JP2003130492A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2003130492A
JP2003130492A JP2001320064A JP2001320064A JP2003130492A JP 2003130492 A JP2003130492 A JP 2003130492A JP 2001320064 A JP2001320064 A JP 2001320064A JP 2001320064 A JP2001320064 A JP 2001320064A JP 2003130492 A JP2003130492 A JP 2003130492A
Authority
JP
Japan
Prior art keywords
liquid
outdoor
compressor
heat exchanger
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001320064A
Other languages
Japanese (ja)
Other versions
JP4029262B2 (en
Inventor
Hiroaki Tsuboe
宏明 坪江
Susumu Nakayama
進 中山
Michiko Endo
道子 遠藤
Koji Naito
宏治 内藤
Yasutaka Yoshida
康孝 吉田
Takeshi Endo
剛 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001320064A priority Critical patent/JP4029262B2/en
Publication of JP2003130492A publication Critical patent/JP2003130492A/en
Application granted granted Critical
Publication of JP4029262B2 publication Critical patent/JP4029262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multi-type air conditioner capable of sufficiently securing cooling and heating capacities, reducing the input of a compressor, and concurrently operating cooling and heating operations using a reduced amount of refrigerant. SOLUTION: In this air conditioner having a refrigerating cycle, a plurality of compressors 1a, 1b, and 1c, an outdoor heat exchanger 3, an outdoor expansion device 4, a liquid receiver 5, and an indoor expansion device 9 are connected to a plurality of indoor units 40 having indoor heat exchangers 10. High pressure gas refrigerant discharged from one of the plurality of compressors 1 is fed to the indoor unit 40 on a heating use side and condensed in the indoor heat exchanger 10. High pressure gas refrigerant discharged from the other side is condensed in the outdoor heat exchanger 3, supercooled after passing the liquid receiver 5, and fed to the indoor unit 40 on a cooling use side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍サイクルを用
いる空気調和機に関し、特に圧縮機を2台以上搭載した
冷暖房同時運転が可能なマルチ型空気調和機に好適であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using a refrigeration cycle, and is particularly suitable for a multi-type air conditioner equipped with two or more compressors and capable of simultaneous cooling and heating operation.

【0002】[0002]

【従来の技術】冷暖房同時運転が可能なマルチ型空気調
和機の冷房主体運転(暖房小容量運転)時において、外
気温度が低い場合、冷房運転側の冷凍サイクルでは室外
熱交換器は凝縮器として作用するので、室外熱交換器で
の熱交換量が増加し、凝縮圧力が低下し、圧縮機の吐出
圧力が低下する。一方、暖房側室内機の吹出温度を高く
保つには、室内熱交換器での凝縮圧力を上昇させなけれ
ばならないので圧縮機の吐出圧力を上昇させる必要があ
る。
2. Description of the Related Art In a cooling-type operation (heating small capacity operation) of a multi-type air conditioner capable of simultaneous cooling and heating operation, when the outside air temperature is low, the outdoor heat exchanger functions as a condenser in the refrigeration cycle on the cooling operation side. Since it works, the amount of heat exchange in the outdoor heat exchanger increases, the condensing pressure decreases, and the discharge pressure of the compressor decreases. On the other hand, in order to keep the blowout temperature of the heating-side indoor unit high, the condensing pressure in the indoor heat exchanger must be increased, and therefore the discharge pressure of the compressor must be increased.

【0003】このため、圧縮機を2台以上搭載した冷暖
房同時運転が可能なマルチ型空気調和機において、各々
の圧縮機から吐出する高圧冷媒を一度合流した後、分岐
するような冷凍サイクルでは、冷房運転側の冷凍サイク
ルにとっては圧縮機の吐出圧力を必要以上に上昇させる
ことになり、その分圧縮機入力も上昇することになる。
そこで、冷房運転と暖房運転とが混在する場合の圧縮機
入力を低減するため、各々の圧縮機から吐出する高圧冷
媒の混合を防止することが知られ、例えば特開平5−1
862号公報に記載されている。
For this reason, in a multi-type air conditioner equipped with two or more compressors and capable of simultaneous cooling and heating operation, in a refrigeration cycle in which the high-pressure refrigerants discharged from the respective compressors are once merged and then branched, For the refrigeration cycle on the cooling operation side, the discharge pressure of the compressor will be increased more than necessary, and the compressor input will be increased accordingly.
Therefore, in order to reduce the compressor input when the cooling operation and the heating operation coexist, it is known to prevent the high-pressure refrigerant discharged from each compressor from being mixed, for example, Japanese Patent Laid-Open No. 5-1.
No. 862 publication.

【0004】また、冷房運転と暖房運転とが混在する場
合、室外機よりも室内機が上部にあるとそのヘッド差に
より液冷媒が冷房利用側室内機に供給されないと冷房能
力不足が生じるが、液配管内を流れる液冷媒の一部をバ
イパスし、その液冷媒を減圧して得た低温の冷媒と液配
管内を流れる液冷媒とを熱交換する過冷却回路を設け、
冷房利用側室内機に液冷媒を供給して改善することが、
例えば特開平7−4779号公報に開示されている。
In the case where the cooling operation and the heating operation are mixed, if the indoor unit is located above the outdoor unit, the cooling capacity will be insufficient unless the liquid refrigerant is supplied to the indoor unit on the cooling use side due to the head difference. Bypassing a part of the liquid refrigerant flowing in the liquid pipe, providing a supercooling circuit for exchanging heat between the low temperature refrigerant obtained by decompressing the liquid refrigerant and the liquid refrigerant flowing in the liquid pipe,
To improve by supplying liquid refrigerant to the indoor unit on the cooling side,
For example, it is disclosed in JP-A-7-4779.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術において
は、冷暖同時運転時に夫々の圧縮機から吐出された高圧
冷媒の混合を防止しているが、冷房運転の負荷が増加し
た場合、冷房側の冷媒循環量が低下する。そのため、一
方の圧縮機(暖房側)から吐出した冷媒の一部を室外熱
交換器で凝縮し、凝縮した液冷媒を冷房利用側室内機に
供給すれば良いが、そうすると前述と同様になり、暖房
利用側室内機の吹出温度を高く保つために圧縮機の吐出
圧力を上昇させなければならない。圧縮機の吐出圧力を
上昇させるためには、凝縮性能を低下させるために伝熱
面積を小さくし、室外熱交換器内を液冷媒で埋めること
になる。よって、冷凍サイクル内に封入する冷媒量が増
加してしまい、空気調和機のコストアップにつながるの
みならず、環境負荷が大きい機器となってしまう。
In the above prior art, the high pressure refrigerant discharged from each compressor is prevented from being mixed during the simultaneous cooling and heating operation. However, when the load of the cooling operation increases, the cooling side The refrigerant circulation amount decreases. Therefore, a part of the refrigerant discharged from one compressor (on the heating side) is condensed by the outdoor heat exchanger, and the condensed liquid refrigerant may be supplied to the cooling-use side indoor unit, which then becomes similar to the above. The discharge pressure of the compressor must be increased in order to keep the blowout temperature of the heating-use side indoor unit high. In order to increase the discharge pressure of the compressor, the heat transfer area is reduced to reduce the condensation performance, and the outdoor heat exchanger is filled with the liquid refrigerant. Therefore, the amount of refrigerant to be enclosed in the refrigeration cycle increases, which not only increases the cost of the air conditioner, but also causes a large environmental load.

【0006】また、特開平7−4779号公報に記載の
ものでは、各冷房利用側室内機に供給される液冷媒の一
部が、それぞれ室内機入口においてバイパスされるの
で、冷房利用側室内機に供給されるの液冷媒の量によっ
ては、液冷媒を過冷却するのに必要なバイパスする液冷
媒が確保することが困難となる。さらに、バイパスする
ことにより、冷房側室内機に供給する液冷媒量が少量と
なり、冷房能力が確保できなくなる恐れがある。
Further, in the one disclosed in Japanese Patent Laid-Open No. 7-4779, a part of the liquid refrigerant supplied to each cooling-use side indoor unit is bypassed at the indoor unit inlet, so that the cooling-use side indoor unit. Depending on the amount of the liquid refrigerant supplied to, it becomes difficult to secure the bypass liquid refrigerant necessary for supercooling the liquid refrigerant. Further, by bypassing, the amount of liquid refrigerant supplied to the cooling-side indoor unit becomes small, and there is a possibility that the cooling capacity cannot be secured.

【0007】本発明の目的は、上記従来技術の課題を解
決し、冷房及び暖房能力を充分に確保すると共に、圧縮
機の入力を低減し、かつ使用する冷媒量を低減すること
にある。特に、室外機よりも室内機が上部に配置される
場合でも冷房利用側室内機の冷房能力を充分確保するこ
とにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, to secure sufficient cooling and heating capacities, to reduce the input of the compressor, and to reduce the amount of refrigerant used. In particular, even when the indoor unit is arranged above the outdoor unit, the cooling capacity of the cooling-use side indoor unit is to be sufficiently ensured.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、複数の圧縮機、室外熱交換器、室外膨張
装置、受液器、室内膨張装置と室内熱交換器を備えた複
数の室内機、とを連結した冷凍サイクルを有する空気調
和機において、複数の圧縮機のうち一方から吐出される
高圧ガス冷媒は暖房利用側となる室内機へ供給されて室
内熱交換器で凝縮され、他方から吐出される高圧ガス冷
媒は室外熱交換器で凝縮されて受液器を通った後に過冷
却されて冷房利用側となる室内機へ供給される。
In order to solve the above problems, the present invention provides a plurality of compressors, an outdoor heat exchanger, an outdoor expansion device, a liquid receiver, an indoor expansion device and an indoor heat exchanger. In the air conditioner having a refrigeration cycle in which the high pressure gas refrigerant is discharged from one of the plurality of compressors, the high pressure gas refrigerant is supplied to the indoor unit on the heating use side and condensed in the indoor heat exchanger. The high-pressure gas refrigerant discharged from the other side is condensed in the outdoor heat exchanger, passed through the liquid receiver, and then supercooled and supplied to the indoor unit on the cooling side.

【0009】また、上記のものにおいて、暖房利用側の
圧縮機を回転数制御が可能とされるインバータ圧縮機と
したことが望ましい。
Further, in the above, it is desirable that the compressor on the heating side is an inverter compressor capable of controlling the number of revolutions.

【0010】さらに、上記のものにおいて、暖房利用側
の圧縮機を回転数制御が可能とされるインバータ圧縮機
とし、冷房利用側の圧縮機を複数台の定速型圧縮機とし
たことが望ましい。
Further, in the above, it is preferable that the compressor on the heating side is an inverter compressor whose rotation speed is controllable and the compressor on the cooling side is a plurality of constant speed type compressors. .

【0011】さらに、上記のものにおいて、冷房利用側
の圧縮機を複数台の定速型圧縮機とし、その運転台数を
制御することが望ましい。
Further, in the above, it is desirable that a plurality of constant speed type compressors are used as the compressors on the cooling side and the number of operating units is controlled.

【0012】さらに、上記のものにおいて、暖房利用側
の圧縮機の吐出圧力を冷房利用側の圧縮機の吐出圧力よ
りも高くしたことが望ましい。
Further, in the above, it is desirable that the discharge pressure of the compressor on the heating side is set higher than the discharge pressure of the compressor on the cooling side.

【0013】さらに、上記のものにおいて、室外熱交換
器、室外膨張装置、受液器を備えた室外機を複数台設
け、それぞれを開閉弁又は逆止弁で接続したことが望ま
しい。
Further, in the above, it is preferable that a plurality of outdoor units each including an outdoor heat exchanger, an outdoor expansion device, and a liquid receiver are provided and connected by an on-off valve or a check valve.

【0014】さらに、上記のものにおいて、圧縮機、室
外熱交換器、室外膨張装置、受液器及び受液器を通った
後の液冷媒が通過する室外液分岐配管を備えた複数台の
室外機と、室外液分岐配管を集約して室内機側へ配管さ
れる液接続主配管と、を設け、過冷却は液接続主配管で
行われることが望ましい。
Further, in the above, a plurality of outdoor units provided with a compressor, an outdoor heat exchanger, an outdoor expansion device, a liquid receiver, and an outdoor liquid branch pipe through which the liquid refrigerant after passing through the liquid receiver passes. It is preferable that a machine and a liquid connection main pipe in which the outdoor liquid branch pipes are aggregated and piped to the indoor unit side are provided, and supercooling is performed by the liquid connection main pipe.

【0015】さらに、上記のものにおいて、受液器を通
った後に液冷媒が分岐され、分岐された一方を減圧して
得た冷媒により過冷却が行われることが望ましい。
Further, in the above-mentioned thing, it is desirable that the liquid refrigerant is branched after passing through the liquid receiver, and the refrigerant obtained by decompressing one of the branched ones is supercooled.

【0016】さらに、上記のものにおいて、受液器から
導出した液冷媒を室外熱交換器と共に空冷されるサブク
ーラにより過冷却が行われることが望ましい。
Further, in the above-mentioned thing, it is desirable that the liquid refrigerant led out from the liquid receiver is supercooled by a subcooler which is air-cooled together with the outdoor heat exchanger.

【0017】さらに、上記のものにおいて、過冷却は、
圧縮機、室外熱交換器、室外膨張装置、過冷却装置を順
次接続した冷凍サイクルにより行われることが望まし
い。
Further, in the above, the subcooling is
It is desirable to carry out by a refrigeration cycle in which a compressor, an outdoor heat exchanger, an outdoor expansion device, and a supercooling device are sequentially connected.

【0018】さらに、本発明は、複数の圧縮機、室外熱
交換器、室外膨張装置、受液器、室内膨張装置と室内熱
交換器を備えた複数の室内機、とを高圧ガス接続主配
管、液接続主配管、低圧ガス接続主配管とで連結した冷
凍サイクルを有する空気調和機において、吐出される高
圧ガス冷媒が高圧ガス接続主配管を介して暖房利用側と
なる室内機へ供給される第1の圧縮機と、吐出される高
圧ガス冷媒が室外熱交換器で凝縮されて受液器、液接続
主配管を介して冷房利用側となる室内機へ供給される第
2の圧縮機と、室内機で蒸発した冷媒を第1の圧縮機及
び第2の圧縮機の吸入側に接続する低圧ガス接続主配管
と、受液器から導出される液冷媒を過冷却する過冷却装
置と、を備えたものである。
Further, according to the present invention, a plurality of compressors, an outdoor heat exchanger, an outdoor expansion device, a liquid receiver, a plurality of indoor units equipped with an indoor expansion device and an indoor heat exchanger, and a high pressure gas connecting main pipe. In an air conditioner having a refrigeration cycle connected with a liquid connection main pipe and a low pressure gas connection main pipe, the discharged high pressure gas refrigerant is supplied to the indoor unit on the heating side via the high pressure gas connection main pipe. A first compressor and a second compressor in which the discharged high-pressure gas refrigerant is condensed in an outdoor heat exchanger and supplied to a cooling-use side indoor unit through a liquid receiver and a liquid connection main pipe. A low-pressure gas connection main pipe that connects the refrigerant evaporated in the indoor unit to the suction sides of the first compressor and the second compressor; and a supercooling device that supercools the liquid refrigerant that is discharged from the liquid receiver. It is equipped with.

【0019】[0019]

【発明の実施の形態】以下、本発明の一実施の形態によ
る空気調和機を図1ないし図6を参照してて説明する。
図1ないし図6に記載の矢印の向きは、冷房主体(暖房
小容量)運転時の冷媒の流れ方向を示し、主として冷房
主体運転時について説明するが、本冷凍サイクルは全室
冷房、全室暖房、暖房主体(冷房小容量)運転時におい
ても同様である。
BEST MODE FOR CARRYING OUT THE INVENTION An air conditioner according to an embodiment of the present invention will be described below with reference to FIGS. 1 to 6.
The direction of the arrows shown in FIGS. 1 to 6 indicates the flow direction of the refrigerant during the cooling-based (heating small capacity) operation, and the description will mainly be given during the cooling-based operation. The same is true during heating and heating-only (cooling small capacity) operation.

【0020】図1において、1aはその回転数が可変と
されたインバータ圧縮機であり、インバータ圧縮機1a
から吐出した高圧冷媒は、四方弁2a、室外高圧ガス阻
止弁14を介して、高圧ガス接続配管15から各室内機
40a、40b、40c、40dに接続された高圧ガス
接続枝配管151a、151b、151c、151dに
供給される。圧縮機1b、1cから吐出した高圧冷媒
は、四方弁2b、室外熱交換器3b、室外膨張装置4
b、受液器5、室外液配管6、室外液阻止弁7を介し
て、液接続主配管8から各室内機40a、40b、40
c、40dに接続された液接続枝配管81a、81b、
81c、81dに供給される。
In FIG. 1, reference numeral 1a denotes an inverter compressor whose rotational speed is variable, and the inverter compressor 1a
The high pressure refrigerant discharged from the high pressure gas connecting branch pipes 151a, 151b connected to the indoor units 40a, 40b, 40c, 40d from the high pressure gas connecting pipe 15 via the four-way valve 2a and the outdoor high pressure gas blocking valve 14, It is supplied to 151c and 151d. The high-pressure refrigerant discharged from the compressors 1b and 1c is the four-way valve 2b, the outdoor heat exchanger 3b, and the outdoor expansion device 4.
b, the liquid receiver 5, the outdoor liquid pipe 6, and the outdoor liquid blocking valve 7 to the indoor units 40a, 40b, 40 from the liquid connection main pipe 8
liquid connection branch pipes 81a and 81b connected to c and 40d,
It is supplied to 81c and 81d.

【0021】暖房利用側室内機40dでは、高圧ガス開
閉弁510dを開け、低圧ガス開閉弁511dを閉じる
ことで、高圧ガス接続枝配管151dから供給される高
圧ガス冷媒を室内熱交換器10dで凝縮する。凝縮した
液冷媒(またはガス液二相の冷媒)は室内膨張装置9d
から液接続枝配管81dを介して、液接続主管8に導出
される。
In the heating-use side indoor unit 40d, the high-pressure gas on-off valve 510d is opened and the low-pressure gas on-off valve 511d is closed, so that the high-pressure gas refrigerant supplied from the high-pressure gas connecting branch pipe 151d is condensed in the indoor heat exchanger 10d. To do. The condensed liquid refrigerant (or gas-liquid two-phase refrigerant) is the indoor expansion device 9d.
Through the liquid connection branch pipe 81d to the liquid connection main pipe 8.

【0022】一方、冷房利用側室内機40a、40b、
40cでは、高圧ガス開閉弁510a、510b、51
0c、510dを閉じ、低圧ガス開閉弁511a、51
1b、511c、511dを開けることで、液接続枝配
管81a、81b、81cから供給される液冷媒(また
はガス・液二相の冷媒)を室内膨張装置9a、9b、9
cで減圧した後、室内熱交換器10a、10b、10c
で蒸発する。蒸発したガスまたは、ガス・液二相の冷媒
は低圧ガス接続枝配管111a、111b、111c、
低圧ガス接続主配管11、アキュムレータ13を介し
て、圧縮機1a、1b、1cに吸入される。
On the other hand, the cooling-use side indoor units 40a, 40b,
At 40c, high pressure gas on-off valves 510a, 510b, 51
0c and 510d are closed, and low pressure gas on-off valves 511a and 51
By opening 1b, 511c, and 511d, the liquid refrigerant (or gas / liquid two-phase refrigerant) supplied from the liquid connecting branch pipes 81a, 81b, and 81c is supplied to the indoor expansion devices 9a, 9b, and 9a.
After depressurizing at c, indoor heat exchangers 10a, 10b, 10c
Evaporates at. The vaporized gas or the gas / liquid two-phase refrigerant is supplied to the low pressure gas connecting branch pipes 111a, 111b, 111c,
It is sucked into the compressors 1a, 1b, 1c through the low pressure gas connection main pipe 11 and the accumulator 13.

【0023】次に、空調負荷が変化した場合の冷凍サイ
クルの制御方法について説明する。暖房利用側の空調負
荷が変化した場合は、インバータ圧縮機1aの回転数を
制御することで、任意の暖房能力に設定することができ
る。冷房側の空調負荷が変化した場合は、圧縮機1b、
1cを全てまたは、どちらか1台をインバータ圧縮機と
した場合は、インバータ圧縮機の回転数を制御すること
で、任意の冷房能力に設定することができる。
Next, a method of controlling the refrigeration cycle when the air conditioning load changes will be described. When the air conditioning load on the heating use side changes, it is possible to set an arbitrary heating capacity by controlling the rotation speed of the inverter compressor 1a. When the air conditioning load on the cooling side changes, the compressor 1b,
When all or one of 1c is an inverter compressor, it is possible to set an arbitrary cooling capacity by controlling the rotation speed of the inverter compressor.

【0024】圧縮機1b、1c共に定速圧縮機とした場
合は、受液器5の後流側からバイパスする液冷媒のバイ
パス量を減圧装置16の開度で制御して、つまり、減圧
装置16で減圧した低温のガス・液二相の冷媒と室外液
配管6中の液冷媒との熱交換量を過冷却装置17で調整
すれば、冷房利用側室内機の入口における冷媒の比エン
タルピ量を制御することになるので、それと共に、圧縮
機1b、1cの運転台数を制御することで任意の冷房能
力に設定することができる。また、圧縮機1b、1cを
共に定速圧縮機とした場合、室外熱交換器3bで凝縮し
た液冷媒の1部を、室外熱交換器3a側に導入し、冷房
利用側室内機40a、40b、40cに流れる冷媒量を
調整すると共に、圧縮機1b、1cの運転台数を制御す
ることでも任意の冷房能力に設定することができる。
When both the compressors 1b and 1c are constant speed compressors, the bypass amount of the liquid refrigerant bypassing from the downstream side of the receiver 5 is controlled by the opening of the pressure reducing device 16, that is, the pressure reducing device. If the amount of heat exchange between the low-temperature gas / liquid two-phase refrigerant depressurized in 16 and the liquid refrigerant in the outdoor liquid pipe 6 is adjusted by the supercooling device 17, the specific enthalpy amount of the refrigerant at the inlet of the cooling-use side indoor unit is adjusted. Therefore, it is possible to set an arbitrary cooling capacity by controlling the number of operating compressors 1b and 1c together with the above. When both the compressors 1b and 1c are constant speed compressors, a part of the liquid refrigerant condensed in the outdoor heat exchanger 3b is introduced to the outdoor heat exchanger 3a side to cool the indoor units 40a and 40b on the cooling use side. , 40c, and the number of operating compressors 1b, 1c is controlled, and the cooling capacity can be set to an arbitrary value.

【0025】冷房能力及び暖房能力を空調負荷に応じて
制御する際に、インバータ圧縮機1aから吐出した高圧
冷媒と圧縮機1b、1cから吐出した高圧冷媒とを完全
に分離しているので、インバータ圧縮機1aと圧縮機1
b、1cの吐出圧力を別々に設定することができ、例え
ば外気温度が低い場合、冷房運転側の冷凍サイクルで
は、室外熱交換器3bでの熱交換量が増加するので、室
外熱交換器3bでの凝縮圧力を低く抑えることができ、
圧縮機1b、1cの吐出圧力を低く設定することができ
る。また、インバータ圧縮機1aの吐出側から圧縮機1
a、1b、1cの吸入側へ流れないような逆止弁18を
設けることが望ましい。
When the cooling capacity and the heating capacity are controlled according to the air conditioning load, the high-pressure refrigerant discharged from the inverter compressor 1a and the high-pressure refrigerant discharged from the compressors 1b and 1c are completely separated from each other. Compressor 1a and compressor 1
The discharge pressures of b and 1c can be set separately. For example, when the outside air temperature is low, the amount of heat exchange in the outdoor heat exchanger 3b increases in the refrigeration cycle on the cooling operation side. The condensing pressure in can be kept low,
The discharge pressure of the compressors 1b and 1c can be set low. In addition, from the discharge side of the inverter compressor 1a, the compressor 1
It is desirable to provide a check valve 18 which does not flow to the suction side of a, 1b, 1c.

【0026】暖房運転側の冷凍サイクルでは、暖房利用
側室内機40dの吹出温度を高く保つために、インバー
タ圧縮機1aの吐出圧力を圧縮機1b、1cの吐出圧力
よりも高く設定すれば良いので、冷房運転側の冷凍サイ
クルで使用する圧縮機1b、1cと暖房運転側の冷凍サ
イクルで使用するインバータ圧縮機1aのそれぞれの吐
出圧力を、空気調和機の運転効率が最も高くなる圧力に
して圧縮機入力を低減することができる。このとき、室
外膨張装置4aを全閉、もしくは微開とすることで、室
外熱交換器3bは低圧となり、室外熱交換器3b内に液
冷媒が溜まることがない。よって、冷凍サイクルに封入
する冷媒量を低減することができる。
In the heating operation side refrigeration cycle, the discharge pressure of the inverter compressor 1a may be set higher than the discharge pressures of the compressors 1b and 1c in order to keep the blowout temperature of the heating use side indoor unit 40d high. Compressing the discharge pressure of each of the compressors 1b and 1c used in the refrigeration cycle on the cooling operation side and the inverter compressor 1a used in the refrigeration cycle on the heating operation side to a pressure that maximizes the operation efficiency of the air conditioner. Machine input can be reduced. At this time, by fully closing or slightly opening the outdoor expansion device 4a, the outdoor heat exchanger 3b has a low pressure, and the liquid refrigerant does not accumulate in the outdoor heat exchanger 3b. Therefore, the amount of refrigerant sealed in the refrigeration cycle can be reduced.

【0027】図2は、他の実施の形態を示し、図1のも
のに対して、室外機31aに接続された室外液分岐配管
8a、室外低圧ガス分岐配管11a、室外高圧ガス分岐
配管15aと室外機31bに接続された室外液分岐配管
8b、室外低圧ガス分岐配管11b、室外高圧ガス分岐
配管15bとをそれぞれ液接続主配管8、低圧ガス接続
主配管11、高圧ガス接続主配管15に接続している。
FIG. 2 shows another embodiment, which is different from that of FIG. 1 in that an outdoor liquid branch pipe 8a, an outdoor low pressure gas branch pipe 11a, and an outdoor high pressure gas branch pipe 15a connected to an outdoor unit 31a. The outdoor liquid branch pipe 8b, the outdoor low pressure gas branch pipe 11b, and the outdoor high pressure gas branch pipe 15b connected to the outdoor unit 31b are respectively connected to the liquid connection main pipe 8, the low pressure gas connection main pipe 11, and the high pressure gas connection main pipe 15. is doing.

【0028】図2のものによれば、室内機の増設によっ
て、室外機として必要な発生能力が増加したとしても、
室外機31aもしくは室外機31bを増設して容易に対
応することができる。
According to the one shown in FIG. 2, even if the generation capacity required for the outdoor unit is increased by adding the indoor unit,
The outdoor unit 31a or the outdoor unit 31b can be added to easily cope with the situation.

【0029】図3は、さらに他の実施の形態を示し、図
2のものに対して各室外機31a、31bに搭載した過
冷却装置17a、17bの代わって、各室外機35a、
35bに接続した室外液分岐配管8a、8bとを合流し
た液接続主配管8に過冷却装置17cを配設したもので
ある。
FIG. 3 shows still another embodiment.
In place of the supercooling devices 17a and 17b mounted on the outdoor units 31a and 31b for the two, the outdoor units 35a and
The subcooling device 17c is arranged in the liquid connection main pipe 8 that joins the outdoor liquid branch pipes 8a and 8b connected to 35b.

【0030】本例によれば、室外機35a、35bが多
数台接続されたものであっても、過冷却装置17cを1
箇所に配置すれば良く、冷房利用側の空調負荷が変化し
たときに、過冷却装置17cでの熱交換量を調整する際
には、減圧装置16cの開度のみを制御すればよいの
で、制御性が向上し、ひいては空気調和機の信頼性が向
上する。図4は、さらに他の形態を示し、図1の室外液
配管6中の液冷媒と室外液配管6からバイパスした後に
減圧した冷媒とを、熱交換する過冷却装置17により室
外液配管6中の液冷媒を過冷却するのに対して、受液器
5から導出した液冷媒を室外熱交換器3a、3bと共に
空冷されるサブクーラ20に導入することで、液冷媒を
過冷却するものである。
According to this example, even if a large number of outdoor units 35a, 35b are connected, the supercooling device 17c can be installed in one unit.
It is only necessary to dispose it at a location, and when adjusting the heat exchange amount in the subcooling device 17c when the air conditioning load on the cooling side changes, it is sufficient to control only the opening degree of the pressure reducing device 16c. Performance, which in turn improves the reliability of the air conditioner. FIG. 4 shows still another embodiment, in which the liquid refrigerant in the outdoor liquid pipe 6 of FIG. 1 and the refrigerant decompressed after being bypassed from the outdoor liquid pipe 6 are heat-exchanged in the outdoor liquid pipe 6 by a supercooling device 17. The subcooler 20 is supercooled, whereas the subcooler 20 that is air-cooled together with the outdoor heat exchangers 3a and 3b is introduced into the subcooler 20 that is discharged from the liquid receiver 5 to supercool the subcooler. .

【0031】圧縮機1b、1cを共に定速圧縮機とした
場合、冷房利用側の空調負荷が変化したときは室外送風
装置19の回転数を制御し風量を調整することで、受液
器5から導出した液冷媒のサブクーラ20での熱交換量
を調整することができる。よって、冷房利用側室内機入
口における冷媒の比エンタルピ量を制御でき、任意の冷
房能力に設定することができる。
When both the compressors 1b and 1c are constant speed compressors, when the air-conditioning load on the cooling side changes, the rotation speed of the outdoor blower 19 is controlled to adjust the air volume, so that the receiver 5 The heat exchange amount in the subcooler 20 of the liquid refrigerant derived from can be adjusted. Therefore, the specific enthalpy amount of the refrigerant at the cooling-use side indoor unit inlet can be controlled, and an arbitrary cooling capacity can be set.

【0032】サブクーラ20は既存の室外熱交換器を複
合化して利用できることから、室外液配管6の液冷媒を
過冷却するための過冷却装置を設置する必要がなく、小
型化、あるいは低価格化に有利となる。
Since the subcooler 20 can be used by combining existing outdoor heat exchangers, it is not necessary to install a supercooling device for supercooling the liquid refrigerant in the outdoor liquid pipe 6, and the subcooler 20 can be made compact or inexpensive. Be advantageous to.

【0033】図5は、さらに、他の実施の形態を示し、
図1の室外液配管6中の液冷媒と室外液配管6からバイ
パスした後に減圧した冷媒とを、熱交換する過冷却装置
17により室外液配管6中の液冷媒を過冷却するのに対
して、室外液配管6中の液冷媒を過冷却専用の冷凍サイ
クルを用いて過冷却するものである。
FIG. 5 further shows another embodiment,
While the supercooling device 17 for exchanging heat between the liquid refrigerant in the outdoor liquid pipe 6 and the refrigerant decompressed after bypassing the outdoor liquid pipe 6 in FIG. 1 supercools the liquid refrigerant in the outdoor liquid pipe 6. The liquid refrigerant in the outdoor liquid pipe 6 is supercooled using a refrigeration cycle dedicated to supercooling.

【0034】過冷却専用の冷凍サイクルは、圧縮機1
h、室外熱交換器3h、室外膨張装置4h、過冷却装置
17hを順次接続してなる冷凍サイクルであり、圧縮機
1hから吐出した高圧ガス冷媒は、室外熱交換器3hで
凝縮し、その凝縮した液冷媒を室外膨張装置4hで減圧
し、減圧して得られたガス・液二相の冷媒は、過冷却装
置17hで室外液配管6中を流れる液冷媒と熱交換する
ことで蒸発し、圧縮機1hに吸入される。過冷却装置1
7hにおける、室外液配管6中の液冷媒との熱交換量
は、過冷却専用の冷凍サイクルの冷凍能力によって任意
に設定できることから、室外機33と室内機40a、4
0b、40c、40dとを接続する接続配管8、11、
15の配管長が長い場合においても、冷房利用側室内機
40a、40b、40cでの冷房能力の低下を抑えるこ
とができる。
The refrigeration cycle dedicated to subcooling is the compressor 1
h, the outdoor heat exchanger 3h, the outdoor expansion device 4h, and the supercooling device 17h are sequentially connected, and the high-pressure gas refrigerant discharged from the compressor 1h is condensed in the outdoor heat exchanger 3h and condensed. The liquid refrigerant is decompressed by the outdoor expansion device 4h, and the gas / liquid two-phase refrigerant obtained by decompressing is evaporated by exchanging heat with the liquid refrigerant flowing through the outdoor liquid pipe 6 in the supercooling device 17h, It is sucked into the compressor 1h. Supercooling device 1
Since the amount of heat exchange with the liquid refrigerant in the outdoor liquid pipe 6 in 7h can be arbitrarily set by the refrigerating capacity of the refrigeration cycle dedicated to supercooling, the outdoor unit 33 and the indoor units 40a, 4
0b, 40c, 40d connecting pipes 8, 11,
Even when the pipe length of 15 is long, it is possible to suppress the reduction of the cooling capacity in the cooling-use side indoor units 40a, 40b, 40c.

【0035】また、冷房利用側の空調負荷が変化した場
合、圧縮機1b、1c共に定速圧縮機、かつ圧縮機1h
をインバータ圧縮機としたときは、インバータ圧縮機1
hの回転数を制御することで、過冷却装置17hにおけ
る室外液配管6中の液冷媒との熱交換量を制御し、任意
の冷房能力に設定することができる。同様に冷房利用側
の空調負荷が変化した場合、圧縮機1b、1c、1hを
全て定速圧縮機としたときは、室外膨張装置4hの開度
を調整し、過冷却専用の冷凍サイクル中を循環する単位
時間あたりに流れる冷媒量を調整することで、過冷却装
置17hでの室外液配管6中の液冷媒との熱交換量を制
御し、任意の冷房能力に設定することができる。
When the air conditioning load on the cooling side changes, both the compressors 1b and 1c are constant speed compressors and the compressor 1h.
Inverter compressor 1
By controlling the number of revolutions of h, the amount of heat exchange with the liquid refrigerant in the outdoor liquid pipe 6 in the supercooling device 17h can be controlled and set to any cooling capacity. Similarly, in the case where the air conditioning load on the cooling side changes, when the compressors 1b, 1c, 1h are all constant-speed compressors, the opening degree of the outdoor expansion device 4h is adjusted and the refrigeration cycle dedicated to supercooling is performed. By adjusting the amount of refrigerant flowing per unit time of circulation, the amount of heat exchange with the liquid refrigerant in the outdoor liquid pipe 6 in the supercooling device 17h can be controlled and set to any cooling capacity.

【0036】図6はさらに他の実施の形態を示し、冷房
利用側室内機を室内機40a、40b、40cとし、暖
房利用側室内機を室内機40dとした、冷房主体運転時
を示している。
FIG. 6 shows still another embodiment, in which the cooling-use side indoor unit is the indoor units 40a, 40b, 40c and the heating-use side indoor unit is the indoor unit 40d, during the cooling main operation. .

【0037】冷房利用側室内機40a、40b、40c
に接続した切換ユニット51a、51b、51c内の高
圧ガス開閉弁510a、510b、510cは閉じてい
るので、高圧ガス接続枝配管151a、151b、15
1c内の高圧・高温のガス冷媒は、切換ユニット51
a、51b、51c近傍の雰囲気空気と熱交換し、凝縮
することで、液冷媒となる。この液冷媒は、過冷却バイ
パス弁513a、513b、513cを開けることで、
過冷却減圧装置520a、520b、520cで減圧さ
れ、低温のガス・液二相の冷媒となる。さらに、低温の
ガス・液二相の冷媒と液接続枝配管81a、81b、8
1c中の液冷媒(または、ガス・液二相の冷媒)は、切
換ユニット51a、51、51c内の室内過冷却装置5
30a、530b、530cと熱交換することによっ
て、液接続枝配管81a、81b、81c中の液冷媒
(または、ガス・液二相の冷媒)は、過冷却される(ま
たは、ガス冷媒が凝縮し冷媒のかわき度が小さくな
る)。ゆえに、冷房利用側室内熱交換器10a、10
b、10c入口の冷媒の比エンタルピが減少するので、
冷房利用側室内機の冷房能力不足は抑制される。よっ
て、室外機34よりも室内機40a、40b、40c、
40dが上部にある場合、特に冷房運転と暖房運転とが
混在するときにおいても、冷房能力不足を回避できる。
Indoor units 40a, 40b, 40c on the cooling use side
Since the high pressure gas on-off valves 510a, 510b, 510c in the switching units 51a, 51b, 51c connected to the are closed, the high pressure gas connection branch pipes 151a, 151b, 15
The high-pressure / high-temperature gas refrigerant in 1c is transferred to the switching unit 51.
By exchanging heat with the ambient air near a, 51b, and 51c and condensing, it becomes a liquid refrigerant. This liquid refrigerant can be opened by opening the subcooling bypass valves 513a, 513b, 513c,
It is decompressed by the supercooling decompression devices 520a, 520b, 520c and becomes a low-temperature gas / liquid two-phase refrigerant. Further, a low-temperature gas / liquid two-phase refrigerant and liquid connection branch pipes 81a, 81b, 8
The liquid refrigerant (or gas / liquid two-phase refrigerant) in 1c is the indoor supercooling device 5 in the switching units 51a, 51, 51c.
By exchanging heat with 30a, 530b, 530c, the liquid refrigerant (or the gas / liquid two-phase refrigerant) in the liquid connection branch pipes 81a, 81b, 81c is supercooled (or the gas refrigerant is condensed). The dryness of the refrigerant becomes smaller). Therefore, the cooling-use side indoor heat exchangers 10a, 10
Since the specific enthalpy of the refrigerant at the inlets of b and 10c decreases,
Insufficient cooling capacity of the cooling-use side indoor unit is suppressed. Therefore, the indoor units 40a, 40b, 40c,
When 40d is on the upper side, it is possible to avoid insufficient cooling capacity even when the cooling operation and the heating operation are mixed.

【0038】また、全室暖房、または暖房主体運転の場
合は、室外熱交換器3a、3bともに蒸発器として作用
するため、外気低温時では室外熱交換器3a、3bは着
霜する。一般に室外熱交換器が着霜した場合は、圧縮機
から吐出した高圧・高温のガス冷媒を室外熱交換器に導
入し、導入した冷媒が凝縮する際の排熱を利用して、室
外熱交換器に付いた霜を溶かす、除霜運転を実施する。
しかし、除霜運転の間、室内熱交換器は蒸発器として作
用することから、暖房運転ができないので、快適性が損
なわれる。
Further, in the case of heating all the rooms or in the heating-main operation, both the outdoor heat exchangers 3a and 3b act as an evaporator, so that the outdoor heat exchangers 3a and 3b are frosted when the outside air temperature is low. Generally, when frost forms on the outdoor heat exchanger, the high-pressure, high-temperature gas refrigerant discharged from the compressor is introduced into the outdoor heat exchanger, and the exhaust heat when the introduced refrigerant is condensed is used to exchange the outdoor heat. Perform defrosting operation to melt the frost on the vessel.
However, since the indoor heat exchanger functions as an evaporator during the defrosting operation, the heating operation cannot be performed, and the comfort is deteriorated.

【0039】そこで、本例では、四方弁2a、2bと室
外高圧ガス阻止弁14との間に逆止弁18b、18cを
配設することで、圧縮機1aから吐出した高圧ガス冷媒
が、四方弁2bに流入しないとともに、圧縮機1b、1
cから吐出した高圧ガス冷媒も四方弁2aに流入しな
い。ゆえに、四方弁2a、2bはそれぞれ他方の四方弁
2b、2aに関係なく、独立に駆動することができる。
よって、一方の室外熱交換器は蒸発器として、他方の室
外熱交換器は凝縮器として用いることができるため、除
霜運転の間、暖房利用側室内機の運転を停止する必要が
ないので、快適性を損なうことがない。
Therefore, in this example, the check valves 18b and 18c are provided between the four-way valves 2a and 2b and the outdoor high-pressure gas blocking valve 14 so that the high-pressure gas refrigerant discharged from the compressor 1a is four-way. Not flowing into the valve 2b, the compressor 1b, 1
The high-pressure gas refrigerant discharged from c also does not flow into the four-way valve 2a. Therefore, the four-way valves 2a and 2b can be independently driven regardless of the other four-way valves 2b and 2a.
Therefore, since one outdoor heat exchanger can be used as an evaporator and the other outdoor heat exchanger can be used as a condenser, it is not necessary to stop the operation of the heating-use side indoor unit during the defrosting operation. No loss of comfort.

【0040】さらに、全室冷房運転時においては、圧縮
機1a、1b、1cを全て冷房運転で用いるため、圧縮
機1a、1b、1c吐出された高圧ガス冷媒は、室外熱
交換器3a、3bに流入する。高圧ガス接続主配管15
及び高圧ガス接続枝配管151a、151b、151
c、151d中の冷媒は、逆止弁18b、18cによっ
て、低圧とはならない。そのため、暖房運転から全室冷
房運転に切り替わったとき、高圧ガス接続主配管15及
び高圧ガス接続枝配管151a、151b、151c、
151d中の冷媒は高圧なので、冷媒の密度が大きいた
め冷媒量が増加する。
Further, since all the compressors 1a, 1b, 1c are used in the cooling operation during the all-room cooling operation, the high-pressure gas refrigerant discharged from the compressors 1a, 1b, 1c is the outdoor heat exchangers 3a, 3b. Flow into. High pressure gas connection main piping 15
And high-pressure gas connection branch pipes 151a, 151b, 151
The refrigerant in c and 151d does not have a low pressure due to the check valves 18b and 18c. Therefore, when the heating operation is switched to the all-room cooling operation, the high-pressure gas connecting main pipe 15 and the high-pressure gas connecting branch pipes 151a, 151b, 151c,
Since the refrigerant in 151d has a high pressure, the density of the refrigerant is high, so that the amount of the refrigerant increases.

【0041】本例では、過冷却バイパス弁513a、5
13b、513c、513dを開けることで、高圧ガス
接続枝配管151a、151b、151c、151d中
の冷媒は、低圧ガス接続枝配管111a、111b、1
11c、111dに導出することができるので、高圧ガ
ス接続枝配管151a、151b、151c、151d
中は低圧となるため、冷媒量を低減できる。特に、沸点
の異なる少なくとも2種類以上の冷媒を混合してなる非
共沸混合冷媒を用いることが好ましい。
In this example, the subcooling bypass valves 513a, 5
By opening 13b, 513c, and 513d, the refrigerant in the high-pressure gas connection branch pipes 151a, 151b, 151c, 151d can be transferred to the low-pressure gas connection branch pipes 111a, 111b, 1b.
Since it can be led to 11c and 111d, the high pressure gas connection branch pipes 151a, 151b, 151c and 151d.
Since the inside pressure is low, the amount of refrigerant can be reduced. In particular, it is preferable to use a non-azeotropic mixed refrigerant formed by mixing at least two kinds of refrigerants having different boiling points.

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば、
冷房及び暖房能力を充分に確保すると共に、圧縮機の入
力を低減し、かつ使用する冷媒量を低減した冷暖房同時
運転が可能なマルチ型空気調和機を得ることができる。
As described above, according to the present invention,
It is possible to obtain a multi-type air conditioner capable of simultaneous cooling and heating operation while ensuring sufficient cooling and heating capacities, reducing the input of the compressor, and reducing the amount of refrigerant used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態による空気調和機の冷凍
サイクルの系統図(冷房主体運転時)。
FIG. 1 is a system diagram of a refrigeration cycle of an air conditioner according to an embodiment of the present invention (during cooling-main operation).

【図2】他の実施の形態本発明による空気調和機の冷凍
サイクルの系統図(冷房主体運転時)。
FIG. 2 is a system diagram of a refrigeration cycle of an air conditioner according to another embodiment of the present invention (during cooling-main operation).

【図3】さらに、他の実施の形態による空気調和機の冷
凍サイクルの系統図(冷房主体運転時)。
FIG. 3 is a system diagram of a refrigeration cycle of an air conditioner according to another embodiment (during cooling-main operation).

【図4】さらに、他の実施の形態による空気調和機の冷
凍サイクルの系統図(冷房主体運転時)。
FIG. 4 is a system diagram of a refrigeration cycle of an air conditioner according to another embodiment (during cooling-main operation).

【図5】さらに、他の実施の形態による空気調和機の冷
凍サイクルの系統図(冷房主体運転時)。
FIG. 5 is a system diagram of a refrigeration cycle of an air conditioner according to another embodiment (during cooling-main operation).

【図6】さらに、他の実施の形態による空気調和機の冷
凍サイクルの系統図(冷房主体運転時)。
FIG. 6 is a system diagram of a refrigeration cycle of an air conditioner according to another embodiment (during cooling-main operation).

【符号の説明】[Explanation of symbols]

1b、1c、1e、1f、1g、1h…圧縮機、1a、
1d…インバータ圧縮機、2a、2b、2c、2d、2
e、2h…四方弁、3a、3b、3c、3d、3e、3
h…室外熱交換器、4a、4b、4c、4d、4e、4
h…室外膨張装置、5…受液器、6、6a、6b…室外
液配管、7、7a、7b…室外液阻止弁、8…液接続主
配管、8a、8b…室外液分岐配管、81a、81b、
81c、81d…液接続枝配管、9a、9b、9c、9
d…室内膨張装置、10a、10b、10c、10d…
室内熱交換器、11…低圧ガス接続主配管、12、12
a、12b…室外低圧ガス阻止弁、13、13a、13
b…アキュムレータ、14、14a、14b…室外高圧
ガス阻止弁、15…高圧ガス接続主配管、16、16
a、16b、16c…減圧装置、17、17a、17
b、17c…室外過冷却装置、18、18a、18b、
18c、18e…逆止弁、19…室外送風装置、20…
サブクーラ、30、31a、31b、32、33、3
4、35a、35b…室外機、40a、40b、40
c、40d…室内機。
1b, 1c, 1e, 1f, 1g, 1h ... Compressor 1a,
1d ... Inverter compressor, 2a, 2b, 2c, 2d, 2
e, 2h ... four-way valve, 3a, 3b, 3c, 3d, 3e, 3
h ... outdoor heat exchangers 4a, 4b, 4c, 4d, 4e, 4
h ... outdoor expansion device, 5 ... liquid receiver, 6, 6a, 6b ... outdoor liquid piping, 7, 7a, 7b ... outdoor liquid blocking valve, 8 ... liquid connection main piping, 8a, 8b ... outdoor liquid branch piping, 81a , 81b,
81c, 81d ... Liquid connection branch piping, 9a, 9b, 9c, 9
d ... Indoor expansion device, 10a, 10b, 10c, 10d ...
Indoor heat exchanger, 11 ... Low-pressure gas connection main piping, 12, 12
a, 12b ... Outdoor low-pressure gas blocking valve, 13, 13a, 13
b ... Accumulator, 14, 14a, 14b ... Outdoor high pressure gas blocking valve, 15 ... High pressure gas connection main piping, 16, 16
a, 16b, 16c ... Pressure reducing device, 17, 17a, 17
b, 17c ... Outdoor supercooling device, 18, 18a, 18b,
18c, 18e ... Check valve, 19 ... Outdoor air blower, 20 ...
Sub cooler, 30, 31a, 31b, 32, 33, 3
4, 35a, 35b ... Outdoor unit, 40a, 40b, 40
c, 40d ... Indoor unit.

フロントページの続き (72)発明者 遠藤 道子 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 (72)発明者 内藤 宏治 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 (72)発明者 吉田 康孝 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 (72)発明者 遠藤 剛 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 Fターム(参考) 3L092 GA10 HA01 HA12 JA01 JA03 JA14 KA02 LA05 LA07 Continued front page    (72) Inventor Michiko Endo             Hitachi, Ltd. 390 Muramatsu, Shimizu City, Shizuoka Prefecture             Air conditioning system Shimizu Production Headquarters (72) Inventor Koji Naito             Hitachi, Ltd. 390 Muramatsu, Shimizu City, Shizuoka Prefecture             Air conditioning system Shimizu Production Headquarters (72) Inventor Yasutaka Yoshida             Hitachi, Ltd. 390 Muramatsu, Shimizu City, Shizuoka Prefecture             Air conditioning system Shimizu Production Headquarters (72) Inventor Takeshi Endo             Hitachi, Ltd. 390 Muramatsu, Shimizu City, Shizuoka Prefecture             Air conditioning system Shimizu Production Headquarters F term (reference) 3L092 GA10 HA01 HA12 JA01 JA03                       JA14 KA02 LA05 LA07

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】複数の圧縮機、室外熱交換器、室外膨張装
置、受液器、室内膨張装置と室内熱交換器を備えた複数
の室内機、とを連結した冷凍サイクルを有する空気調和
機において、 前記複数の圧縮機のうち一方から吐出される高圧ガス冷
媒は暖房利用側となる前記室内機へ供給されて前記室内
熱交換器で凝縮され、他方から吐出される高圧ガス冷媒
は前記室外熱交換器で凝縮されて前記受液器を通った後
に過冷却されて冷房利用側となる前記室内機へ供給され
ることを特徴とする空気調和機。
1. An air conditioner having a refrigeration cycle in which a plurality of compressors, an outdoor heat exchanger, an outdoor expansion device, a liquid receiver, a plurality of indoor units equipped with an indoor expansion device and an indoor heat exchanger are connected. In, the high-pressure gas refrigerant discharged from one of the plurality of compressors is supplied to the indoor unit on the heating utilization side and condensed in the indoor heat exchanger, and the high-pressure gas refrigerant discharged from the other is the outdoor unit. An air conditioner that is condensed in a heat exchanger, passes through the liquid receiver, and then is supercooled and is supplied to the indoor unit on the cooling use side.
【請求項2】請求項1に記載のものにおいて、暖房利用
側の前記圧縮機を回転数制御が可能とされるインバータ
圧縮機としたことを特徴とする空気調和機。
2. The air conditioner according to claim 1, wherein the compressor on the heating utilization side is an inverter compressor capable of controlling a rotation speed.
【請求項3】請求項1に記載のものにおいて、暖房利用
側の前記圧縮機を回転数制御が可能とされるインバータ
圧縮機とし、冷房利用側の前記圧縮機を複数台の定速型
圧縮機としたことを特徴とする空気調和機。
3. The compressor according to claim 1, wherein the compressor on the heating use side is an inverter compressor capable of controlling the rotation speed, and the compressor on the cooling use side is composed of a plurality of constant speed type compressors. An air conditioner characterized by being a machine.
【請求項4】請求項1に記載のものにおいて、冷房利用
側の前記圧縮機を複数台の定速型圧縮機とし、その運転
台数を制御することを特徴とする空気調和機。
4. The air conditioner according to claim 1, wherein the compressor on the cooling side is a plurality of constant speed compressors, and the number of operating compressors is controlled.
【請求項5】請求項1に記載のものにおいて、暖房利用
側の前記圧縮機の吐出圧力を冷房利用側の前記圧縮機の
吐出圧力よりも高くしたことを特徴とする空気調和機。
5. The air conditioner according to claim 1, wherein the discharge pressure of the compressor on the heating use side is set higher than the discharge pressure of the compressor on the cooling use side.
【請求項6】請求項1に記載のものにおいて、前記圧縮
機、前記室外熱交換器、前記室外膨張装置、前記受液器
を備えた室外機を複数台設け、それぞれを開閉弁又は逆
止弁で接続したことを特徴とする空気調和機。
6. The apparatus according to claim 1, wherein a plurality of outdoor units equipped with the compressor, the outdoor heat exchanger, the outdoor expansion device, and the liquid receiver are provided, each of which is an on-off valve or a check valve. An air conditioner characterized by being connected by a valve.
【請求項7】請求項1に記載のものにおいて、前記圧縮
機、前記室外熱交換器、前記室外膨張装置、前記受液器
及び前記受液器を通った後の液冷媒が通過する室外液分
岐配管を備えた複数台の室外機と、前記室外液分岐配管
を集約して前記室内機側へ配管される液接続主配管と、
を設け、前記過冷却は前記液接続主配管で行われること
を特徴とする空気調和機。
7. The outdoor liquid according to claim 1, wherein the compressor, the outdoor heat exchanger, the outdoor expansion device, the liquid receiver, and the liquid refrigerant after passing through the liquid receiver pass therethrough. A plurality of outdoor units provided with branch pipes, a liquid connection main pipe that is aggregated with the outdoor liquid branch pipes and piped to the indoor unit side,
And the subcooling is performed in the liquid connection main pipe.
【請求項8】請求項1に記載のものにおいて、前記受液
器を通った後に液冷媒が分岐され、分岐された一方を減
圧して得た冷媒により前記過冷却が行われることを特徴
とする空気調和機。
8. The liquid refrigerant according to claim 1, wherein the liquid refrigerant is branched after passing through the liquid receiver, and the subcooling is performed by a refrigerant obtained by decompressing one of the branched ones. An air conditioner.
【請求項9】請求項1に記載のものにおいて、前記受液
器から導出した液冷媒を前記室外熱交換器と共に空冷さ
れるサブクーラにより前記過冷却が行われることを特徴
とする空気調和機。
9. The air conditioner according to claim 1, wherein the subcooler cools the liquid refrigerant drawn from the liquid receiver together with the outdoor heat exchanger by air.
【請求項10】請求項1に記載のものにおいて、前記過
冷却は、圧縮機、室外熱交換器、室外膨張装置、過冷却
装置を順次接続した冷凍サイクルにより行われることを
特徴とする空気調和機。
10. The air conditioner according to claim 1, wherein the subcooling is performed by a refrigeration cycle in which a compressor, an outdoor heat exchanger, an outdoor expansion device, and a subcooling device are sequentially connected. Machine.
【請求項11】複数の圧縮機、室外熱交換器、室外膨張
装置、受液器、室内膨張装置と室内熱交換器を備えた複
数の室内機、とを高圧ガス接続主配管、液接続主配管、
低圧ガス接続主配管とで連結した冷凍サイクルを有する
空気調和機において、 吐出される高圧ガス冷媒が前記高圧ガス接続主配管を介
して暖房利用側となる前記室内機へ供給される第1の圧
縮機と、 吐出される高圧ガス冷媒が前記室外熱交換器で凝縮され
て前記受液器、前記液接続主配管を介して冷房利用側と
なる前記室内機へ供給される第2の圧縮機と、前記室内
機で蒸発した冷媒を前記第1の圧縮機及び前記第2の圧
縮機の吸入側に接続する前記低圧ガス接続主配管と、 前記受液器から導出される液冷媒を過冷却する過冷却装
置と、を備えたことを特徴とする空気調和機。
11. A high-pressure gas connection main pipe, a liquid connection main, and a plurality of compressors, an outdoor heat exchanger, an outdoor expansion device, a liquid receiver, a plurality of indoor units equipped with an indoor expansion device and an indoor heat exchanger. Piping,
In an air conditioner having a refrigeration cycle connected to a low-pressure gas connection main pipe, the discharged high-pressure gas refrigerant is supplied to the indoor unit on the heating utilization side via the high-pressure gas connection main pipe. And a second compressor in which high-pressure gas refrigerant discharged is condensed in the outdoor heat exchanger and is supplied to the indoor unit on the cooling side via the liquid receiver and the liquid connection main pipe. , Supercooling the low-pressure gas connection main pipe connecting the refrigerant evaporated in the indoor unit to the suction side of the first compressor and the second compressor, and the liquid refrigerant drawn from the liquid receiver An air conditioner comprising: a supercooling device.
JP2001320064A 2001-10-18 2001-10-18 Air conditioner Expired - Fee Related JP4029262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001320064A JP4029262B2 (en) 2001-10-18 2001-10-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001320064A JP4029262B2 (en) 2001-10-18 2001-10-18 Air conditioner

Publications (2)

Publication Number Publication Date
JP2003130492A true JP2003130492A (en) 2003-05-08
JP4029262B2 JP4029262B2 (en) 2008-01-09

Family

ID=19137507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001320064A Expired - Fee Related JP4029262B2 (en) 2001-10-18 2001-10-18 Air conditioner

Country Status (1)

Country Link
JP (1) JP4029262B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214613A (en) * 2004-01-27 2005-08-11 Lg Electronics Inc Air conditioner
WO2005121656A1 (en) * 2004-06-11 2005-12-22 Daikin Industries, Ltd. Air conditioner
JP2006023073A (en) * 2004-06-11 2006-01-26 Daikin Ind Ltd Air conditioner
JP2006090683A (en) * 2004-09-27 2006-04-06 Samsung Electronics Co Ltd Multiple room type air conditioner
JP2007315706A (en) * 2006-05-26 2007-12-06 Hitachi Appliances Inc Air conditioner
KR100839596B1 (en) 2007-04-17 2008-06-20 한밭대학교 산학협력단 Multi airconditioner
JP2008170063A (en) * 2007-01-11 2008-07-24 Hitachi Appliances Inc Multiple type air conditioner
CN100441964C (en) * 2005-02-03 2008-12-10 乐金电子(天津)电器有限公司 Multi-stage air conditioner
JP2009133613A (en) * 2009-02-02 2009-06-18 Hitachi Appliances Inc Air conditioner
WO2010023894A1 (en) * 2008-08-28 2010-03-04 ダイキン工業株式会社 Air-conditioning device
JP2010054119A (en) * 2008-08-28 2010-03-11 Daikin Ind Ltd Air conditioner
JP2010054118A (en) * 2008-08-28 2010-03-11 Daikin Ind Ltd Air conditioner
JP2010065999A (en) * 2009-12-25 2010-03-25 Daikin Ind Ltd Air conditioner
JP2010261644A (en) * 2009-05-01 2010-11-18 Mitsubishi Electric Corp Refrigerating air-conditioning device
JP2011094913A (en) * 2009-10-30 2011-05-12 Sanyo Electric Co Ltd Air conditioner
JP2011137578A (en) * 2009-12-28 2011-07-14 Sanyo Electric Co Ltd Air conditioning device
JP2014043993A (en) * 2012-08-27 2014-03-13 Mitsubishi Heavy Ind Ltd Air conditioner
WO2015041166A1 (en) 2013-09-19 2015-03-26 ダイキン工業株式会社 Freezer
JP2015059719A (en) * 2013-09-19 2015-03-30 ダイキン工業株式会社 Refrigerating device
WO2016152039A1 (en) * 2015-03-25 2016-09-29 パナソニックIpマネジメント株式会社 Air-conditioning apparatus
CN110686329A (en) * 2018-07-06 2020-01-14 江森自控科技公司 Variable refrigerant flow system with pressure optimization using extremum seeking control

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949850U (en) * 1982-09-24 1984-04-02 富士電機株式会社 Air-cooled refrigeration equipment with supercooler
JPS6490965A (en) * 1987-09-30 1989-04-10 Daikin Ind Ltd Air conditioner
JPH01169772U (en) * 1988-05-19 1989-11-30
JPH0420757A (en) * 1990-05-11 1992-01-24 Sanyo Electric Co Ltd Air conditioner
JPH04324075A (en) * 1991-04-23 1992-11-13 Sanyo Electric Co Ltd Air conditioning apparatus
JPH051862A (en) * 1991-06-24 1993-01-08 Sanyo Electric Co Ltd Air conditioning device
JPH10281536A (en) * 1997-04-08 1998-10-23 Hitachi Ltd Air conditioner
JPH1114168A (en) * 1997-06-25 1999-01-22 Mitsubishi Heavy Ind Ltd Air conditioner
JP2000018737A (en) * 1998-06-24 2000-01-18 Daikin Ind Ltd Air-conditioner
JP2000274846A (en) * 1999-03-23 2000-10-06 Sanyo Electric Co Ltd Freezer device
JP2001033110A (en) * 1999-07-21 2001-02-09 Daikin Ind Ltd Refrigerator
JP2001241799A (en) * 2000-02-29 2001-09-07 Matsushita Electric Ind Co Ltd Multi-room air conditioner

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949850U (en) * 1982-09-24 1984-04-02 富士電機株式会社 Air-cooled refrigeration equipment with supercooler
JPS6490965A (en) * 1987-09-30 1989-04-10 Daikin Ind Ltd Air conditioner
JPH01169772U (en) * 1988-05-19 1989-11-30
JPH0420757A (en) * 1990-05-11 1992-01-24 Sanyo Electric Co Ltd Air conditioner
JPH04324075A (en) * 1991-04-23 1992-11-13 Sanyo Electric Co Ltd Air conditioning apparatus
JPH051862A (en) * 1991-06-24 1993-01-08 Sanyo Electric Co Ltd Air conditioning device
JPH10281536A (en) * 1997-04-08 1998-10-23 Hitachi Ltd Air conditioner
JPH1114168A (en) * 1997-06-25 1999-01-22 Mitsubishi Heavy Ind Ltd Air conditioner
JP2000018737A (en) * 1998-06-24 2000-01-18 Daikin Ind Ltd Air-conditioner
JP2000274846A (en) * 1999-03-23 2000-10-06 Sanyo Electric Co Ltd Freezer device
JP2001033110A (en) * 1999-07-21 2001-02-09 Daikin Ind Ltd Refrigerator
JP2001241799A (en) * 2000-02-29 2001-09-07 Matsushita Electric Ind Co Ltd Multi-room air conditioner

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214613A (en) * 2004-01-27 2005-08-11 Lg Electronics Inc Air conditioner
WO2005121656A1 (en) * 2004-06-11 2005-12-22 Daikin Industries, Ltd. Air conditioner
JP2006023073A (en) * 2004-06-11 2006-01-26 Daikin Ind Ltd Air conditioner
JP2006090683A (en) * 2004-09-27 2006-04-06 Samsung Electronics Co Ltd Multiple room type air conditioner
CN100441964C (en) * 2005-02-03 2008-12-10 乐金电子(天津)电器有限公司 Multi-stage air conditioner
JP2007315706A (en) * 2006-05-26 2007-12-06 Hitachi Appliances Inc Air conditioner
JP2008170063A (en) * 2007-01-11 2008-07-24 Hitachi Appliances Inc Multiple type air conditioner
KR100839596B1 (en) 2007-04-17 2008-06-20 한밭대학교 산학협력단 Multi airconditioner
WO2010023894A1 (en) * 2008-08-28 2010-03-04 ダイキン工業株式会社 Air-conditioning device
JP2010054119A (en) * 2008-08-28 2010-03-11 Daikin Ind Ltd Air conditioner
JP2010054118A (en) * 2008-08-28 2010-03-11 Daikin Ind Ltd Air conditioner
JP4539769B2 (en) * 2008-08-28 2010-09-08 ダイキン工業株式会社 Air conditioner
JP4539770B2 (en) * 2008-08-28 2010-09-08 ダイキン工業株式会社 Air conditioner
JP2009133613A (en) * 2009-02-02 2009-06-18 Hitachi Appliances Inc Air conditioner
JP2010261644A (en) * 2009-05-01 2010-11-18 Mitsubishi Electric Corp Refrigerating air-conditioning device
JP2011094913A (en) * 2009-10-30 2011-05-12 Sanyo Electric Co Ltd Air conditioner
JP2010065999A (en) * 2009-12-25 2010-03-25 Daikin Ind Ltd Air conditioner
JP2011137578A (en) * 2009-12-28 2011-07-14 Sanyo Electric Co Ltd Air conditioning device
JP2014043993A (en) * 2012-08-27 2014-03-13 Mitsubishi Heavy Ind Ltd Air conditioner
WO2015041166A1 (en) 2013-09-19 2015-03-26 ダイキン工業株式会社 Freezer
JP2015059719A (en) * 2013-09-19 2015-03-30 ダイキン工業株式会社 Refrigerating device
WO2016152039A1 (en) * 2015-03-25 2016-09-29 パナソニックIpマネジメント株式会社 Air-conditioning apparatus
CN110686329A (en) * 2018-07-06 2020-01-14 江森自控科技公司 Variable refrigerant flow system with pressure optimization using extremum seeking control
JP2020008276A (en) * 2018-07-06 2020-01-16 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Variable refrigerant flow system with pressure optimization using extremum-seeking control
US10895393B2 (en) 2018-07-06 2021-01-19 Johnson Controls Technology Company Variable refrigerant flow system with pressure optimization using extremum-seeking control

Also Published As

Publication number Publication date
JP4029262B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
JP2003130492A (en) Air conditioner
JP4952210B2 (en) Air conditioner
JP4321095B2 (en) Refrigeration cycle equipment
JP5496217B2 (en) heat pump
JP3897681B2 (en) Method for determining high-pressure refrigerant pressure of refrigeration cycle apparatus
JP5239824B2 (en) Refrigeration equipment
JP2004108683A (en) Refrigeration air conditioner and operation method for refrigeration air conditioner
JP6067178B2 (en) Heat source side unit and air conditioner
EP1876401B1 (en) Refrigeration device
WO2020071299A1 (en) Refrigeration cycle device
JP2003194432A (en) Refrigerating cycle device
JP2011242048A (en) Refrigerating cycle device
KR101044464B1 (en) Refrigeration device
JP4192904B2 (en) Refrigeration cycle equipment
JPH0420764A (en) Air conditioner
JP4273588B2 (en) Air conditioner refrigerant circuit
JP5895662B2 (en) Refrigeration equipment
JP2008002743A (en) Refrigerating device
JP2006125762A (en) Indoor unit, air conditioning device comprising the same, and its operating method
JP4258425B2 (en) Refrigeration and air conditioning equipment
JP2006057869A (en) Refrigerating device
JP4279511B2 (en) Apparatus using refrigeration cycle and air conditioner
JPH10267329A (en) Ice heat storage device
JP2003262416A (en) Air conditioner
JP2013210131A (en) Refrigerating device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees