330220B2 (en) Thermal storage air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term