JP4202505B2 - Vapor compression refrigeration cycle - Google Patents

Vapor compression refrigeration cycle Download PDF

Info

Publication number
JP4202505B2
JP4202505B2 JP00382399A JP382399A JP4202505B2 JP 4202505 B2 JP4202505 B2 JP 4202505B2 JP 00382399 A JP00382399 A JP 00382399A JP 382399 A JP382399 A JP 382399A JP 4202505 B2 JP4202505 B2 JP 4202505B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature detection
refrigerant temperature
detection means
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00382399A
Other languages
Japanese (ja)
Other versions
JP2000205670A (en
Inventor
俊二 小松
清一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP00382399A priority Critical patent/JP4202505B2/en
Priority to EP99126069A priority patent/EP1026459A1/en
Publication of JP2000205670A publication Critical patent/JP2000205670A/en
Application granted granted Critical
Publication of JP4202505B2 publication Critical patent/JP4202505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用、業務用、或いは家庭用の空調機として好適に用いられる蒸気圧縮式冷凍サイクルに関する。
【0002】
【従来の技術】
フロンガスによる地球温暖化を防止することが世界的に求められている今日において、従来フロンを冷媒として用いていた蒸気圧縮式冷凍サイクルの分野では、冷媒の脱フロン対策の一つとして、例えば二酸化炭素(CO2)を使用した蒸気圧縮式冷凍サイクル(以下、CO2サイクルと略す。)が提案されている。
【0003】
このようなCO2サイクルでは、フロンを用いたものと比較して冷凍サイクルの成績係数(COP:Coefficient of Performance)が悪いため、これを向上させることが要求されている。
【0004】
CO2サイクルのCOPを改善する方法としては、例えば内部熱交換器を用いて冷媒の熱交換を行うことが一般に行われていた。ここで、図6に、内部熱交換器を用いたCO2サイクルの回路を示す。この蒸気圧縮式冷凍サイクル101(以下、単に冷凍サイクル101と言う。)は、冷媒CO2が貯められる気液分離器102と、気液分離器102からの気相状態の冷媒を圧縮する圧縮機103と、この圧縮機103で圧縮された冷媒を外気等との間で熱交換して冷却する放熱器(ガスクーラー)104と、ガスクーラー104からの冷媒を蒸発させて圧縮機102に供給する蒸発器108と、ガスクーラー104出口の冷媒と蒸発器108出口の冷媒とで熱交換を行わせる内部熱交換器105と、内部熱交換器105の後段に配されガスクーラー104からの冷媒の圧力を制御する高圧制御弁106と、高圧制御弁106の後段に配され圧縮機103入口側での冷媒CO2の過熱度が所定値となるようにガスクーラー104から蒸発器108への冷媒の流量を調整する過熱度制御弁107とにより基本回路が構成される。
【0005】
この冷凍サイクル101では、図6に示すように、気液分離器102と圧縮機103とが配管P101で、圧縮機103とガスクーラー104とが配管P102で、ガスクーラー104と内部熱交換器105とが配管P103で、内部熱交換器105と高圧制御弁106とが配管P104で、高圧制御弁106と過熱度制御弁107とが配管P105で、過熱度制御弁107と蒸発器108とが配管P106で、蒸発器108と内部熱交換器105とが配管P107で、内部熱交換器105と気液分離器102とが配管P108で、それぞれ接続される。
【0006】
このような冷凍サイクル101では、気液分離器102から供給される冷媒の二酸化炭素(CO2)が圧縮機103によってその臨界圧力以上に圧縮して吐出され、このCO2は、配管P102を介してガスクーラー104に流入し、以後、内部熱交換器105、高圧制御弁106、過熱度制御弁107、蒸発器108、内部熱交換器105、気液分離器102、圧縮機103の順で循環する。
【0007】
これにより、冷凍サイクル101では、内部熱交換器105によって、ガスクーラー104から流出した比較的高温(例えば40〜50度位)のCO2と蒸発器108から流出した比較的低温(例えば5〜10度位)のCO2とで熱交換が行われ、蒸発器108出口からのCO2が温度上昇して気液分離器102に戻されることになる。そして、冷凍サイクル101では、内部熱交換器105で交換された温度量に比例して、ガスクーラー104出口冷媒の冷却のため、COPが改善されることになる。
【0008】
ここで、冷凍サイクル101では、圧縮機103で吸入する際の上記CO2の過熱度を制御するため、蒸発器108出口の配管P107に図示しない感温筒等の温度検出手段を取り付けて、蒸発器108出口の冷媒温度をこの温度検出手段で検出し、当該検出温度に応じて過熱度制御弁107の開閉制御を行っていた。
【0009】
【発明が解決しようとする課題】
図7に、内部熱交換器105を用いた場合の冷凍サイクル101における外気温度とCOPの改善率(%)及び圧縮機103の吐出温度との関係について示す。
【0010】
この図7からも明らかなように、冷凍サイクル101では、外気温度が低い状態では内部熱交換器105を用いた場合のCOP改善の効果が少なく、外気温度がある一定レベルを越えた時点から、外気温度に比例するようにCOPの改善率が上がってゆく。
【0011】
しかしながら、内部熱交換器105を用いたCO2の冷凍サイクル101では、圧縮機103の吸い込み蒸気を過熱させることから、これに伴って圧縮機103の吐出温度が過度に上昇し、圧縮機103内部のオイル(潤滑油)が劣化してしまうという問題があった。具体的には、冷凍サイクル101においては、圧縮機103の吐出冷媒温度が略150度を越えた場合に潤滑油の性質に影響を与え始めるが、内部熱交換器105を用いることによって、当該吐出温度が150度〜180度にまで上昇してしまい、潤滑油の寿命が著しく短くなる問題があった。
【0012】
本発明はこのような実情に鑑みて提案されたものであって、圧縮機の冷媒吐出温度上昇の抑制を図り潤滑油の劣化を防止しながらCOPの改善を図ることのできる蒸気圧縮式冷凍サイクルを提供することを目的とする。
【0013】
【課題を解決するための手段】
上記課題を解決した本発明に係る蒸気圧縮式冷凍サイクルは、二酸化炭素(CO2)を冷媒として用い、気相冷媒を圧縮する圧縮機と、圧縮機で圧縮された冷媒を外部流体と熱交換して冷却する放熱器と、放熱器からの冷媒を蒸発させて圧縮機に供給する蒸発器と、放熱器出口の冷媒と蒸発器出口の冷媒とで熱交換を行わせる内部熱交換器と、内部熱交換器に供給される蒸発器からの冷媒温度を検出する第1の冷媒温度検出手段と、内部熱交換器から流出する蒸発器出口からの冷媒温度を検出する第2の冷媒温度検出手段と、第1の冷媒温度検出手段からの冷媒温度検出値と第2の冷媒温度検出手段からの冷媒温度検出値のいずれかを、所定条件下で切替選択する切替選択手段と、内部熱交換器出口側の流路に取り付けられ、切替選択手段の選択した冷媒温度検出値に基づいて、圧縮機入口側での冷媒の過熱度が所定値となるように蒸発器に流入する冷媒の流量を調節する過熱度制御弁とを備える。
【0014】
蒸気圧縮式冷凍サイクルにおいては、切替選択手段が第1の冷媒温度検出手段からの冷媒温度検出値と第2の冷媒温度検出手段からの冷媒温度検出値のいずれかを所定条件下で切替選択し、当該選択された冷媒温度検出値に基づいて、過熱度制御弁が、圧縮機入口側での冷媒の過熱度が所定値となるように蒸発器に流入する冷媒の流量を調節する。
【0015】
【発明の実施の形態】
