JP2010014311A - Supercooler - Google Patents

Supercooler Download PDF

Info

Publication number
JP2010014311A
JP2010014311A JP2008173555A JP2008173555A JP2010014311A JP 2010014311 A JP2010014311 A JP 2010014311A JP 2008173555 A JP2008173555 A JP 2008173555A JP 2008173555 A JP2008173555 A JP 2008173555A JP 2010014311 A JP2010014311 A JP 2010014311A
Authority
JP
Japan
Prior art keywords
heat transfer
supercooler
transfer tube
condenser
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008173555A
Other languages
Japanese (ja)
Inventor
Kenichi Inui
謙一 乾
Mamoru Hofuku
守 法福
Hironori Kitajima
寛規 北嶋
Masaru Horiguchi
賢 堀口
Kei Koyama
慶 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008173555A priority Critical patent/JP2010014311A/en
Publication of JP2010014311A publication Critical patent/JP2010014311A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact supercooler by providing the outer surface of a heat transfer tube with a groove. <P>SOLUTION: The supercooler 9 is used for an air conditioner 1 constituted by connecting a compressor 2, a condenser 3, a main expansion mechanism 4 and an evaporator 5 sequentially to constitute a refrigerant circuit 8, connecting the supercooler 9 formed of a double tube between the condenser 3 and the main expansion mechanism 4 to allow a condensed refrigerant 11 from the condenser 3 to the main expansion mechanism 4 to flow through an outer tube 12 of the supercooler 9, and connecting a by-pass circuit 13 to a heat transfer tube 10 inside the supercooler 9. The by-pass circuit reduces the pressure of the condensed refrigerant 11 from the condenser 3 to flow to the heat transfer tube 10 and returns the condensed refrigerant to the compressor 2 side, and the outer surface of the heat transfer tube 10 has the groove 17. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は空気調和機に用いられる二重管式の過冷却器に関するものである。   The present invention relates to a double-tube supercooler used in an air conditioner.

空気調和機の冷媒回路としては、特許文献1記載のものが知られている。図3に示すように、この冷媒回路8は、圧縮機2からの冷媒を、凝縮器3、二重管式の過冷却器20、主膨張機構4、蒸発器5、四路切換弁6およびアキュムレータ7の順に流す主回路21と、凝縮器3と過冷却器20との間で主回路21から分岐し、バイパス膨張機構14と過冷却器20を経て四路切換弁6とアキュムレータ7との間の主回路21に合流するバイパス回路13とからなる。圧縮機2から吐出された冷媒は、例えば室外空気に放熱する凝縮器3によって凝縮された後、主回路21とバイパス回路13とに分岐される。バイパス回路13を流れるバイパス流冷媒は、バイパス膨張機構14にて減圧された後、過冷却器20に流れ、主回路21を流れる主流冷媒は、過冷却器20に流れると共に、バイパス流冷媒と熱交換されて過冷却される。   The thing of patent document 1 is known as a refrigerant circuit of an air conditioner. As shown in FIG. 3, the refrigerant circuit 8 is configured to convert the refrigerant from the compressor 2 into a condenser 3, a double-tube supercooler 20, a main expansion mechanism 4, an evaporator 5, a four-way switching valve 6, and The main circuit 21 that flows in the order of the accumulator 7, the main circuit 21 branches between the condenser 3 and the subcooler 20, passes through the bypass expansion mechanism 14 and the subcooler 20, and is connected to the four-way switching valve 6 and the accumulator 7. And a bypass circuit 13 that merges with the main circuit 21 therebetween. The refrigerant discharged from the compressor 2 is condensed by, for example, the condenser 3 that radiates heat to outdoor air, and then branched into the main circuit 21 and the bypass circuit 13. The bypass flow refrigerant flowing in the bypass circuit 13 is decompressed by the bypass expansion mechanism 14 and then flows to the subcooler 20, and the main flow refrigerant flowing in the main circuit 21 flows to the subcooler 20 as well as the bypass flow refrigerant and heat. It is replaced and supercooled.

過冷却器20は、伝熱管と、この伝熱管の外側に同心円状に設けられた外管とを有する二重管状に形成されており、外管と伝熱管の間に主流冷媒を流すと共に、伝熱管内にバイパス流冷媒を流すようになっている。また、過冷却器は、対向流型熱交換器からなり、主流冷媒とバイパス流冷媒を、伝熱性を持つ伝熱管の管壁を挟んで互いに反対方向に流がすように設定されている。また、伝熱管と外管は、平滑管となっている。   The supercooler 20 is formed in a double tubular shape having a heat transfer tube and an outer tube provided concentrically on the outer side of the heat transfer tube, and allows the main refrigerant to flow between the outer tube and the heat transfer tube, A bypass flow refrigerant is allowed to flow in the heat transfer tube. The supercooler is composed of a counter-flow heat exchanger, and is set so that the main-flow refrigerant and the bypass-flow refrigerant flow in directions opposite to each other across the tube wall of the heat transfer tube having heat transfer properties. Further, the heat transfer tube and the outer tube are smooth tubes.

特開平10−054616号公報Japanese Patent Laid-Open No. 10-054616

ところで、伝熱管の外面は平滑なので、主流冷媒に対する伝熱面積が小さく、熱伝達率も低い。そのため、所定の熱交換をするためには、過冷却器を大きくしなければならないという課題があった。   By the way, since the outer surface of the heat transfer tube is smooth, the heat transfer area for the mainstream refrigerant is small and the heat transfer coefficient is also low. Therefore, in order to perform predetermined heat exchange, the subject that the subcooler had to be enlarged occurred.

そこで、本発明の目的は、上記課題を解決し、コンパクトな過冷却器を提供することにある。   Then, the objective of this invention is solving the said subject and providing a compact supercooler.

上記課題を解決するために本発明は、圧縮機、凝縮器、主膨張機構、蒸発器を順次接続して冷媒回路を構成し、その凝縮器と主膨張機構間に二重管からなる過冷却器を接続し、その過冷却器の外管に凝縮器から主膨張機構に至る凝縮冷媒を流し、その過冷却器の内側の伝熱管に凝縮器からの凝縮冷媒を減圧して伝熱管に流すと共に上記圧縮機側に戻すバイパス回路を接続した空気調和機に用いられる上記過冷却器であって、上記伝熱管の外面に溝を設けたものである。   In order to solve the above problems, the present invention forms a refrigerant circuit by sequentially connecting a compressor, a condenser, a main expansion mechanism, and an evaporator, and a supercooling comprising a double pipe between the condenser and the main expansion mechanism. Connect the condenser, flow the condensed refrigerant from the condenser to the main expansion mechanism through the outer pipe of the supercooler, depressurize the condensed refrigerant from the condenser to the heat transfer pipe inside the supercooler, and flow it to the heat transfer pipe In addition, the subcooler is used in an air conditioner connected to a bypass circuit that returns to the compressor side, and a groove is provided on the outer surface of the heat transfer tube.

この溝によって主流冷媒に対する伝熱面積が大きくなる。この溝によって主流冷媒が攪拌され熱伝達率も高くなる。したがって、所定の熱交換をするための過冷却器を小さくできる。   This groove increases the heat transfer area for the mainstream refrigerant. This groove stirs the mainstream refrigerant and increases the heat transfer coefficient. Therefore, the supercooler for performing predetermined heat exchange can be made small.

上記溝は、螺旋状の溝であるとよい。   The groove may be a spiral groove.

また、上記伝熱管は銅からなるとよい。   The heat transfer tube may be made of copper.

本発明によれば、過冷却器をコンパクトにできる。   According to the present invention, the supercooler can be made compact.

本発明の好適実施の形態を添付図面を用いて説明する。   Preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図3に示すように、空気調和機1は、圧縮機2、凝縮器3、主膨張機構4、蒸発器5、四路切換弁6、アキュムレータ7を順次接続する冷媒回路(主回路)8を備える。四路切替弁6は、圧縮機2の吐出側とアキュムレータ7の流入側との間に接続されており、切り替えることで圧縮機2から吐出される冷媒を凝縮器3又は蒸発器5のいずれか一方に流して他方から冷媒を流入させるように構成される。   As shown in FIG. 3, the air conditioner 1 includes a refrigerant circuit (main circuit) 8 that sequentially connects a compressor 2, a condenser 3, a main expansion mechanism 4, an evaporator 5, a four-way switching valve 6, and an accumulator 7. Prepare. The four-way switching valve 6 is connected between the discharge side of the compressor 2 and the inflow side of the accumulator 7, and the refrigerant discharged from the compressor 2 by switching is either the condenser 3 or the evaporator 5. It is configured to flow in one side and allow refrigerant to flow in from the other.

図2及び図3に示すように、凝縮器3と主膨張機構4との間には二重管からなる過冷却器9が接続され、その過冷却器9の外管12には、凝縮器3から主膨張機構4に至る凝縮冷媒(主流冷媒)11が流され、過冷却器9の内側の伝熱管10には、凝縮器3からの凝縮冷媒11を減圧して伝熱管10に流すと共に圧縮機2側に戻すバイパス回路13が接続される。バイパス回路13は、凝縮流体11の流れ方向が外管12内と伝熱管10内とで逆となるように伝熱管10に接続される。伝熱管10の上流側のバイパス回路13には、バイパス膨張機構14が接続される。過冷却器9は、バイパス流冷媒15の流路を形成する伝熱管10と、伝熱管10の外側に同心円状に設けられ伝熱管10との間に凝縮冷媒11の流路を形成する外管12とを備え、伝熱管10の管壁16を介してバイパス流冷媒15と凝縮冷媒11との熱交換がなされるように構成される。   As shown in FIGS. 2 and 3, a supercooler 9 composed of a double pipe is connected between the condenser 3 and the main expansion mechanism 4, and a condenser is connected to an outer pipe 12 of the supercooler 9. Condensed refrigerant (mainstream refrigerant) 11 from 3 to the main expansion mechanism 4 is flowed, and the condensed refrigerant 11 from the condenser 3 is depressurized and flows to the heat transfer pipe 10 in the heat transfer pipe 10 inside the subcooler 9. A bypass circuit 13 returning to the compressor 2 side is connected. The bypass circuit 13 is connected to the heat transfer tube 10 so that the flow direction of the condensed fluid 11 is reversed between the outer tube 12 and the heat transfer tube 10. A bypass expansion mechanism 14 is connected to the bypass circuit 13 upstream of the heat transfer tube 10. The subcooler 9 includes a heat transfer tube 10 that forms a flow path for the bypass flow refrigerant 15 and an outer tube that is provided concentrically outside the heat transfer tube 10 and forms a flow path for the condensed refrigerant 11 between the heat transfer tube 10. 12 and is configured such that heat exchange between the bypass refrigerant 15 and the condensed refrigerant 11 is performed via the tube wall 16 of the heat transfer tube 10.

図1(a)、(b)に示すように、伝熱管10は、銅からなり、伝熱管10の外面には伝熱効率を高めるための螺旋状の溝17が設けられる。螺旋状の溝17は、伝熱管10外面の凝縮冷媒11との伝熱面積を増やす。また、凝縮冷媒11は螺旋状の溝17によって攪拌されるので、伝熱管10外面と凝縮冷媒11の熱伝達率が高くなる。このため、バイパス流冷媒15と凝縮冷媒11の熱交換の効率が高くなり、所定の熱交換をするための過冷却器9を小さくすることができる。   As shown in FIGS. 1A and 1B, the heat transfer tube 10 is made of copper, and a spiral groove 17 for increasing heat transfer efficiency is provided on the outer surface of the heat transfer tube 10. The spiral groove 17 increases the heat transfer area with the condensed refrigerant 11 on the outer surface of the heat transfer tube 10. Further, since the condensed refrigerant 11 is agitated by the spiral groove 17, the heat transfer coefficient between the outer surface of the heat transfer tube 10 and the condensed refrigerant 11 is increased. For this reason, the efficiency of heat exchange between the bypass refrigerant 15 and the condensed refrigerant 11 is increased, and the supercooler 9 for performing predetermined heat exchange can be reduced.

次に、上述の螺旋状の溝17を有する伝熱管10を用いることにより過冷却器9を小さくできる点について式を用いて説明する。   Next, the point which can make the supercooler 9 small by using the heat exchanger tube 10 which has the above-mentioned spiral groove 17 is demonstrated using a type | formula.

伝熱管の外面に螺旋状の溝17を設けた場合と、伝熱管の外面が従来技術のように平滑な場合との、過冷却器の長さの比は数式1で表される。   The ratio of the length of the supercooler between the case where the spiral groove 17 is provided on the outer surface of the heat transfer tube and the case where the outer surface of the heat transfer tube is smooth as in the prior art is expressed by Equation 1.

Figure 2010014311
Figure 2010014311

ここで、dcは伝熱管の内径、dhは伝熱管の外径、αcは伝熱管の管内熱伝達率、αhは伝熱管の管外熱伝達率、1は過冷却器の長さであり、添え字1は平滑な伝熱管であることを表し、添え字2は螺旋状溝17を有する伝熱管であることを表す。 Where d c is the inner diameter of the heat transfer tube, d h is the outer diameter of the heat transfer tube, α c is the heat transfer coefficient in the tube of the heat transfer tube, α h is the heat transfer coefficient outside the tube of the heat transfer tube, and 1 is the length of the subcooler The subscript 1 represents a smooth heat transfer tube, and the subscript 2 represents a heat transfer tube having a spiral groove 17.

外面が平滑な伝熱管の管外熱伝達率は数式2で与えられる。   The external heat transfer coefficient of the heat transfer tube having a smooth outer surface is given by Equation 2.

Figure 2010014311
Figure 2010014311

ここで、Dは外管の内径、Deは伝熱管と外管との環状隙間の水力等価直径、fは管摩擦係数、Reはレイノルズ数、Prはプラントル数、vは流速、λは熱伝導率、νは動粘度である。 Here, D is the inner diameter of the outer tube, D e is hydraulic equivalent diameter of the annular gap between the heat transfer tube and the outer tube, f is the pipe friction factor, Re is Reynolds number, Pr is Prandtl number, v is the flow velocity, lambda is the thermal Conductivity, ν is kinematic viscosity.

外面に螺旋状の溝17がある伝熱管の管外熱伝達率は数式3で与えられると仮定する。   It is assumed that the heat transfer coefficient outside the tube having the spiral groove 17 on the outer surface is given by Equation 3.

Figure 2010014311
Figure 2010014311

ここで、hは溝17の深さ、pは溝17の管軸方向ピッチ、βは溝17のねじれ角である。   Here, h is the depth of the groove 17, p is the pitch in the tube axis direction of the groove 17, and β is the twist angle of the groove 17.

次に、具体的に表1に示す実際の条件で、伝熱管外面の螺旋状溝17の効果を計算する。   Next, the effect of the spiral groove 17 on the outer surface of the heat transfer tube is calculated under the actual conditions shown in Table 1.

Figure 2010014311
Figure 2010014311

この条件での計算で数式4の結果が得られた。   The result of Formula 4 was obtained by calculation under this condition.

Figure 2010014311
Figure 2010014311

つまり、伝熱管の外面に螺旋状の溝17を設けることで、過冷却器の長さを約44%短くできる。   That is, by providing the spiral groove 17 on the outer surface of the heat transfer tube, the length of the supercooler can be shortened by about 44%.

また、上述の条件でh=0.2で計算すると、伝熱管の長さ比は、   In addition, when calculating with h = 0.2 under the above conditions, the length ratio of the heat transfer tubes is

Figure 2010014311
Figure 2010014311

であり、h=1.0で計算すると、伝熱管の長さ比は、 When calculating with h = 1.0, the length ratio of the heat transfer tubes is

Figure 2010014311
Figure 2010014311

である。 It is.

またさらに、β=40(p=1.81)で計算すると、伝熱管の長さ比は、   Furthermore, when calculating with β = 40 (p = 1.81), the length ratio of the heat transfer tubes is

Figure 2010014311
Figure 2010014311

であり、β=60(p=0.875)で計算すると、伝熱管の長さ比は、 When calculating with β = 60 (p = 0.875), the length ratio of the heat transfer tubes is

Figure 2010014311
Figure 2010014311

である。 It is.

このように、空気調和機1に用いられる過冷却器9の伝熱管10の外面に溝17を設けることにより、過冷却器9の長さを短くでき、過冷却器9をコンパクトにでき、空気調和機1をコンパクトにできる。   Thus, by providing the groove 17 on the outer surface of the heat transfer tube 10 of the supercooler 9 used in the air conditioner 1, the length of the supercooler 9 can be shortened, the supercooler 9 can be made compact, The harmony machine 1 can be made compact.

溝17は、螺旋状であるため、凝縮冷媒11中に淀みを形成することなく良好に撹拌でき、加工も容易である。   Since the groove 17 is spiral, it can be satisfactorily stirred without forming stagnation in the condensed refrigerant 11 and can be easily processed.

伝熱管10は銅からなるものとしたため、冷媒11、15間の熱交換を効率よく行うことができる。   Since the heat transfer tube 10 is made of copper, heat exchange between the refrigerants 11 and 15 can be performed efficiently.

(a)は本発明の好適実施の形態を示す過冷却器の要部側断面図であり、(b)は正面断面図である。(A) is principal part side sectional drawing of the subcooler which shows suitable embodiment of this invention, (b) is front sectional drawing. 過冷却器の側断面図である。It is a sectional side view of a supercooler. 過冷却器が用いられる空気調和機の冷媒回路図である。It is a refrigerant circuit diagram of an air conditioner in which a supercooler is used.

符号の説明Explanation of symbols

1 空気調和機
2 圧縮機
3 凝縮器
4 主膨張機構
5 蒸発器
8 冷媒回路
9 過冷却器
10 伝熱管
11 凝縮冷媒
12 外管
13 バイパス回路
17 溝
1 Air Conditioner 2 Compressor 3 Condenser 4 Main Expansion Mechanism 5 Evaporator 8 Refrigerant Circuit 9 Supercooler 10 Heat Transfer Tube 11 Condensed Refrigerant 12 Outer Tube 13 Bypass Circuit 17 Groove

Claims (3)

圧縮機、凝縮器、主膨張機構、蒸発器を順次接続して冷媒回路を構成し、その凝縮器と主膨張機構間に二重管からなる過冷却器を接続し、その過冷却器の外管に凝縮器から主膨張機構に至る凝縮冷媒を流し、その過冷却器の内側の伝熱管に凝縮器からの凝縮冷媒を減圧して伝熱管に流すと共に上記圧縮機側に戻すバイパス回路を接続した空気調和機に用いられる上記過冷却器であって、上記伝熱管の外面に溝を設けたことを特徴とする過冷却器。   A compressor circuit, a condenser, a main expansion mechanism, and an evaporator are connected in order to form a refrigerant circuit. A double-tube supercooler is connected between the condenser and the main expansion mechanism. Condensed refrigerant from the condenser to the main expansion mechanism flows through the pipe, and a bypass circuit is connected to the heat transfer pipe inside the subcooler to reduce the condensed refrigerant from the condenser and flow it to the heat transfer pipe and return it to the compressor side A supercooler used for an air conditioner, wherein a groove is provided on an outer surface of the heat transfer tube. 上記溝は、螺旋状の溝である請求項1記載の過冷却器。   The supercooler according to claim 1, wherein the groove is a spiral groove. 上記伝熱管は銅からなる請求項1又は2記載の過冷却器。   The supercooler according to claim 1 or 2, wherein the heat transfer tube is made of copper.
JP2008173555A 2008-07-02 2008-07-02 Supercooler Pending JP2010014311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008173555A JP2010014311A (en) 2008-07-02 2008-07-02 Supercooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008173555A JP2010014311A (en) 2008-07-02 2008-07-02 Supercooler

Publications (1)

Publication Number Publication Date
JP2010014311A true JP2010014311A (en) 2010-01-21

Family

ID=41700580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008173555A Pending JP2010014311A (en) 2008-07-02 2008-07-02 Supercooler

Country Status (1)

Country Link
JP (1) JP2010014311A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026686A (en) * 2010-07-27 2012-02-09 Mitsubishi Electric Corp Load-side device and refrigeration/cold-storage system
US20150241099A1 (en) * 2012-09-28 2015-08-27 Electrolux Home Products Corporation N.V. Refrigerator and method of controlling refrigerator
JP2019163866A (en) * 2018-03-19 2019-09-26 パナソニックIpマネジメント株式会社 Refrigeration cycle device and hot water generating device including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026686A (en) * 2010-07-27 2012-02-09 Mitsubishi Electric Corp Load-side device and refrigeration/cold-storage system
US20150241099A1 (en) * 2012-09-28 2015-08-27 Electrolux Home Products Corporation N.V. Refrigerator and method of controlling refrigerator
US10288335B2 (en) * 2012-09-28 2019-05-14 Electrolux Home Products Corporation N.V. Refrigerator having a refrigeration system with first and second conduit paths
JP2019163866A (en) * 2018-03-19 2019-09-26 パナソニックIpマネジメント株式会社 Refrigeration cycle device and hot water generating device including the same

Similar Documents

Publication Publication Date Title
JP4738401B2 (en) Air conditioner
JP5370400B2 (en) Heat exchanger
JP4836996B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JPWO2015111220A1 (en) Heat exchanger and air conditioner
WO2015059832A1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
JP6230769B1 (en) Heat exchanger
JP2010014311A (en) Supercooler
JP6425829B2 (en) Heat exchanger and refrigeration cycle device
JP5435460B2 (en) Heat transfer tube
JP2010014312A (en) Double tube type supercooler
JP2009228939A (en) Refrigerant pipe structure for heat exchanger
JP5003968B2 (en) Heat exchanger tube for subcooler and method for manufacturing the same
JP4826343B2 (en) Heat transfer tube for refrigerant of heat pump type heat exchange device and gas cooler using the same
JP2010230256A (en) Refrigerant-to-refrigerant heat exchanger
JP2008309443A (en) Heat transfer pipe connecting structure
JP2022170142A (en) Pipe connection structure and refrigeration cycle device
CN105650950A (en) Composite condenser
WO2015132968A1 (en) Refrigeration cycle device
JP2012180982A (en) Heat exchanger, and heat pump water heater using the same
JP2012093053A (en) Heat exchanger, method for manufacturing the same, refrigerator, and air conditioner
JP2005077062A (en) Heat pump water heater
JP6177195B2 (en) Heat transfer tube for supercooled double tube heat exchanger
JP2007263492A (en) Refrigerant cycle device
JP2007263433A (en) Refrigerant cycle device and heat exchanger for the same