本発明の実施の形態を図面を参照して説明する。本発明を適用した図1に示す蒸気圧縮式冷凍サイクル1(以下、単に冷凍サイクル1と言う。)は、例えば乗用車などの車両用に搭載される空調システムであって、二酸化炭素(CO2)を冷媒とし、この冷媒を液相状態と気相状態とに分離して蓄える気液分離器2と、気液分離器2からの気相状態の冷媒を圧縮する圧縮機3と、圧縮機3の後段に接続される放熱器(ガスクーラー)4と、ガスクーラー4からの冷媒を蒸発させて圧縮機3に供給する蒸発器8と、ガスクーラー4出口の冷媒と蒸発器8出口の冷媒とで熱交換を行わせる内部熱交換器5と、内部熱交換器5の後段に配され、ガスクーラー4からの冷媒の圧力を制御する高圧制御弁6と、高圧制御弁6の後段に配され、圧縮機2入口側での冷媒の過熱度が所定値となるように蒸発器8へ流入する冷媒の流量を調整する過熱度制御弁7とにより基本回路が構成される。
【0016】
この冷凍サイクル1では、図1に示すように、気液分離器2と圧縮機3とが配管P1で、圧縮機3とガスクーラー4とが配管P2で、ガスクーラー4と内部熱交換器5とが配管P3で、内部熱交換器5と高圧制御弁6とが配管P4で、高圧制御弁6と過熱度制御弁7とが配管P5で、過熱度制御弁7と蒸発器8とが配管P6で、蒸発器8と内部熱交換器5とが配管P7で、内部熱交換器5と気液分離器2とが配管P8で、それぞれ接続されている。
【0017】
また、この冷凍サイクル1は、蒸発器8出口の配管P7上に配され、蒸発器8から流出される冷媒の温度を検出する第1の冷媒温度検出手段9と、配管P8上に配され、蒸発器8から流出される冷媒の温度を内部熱交換器5の出口の位置で検出する第2の冷媒温度検出手段10と、第1の冷媒温度検出手段9からの冷媒温度検出値と第2の冷媒温度検出手段10からの冷媒温度検出値のいずれかを、所定条件下で切替選択して検出信号として過熱度制御弁7に出力する切替制御部11とを備えている。
【0018】
気液分離器2は、気相状態の冷媒CO2を圧縮機3に供給するとともに、内部熱交換器5を介して流入される蒸発器8からのCO2を、液相のCO2と気相のCO2とに分離して蓄える。
【0019】
圧縮機3は、気液分離器2からの気相状態のCO2をその臨界圧力以上に圧縮して吐出する。
【0020】
ガスクーラー4は、圧縮機3によって臨界圧力以上に圧縮されたCO2を外気等の外部流体と熱交換して冷却する。
【0021】
内部熱交換器5は、ガスクーラー4から流出したCO2と蒸発器8から流出したCO2との熱交換を行う。
【0022】
高圧制御弁6は、内部熱交換器5を通過したガスクーラー4からのCO2を減圧するとともに、内部熱交換器5の出口側(配管P4側)のCO2の温度に応じて内部熱交換器5の当該出口側の圧力を制御する。
【0023】
過熱度制御弁7は、圧縮機3の入口側でのCO2の吸入の過熱度が所定値となるように、蒸発器8に流入されるCO2の流量を調整する。この実施の形態では、過熱度制御弁7は、電磁弁を用いた構成となっており、詳細を後述する切替制御部11から出力される検出信号に基づいて圧縮機3入口側でのCO2の吸入の過熱度が0〜50度(deg)となるように当該電磁弁の開閉を行う。
【0024】
ここで、過熱度制御弁7は、切替制御部11を介して入力される第1の冷媒温度検出手段9又は第2の冷媒温度検出手段10のいずれかからの検出温度がCO2の蒸発温度+上記過熱度に相当する温度になるように、当該電磁弁の開度を調節する制御を行う。具体的には、CO2の蒸発温度がほぼ0度であり、過熱度の設定が上述の如く0〜50度なので、第1の冷媒温度検出手段9又は第2の冷媒温度検出手段10から0度〜50度の温度検出値が得られればよいことになる。従って、過熱度制御弁7は、切替制御部11を介して入力される第1の冷媒温度検出手段9又は第2の冷媒温度検出手段10からの検出温度が0度〜50度になるように、当該電磁弁の開度を調節する。
【0025】
第1の冷媒温度検出手段9及び第2の冷媒温度検出手段10は、この実施の形態では、それぞれサーミスタを用いて構成されており(以下、適宜サーミスタ9,サーミスタ10と呼ぶ。)、サーミスタ9が蒸発器8出口の配管P7における冷媒温度を検出して検出信号を切替制御部11に出力し、サーミスタ10が内部熱交換器5出口の配管P8における冷媒温度を検出して検出信号を切替制御部11に出力するようになっている。
【0026】
切替制御部11は、図1に示すように、センサ部12と制御部13と切替スイッチ14により構成されており、サーミスタ9及びサーミスタ10からの検出信号のうちのいずれか一方を選択して過熱度制御弁7に出力するようになっている。ここで、センサ部12は、外気の温度を検出して、当該検出値のデータを制御部13に供給する。そして、制御部13は、センサ部12から供給される外気温度についての検出値データを監視して、当該外気温度が所定温度を越えた場合に切替スイッチ14に切替制御信号を出力する。
【0027】
切替スイッチ14は、サーミスタ9からの検出信号が供給される端子14aと、サーミスタ10からの検出信号が供給される端子14bとのいずれかにスイッチSの接続を切り替えることにより、いずれか一方の検出信号を過熱度制御弁7に供給する。
【0028】
このような構成とされた冷凍サイクル1では、冷媒CO2が圧縮機3によってその臨界圧力以上に圧縮されて100度以上の温度で吐出される。そして、このCO2は、配管P2を介してガスクーラー4に流入し、以後、内部熱交換器5、高圧制御弁6、過熱度制御弁7、蒸発器8、内部熱交換器5、気液分離器2、圧縮機3の順で循環する。ここで、冷媒CO2は、ガスクーラー4で外気と熱交換することにより例えば40〜50度位に冷却され、高圧制御弁6及び過熱度制御弁7で圧力及び流量の制御が行われて0度程度の液相状態となって蒸発器8に流入する。そして、冷媒CO2は、蒸発器8内で蒸発し、このとき当該蒸発器8周囲の流体から熱を奪うことで車両の室内を冷却する。さらに、冷凍サイクル1では、内部熱交換器5によって、蒸発器8からの比較的温度の低いCO2とガスクーラー4からの比較的温度の高いCO2とで熱交換が行われる。この熱交換により、冷凍サイクル1では、冷媒温度が上昇して気液分離器2に当該冷媒CO2が流入する。気液分離器2では、内部熱交換器5で熱交換された蒸発器8からのCO2を液層CO2と気相CO2とに分離して蓄える。
【0029】
このような冷媒CO2の循環がなされる冷凍サイクル1では、蒸発器8出口からの冷媒CO2が内部熱交換器5で温度上昇して圧縮機2に供給されるので、配管P7における冷媒温度を検出するサーミスタ9の検出温度よりも配管P8における冷媒温度を検出するサーミスタ10の検出温度の方が常に高くなる。そして、冷凍サイクル1では、内部熱交換器5で交換された温度量に比例して、ガスクーラー4出口冷媒の冷却のため、COPが改善されることになる。
【0030】
以下、この冷凍サイクル1の制御について説明する。冷凍サイクル1の始動時には、切替制御部11の制御部13は、センサ部12からの外気温度の検出値のデータに基づき、外気温度が所定値(例えば30度)まで上昇した場合に、圧縮機3で吸入する際の冷媒CO2の過熱度(SH)を小さくするように制御する。具体的には、制御部13は、外気温度が30度以下の場合にはサーミスタ9により蒸発器8出口の冷媒温度を検出し、外気温度が30度を越えた場合にはサーミスタ10により内部熱交換器5の出口の冷媒温度を検出するように制御する。これにより、冷凍サイクル1では、外気温度が30度以下の場合には蒸発器8出口の冷媒温度を検出したサーミスタ9の当該検出値に基づいて過熱度制御弁7における電磁弁の開閉が調節され、外気温度が30度を越えた場合には内部熱交換器5の出口の冷媒温度を検出したサーミスタ10の当該検出値に基づいて過熱度制御弁7の電磁弁の開閉が調節される。
【0031】
なお、過熱度制御弁7による当該電磁弁の開閉については、過熱度の値が所定値よりも高い場合には、電磁弁の開度を大きくする(開く)ようにし、逆に、過熱度の値が所定値よりも低い場合には、電磁弁の開度を小さくする(閉じる)ようにすればよい。すなわち、電磁弁の開度を大きくすることによって、冷凍サイクル1では、蒸発器8及び内部熱交換器5を流通する冷媒の量が増加し、サーミスタ9及び10の検出値が低くなる。一方、電磁弁の開度を小さくすると、蒸発器8及び内部熱交換器5を流通する冷媒の量が減少し、サーミスタ9及び10の検出値が高くなる。
【0032】
過熱度制御弁7の電磁弁の開度調節が第1の冷媒温度検出手段としてのサーミスタ9からの冷媒温度検出値に基づいて行われる場合の冷凍サイクル1の状態について説明する。この場合には、冷媒CO2は、過熱度制御弁7によって減圧されて温度が0度程度となっており、蒸発器8によって周囲の流体から熱を奪うことで温度が上昇する。ここで、過熱度制御弁7は、蒸発器8出口の配管P7に取り付けられたサーミスタ9の検出温度が蒸発温度+過熱度に相当する温度になるように、電磁弁の開度を調節する。具体的には、この場合には蒸発温度が0度であり、過熱度を0〜50度に設定したとして、サーミスタ9から検出されるべき温度は0度〜50度ということになる。従って、過熱度制御弁7は、蒸発器8出口の配管P7に取り付けられたサーミスタ9の検出温度が0度〜50度になるように、弁の開度を調節する。なお、この場合には、第2の冷媒温度検出手段であるサーミスタ10の検出温度は20度〜30度位であり、気液分離器2内には余剰の冷媒CO2が溜まっている状態となる。
【0033】
次に、過熱度制御弁7の電磁弁の開度調節が第2の冷媒温度検出手段としてのサーミスタ10からの冷媒温度検出値に基づいて行われるように切り替えられた場合の冷凍サイクル1の状態について説明する。この場合にも、過熱度制御弁7は、サーミスタ10の検出温度が蒸発温度+過熱度に相当する温度になるように、電磁弁の開度を調節する。従って、過熱度制御弁7は、サーミスタ10で検出される内部熱交換器5出口の冷媒温度が0度〜50度になるように、弁の開度を調節する。ここで、サーミスタ10による検出温度がサーミスタ9による検出温度よりも常に高いことから、過熱度制御弁7は、内部熱交換器5出口の冷媒温度を相対的に下げるように、電磁弁を開いて回路内を循環する冷媒CO2の量を増やすように制御する。これにより、冷凍サイクル1では、圧縮機3に吸入される冷媒の過熱度が下がることになる。なお、この場合には、密度の高い冷媒CO2が回路内に多く流れることになるので、気液分離器2内には余剰の冷媒CO2がほとんど無い状態となる。
【0034】
このような制御を行うことにより、この冷凍サイクル1では、図2に示すように、外気温度が上昇して30度を越えた場合にも、圧縮機3の冷媒吐出温度を100〜120度程度に抑えることが可能となり、この結果、圧縮機3の吐出温度を抑えてオイル(潤滑油)劣化を防止しながらCOPの改善を図ることが可能となった。
【0035】
次に、冷凍サイクルの他の実施の形態について図3を参照して説明する。なお、図1の冷凍サイクル1と同一の部分には同一の符号を付し、その説明を省略する。図3に示す冷凍サイクル1Aは、上述した冷凍サイクル1と基本的な回路構成については同一であり、第1の冷媒温度検出手段9A及び第2の冷媒温度検出手段10Aとして感温筒を用いており(以下、感温筒9A,感温筒10Aと呼ぶ。)、過熱度制御弁の開閉制御について圧力式の構成としたものである。すなわち、冷凍サイクル1Aの感温筒9A及び感温筒10Aは、所定密度で流体が封入されており、冷媒温度検出値を当該流体の圧力(以下、検出圧力という。)により切替制御部11Aに出力するようになっている。
【0036】
また、冷凍サイクル1Aでは、切替スイッチ14の代わりに切替弁15を用いて切替制御部11Aが構成されており、この切替弁15が制御部13Aからの切替制御信号に基づいて、感温筒9A及び感温筒10Aのいずれかの検出圧力を切替選択して過熱度制御弁7Aに供給する。さらには、冷凍サイクル1Aにおける過熱度制御弁7Aは、切替制御部11Aから供給される検出圧力に応じて弁の開度を調節する機械式のものとなっている。
【0037】
そして、図1の冷凍サイクル1の場合と同様の設定及び制御を行うことにより、冷凍サイクル1Aにおいても、上述した冷凍サイクル1と同様に、外気温度が上昇して30度を越えた場合にも、圧縮機3の冷媒吐出温度を100〜150度程度に抑えることが可能となり、圧縮機3のオイル(潤滑油)劣化を防止しながらCOPの改善を図ることが可能となる。
【0038】
冷凍サイクルの他の実施の形態について図4を参照して説明する。なお、図1の冷凍サイクル1と同一の部分には同一の符号を付し、その説明を省略する。図4に示す冷凍サイクル1Bは、上述した冷凍サイクル1と基本的な回路構成については同一であるが、切替制御部11Bにつき、圧縮機3の吐出冷媒温度を検出する第3の冷媒温度検出手段としてのセンサ部12Aが配管P2に取り付けられ、このセンサ部12Aの検出値に基づいて、制御部13Bが、過熱度制御弁7に供給される検出信号を切り替える構成となっている。
【0039】
この冷凍サイクル1Bでは、運転開始時の初期状態では、図4に示すように、第1の冷媒温度検出手段としてのサーミスタ9からの検出信号が過熱度制御弁7に供給されるようにしておく。そして、切替制御部11Bは、圧縮機3の吐出冷媒温度が上昇して所定温度を越えた場合に第2の冷媒温度検出手段であるサーミスタ10からの検出信号が過熱度制御弁7に供給されるように切り替える制御を行う。
【0040】
具体的には、切替制御部11Bにおいては、制御部13が、センサ部12Aから供給される圧縮機3の吐出冷媒温度についての検出値データを監視して、センサ部12Aが検出した圧縮機3の吐出冷媒温度の値が潤滑油の性質に影響を与え始める120度となった場合に、切替スイッチ14に切替制御信号を出力して、スイッチSの接続を端子14aから14b側に切り替える制御を行う。
【0041】
このような制御を行うことによって、冷凍サイクル1Bでは、圧縮機3の吐出温度が一定値を越えた場合にその吸入の過熱度が下がるので、圧縮機3の吐出温度を抑えてオイル(潤滑油)劣化を防止しながらCOPの改善を図ることが可能となる。
【0042】
なお、冷凍サイクル1Bは、図1の冷凍サイクル1と同様に、第1の冷媒温度検出手段9及び第2の冷媒温度検出手段10としてサーミスタを用い、過熱度制御弁7として電磁弁を用いたものとし、さらには電気式のスイッチ14により構成しているが、図3の冷凍サイクル1Aと同様に、これらを圧力式のもので構成することが可能であることは勿論である。
【0043】
さらに、上述した実施の形態では気液分離器を用いて回路を構成したが、本発明は、例えば図5に示すように、気液分離器を用いないで回路を構成することも可能である。なお、図5では、上述した実施の形態と同一の部分には同一の符号を付している。図5に示す冷凍サイクル1Cでは、蒸発器8から流出する冷媒を気液分離器を介さずに圧縮機3に供給している。一方、冷凍サイクル1Cでは、高圧制御弁6と過熱度制御弁7との間にサージタンク16を配して、このサージタンク16で余剰冷媒を貯留させるようにしている。ここで、サージタンク16としては、500〜1000ml程度の貯留能力のあるものであればよい。このような構成の冷凍サイクル1Cにおいても、上述と同様の制御を行うことにより、圧縮機3の吐出温度を抑えて潤滑油の劣化を防止しながらCOPの改善を図ることが可能となる。
【0044】
なお、上述した実施の形態では外気温度や圧縮機3の冷媒吐出温度に応じて圧縮機3に吸入される冷媒の過熱度の大小を切り替えることとしたが、本発明はこれに限定されるものではなく、他の要素、例えば車両空調負荷に応じて上記冷媒の過熱度の大小を制御してもよい。
【0045】
【発明の効果】
以上詳細に説明したように、本発明によれば、切替選択手段が、第1の冷媒温度検出手段からの冷媒温度検出値と第2の冷媒温度検出手段からの冷媒温度検出値のいずれかを所定条件下で切替選択することにより、当該選択された冷媒温度検出値に基づいて、過熱度制御弁が、圧縮機入口側での冷媒の過熱度が所定値となるように放熱器から蒸発器への冷媒の流量を調節するので、圧縮機の冷媒吐出温度上昇の抑制を図り潤滑油の劣化を防止しながらCOPの改善を図ることのできる蒸気圧縮式冷凍サイクルを提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の蒸気圧縮式冷凍サイクルの構成を示す回路図である。
【図2】上記蒸気圧縮式冷凍サイクルにおける外気温度、COPの改善率(%)、及び圧縮機の吐出温度との関係について示す特性図である。
【図3】本発明の蒸気圧縮式冷凍サイクルの他の実施の形態を示す回路図である。
【図4】本発明の蒸気圧縮式冷凍サイクルの他の実施の形態を示す回路図である。
【図5】本発明の蒸気圧縮式冷凍サイクルの他の実施の形態を示す回路図である。
【図6】内部熱交換器を用いたCO2サイクルの回路図である。
【図7】内部熱交換器を用いたCO2サイクルにおける外気温度とCOPの改善率(%)及び圧縮機の吐出温度との関係について示す特性図である。
【符号の説明】
1,1A,1B,1C 冷凍サイクル
2 気液分離器
3 圧縮機
4 放熱器(ガスクーラー)
5 内部熱交換器
6 高圧制御弁
7,7A 過熱度制御弁
8 蒸発器
9 第1の冷媒温度検出手段
10 第2の冷媒温度検出手段
11,11A,11B 切替制御部
12,12A センサ部
13,13A,13B 制御部
14 切替スイッチ
15 切替弁
16 サージタンク
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vapor compression refrigeration cycle that is suitably used as an air conditioner for automobiles, business use, or home use.
[0002]
[Prior art]
In today's world where it is demanded globally to prevent global warming due to chlorofluorocarbons, in the field of vapor compression refrigeration cycles where chlorofluorocarbons have been used as refrigerants, carbon dioxide, for example, is one of the countermeasures against defluorocarbons. A vapor compression refrigeration cycle using (CO 2 ) (hereinafter abbreviated as CO 2 cycle) has been proposed.
[0003]
In such a CO 2 cycle, since the coefficient of performance (COP) of the refrigeration cycle is worse than that using chlorofluorocarbon, it is required to improve this.
[0004]
As a method for improving the COP of the CO 2 cycle, for example, it has been generally performed to perform heat exchange of the refrigerant using an internal heat exchanger, for example. Here, FIG. 6 shows a CO 2 cycle circuit using an internal heat exchanger. The vapor compression refrigeration cycle 101 (hereinafter simply referred to as the refrigeration cycle 101) includes a gas-liquid separator 102 that stores refrigerant CO 2 and a compressor that compresses the gas-phase refrigerant from the gas-liquid separator 102. 103 and a radiator (gas cooler) 104 that cools the refrigerant compressed by the compressor 103 by exchanging heat with the outside air, and the refrigerant from the gas cooler 104 is evaporated and supplied to the compressor 102. The pressure of the refrigerant from the gas cooler 104 disposed in the rear stage of the evaporator 108, the internal heat exchanger 105 that performs heat exchange between the refrigerant at the outlet of the gas cooler 104 and the refrigerant at the outlet of the evaporator 108, and the internal heat exchanger 105 a high pressure control valve 106 for controlling the evaporator 10 from the gas cooler 104 as the degree of superheat of the refrigerant CO 2 in disposed downstream compressor 103 inlet side becomes a predetermined value of the high pressure control valve 106 The superheat degree control valve 107 that adjusts the flow rate of the refrigerant to 8 constitutes a basic circuit.
[0005]
In this refrigeration cycle 101, as shown in FIG. 6, the gas-liquid separator 102 and the compressor 103 are connected to the pipe P101 , the compressor 103 and the gas cooler 104 are connected to the pipe P102 , and the gas cooler 104 and the internal heat exchanger are exchanged. in vessel 105 and the piping P 103, in the internal heat exchanger 105 and the high-pressure control valve 106 and piping P 104, the high pressure control valve 106 in the superheat degree control valve 107 and piping P 105, a superheat control valve 107 evaporated The evaporator 108 is connected to the pipe P 106 , the evaporator 108 and the internal heat exchanger 105 are connected to the pipe P 107 , and the internal heat exchanger 105 and the gas-liquid separator 102 are connected to the pipe P 108 .
[0006]
In such a refrigeration cycle 101, carbon dioxide (CO 2 ), which is a refrigerant supplied from the gas-liquid separator 102, is compressed by the compressor 103 to a pressure equal to or higher than its critical pressure, and this CO 2 is discharged through the pipe P102 . And then flows into the gas cooler 104 through the internal heat exchanger 105, the high-pressure control valve 106, the superheat control valve 107, the evaporator 108, the internal heat exchanger 105, the gas-liquid separator 102, and the compressor 103. Circulate.
[0007]
Thereby, in the refrigeration cycle 101, the relatively high temperature (for example, about 40 to 50 degrees) of CO 2 flowing out from the gas cooler 104 and the relatively low temperature (for example, 5 to 10) flowing out of the evaporator 108 by the internal heat exchanger 105. Heat exchange is performed with CO 2 at the degree, and the temperature of CO 2 from the outlet of the evaporator 108 rises and is returned to the gas-liquid separator 102. In the refrigeration cycle 101, the COP is improved in order to cool the refrigerant at the outlet of the gas cooler 104 in proportion to the amount of temperature exchanged by the internal heat exchanger 105.
[0008]
Here, in the refrigeration cycle 101, in order to control the degree of superheating of the CO 2 when sucked by the compressor 103, a temperature detection means such as a temperature sensing cylinder (not shown) is attached to the pipe P 107 at the outlet of the evaporator 108, The refrigerant temperature at the outlet of the evaporator 108 is detected by this temperature detecting means, and the opening / closing control of the superheat degree control valve 107 is performed according to the detected temperature.
[0009]
[Problems to be solved by the invention]
FIG. 7 shows the relationship between the outside air temperature, the COP improvement rate (%), and the discharge temperature of the compressor 103 in the refrigeration cycle 101 when the internal heat exchanger 105 is used.
[0010]
As is clear from FIG. 7, in the refrigeration cycle 101, when the outside air temperature is low, there is little effect of COP improvement when the internal heat exchanger 105 is used, and from the time when the outside air temperature exceeds a certain level, The COP improvement rate increases in proportion to the outside air temperature.
[0011]
However, in the CO 2 refrigeration cycle 101 using the internal heat exchanger 105, the suction steam of the compressor 103 is overheated, and accordingly, the discharge temperature of the compressor 103 rises excessively, and the inside of the compressor 103 There was a problem that the oil (lubricating oil) deteriorated. Specifically, in the refrigeration cycle 101, when the discharge refrigerant temperature of the compressor 103 exceeds approximately 150 degrees, the properties of the lubricating oil begin to be affected. However, by using the internal heat exchanger 105, the discharge The temperature rose to 150 to 180 degrees, and there was a problem that the life of the lubricating oil was remarkably shortened.
[0012]
The present invention has been proposed in view of such a situation, and is a vapor compression refrigeration cycle capable of improving COP while suppressing deterioration of the refrigerant discharge temperature and preventing deterioration of the lubricating oil. The purpose is to provide.
[0013]
[Means for Solving the Problems]
The vapor compression refrigeration cycle according to the present invention that has solved the above problems uses a carbon dioxide (CO 2 ) refrigerant as a refrigerant, compresses the gas-phase refrigerant, and exchanges heat between the refrigerant compressed by the compressor and an external fluid. A radiator that cools and cools, an evaporator that evaporates the refrigerant from the radiator and supplies it to the compressor, an internal heat exchanger that exchanges heat between the refrigerant at the radiator outlet and the refrigerant at the evaporator outlet, First refrigerant temperature detection means for detecting the refrigerant temperature from the evaporator supplied to the internal heat exchanger, and second refrigerant temperature detection means for detecting the refrigerant temperature from the evaporator outlet flowing out from the internal heat exchanger A switching selection means for switching and selecting one of a refrigerant temperature detection value from the first refrigerant temperature detection means and a refrigerant temperature detection value from the second refrigerant temperature detection means under a predetermined condition, and an internal heat exchanger It is attached to the flow path on the outlet side and -Option was based on the refrigerant temperature detection value, the degree of superheat of the refrigerant in the compressor inlet side and a superheat control valve for adjusting the flow rate of refrigerant flowing into the evaporator to a predetermined value.
[0014]
In the vapor compression refrigeration cycle, the switching selection means switches and selects either the refrigerant temperature detection value from the first refrigerant temperature detection means or the refrigerant temperature detection value from the second refrigerant temperature detection means under a predetermined condition. Based on the selected refrigerant temperature detection value, the superheat degree control valve adjusts the flow rate of the refrigerant flowing into the evaporator so that the superheat degree of the refrigerant on the compressor inlet side becomes a predetermined value.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. The present invention vapor compression refrigeration cycle 1 shown in FIG. 1 according to the (hereinafter, simply referred to as refrigeration cycle 1.) Is the air-conditioning system mounted e.g. on a vehicle such as a passenger car, carbon dioxide (CO 2) As a refrigerant, a gas-liquid separator 2 that separates and stores the refrigerant into a liquid phase state and a gas phase state, a compressor 3 that compresses the refrigerant in the gas phase state from the gas liquid separator 2, and the compressor 3 A radiator (gas cooler) 4 connected to the latter stage, an evaporator 8 that evaporates the refrigerant from the gas cooler 4 and supplies it to the compressor 3, a refrigerant at the outlet of the gas cooler 4, and a refrigerant at the outlet of the evaporator 8 The internal heat exchanger 5 is configured to perform heat exchange with the internal heat exchanger 5, and is disposed downstream of the internal heat exchanger 5, and is disposed downstream of the high pressure control valve 6 that controls the pressure of the refrigerant from the gas cooler 4. Evaporate so that the degree of superheat of the refrigerant at the inlet side of the compressor 2 becomes a predetermined value Basic circuit is constituted by the superheat control valve 7 for adjusting the flow rate of refrigerant flowing into 8.
[0016]
In this refrigeration cycle 1, as shown in FIG. 1, the gas-liquid separator 2 and the compressor 3 are connected to the pipe P 1 , the compressor 3 and the gas cooler 4 are connected to the pipe P 2 , and the gas cooler 4 and the internal heat exchange. in vessel 5 and the piping P 3, in the internal heat exchanger 5 and the high-pressure control valve 6 and the piping P 4, a high pressure control valve 6 in superheat control valve 7 and the pipe P 5, a superheat control valve 7 evaporation The evaporator 8 is connected to the pipe P 6 , the evaporator 8 and the internal heat exchanger 5 are connected to the pipe P 7 , and the internal heat exchanger 5 and the gas-liquid separator 2 are connected to the pipe P 8 .
[0017]
Further, the refrigerating cycle 1 is arranged on the evaporator 8 outlet pipe P 7, a first refrigerant temperature detecting means 9 for detecting the temperature of the refrigerant flowing out of the evaporator 8, distribution on the pipe P 8 The second refrigerant temperature detecting means 10 for detecting the temperature of the refrigerant flowing out of the evaporator 8 at the position of the outlet of the internal heat exchanger 5, and the refrigerant temperature detection value from the first refrigerant temperature detecting means 9 A switching control unit 11 is provided that switches and selects one of the refrigerant temperature detection values from the second refrigerant temperature detection means 10 under a predetermined condition and outputs the selected value to the superheat degree control valve 7 as a detection signal.
[0018]
The gas-liquid separator 2 supplies the refrigerant CO 2 in a gas phase state to the compressor 3, and converts the CO 2 from the evaporator 8 flowing in via the internal heat exchanger 5 into the gas-phase CO 2 and the gas. Separated and stored in phase CO 2 .
[0019]
The compressor 3 compresses and discharges CO 2 in a gas phase state from the gas-liquid separator 2 to a critical pressure or higher.
[0020]
The gas cooler 4 cools CO 2 compressed to a critical pressure or higher by the compressor 3 by exchanging heat with an external fluid such as outside air.
[0021]
Internal heat exchanger 5 exchanges heat with the CO 2 flowing out of the CO 2 and the evaporator 8 flowing out of the gas cooler 4.
[0022]
High-pressure control valve 6, the CO 2 from the gas cooler 4 which has passed through the internal heat exchanger 5 as well as vacuum, internal heat in accordance with the temperature of CO 2 on the outlet side of the internal heat exchanger 5 (the pipe P 4 side) The pressure on the outlet side of the exchanger 5 is controlled.
[0023]
The superheat degree control valve 7 adjusts the flow rate of CO 2 flowing into the evaporator 8 so that the superheat degree of the suction of CO 2 on the inlet side of the compressor 3 becomes a predetermined value. In this embodiment, the superheat degree control valve 7 has a configuration using an electromagnetic valve, and CO 2 at the inlet side of the compressor 3 based on a detection signal output from a switching control unit 11 described later in detail. The solenoid valve is opened and closed so that the degree of superheat of the intake becomes 0 to 50 degrees (deg).
[0024]
Here, the superheat degree control valve 7 has a detected temperature from either the first refrigerant temperature detecting means 9 or the second refrigerant temperature detecting means 10 input via the switching control section 11 and the evaporation temperature of CO 2 . + Control is performed to adjust the opening of the solenoid valve so that the temperature corresponds to the degree of superheat. Specifically, since the CO 2 evaporation temperature is approximately 0 degrees and the superheat setting is 0 to 50 degrees as described above, the first refrigerant temperature detecting means 9 or the second refrigerant temperature detecting means 10 to 0. It suffices to obtain a temperature detection value of 50 degrees to 50 degrees. Therefore, the superheat degree control valve 7 is set so that the detected temperature from the first refrigerant temperature detecting means 9 or the second refrigerant temperature detecting means 10 input via the switching control unit 11 is 0 degrees to 50 degrees. The opening degree of the solenoid valve is adjusted.
[0025]
In this embodiment, the first refrigerant temperature detection means 9 and the second refrigerant temperature detection means 10 are each configured by using a thermistor (hereinafter referred to as the thermistor 9 and the thermistor 10 as appropriate). Detects the refrigerant temperature in the pipe P 7 at the outlet of the evaporator 8 and outputs a detection signal to the switching control unit 11. The thermistor 10 detects the refrigerant temperature in the pipe P 8 at the outlet of the internal heat exchanger 5 and outputs the detection signal. The data is output to the switching control unit 11.
[0026]
As shown in FIG. 1, the switching control unit 11 includes a sensor unit 12, a control unit 13, and a changeover switch 14, and selects one of the detection signals from the thermistor 9 and the thermistor 10 to overheat. This is output to the degree control valve 7. Here, the sensor unit 12 detects the temperature of the outside air and supplies data of the detected value to the control unit 13. And the control part 13 monitors the detected value data about the outside temperature supplied from the sensor part 12, and when the said outside temperature exceeds predetermined temperature, it outputs a switching control signal to the changeover switch 14.
[0027]
The change-over switch 14 detects either one by switching the connection of the switch S to either the terminal 14a to which the detection signal from the thermistor 9 is supplied or the terminal 14b to which the detection signal from the thermistor 10 is supplied. A signal is supplied to the superheat degree control valve 7.
[0028]
In the refrigeration cycle 1 having such a configuration, the refrigerant CO 2 is compressed to a pressure equal to or higher than the critical pressure by the compressor 3 and discharged at a temperature of 100 degrees or more. This CO 2 flows into the gas cooler 4 via the pipe P 2 , and thereafter, the internal heat exchanger 5, the high pressure control valve 6, the superheat degree control valve 7, the evaporator 8, the internal heat exchanger 5, the air It circulates in order of the liquid separator 2 and the compressor 3. Here, the refrigerant CO 2 is cooled to, for example, about 40 to 50 degrees by exchanging heat with the outside air in the gas cooler 4, and the pressure and flow rate are controlled by the high pressure control valve 6 and the superheat degree control valve 7. It becomes a liquid phase state of about 5 degrees and flows into the evaporator 8. Then, the refrigerant CO 2 evaporates in the evaporator 8, and at this time, the interior of the vehicle is cooled by removing heat from the fluid around the evaporator 8. Further, in the refrigeration cycle 1, the internal heat exchanger 5, heat exchange is performed at a relatively temperatures and high CO 2 from a relatively low temperature CO 2 gas cooler 4 from the evaporator 8. By this heat exchange, in the refrigeration cycle 1, the refrigerant temperature rises and the refrigerant CO 2 flows into the gas-liquid separator 2. In the gas-liquid separator 2, the CO 2 from the evaporator 8 heat-exchanged by the internal heat exchanger 5 is separated into a liquid layer CO 2 and a gas phase CO 2 and stored.
[0029]
In the refrigeration cycle 1 such circulation of refrigerant CO 2 is performed, the refrigerant CO 2 from the evaporator 8 outlet is supplied to the temperature rise in the compressor 2 in the internal heat exchanger 5, the refrigerant in the pipe P 7 The detected temperature of the thermistor 10 that detects the refrigerant temperature in the pipe P 8 is always higher than the detected temperature of the thermistor 9 that detects the temperature. In the refrigeration cycle 1, the COP is improved in order to cool the refrigerant at the outlet of the gas cooler 4 in proportion to the amount of temperature exchanged by the internal heat exchanger 5.
[0030]
Hereinafter, control of the refrigeration cycle 1 will be described. At the start of the refrigeration cycle 1, the control unit 13 of the switching control unit 11 performs a compressor operation when the outside air temperature rises to a predetermined value (for example, 30 degrees) based on the detected value data of the outside air temperature from the sensor unit 12. 3 is controlled so as to reduce the degree of superheat (SH) of the refrigerant CO 2 when sucked. Specifically, the control unit 13 detects the refrigerant temperature at the outlet of the evaporator 8 using the thermistor 9 when the outside air temperature is 30 degrees or less, and detects the internal heat using the thermistor 10 when the outside air temperature exceeds 30 degrees. Control is performed to detect the refrigerant temperature at the outlet of the exchanger 5. Thus, in the refrigeration cycle 1, when the outside air temperature is 30 degrees or less, the opening and closing of the solenoid valve in the superheat degree control valve 7 is adjusted based on the detected value of the thermistor 9 that detects the refrigerant temperature at the outlet of the evaporator 8. When the outside air temperature exceeds 30 degrees, the opening and closing of the solenoid valve of the superheat degree control valve 7 is adjusted based on the detected value of the thermistor 10 that detects the refrigerant temperature at the outlet of the internal heat exchanger 5.
[0031]
Regarding the opening and closing of the solenoid valve by the superheat degree control valve 7, when the value of the superheat degree is higher than a predetermined value, the opening degree of the solenoid valve is increased (opened). When the value is lower than the predetermined value, the opening degree of the electromagnetic valve may be reduced (closed). That is, by increasing the opening of the solenoid valve, in the refrigeration cycle 1, the amount of refrigerant flowing through the evaporator 8 and the internal heat exchanger 5 is increased, and the detection values of the thermistors 9 and 10 are decreased. On the other hand, when the opening degree of the solenoid valve is reduced, the amount of refrigerant flowing through the evaporator 8 and the internal heat exchanger 5 is reduced, and the detection values of the thermistors 9 and 10 are increased.
[0032]
The state of the refrigeration cycle 1 when the opening degree adjustment of the solenoid valve of the superheat degree control valve 7 is performed based on the refrigerant temperature detection value from the thermistor 9 as the first refrigerant temperature detection means will be described. In this case, the refrigerant CO 2 is depressurized by the superheat degree control valve 7 and has a temperature of about 0 ° C., and the temperature is increased by taking heat from the surrounding fluid by the evaporator 8. Here, the superheat degree control valve 7 adjusts the opening degree of the solenoid valve so that the detected temperature of the thermistor 9 attached to the pipe P 7 at the outlet of the evaporator 8 becomes a temperature corresponding to the evaporation temperature + superheat degree. . Specifically, in this case, assuming that the evaporation temperature is 0 degree and the superheat degree is set to 0 to 50 degrees, the temperature to be detected from the thermistor 9 is 0 degrees to 50 degrees. Therefore, the superheat degree control valve 7 adjusts the opening degree of the valve so that the detected temperature of the thermistor 9 attached to the pipe P 7 at the outlet of the evaporator 8 becomes 0 to 50 degrees. In this case, the detected temperature of the thermistor 10 which is the second refrigerant temperature detecting means is about 20 to 30 degrees, and excess refrigerant CO 2 is accumulated in the gas-liquid separator 2. Become.
[0033]
Next, the state of the refrigeration cycle 1 when the opening degree adjustment of the solenoid valve of the superheat degree control valve 7 is switched so as to be performed based on the refrigerant temperature detection value from the thermistor 10 as the second refrigerant temperature detection means. Will be described. Also in this case, the superheat degree control valve 7 adjusts the opening degree of the electromagnetic valve so that the detected temperature of the thermistor 10 becomes a temperature corresponding to the evaporation temperature + superheat degree. Therefore, the superheat degree control valve 7 adjusts the opening degree of the valve so that the refrigerant temperature at the outlet of the internal heat exchanger 5 detected by the thermistor 10 becomes 0 to 50 degrees. Here, since the temperature detected by the thermistor 10 is always higher than the temperature detected by the thermistor 9, the superheat control valve 7 opens the solenoid valve so as to relatively lower the refrigerant temperature at the outlet of the internal heat exchanger 5. It controls to increase the amount of refrigerant CO 2 circulating in the circuit. As a result, in the refrigeration cycle 1, the degree of superheat of the refrigerant sucked into the compressor 3 decreases. In this case, since a large amount of refrigerant CO 2 having a high density flows in the circuit, there is almost no excess refrigerant CO 2 in the gas-liquid separator 2.
[0034]
By performing such control, in this refrigeration cycle 1, as shown in FIG. 2, the refrigerant discharge temperature of the compressor 3 is about 100 to 120 degrees even when the outside air temperature rises and exceeds 30 degrees. As a result, the COP can be improved while suppressing the discharge temperature of the compressor 3 and preventing the deterioration of oil (lubricating oil).
[0035]
Next, another embodiment of the refrigeration cycle will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the part same as the refrigerating cycle 1 of FIG. 1, and the description is abbreviate | omitted. The refrigeration cycle 1A shown in FIG. 3 has the same basic circuit configuration as the refrigeration cycle 1 described above, and uses temperature sensing tubes as the first refrigerant temperature detection means 9A and the second refrigerant temperature detection means 10A. (Hereinafter, referred to as a temperature sensing cylinder 9A and a temperature sensing cylinder 10A), the pressure-type configuration is used for opening / closing control of the superheat degree control valve. That is, the temperature sensing cylinder 9A and the temperature sensing cylinder 10A of the refrigeration cycle 1A are filled with fluid at a predetermined density, and the refrigerant temperature detection value is transferred to the switching control unit 11A by the pressure of the fluid (hereinafter referred to as detection pressure). It is designed to output.
[0036]
Further, in the refrigeration cycle 1A, a switching control unit 11A is configured using a switching valve 15 instead of the switching switch 14, and the switching valve 15 is based on a switching control signal from the control unit 13A. And the detected pressure of either of the temperature sensing cylinders 10A is switched and selected and supplied to the superheat degree control valve 7A. Furthermore, the superheat degree control valve 7A in the refrigeration cycle 1A is a mechanical type that adjusts the opening degree of the valve in accordance with the detected pressure supplied from the switching control unit 11A.
[0037]
Then, by performing the same setting and control as in the case of the refrigeration cycle 1 in FIG. 1, also in the refrigeration cycle 1A, as in the above-described refrigeration cycle 1, even when the outside air temperature rises and exceeds 30 degrees. The refrigerant discharge temperature of the compressor 3 can be suppressed to about 100 to 150 degrees, and the COP can be improved while preventing the deterioration of the oil (lubricating oil) of the compressor 3.
[0038]
Another embodiment of the refrigeration cycle will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the part same as the refrigerating cycle 1 of FIG. 1, and the description is abbreviate | omitted. The refrigeration cycle 1B shown in FIG. 4 has the same basic circuit configuration as the refrigeration cycle 1 described above, but a third refrigerant temperature detecting means for detecting the refrigerant temperature discharged from the compressor 3 for the switching control unit 11B. sensor portion 12A of the attached to the pipe P 2, on the basis of the detection value of the sensor unit 12A, the control unit 13B has a configuration for switching a detection signal supplied to the superheat control valve 7.
[0039]
In the refrigeration cycle 1B, in the initial state at the start of operation, as shown in FIG. 4, a detection signal from the thermistor 9 as the first refrigerant temperature detecting means is supplied to the superheat degree control valve 7. . Then, when the discharge refrigerant temperature of the compressor 3 rises and exceeds a predetermined temperature, the switching control unit 11B supplies a detection signal from the thermistor 10 as the second refrigerant temperature detection means to the superheat degree control valve 7. The switching control is performed.
[0040]
Specifically, in the switching control unit 11B, the control unit 13 monitors the detected value data about the discharge refrigerant temperature of the compressor 3 supplied from the sensor unit 12A, and the compressor 3 detected by the sensor unit 12A. When the value of the discharged refrigerant temperature reaches 120 degrees, which starts to affect the properties of the lubricating oil, a control signal is output to the changeover switch 14 and control for switching the connection of the switch S from the terminals 14a to 14b is performed. Do.
[0041]
By performing such control, in the refrigeration cycle 1B, when the discharge temperature of the compressor 3 exceeds a certain value, the superheat degree of the suction decreases, so that the discharge temperature of the compressor 3 is suppressed and the oil (lubricant oil) ) COP can be improved while preventing deterioration.
[0042]
In the refrigeration cycle 1B, the thermistor is used as the first refrigerant temperature detection means 9 and the second refrigerant temperature detection means 10 and the solenoid valve is used as the superheat degree control valve 7, as in the refrigeration cycle 1 of FIG. Furthermore, although it is configured by the electric switch 14, it is needless to say that these can be configured by a pressure type as in the refrigeration cycle 1A of FIG.
[0043]
Furthermore, in the above-described embodiment, the circuit is configured using the gas-liquid separator. However, as shown in FIG. 5, for example, the present invention can also configure the circuit without using the gas-liquid separator. . In FIG. 5, the same parts as those in the above-described embodiment are denoted by the same reference numerals. In the refrigeration cycle 1C shown in FIG. 5, the refrigerant flowing out of the evaporator 8 is supplied to the compressor 3 without going through the gas-liquid separator. On the other hand, in the refrigeration cycle 1 </ b> C, a surge tank 16 is disposed between the high-pressure control valve 6 and the superheat degree control valve 7, and excess refrigerant is stored in the surge tank 16. Here, the surge tank 16 only needs to have a storage capacity of about 500 to 1000 ml. Also in the refrigeration cycle 1C having such a configuration, by performing the same control as described above, it is possible to improve the COP while suppressing the discharge temperature of the compressor 3 and preventing the deterioration of the lubricating oil.
[0044]
In the embodiment described above, the degree of superheat of the refrigerant sucked into the compressor 3 is switched according to the outside air temperature or the refrigerant discharge temperature of the compressor 3, but the present invention is limited to this. Instead, the degree of superheat of the refrigerant may be controlled according to other factors such as the vehicle air conditioning load.
[0045]
【The invention's effect】
As described above in detail, according to the present invention, the switching selection means selects either the refrigerant temperature detection value from the first refrigerant temperature detection means or the refrigerant temperature detection value from the second refrigerant temperature detection means. By switching and selecting under a predetermined condition, based on the selected refrigerant temperature detection value, the superheat degree control valve causes the superheat degree of the refrigerant at the compressor inlet side to become a predetermined value from the radiator to the evaporator. Therefore, it is possible to provide a vapor compression refrigeration cycle capable of improving the COP while preventing the deterioration of the lubricating oil by suppressing the increase in the refrigerant discharge temperature of the compressor. .
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a configuration of a vapor compression refrigeration cycle of the present invention.
FIG. 2 is a characteristic diagram showing the relationship between the outside air temperature, the COP improvement rate (%), and the compressor discharge temperature in the vapor compression refrigeration cycle.
FIG. 3 is a circuit diagram showing another embodiment of the vapor compression refrigeration cycle of the present invention.
FIG. 4 is a circuit diagram showing another embodiment of the vapor compression refrigeration cycle of the present invention.
FIG. 5 is a circuit diagram showing another embodiment of the vapor compression refrigeration cycle of the present invention.
FIG. 6 is a circuit diagram of a CO 2 cycle using an internal heat exchanger.
FIG. 7 is a characteristic diagram showing the relationship between the outside air temperature, the COP improvement rate (%), and the discharge temperature of the compressor in a CO 2 cycle using an internal heat exchanger.
[Explanation of symbols]
1, 1A, 1B, 1C Refrigeration cycle 2 Gas-liquid separator 3 Compressor 4 Radiator (gas cooler)
5 Internal heat exchanger 6 High pressure control valve 7, 7A Superheat control valve 8 Evaporator 9 First refrigerant temperature detection means 10 Second refrigerant temperature detection means 11, 11A, 11B Switching control part 12, 12A Sensor part 13, 13A, 13B Control unit 14 selector switch 15 selector valve 16 surge tank

Claims (5)

二酸化炭素(CO2)を冷媒として用い、
気相冷媒を圧縮する圧縮機と、
上記圧縮機で圧縮された冷媒を外部流体と熱交換して冷却する放熱器と、
上記放熱器からの冷媒を蒸発させて上記圧縮機に供給する蒸発器と、
上記放熱器出口の冷媒と上記蒸発器出口の冷媒とで熱交換を行わせる内部熱交換器と、
上記内部熱交換器に供給される上記蒸発器からの冷媒温度を検出する第1の冷媒温度検出手段と、
上記内部熱交換器から流出する上記蒸発器出口からの冷媒温度を検出する第2の冷媒温度検出手段と、
上記第1の冷媒温度検出手段からの冷媒温度検出値と第2の冷媒温度検出手段からの冷媒温度検出値のいずれかを所定条件下で切替選択する切替選択手段と、
上記内部熱交換器出口側の流路に取り付けられ、上記切替選択手段の選択したいずれかの冷媒温度検出手段からの冷媒温度検出値に基づいて、上記圧縮機入口側での冷媒の過熱度が所定値となるように上記蒸発器に流入する冷媒の流量を調節する過熱度制御弁と、
を備えることを特徴とする蒸気圧縮式冷凍サイクル。
Using carbon dioxide (CO 2 ) as a refrigerant,
A compressor for compressing the gas-phase refrigerant;
A radiator that cools the refrigerant compressed by the compressor by exchanging heat with an external fluid;
An evaporator that evaporates the refrigerant from the radiator and supplies the refrigerant to the compressor;
An internal heat exchanger that exchanges heat between the refrigerant at the radiator outlet and the refrigerant at the evaporator outlet;
First refrigerant temperature detection means for detecting refrigerant temperature from the evaporator supplied to the internal heat exchanger;
Second refrigerant temperature detection means for detecting the refrigerant temperature from the evaporator outlet flowing out of the internal heat exchanger;
Switching selection means for switching and selecting either of the refrigerant temperature detection value from the first refrigerant temperature detection means and the refrigerant temperature detection value from the second refrigerant temperature detection means under a predetermined condition;
Based on the refrigerant temperature detection value from any one of the refrigerant temperature detection means selected by the switching selection means, the superheat degree of the refrigerant at the compressor inlet side is attached to the flow path on the outlet side of the internal heat exchanger. A superheat degree control valve for adjusting the flow rate of the refrigerant flowing into the evaporator so as to be a predetermined value;
A vapor compression refrigeration cycle comprising:
上記第1の冷媒温度検出手段及び上記第2の冷媒温度検出手段は、冷媒温度検出値を電気信号で出力するサーミスタであり、
上記切替選択手段は、各サーミスタからのいずれの電気信号を上記過熱度制御弁に供給するかについて切り替える切替スイッチと、外気温度を検出する温度センサと、当該温度センサの検出値に基づいて上記切替スイッチの切替制御を行う切替スイッチ制御手段とを備えることを特徴とする請求項1記載の蒸気圧縮式冷凍サイクル。
The first refrigerant temperature detection means and the second refrigerant temperature detection means are thermistors that output a refrigerant temperature detection value as an electrical signal,
The switch selection means switches the switch based on which electric signal from each thermistor is supplied to the superheat degree control valve, a temperature sensor for detecting the outside air temperature, and the detection value of the temperature sensor. 2. The vapor compression refrigeration cycle according to claim 1, further comprising changeover switch control means for performing switch changeover control.
上記第1の冷媒温度検出手段及び上記第2の冷媒温度検出手段は、流体が封入され、冷媒温度検出値を当該流体の圧力により出力する感温筒であり、
上記切替選択手段は、各感温筒からのいずれの流体の圧力を上記過熱度制御弁に供給するかについて切り替える切替弁と、外気温度を検出する温度センサと、当該温度センサの検出値に基づいて上記切替弁を切り替える切替弁制御手段とを備えることを特徴とする請求項1記載の蒸気圧縮式冷凍サイクル。
The first refrigerant temperature detection means and the second refrigerant temperature detection means are temperature-sensitive cylinders in which a fluid is sealed and a refrigerant temperature detection value is output by the pressure of the fluid,
The switching selection means is based on a switching valve that switches which fluid pressure from each temperature sensing cylinder is supplied to the superheat degree control valve, a temperature sensor that detects an outside air temperature, and a detection value of the temperature sensor. The vapor compression refrigeration cycle according to claim 1, further comprising switching valve control means for switching the switching valve.
上記第1の冷媒温度検出手段及び上記第2の冷媒温度検出手段は、冷媒温度検出値を電気信号で出力するサーミスタであり、
上記切替選択手段は、各サーミスタからのいずれの電気信号を上記過熱度制御弁に供給するかについて切り替える切替スイッチと、上記圧縮機の吐出冷媒温度を検出する第3の冷媒温度検出手段と、当該第3の冷媒温度検出手段の検出値に基づいて上記切替スイッチの切替制御を行う切替スイッチ制御手段とを備えることを特徴とする請求項1記載の蒸気圧縮式冷凍サイクル。
The first refrigerant temperature detection means and the second refrigerant temperature detection means are thermistors that output a refrigerant temperature detection value as an electrical signal,
The switching selection means includes a changeover switch for switching which electric signal from each thermistor is supplied to the superheat degree control valve, a third refrigerant temperature detection means for detecting the refrigerant discharge temperature of the compressor, The vapor compression refrigeration cycle according to claim 1, further comprising changeover switch control means for performing changeover control of the changeover switch based on a detection value of the third refrigerant temperature detection means.
上記第1の冷媒温度検出手段及び上記第2の冷媒温度検出手段は、流体が封入され、冷媒温度検出値を当該流体の圧力により出力する感温筒であり、
上記切替選択手段は、各感温筒からのいずれの流体の圧力を上記過熱度制御弁に供給するかについて切り替える切替弁と、上記圧縮機の吐出冷媒温度を検出する第3の冷媒温度検出手段と、当該第3の冷媒温度検出手段の検出値に基づいて上記切替弁を切り替える切替弁制御手段とを備えることを特徴とする請求項1記載の蒸気圧縮式冷凍サイクル。
The first refrigerant temperature detection means and the second refrigerant temperature detection means are temperature-sensitive cylinders in which a fluid is sealed and a refrigerant temperature detection value is output by the pressure of the fluid,
The switching selection means includes a switching valve for switching which fluid pressure from each temperature sensing cylinder is supplied to the superheat degree control valve, and third refrigerant temperature detection means for detecting the discharge refrigerant temperature of the compressor. And a switching valve control means for switching the switching valve based on a detection value of the third refrigerant temperature detection means.
JP00382399A 1999-01-11 1999-01-11 Vapor compression refrigeration cycle Expired - Fee Related JP4202505B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP00382399A JP4202505B2 (en) 1999-01-11 1999-01-11 Vapor compression refrigeration cycle
EP99126069A EP1026459A1 (en) 1999-01-11 1999-12-28 Vapor compression type refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00382399A JP4202505B2 (en) 1999-01-11 1999-01-11 Vapor compression refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2000205670A JP2000205670A (en) 2000-07-28
JP4202505B2 true JP4202505B2 (en) 2008-12-24

Family

ID=11567928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00382399A Expired - Fee Related JP4202505B2 (en) 1999-01-11 1999-01-11 Vapor compression refrigeration cycle

Country Status (2)

Country Link
EP (1) EP1026459A1 (en)
JP (1) JP4202505B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2815397B1 (en) * 2000-10-12 2004-06-25 Valeo Climatisation VEHICLE AIR CONDITIONING DEVICE USING A SUPERCRITICAL CYCLE
EP1369648A3 (en) 2002-06-04 2004-02-04 Sanyo Electric Co., Ltd. Supercritical refrigerant cycle system
JP2006077998A (en) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd Refrigerating cycle device, and control method
JP2006220407A (en) * 2005-01-13 2006-08-24 Denso Corp Expansion valve for refrigeration cycle
MX2007010003A (en) 2005-02-18 2008-04-08 Carrier Corp Control of a refrigeration circuit with an internal heat exchanger.
DE202006000385U1 (en) * 2006-01-11 2006-03-02 Hans Güntner GmbH refrigeration plant
JP5055965B2 (en) * 2006-11-13 2012-10-24 ダイキン工業株式会社 Air conditioner
DE102007010645B4 (en) * 2007-03-02 2020-12-17 Stiebel Eltron Gmbh & Co. Kg Method for controlling a compression refrigeration system and a compression refrigeration system
GB2453515A (en) * 2007-07-31 2009-04-15 Space Engineering Services Ltd Vapour compression system
DE102019001638A1 (en) * 2019-03-08 2020-09-10 Stiebel Eltron Gmbh & Co. Kg Method for operating a heat pump with a vapor compression system
DE102020115276A1 (en) * 2020-06-09 2021-12-09 Stiebel Eltron Gmbh & Co. Kg Method for regulating a compression refrigeration system and a compression refrigeration system
DE102020115265A1 (en) * 2020-06-09 2021-12-09 Stiebel Eltron Gmbh & Co. Kg Method for operating a compression refrigeration system and compression refrigeration system
DE102020115275A1 (en) * 2020-06-09 2021-12-09 Stiebel Eltron Gmbh & Co. Kg Method for operating a compression refrigeration system and compression refrigeration system
DE102020115274A1 (en) * 2020-06-09 2021-12-09 Stiebel Eltron Gmbh & Co. Kg Method for operating a compression refrigeration system
EP4170262A1 (en) * 2021-10-20 2023-04-26 Thermo King Corporation Heat pump, methods of operation and simulation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2943643A (en) * 1956-12-21 1960-07-05 Gen Electric Flow modulating device
US3478534A (en) * 1967-08-11 1969-11-18 Controls Co Of America Thermistor controlled refrigeration expansion valve
US4244182A (en) * 1977-12-20 1981-01-13 Emerson Electric Co. Apparatus for controlling refrigerant feed rate in a refrigeration system
FR2539855B1 (en) * 1983-01-25 1985-09-27 Comp Generale Electricite METHOD AND DEVICE FOR ADJUSTING THE EXPANSION RATE IN A VALVE FOR EXPANSION OF THE REFRIGERANT FLUID OF A HEAT PUMP CYCLE
DE3442169A1 (en) * 1984-11-17 1986-05-28 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Method for regulating a refrigeration circuit process for a heat pump or a refrigerating machine and a heat pump or refrigerating machine for this
JPH0763184A (en) * 1993-08-25 1995-03-07 Yamaha Motor Co Ltd Lubrication control method for heat pump driving compressor and its device
JPH0949662A (en) * 1995-08-09 1997-02-18 Aisin Seiki Co Ltd Compression type air conditioner

Also Published As

Publication number Publication date
JP2000205670A (en) 2000-07-28
EP1026459A1 (en) 2000-08-09

Similar Documents

Publication Publication Date Title
JP3988780B2 (en) Refrigeration equipment
JP4202505B2 (en) Vapor compression refrigeration cycle
JP5045524B2 (en) Refrigeration equipment
EP2107322B1 (en) Heat pump type hot water supply outdoor apparatus
JP2000179960A (en) Vapor compression type refrigeration cycle
JP5452138B2 (en) Refrigeration air conditioner
WO2018226986A1 (en) Method of control for economizer of transport refrigeration units
EP2146854B1 (en) Method for operating an AIR-CONDITIONING SYSTEM, IN PARTICULAR FOR A MOTOR VEHICLE
US9046275B2 (en) Air conditioner with electromagnetic induction heating unit
JP4036288B2 (en) Air conditioner
JP2006071268A (en) Refrigerating plant
CN111486574B (en) Air conditioning system, anti-condensation control method and device thereof, and storage medium
JP4115017B2 (en) Refrigeration air conditioner
JP6904396B2 (en) Heat source unit and refrigeration equipment
JP4096984B2 (en) Refrigeration equipment
JP2003130481A (en) Vapor compression type refrigerating cycle of air conditioner for automobile
US11486616B2 (en) Refrigeration device
JP4730318B2 (en) Refrigeration equipment
JP2745828B2 (en) Operation control device for refrigeration equipment
JP2010121846A (en) Vapor compression type refrigerating cycle
JP2010014386A (en) Refrigerating device
JP2008082652A (en) Refrigerating cycle device, and method of manufacturing refrigerating cycle device
JP2003121012A (en) Method for controlling vapor compression type refrigerating cycle and vapor compression type refrigerating circuit in automotive air-conditioner
JP2010014387A (en) Refrigerating device
JP2008106953A (en) Refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees