JP5333557B2 - Hot water supply air conditioning system - Google Patents

Hot water supply air conditioning system Download PDF

Info

Publication number
JP5333557B2
JP5333557B2 JP2011216414A JP2011216414A JP5333557B2 JP 5333557 B2 JP5333557 B2 JP 5333557B2 JP 2011216414 A JP2011216414 A JP 2011216414A JP 2011216414 A JP2011216414 A JP 2011216414A JP 5333557 B2 JP5333557 B2 JP 5333557B2
Authority
JP
Japan
Prior art keywords
hot water
heat storage
air conditioning
heat
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011216414A
Other languages
Japanese (ja)
Other versions
JP2013076509A (en
Inventor
秀治 古井
淳哉 南
恒二 菅
伸樹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2011216414A priority Critical patent/JP5333557B2/en
Priority to PCT/JP2012/006255 priority patent/WO2013046723A1/en
Publication of JP2013076509A publication Critical patent/JP2013076509A/en
Application granted granted Critical
Publication of JP5333557B2 publication Critical patent/JP5333557B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • F24D11/0235Central heating systems using heat accumulated in storage masses using heat pumps water heating system with recuperation of waste energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/31Air conditioning systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • F24F2005/0025Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice using heat exchange fluid storage tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Abstract

This hot-water-supplying, air-conditioning system (1) is configured in a manner so as to be able to execute a hot-water-supply-side cold storage operation and an air-conditioning-side cold storage operation during a cold storage operation. In the hot-water-supply-side cold storage operation, a coolant is circulated in a hot-water-supply coolant circuit (40) in a manner so that a heating heat exchanger (48) functions as a radiator and a hot-water-supply-side heat exchanger (33) functions as an evaporator, and the thermal storage medium in a thermal storage tank (31) is cooled by means of the coolant flowing through the hot-water-supply-side heat exchanger (33). In the air-conditioning-side cold storage operation, the coolant is circulated in an air-conditioning coolant circuit (21) in a manner so that an outdoor heat exchanger (24) functions as a radiator and an air-conditioning-side heat exchanger (34) functions as an evaporator, and the thermal storage medium in the thermal storage tank (31) is cooled by means of the coolant flowing through the air-conditioning-side heat exchanger (34).

Description

本発明は、冷媒回路を有する給湯装置と空気調和装置と蓄熱槽とを備え、給湯装置の冷媒回路が冷凍サイクルを行うことによって給湯用の温水を生成し且つ蓄熱槽に冷熱を蓄える運転と、蓄熱槽に蓄えた冷熱を利用した冷房運転とを実行可能な給湯空調システムに関するものである。     The present invention comprises a hot water supply device having a refrigerant circuit, an air conditioner, and a heat storage tank, and the refrigerant circuit of the hot water supply apparatus generates hot water for hot water supply by performing a refrigeration cycle and stores cold heat in the heat storage tank; The present invention relates to a hot water supply air conditioning system capable of performing a cooling operation using cold energy stored in a heat storage tank.

従来より、冷凍サイクルを行う冷媒回路を有して放熱器で温水を生成する給湯装置と、室内を空気調和する空気調和装置とを備え、給湯装置の蒸発器で生じる冷熱を回収して空気調和装置の冷房運転に利用する給湯空調システムが知られている(例えば、下記特許文献1を参照)。     Conventionally, it has a hot water supply device that has a refrigerant circuit for performing a refrigeration cycle and generates hot water with a radiator, and an air conditioner that air-conditions the interior of the room, and collects the cold heat generated in the evaporator of the hot water supply device for air conditioning A hot water supply air conditioning system used for cooling operation of the apparatus is known (see, for example, Patent Document 1 below).

特許文献1の給湯空調システムでは、給湯装置の放熱器は、貯湯槽と接続され、貯湯槽内の水と冷媒とを熱交換させる。また、給湯装置の蒸発器は、蓄熱槽と接続され、蓄熱槽内の蓄熱媒体と冷媒とを熱交換させる。このような構成により、給湯装置の冷媒回路において循環する冷媒は、蒸発器において蓄熱槽内の蓄熱媒体から吸熱し、吸収した熱を利用して放熱器において貯湯槽内の水を加熱する。従って、特許文献1の給湯空調システムでは、貯湯槽内の水を加熱する湯沸かし運転によって得られた冷熱が蓄熱槽に蓄えられる。この湯沸かし運転による蓄熱は、電力料金の安い深夜に行われる。     In the hot water supply air-conditioning system of Patent Document 1, the radiator of the hot water supply device is connected to the hot water storage tank, and exchanges heat between the water in the hot water storage tank and the refrigerant. Moreover, the evaporator of the hot water supply apparatus is connected to the heat storage tank, and exchanges heat between the heat storage medium in the heat storage tank and the refrigerant. With such a configuration, the refrigerant circulating in the refrigerant circuit of the hot water supply device absorbs heat from the heat storage medium in the heat storage tank in the evaporator, and heats the water in the hot water storage tank in the radiator using the absorbed heat. Therefore, in the hot water supply air-conditioning system of Patent Document 1, the cold energy obtained by the water heating operation for heating the water in the hot water storage tank is stored in the heat storage tank. The heat storage by the water heater operation is performed at midnight when the electricity rate is low.

また、特許文献1の給湯空調システムでは、蓄熱槽に空気調和装置が接続されている。空気調和装置は、深夜に蓄熱槽に蓄えられた冷熱を利用して、日中に室内の冷房を行う。そのため、日中に室内を冷房するのに必要な電力は、蓄熱槽の冷熱を利用しない場合に比べて減少する。特許文献1の給湯空調システムでは、このように深夜に給湯装置の蒸発器で生じる冷熱を蓄熱槽に回収し、回収された冷熱を日中に室内の冷房に利用することによって室内の冷房に要する費用を削減している。     Moreover, in the hot water supply air conditioning system of patent document 1, the air conditioning apparatus is connected to the heat storage tank. The air conditioner cools the room during the day using the cold stored in the heat storage tank at midnight. Therefore, the electric power required to cool the room during the day decreases compared to the case where the cold energy of the heat storage tank is not used. In the hot water supply air-conditioning system of Patent Document 1, the cold energy generated in the evaporator of the hot water supply device is collected in the heat storage tank at midnight in this way, and the collected cold heat is used for indoor cooling during the daytime. Reduce costs.

特開2005−257127号公報JP 2005-257127 A

ところで、深夜の湯沸かし運転によって得られる冷熱の量は、日中の冷房運転に必要な冷熱の量に比べて少ないのが通常である。特に、給湯需要が少なくて冷房負荷の高い夏季には、冷房運転に必要な冷熱の量が、湯沸かし運転によって得られる冷熱の量の数倍程度に達する。 By the way, the amount of cold energy obtained by a late-night kettle operation is usually smaller than the amount of cold energy required for daytime cooling operation. In particular, in the summer when the demand for hot water supply is low and the cooling load is high, the amount of cooling required for the cooling operation reaches several times the amount of cooling obtained by the water heating operation.

ところが、特許文献1の給湯空調システムにおいて蓄熱槽に蓄えられる冷熱は、深夜の湯沸かし運転によって得られた冷熱だけである。そのため、深夜に蓄熱槽に蓄えられた冷熱だけでは、日中の冷房負荷のほんの一部しか処理することができない。従って、湯沸かし運転によって得られた冷熱だけを蓄える従来の給湯空調システムでは、日中に室内を冷房するのに必要な電力量を十分に削減できず、給湯空調システムのランニングコストを十分に削減できなかった。     However, the cold energy stored in the heat storage tank in the hot water supply air-conditioning system of Patent Document 1 is only the cold energy obtained by the midnight water boiling operation. Therefore, only a part of the cooling load during the day can be treated only by the cold stored in the heat storage tank at midnight. Therefore, the conventional hot water supply air conditioning system that stores only the cold heat obtained by the water heater operation cannot sufficiently reduce the amount of power required to cool the room during the day, and the running cost of the hot water supply air conditioning system can be sufficiently reduced. There wasn't.

本発明は、かかる点に鑑みてなされたものであり、その目的は、給湯装置の冷媒回路が冷凍サイクルを行うことによって給湯用の温水を生成し且つ蓄熱槽に冷熱を蓄える運転と、蓄熱槽に蓄えた冷熱を利用した冷房運転とを実行可能な給湯空調システムにおいて、ランニングコストを削減することにある。     The present invention has been made in view of such a point, and an object of the present invention is to generate hot water for hot water supply by a refrigerant circuit of a hot water supply device performing a refrigeration cycle and store cold in a heat storage tank, and a heat storage tank. In a hot water supply air-conditioning system capable of performing a cooling operation using the cold energy stored in the water, the running cost is reduced.

第1の発明は、給湯用の温水を蓄える貯湯槽(11)と、該貯湯槽(11)の水を加熱するための加熱用熱交換器(48)が接続された給湯用冷媒回路(40)とを有する給湯装置(10)と、室内熱交換器(27)と室外熱交換器(24)とが接続された空調用冷媒回路(21)を有して室内を空気調和する空気調和装置(20)と、蓄熱媒体を貯留する蓄熱槽(31)と、上記給湯用冷媒回路(40)の冷媒と上記蓄熱槽(31)内の蓄熱媒体とを熱交換させる給湯側熱交換器(33)と、上記空調用冷媒回路(21)の冷媒と上記蓄熱槽(31)内の蓄熱媒体とを熱交換させる空調側熱交換器(34)とを有する蓄熱装置(30)とを備え、上記蓄熱装置(30)が上記蓄熱槽(31)内の蓄熱媒体を冷却する蓄冷運転と、上記空気調和装置(20)が上記空調用冷媒回路(21)において冷媒を上記空調側熱交換器(34)から上記室内熱交換器(27)へ流れるように循環させ、上記蓄熱装置(30)が上記空調側熱交換器(34)を流れる冷媒を上記蓄熱槽(31)内の蓄熱媒体によって冷却する利用冷房運転とが実行可能に構成され、上記蓄冷運転中には、上記給湯装置(10)の上記給湯用冷媒回路(40)が上記加熱用熱交換器(48)が放熱器となり且つ上記給湯側熱交換器(33)が蒸発器となる冷凍サイクルを行い、上記蓄熱装置(30)が上記給湯側熱交換器(33)において上記蓄熱槽(31)内の蓄熱媒体を冷却する給湯側蓄冷動作と、上記空気調和装置(20)の上記空調用冷媒回路(21)が上記室外熱交換器(24)が放熱器となり且つ上記空調側熱交換器(34)が蒸発器となる冷凍サイクルを行い、上記蓄熱装置(30)が上記空調側熱交換器(34)において上記蓄熱槽(31)内の蓄熱媒体を冷却する空調側蓄冷動作とが同時に並行して実行可能である。 According to a first aspect of the present invention, there is provided a hot water storage tank (11) for storing hot water for hot water supply and a hot water supply refrigerant circuit (40) connected to a heating heat exchanger (48) for heating the water in the hot water storage tank (11). ), And an air conditioner that has an air conditioning refrigerant circuit (21) to which an indoor heat exchanger (27) and an outdoor heat exchanger (24) are connected, and that air-conditions the room (20), a heat storage tank (31) for storing the heat storage medium, and a hot water supply side heat exchanger (33) for exchanging heat between the refrigerant in the hot water supply refrigerant circuit (40) and the heat storage medium in the heat storage tank (31). And a heat storage device (30) having an air conditioning side heat exchanger (34) for exchanging heat between the refrigerant of the air conditioning refrigerant circuit (21) and the heat storage medium in the heat storage tank (31), A cold storage operation in which the heat storage device (30) cools the heat storage medium in the heat storage tank (31), and the air conditioner (20) supplies the refrigerant in the air conditioning refrigerant circuit (21). The refrigerant that circulates so as to flow from the air-conditioning side heat exchanger (34) to the indoor heat exchanger (27) so that the heat storage device (30) flows through the air-conditioning side heat exchanger (34) is supplied to the heat storage tank (31 ) Is configured to be executable, and during the cold storage operation, the hot water supply refrigerant circuit (40) of the hot water supply device (10) is connected to the heating heat exchanger (48). ) Is a radiator and the hot water supply side heat exchanger (33) is an evaporator, and the heat storage device (30) is placed in the heat storage tank (31) in the hot water supply side heat exchanger (33). Hot water supply side cold storage operation for cooling the heat storage medium, the air conditioning refrigerant circuit (21) of the air conditioner (20), the outdoor heat exchanger (24) serves as a radiator, and the air conditioning side heat exchanger (34) The refrigeration cycle becomes an evaporator, and the heat storage device (30) is the air conditioning side heat exchanger (34) Oite the heat storage tank (31) and the air conditioning side cool storage operation for cooling the heat storage medium in can be used simultaneously.

第1の発明では、給湯空調システムが蓄冷運転と利用冷房運転とを行う。蓄冷運転中には、蓄熱槽(31)内の蓄熱媒体が冷却されて蓄熱槽(31)に冷熱が蓄えられていく。蓄冷運転中の給湯空調システムでは、給湯側蓄冷動作と空調側蓄冷動作とが実行される。一方、利用冷房運転中の給湯空調システムは、蓄熱槽(31)に蓄えられた冷熱を利用して室内を冷房する。利用冷房運転中において、空調用冷媒回路(21)において循環する冷媒は、空調側熱交換器(34)において冷却された後に室内熱交換器(27)へ流入し、室内の冷房に利用される。     In the first invention, the hot water supply air conditioning system performs the cold storage operation and the use cooling operation. During the cold storage operation, the heat storage medium in the heat storage tank (31) is cooled, and cold heat is stored in the heat storage tank (31). In the hot water supply air conditioning system during the cold storage operation, the hot water supply side cold storage operation and the air conditioning side cold storage operation are executed. On the other hand, the hot water supply air conditioning system in use cooling operation cools the room using the cold energy stored in the heat storage tank (31). During use cooling operation, the refrigerant circulating in the air conditioning refrigerant circuit (21) flows into the indoor heat exchanger (27) after being cooled in the air conditioning side heat exchanger (34), and is used for indoor cooling. .

第1の発明の給湯空調システムは、蓄冷運転中に給湯側蓄冷動作を行う。この給湯側蓄冷動作中には、給湯用冷媒回路(40)を循環する冷媒が、加熱用熱交換器(48)において放熱し、給湯側熱交換器(33)において吸熱する。そして、給湯装置(10)は、加熱用熱交換器(48)において得られた温熱を利用して貯湯槽(11)内の水を加熱し、蓄熱装置(30)は、給湯側熱交換器(33)において得られた冷熱を利用して蓄熱槽(31)内の蓄熱媒体を冷却する。つまり、給湯側蓄冷動作中には、貯湯槽(11)内の水を加熱するために給湯用冷媒回路(40)が行う冷凍サイクルによって冷熱が得られ、得られた冷熱が蓄熱装置(30)の蓄熱槽(31)に蓄えられる。     The hot water supply air conditioning system according to the first aspect of the invention performs the hot water supply side cold storage operation during the cold storage operation. During the hot water supply side cold storage operation, the refrigerant circulating in the hot water supply refrigerant circuit (40) dissipates heat in the heating heat exchanger (48) and absorbs heat in the hot water supply side heat exchanger (33). The hot water supply device (10) heats the water in the hot water storage tank (11) using the heat obtained in the heating heat exchanger (48), and the heat storage device (30) is a hot water supply side heat exchanger. The heat storage medium in the heat storage tank (31) is cooled using the cold energy obtained in (33). That is, during the hot water supply side cold storage operation, cold heat is obtained by the refrigeration cycle performed by the hot water supply refrigerant circuit (40) to heat the water in the hot water storage tank (11), and the obtained cold heat is converted into the heat storage device (30). Stored in the heat storage tank (31).

また、第1の発明の給湯空調システムは、蓄冷運転中に空調側蓄冷動作を行う。この空調側蓄冷動作中には、空調用冷媒回路(21)を循環する冷媒が、室外熱交換器(24)において放熱し、空調側熱交換器(34)において吸熱する。そして、蓄熱装置(30)は、空調側熱交換器(34)において得られた冷熱を利用して蓄熱槽(31)内の蓄熱媒体を冷却する。つまり、空調側蓄冷動作中には、空調用冷媒回路(21)を循環する冷媒が蓄熱装置(30)から吸収した熱を室外空気へ放出し、蓄熱装置(30)の蓄熱槽(31)に冷熱が蓄えられる。     Moreover, the hot water supply air conditioning system of 1st invention performs air-conditioning side cold storage operation | movement during cold storage operation. During this air conditioning side cold storage operation, the refrigerant circulating in the air conditioning refrigerant circuit (21) dissipates heat in the outdoor heat exchanger (24) and absorbs heat in the air conditioning side heat exchanger (34). And a thermal storage apparatus (30) cools the thermal storage medium in a thermal storage tank (31) using the cold energy obtained in the air-conditioning side heat exchanger (34). In other words, during the cooling operation on the air conditioning side, the refrigerant circulating in the air conditioning refrigerant circuit (21) releases the heat absorbed from the heat storage device (30) to the outdoor air and enters the heat storage tank (31) of the heat storage device (30). Cold energy is stored.

また、第1の発明では、蓄冷運転中に、給湯空調システムにおいて給湯側蓄冷動作と空調側蓄冷動作とが同時に並行して実行される。In the first invention, during the cold storage operation, the hot water supply side cold storage operation and the air conditioning side cold storage operation are simultaneously executed in parallel in the hot water supply air conditioning system.

第2の発明は、第1の発明において、上記蓄熱装置(30)は、上記給湯側熱交換器(33)と上記蓄熱槽(31)との間で蓄熱媒体を循環させる第1循環路(35a,35b)と、上記空調側熱交換器(34)と上記蓄熱槽(31)との間で蓄熱媒体を循環させる第2循環路(35a,35c)とを備えている。     In a second aspect based on the first aspect, the heat storage device (30) is configured to circulate a heat storage medium between the hot water supply side heat exchanger (33) and the heat storage tank (31) ( 35a, 35b) and a second circulation path (35a, 35c) for circulating a heat storage medium between the air conditioning side heat exchanger (34) and the heat storage tank (31).

第2の発明では、蓄冷運転中には、給湯側熱交換器(33)を流れる冷媒によって冷却された蓄熱媒体が第1循環路(35a,35b)を介して蓄熱槽(31)へ流入することによって蓄熱槽(31)に冷熱が蓄えられ、空調側熱交換器(34)を流れる冷媒によって冷却された蓄熱媒体が第2循環路(35a,35c)を介して蓄熱槽(31)へ流入することによって蓄熱槽(31)に冷熱が蓄えられる。一方、利用冷房運転中には、蓄熱槽(31)内の冷却された蓄熱媒体が第1循環路(35a,35b)を介して空調側熱交換器(34)へ流入して空調用冷媒回路(21)において室内熱交換器(27)へ流入する冷媒を冷却することによって室内が冷房される。     In the second invention, during the cold storage operation, the heat storage medium cooled by the refrigerant flowing through the hot water supply side heat exchanger (33) flows into the heat storage tank (31) through the first circulation path (35a, 35b). As a result, cold heat is stored in the heat storage tank (31), and the heat storage medium cooled by the refrigerant flowing through the air conditioning side heat exchanger (34) flows into the heat storage tank (31) via the second circulation path (35a, 35c). By doing so, cold heat is stored in the heat storage tank (31). On the other hand, during the use cooling operation, the cooled heat storage medium in the heat storage tank (31) flows into the air-conditioning side heat exchanger (34) through the first circulation path (35a, 35b) and enters the air-conditioning refrigerant circuit. In (21), the room is cooled by cooling the refrigerant flowing into the indoor heat exchanger (27).

第3の発明は、第1の発明において、上記蓄熱槽(31)内には、内部を流通する冷媒と蓄熱媒体とを熱交換させる伝熱管(39)が設けられ、該伝熱管(39)が上記給湯側熱交換器及び上記空調側熱交換器を兼ねている。     In a third aspect based on the first aspect, the heat storage tank (31) is provided with a heat transfer tube (39) for exchanging heat between the refrigerant flowing through the heat storage medium and the heat storage medium, and the heat transfer tube (39). Doubles as the hot water supply side heat exchanger and the air conditioning side heat exchanger.

第3の発明では、蓄熱槽(31)内に設けられた伝熱管(39)が給湯側熱交換器と空調側熱交換器とを兼ねている。     In 3rd invention, the heat exchanger tube (39) provided in the thermal storage tank (31) serves as the hot water supply side heat exchanger and the air-conditioning side heat exchanger.

第1の発明の給湯空調システムでは、蓄冷運転中に給湯側蓄冷動作と空調側蓄冷動作とが実行可能となっている。給湯側蓄冷動作中には、給湯用冷媒回路(40)において冷凍サイクルが行われ、加熱用熱交換器(48)において冷媒から放出された熱を利用して給湯装置(10)が貯湯槽(11)内の水を加熱し、給湯側熱交換器(33)において得られた冷熱が蓄熱装置(30)の蓄熱槽(31)に蓄えられる。一方、空調側蓄冷動作中には、空調用冷媒回路(21)において冷凍サイクルが行われ、室外熱交換器(24)において冷媒が室外空気へ放熱し、空調側熱交換器(34)において得られた冷熱が蓄熱装置(30)の蓄熱槽(31)に蓄えられる。     In the hot water supply air conditioning system of the first invention, the hot water supply side cold storage operation and the air conditioning side cold storage operation can be performed during the cold storage operation. During the hot water supply side cold storage operation, a refrigeration cycle is performed in the hot water supply refrigerant circuit (40), and the hot water supply device (10) is heated by a hot water storage tank (10) using heat released from the refrigerant in the heating heat exchanger (48). 11) The water inside is heated, and the cold energy obtained in the hot water supply side heat exchanger (33) is stored in the heat storage tank (31) of the heat storage device (30). On the other hand, during the cold storage operation on the air conditioning side, a refrigeration cycle is performed in the refrigerant circuit for air conditioning (21), and the refrigerant radiates heat to the outdoor air in the outdoor heat exchanger (24), and is obtained in the air conditioning side heat exchanger (34). The generated cold energy is stored in the heat storage tank (31) of the heat storage device (30).

このように上記第1の発明の給湯空調システムによれば、給湯側蓄冷動作だけでなく空調側蓄冷動作を行うことにより、給湯側蓄冷動作のみを行う場合に比べて多くの冷熱を蓄熱装置(30)の蓄熱槽(31)に蓄えることができる。そのため、貯湯槽(11)内の水を加熱する際に得られる冷熱だけでなく、空調用冷媒回路(21)の冷媒が室外空気へ放熱することによって得られる冷熱も蓄熱装置(30)の蓄熱槽(31)に蓄えることができる。従って、第1の発明によれば、電力料金の安い深夜に蓄冷運転を行い、その蓄冷運転中に給湯側蓄冷動作と空調側蓄冷動作とを行うことによって日中の利用冷房運転に必要な十分な量の冷熱を蓄熱槽(31)に蓄えることができる。その結果、日中に室内を冷房するために消費される電力量を十分に削減でき、給湯空調システムのランニングコストを十分に削減することができる。     As described above, according to the hot water supply air conditioning system of the first aspect of the present invention, by performing not only the hot water supply side cold storage operation but also the air conditioning side cold storage operation, a larger amount of cold energy is stored in the heat storage device ( It can be stored in the heat storage tank (31) of 30). Therefore, not only the cold heat obtained when heating the water in the hot water storage tank (11) but also the cold heat obtained by the refrigerant in the air conditioning refrigerant circuit (21) dissipating heat to the outdoor air is also stored in the heat storage device (30). Can be stored in tank (31). Therefore, according to the first aspect of the invention, the cold storage operation is performed at midnight when the power rate is low, and the hot water supply side cold storage operation and the air conditioning side cold storage operation are performed during the cold storage operation. A small amount of cold energy can be stored in the heat storage tank (31). As a result, the amount of power consumed to cool the room during the day can be sufficiently reduced, and the running cost of the hot water supply air conditioning system can be sufficiently reduced.

また、第1の発明によれば、給湯側蓄熱動作と空調側蓄熱動作とを同時に並行して行うことにより、給湯側蓄熱動作の終了後に空調側蓄熱動作を行う場合に比べて蓄冷運転に要する時間を短縮することができる。Moreover, according to 1st invention, compared with the case where air-conditioning side heat storage operation is performed after completion | finish of hot-water supply side heat storage operation by performing hot water supply side heat storage operation and air-conditioning side heat storage operation simultaneously in parallel, it requires. Time can be shortened.

また、第2の発明によれば、給湯側熱交換器(33)と蓄熱槽(31)との間で蓄熱媒体を循環させる第1循環路(35a,35b)と、空調側熱交換器(34)と蓄熱槽(31)との間で蓄熱媒体を循環させる第2循環路(35a,35c)とを設けることにより、給湯側蓄冷動作と空調側蓄冷動作とを同時に行って、給湯用冷媒回路における冷凍サイクルによって得られた冷熱と空調用冷媒回路における冷凍サイクルによって得られた冷熱とを同じ蓄熱槽(31)に蓄えることができる。従って、給湯空調システムをコンパクトに構成することができる。     Further, according to the second invention, the first circulation path (35a, 35b) for circulating the heat storage medium between the hot water supply side heat exchanger (33) and the heat storage tank (31), and the air conditioning side heat exchanger ( 34) and the heat storage tank (31) are provided with the second circulation path (35a, 35c) for circulating the heat storage medium, so that the hot water supply side cold storage operation and the air conditioning side cold storage operation are performed simultaneously, and the hot water supply refrigerant. The cold heat obtained by the refrigeration cycle in the circuit and the cold heat obtained by the refrigeration cycle in the air conditioning refrigerant circuit can be stored in the same heat storage tank (31). Therefore, the hot water supply air conditioning system can be configured compactly.

また、第3の発明によれば、給湯側熱交換器と空調側熱交換器とを蓄熱槽(31)内に設けられた伝熱管(39)によって構成することにより、給湯空調システムの部品点数を削減することができる。従って、給湯空調システムを安価に構成することができる。     Moreover, according to 3rd invention, the hot water supply side heat exchanger and the air-conditioning side heat exchanger are comprised by the heat exchanger tube (39) provided in the thermal storage tank (31), The number of parts of a hot water supply air conditioning system Can be reduced. Therefore, the hot water supply air conditioning system can be configured at low cost.

図1は、実施形態1の給湯空調システムの構成を示す配管系統図である。FIG. 1 is a piping system diagram showing the configuration of the hot water supply air conditioning system of the first embodiment. 図2は、実施形態1の給湯空調システムの蓄冷運転中の動作を示す配管系統図である。FIG. 2 is a piping diagram illustrating the operation during the cold storage operation of the hot water supply air-conditioning system according to the first embodiment. 図3は、実施形態1の給湯空調システムの第1利用冷房運転中の動作を示す配管系統図である。FIG. 3 is a piping diagram illustrating an operation during the first use cooling operation of the hot water supply air-conditioning system according to the first embodiment. 図4は、実施形態1の給湯空調システムの第2利用冷房運転中の動作を示す配管系統図である。FIG. 4 is a piping diagram illustrating an operation during the second use cooling operation of the hot water supply air-conditioning system according to the first embodiment. 図5は、実施形態1の給湯空調システムの単純冷房運転中の動作を示す配管系統図である。FIG. 5 is a piping diagram illustrating an operation during the simple cooling operation of the hot water supply air-conditioning system according to the first embodiment. 図6は、実施形態1の給湯空調システムの蓄熱運転中の動作を示す配管系統図である。FIG. 6 is a piping diagram illustrating an operation during a heat storage operation of the hot water supply air-conditioning system according to the first embodiment. 図7は、実施形態1の給湯空調システムの利用暖房運転中の動作を示す配管系統図である。FIG. 7 is a piping system diagram showing an operation during the use heating operation of the hot water supply air conditioning system of the first embodiment. 図8は、実施形態1の給湯空調システムの単純暖房運転中の動作を示す配管系統図である。FIG. 8 is a piping diagram illustrating an operation during the simple heating operation of the hot water supply air conditioning system of the first embodiment. 図9は、実施形態1の給湯空調システムの単純湯沸かし運転中の動作を示す配管系統図である。FIG. 9 is a piping diagram illustrating an operation during a simple hot water operation of the hot water supply air conditioning system of the first embodiment. 図10は、実施形態2の給湯空調システムの構成を示す配管系統図である。FIG. 10 is a piping system diagram showing the configuration of the hot water supply air conditioning system of the second embodiment. 図11は、実施形態2の給湯空調システムの蓄冷運転中の動作を示す配管系統図である。FIG. 11 is a piping diagram illustrating an operation during a cold storage operation of the hot water supply air-conditioning system according to the second embodiment. 図12は、実施形態2の給湯空調システムの第1利用冷房運転中の動作を示す配管系統図である。FIG. 12 is a piping diagram illustrating an operation during the first use cooling operation of the hot water supply air-conditioning system according to the second embodiment. 図13は、実施形態2の給湯空調システムの第2利用冷房運転中の動作を示す配管系統図である。FIG. 13 is a piping diagram illustrating an operation during the second use cooling operation of the hot water supply air-conditioning system according to the second embodiment. 図14は、実施形態2の給湯空調システムの蓄熱運転中の動作を示す配管系統図である。FIG. 14 is a piping diagram illustrating an operation during a heat storage operation of the hot water supply air-conditioning system according to the second embodiment. 図15は、実施形態2の給湯空調システムの利用暖房運転中の動作を示す配管系統図である。FIG. 15 is a piping diagram illustrating an operation during a heating operation of the hot water supply air conditioning system according to the second embodiment. 図16は、実施形態3の給湯空調システムの第1利用冷房運転中の第2動作を示す配管系統図である。FIG. 16 is a piping diagram illustrating a second operation during the first use cooling operation of the hot water supply air-conditioning system according to the third embodiment. 図17は、実施形態3の給湯空調システムの第1利用冷房運転中の第3動作を示す配管系統図である。FIG. 17 is a piping diagram illustrating a third operation during the first use cooling operation of the hot water supply air-conditioning system according to the third embodiment. 図18は、実施形態3の給湯空調システムの第2利用冷房運転中の第2動作を示す配管系統図である。FIG. 18 is a piping diagram illustrating a second operation during the second use cooling operation of the hot water supply air-conditioning system according to the third embodiment. 図19は、実施形態3の給湯空調システムの第2利用冷房運転中の第3動作を示す配管系統図である。FIG. 19 is a piping diagram illustrating a third operation during the second usage cooling operation of the hot water supply air-conditioning system according to the third embodiment. 図20は、実施形態4の給湯空調システムの構成を示す配管系統図である。FIG. 20 is a piping diagram illustrating the configuration of the hot water supply air conditioning system according to the fourth embodiment.

以下、本発明の実施形態を図面に基づいて詳細に説明する。     Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〈発明の実施形態1〉
図1は、本発明に係る給湯空調システム(1)の回路構成図である。上記給湯空調システム(1)は、給湯装置(10)と、空気調和装置(20)と、蓄熱装置(30)とを備えている。本実施形態では、給湯空調システム(1)は、既存の給湯装置(10)と空気調和装置(20)とに、蓄熱装置(30)を後付けすることによって構成されている。
<Embodiment 1>
FIG. 1 is a circuit configuration diagram of a hot water supply air conditioning system (1) according to the present invention. The hot water supply air conditioning system (1) includes a hot water supply device (10), an air conditioner (20), and a heat storage device (30). In this embodiment, the hot water supply air conditioning system (1) is configured by retrofitting a heat storage device (30) to an existing hot water supply device (10) and an air conditioner (20).

〈給湯装置〉
給湯装置(10)は、貯湯槽(11)と、水回路(12)と、給湯用冷媒回路(40)と、ファン(46a)とを備えている。
<Water heater>
The hot water supply device (10) includes a hot water storage tank (11), a water circuit (12), a hot water supply refrigerant circuit (40), and a fan (46a).

貯湯槽(11)は、縦長の円筒形のタンクである。貯湯槽(11)は、その底部に給水管が接続され、その頂部に給湯管が接続されている。この貯湯槽(11)は、給湯用の温水を蓄える。     The hot water tank (11) is a vertically long cylindrical tank. The hot water storage tank (11) has a water supply pipe connected to the bottom and a hot water supply pipe connected to the top. This hot water tank (11) stores hot water for hot water supply.

水回路(12)は、その入口端が貯湯槽(11)の底部に接続され、その出口端が貯湯槽(11)の頂部に接続されている。水回路(12)には、ポンプ(13)が設けられている。また、水回路(12)におけるポンプ(13)の吐出側には、水回路(12)の水を加熱するための加熱用熱交換器(48)が接続されている。加熱用熱交換器(48)は、一次側流路(48a)と二次側流路(48b)とが複数ずつ形成されたプレート式熱交換器によって構成され、二次側流路(48b)が水回路(12)に接続されている。     The water circuit (12) has an inlet end connected to the bottom of the hot water tank (11) and an outlet end connected to the top of the hot water tank (11). The water circuit (12) is provided with a pump (13). A heating heat exchanger (48) for heating water in the water circuit (12) is connected to the discharge side of the pump (13) in the water circuit (12). The heating heat exchanger (48) is composed of a plate heat exchanger in which a plurality of primary side flow paths (48a) and secondary side flow paths (48b) are formed, and the secondary side flow path (48b). Is connected to the water circuit (12).

給湯用冷媒回路(40)は、それぞれ冷媒が充填された閉回路である低温側回路(41)及び高温側回路(42)と、後述する蓄熱装置(30)を後付けする際に追加される給湯側接続配管(50)と第1及び第2三方弁(51,52)とを有している。そして、給湯用冷媒回路(40)では、低温側回路(41)の高温部と高温側回路(42)の低温部との間にカスケード熱交換器(43)が設けられて二元冷凍サイクルを行う。     The hot water supply refrigerant circuit (40) is a hot water supply added when retrofitting a low temperature side circuit (41) and a high temperature side circuit (42), each of which is a closed circuit filled with refrigerant, and a heat storage device (30) described later. It has a side connection pipe (50) and first and second three-way valves (51, 52). And, in the hot water supply refrigerant circuit (40), a cascade heat exchanger (43) is provided between the high temperature part of the low temperature side circuit (41) and the low temperature part of the high temperature side circuit (42) to perform the dual refrigeration cycle. Do.

具体的には、低温側回路(41)では、圧縮機(44)とカスケード熱交換器(43)の一次側流路(43a)と膨張弁(45)と蒸発器(46)とが順に配管によって接続されている。一方、高温側回路(42)では、圧縮機(47)と加熱用熱交換器(48)の一次側流路(48a)と膨張弁(49)とカスケード熱交換器(43)の二次側流路(43b)とが順に配管によって接続されている。     Specifically, in the low temperature side circuit (41), the compressor (44), the primary heat flow path (43a), the expansion valve (45), and the evaporator (46) in the cascade heat exchanger (43) are sequentially piped. Connected by. On the other hand, in the high temperature side circuit (42), the primary side flow path (48a), the expansion valve (49), and the secondary side of the cascade heat exchanger (43) of the compressor (47) and the heating heat exchanger (48). The flow path (43b) is connected to the pipe in order.

圧縮機(44,47)は、それぞれ圧縮機構と電動機が一つのケーシングに収容された全密閉型圧縮機であり、スクロール式流体機械からなる圧縮機構を有している。     Each of the compressors (44, 47) is a hermetic compressor in which a compression mechanism and an electric motor are housed in one casing, and has a compression mechanism composed of a scroll fluid machine.

カスケード熱交換器(43)は、一次側流路(43a)と二次側流路(43b)とが複数ずつ形成されたプレート式熱交換器によって構成されている。     The cascade heat exchanger (43) is configured by a plate heat exchanger in which a plurality of primary side flow paths (43a) and secondary side flow paths (43b) are formed.

蒸発器(46)は、いわゆるクロスフィン型の熱交換器によって構成され、近傍にファン(46a)が設けられている。蒸発器(46)では、冷媒をファン(46a)によって供給された空気と熱交換させることによって室外空気から吸熱させて蒸発させる。     The evaporator (46) is constituted by a so-called cross fin type heat exchanger, and a fan (46a) is provided in the vicinity thereof. The evaporator (46) evaporates by absorbing heat from the outdoor air by exchanging heat between the refrigerant and the air supplied by the fan (46a).

給湯側接続配管(50)は、蒸発器(46)をバイパスするように低温側回路(41)に接続されている。給湯側接続配管(50)の流入端には第1三方弁(51)が接続され、流出端には第2三方弁(52)が接続されている。また、詳細については後述するが、給湯側接続配管(50)には、給湯側熱交換器(33)の一次側流路(33a)が接続されている。     The hot water supply side connection pipe (50) is connected to the low temperature side circuit (41) so as to bypass the evaporator (46). A first three-way valve (51) is connected to the inflow end of the hot water supply side connection pipe (50), and a second three-way valve (52) is connected to the outflow end. Moreover, although mentioned later for details, the primary side flow path (33a) of the hot water supply side heat exchanger (33) is connected to the hot water supply side connection piping (50).

第1三方弁(51)は、低温側回路(41)の膨張弁(45)と蒸発器(46)との間に接続されている。第1三方弁(51)は、膨張弁(45)を蒸発器(46)に連通させて給湯側接続配管(50)から遮断する状態と膨張弁(45)を給湯側接続配管(50)に連通させて蒸発器(46)から遮断する状態とに切り換わる。     The first three-way valve (51) is connected between the expansion valve (45) of the low temperature side circuit (41) and the evaporator (46). The first three-way valve (51) connects the expansion valve (45) to the evaporator (46) and is disconnected from the hot water supply side connection pipe (50), and the expansion valve (45) is connected to the hot water supply side connection pipe (50). The state is switched to the state of being disconnected from the evaporator (46) through communication.

一方、第2三方弁(52)は、低温側回路(41)の圧縮機(44)と蒸発器(46)との間に接続されている。第1三方弁(51)は、圧縮機(44)を蒸発器(46)に連通させて給湯側接続配管(50)から遮断する状態と圧縮機(44)を給湯側接続配管(50)に連通させて蒸発器(46)から遮断する状態とに切り換わる。     On the other hand, the second three-way valve (52) is connected between the compressor (44) and the evaporator (46) of the low temperature side circuit (41). The first three-way valve (51) connects the compressor (44) to the evaporator (46) and is disconnected from the hot water supply side connection pipe (50), and the compressor (44) is connected to the hot water supply side connection pipe (50). The state is switched to the state of being disconnected from the evaporator (46) through communication.

〈空気調和装置〉
空気調和装置(20)は、冷媒が充填された閉回路である空調用冷媒回路(21)と、室外ファン(24a)と、3つの室内ファン(27a)とを備えている。
<Air conditioning device>
The air conditioner (20) includes an air conditioning refrigerant circuit (21) that is a closed circuit filled with a refrigerant, an outdoor fan (24a), and three indoor fans (27a).

空調用冷媒回路(21)は、主回路(29)と、後述する蓄熱装置(30)を後付けする際に追加される空調側接続配管(53)と、第1バイパス配管(54)と、第2バイパス配管(55)と、第3〜第8三方弁(56〜61)とを備えている。     The air conditioning refrigerant circuit (21) includes a main circuit (29), an air conditioning side connection pipe (53) added when retrofitting a heat storage device (30) to be described later, a first bypass pipe (54), 2 bypass piping (55) and the 3rd-8th three-way valve (56-61) are provided.

上記主回路(29)は、圧縮機(22)と、四方切換弁(23)と、室外熱交換器(24)と、室外膨張弁(25)と、3つの室内膨張弁(26)と、3つの室内熱交換器(27)とを備えている。     The main circuit (29) includes a compressor (22), a four-way switching valve (23), an outdoor heat exchanger (24), an outdoor expansion valve (25), three indoor expansion valves (26), And three indoor heat exchangers (27).

圧縮機(22)は、吐出側が四方切換弁(23)の第1ポートに接続され、吸入側が四方切換弁(23)の第2ポートに接続されている。また、主回路(29)では、四方切換弁(23)の第3のポートから第4のポートへ向かって順に、室外熱交換器(24)と、室外膨張弁(25)と、室内膨張弁(26)と、室内熱交換器(27)とが順に配管によって接続されている。なお、3組の室内膨張弁(26)及び室内熱交換器(27)は、それぞれ並列に接続されている。     The compressor (22) has a discharge side connected to a first port of the four-way switching valve (23) and a suction side connected to a second port of the four-way switching valve (23). In the main circuit (29), the outdoor heat exchanger (24), the outdoor expansion valve (25), and the indoor expansion valve are sequentially arranged from the third port to the fourth port of the four-way switching valve (23). (26) and the indoor heat exchanger (27) are sequentially connected by piping. The three sets of indoor expansion valves (26) and the indoor heat exchanger (27) are connected in parallel.

圧縮機(22)は、圧縮機構と電動機が一つのケーシングに収容された全密閉型圧縮機であり、ローリングピストン型または揺動ピストン型のロータリ式流体機械からなる圧縮機構を有している。     The compressor (22) is a hermetic compressor in which a compression mechanism and an electric motor are housed in one casing, and has a compression mechanism composed of a rolling piston type or oscillating piston type rotary fluid machine.

四方切換弁(23)は、第1のポートが第3のポートと連通し且つ第2のポートが第4のポートと連通する第1状態(図1に実線で示す状態)と、第1のポートが第4のポートと連通し且つ第2のポートが第3のポートと連通する第2状態(図1に破線で示す状態)とに切り換わる。     The four-way switching valve (23) includes a first state (state indicated by a solid line in FIG. 1) in which the first port communicates with the third port and the second port communicates with the fourth port; The port is switched to a second state (state indicated by a broken line in FIG. 1) in which the port communicates with the fourth port and the second port communicates with the third port.

室外熱交換器(24)は、いわゆるクロスフィン型の熱交換器によって構成され、近傍に室外ファン(24a)が設けられている。室外熱交換器(24)では、冷媒を室外ファン(24a)によって供給された室外空気と熱交換させる。     The outdoor heat exchanger (24) is configured by a so-called cross fin type heat exchanger, and an outdoor fan (24a) is provided in the vicinity thereof. In the outdoor heat exchanger (24), the refrigerant exchanges heat with the outdoor air supplied by the outdoor fan (24a).

3つの室内熱交換器(27)は、それぞれいわゆるクロスフィン型の熱交換器によって構成され、近傍にそれぞれ室内ファン(27a)が設けられている。室内熱交換器(27)では、冷媒を室内ファン(27a)によって供給された室内空気と熱交換させることによって室内を空気調和する。     The three indoor heat exchangers (27) are each constituted by a so-called cross fin type heat exchanger, and an indoor fan (27a) is provided in the vicinity thereof. In the indoor heat exchanger (27), air is conditioned in the room by exchanging heat between the refrigerant and the indoor air supplied by the indoor fan (27a).

室外膨張弁(25)と室内膨張弁(26)のそれぞれは、開度可変の電動膨張弁である。     Each of the outdoor expansion valve (25) and the indoor expansion valve (26) is an electric expansion valve with a variable opening.

空調側接続配管(53)は、主回路(29)の室外膨張弁(25)と各室内膨張弁(26)との間の配管に並列に接続されている。空調側接続配管(53)の一端には第3三方弁(56)が接続され、他端には第4三方弁(57)が接続されている。また、詳細については後述するが、空調側接続配管(53)には、空調側熱交換器(34)の一次側流路(34a)が接続されている。     The air conditioning side connection pipe (53) is connected in parallel to the pipe between the outdoor expansion valve (25) of the main circuit (29) and each indoor expansion valve (26). A third three-way valve (56) is connected to one end of the air conditioning side connection pipe (53), and a fourth three-way valve (57) is connected to the other end. Moreover, although mentioned later for details, the primary side flow path (34a) of the air-conditioning side heat exchanger (34) is connected to the air-conditioning side connection piping (53).

第1バイパス配管(54)は、主回路(29)の四方切換弁(23)の第3ポートと室外熱交換器(24)とを接続するガス配管の中途部と空調側接続配管(53)の中途部とに接続されている。第1バイパス配管(54)の一端には第5三方弁(58)が接続され、他端には第6三方弁(59)が接続されている。     The first bypass pipe (54) consists of a gas pipe connecting the third port of the four-way selector valve (23) of the main circuit (29) and the outdoor heat exchanger (24) and an air conditioning side connection pipe (53). It is connected to the middle part. A first three-way valve (58) is connected to one end of the first bypass pipe (54), and a sixth three-way valve (59) is connected to the other end.

第2バイパス配管(55)は、主回路(29)の四方切換弁(23)の第4ポートと各室内熱交換器(27)とを接続するガス配管の中途部と空調側接続配管(53)の中途部とに接続されている。第2バイパス配管(55)の一端には第7三方弁(60)が接続され、他端には第8三方弁(61)が接続されている。     The second bypass pipe (55) includes a middle part of the gas pipe connecting the fourth port of the four-way switching valve (23) of the main circuit (29) and each indoor heat exchanger (27) and an air conditioning side connection pipe (53 ) Is connected to the middle part. A seventh three-way valve (60) is connected to one end of the second bypass pipe (55), and an eighth three-way valve (61) is connected to the other end.

第3三方弁(56)及び第4三方弁(57)は、主回路(29)の室外膨張弁(25)と各室外膨張弁(25)との間にそれぞれ設けられ、第3三方弁(56)は室外膨張弁(25)側に接続され、第4三方弁(57)は室内膨張弁(26)側に接続されている。第3三方弁(56)は、室外膨張弁(25)を第4三方弁(57)に連通させて空調側接続配管(53)から遮断する状態と室外膨張弁(25)を空調側接続配管(53)に連通させて第4三方弁(57)から遮断する状態とに切り換わる。第4三方弁(57)は、各室内膨張弁(26)を第3三方弁(56)に連通させて空調側接続配管(53)から遮断する状態と各室内膨張弁(26)を空調側接続配管(53)に連通させて第3三方弁(56)から遮断する状態とに切り換わる。     The third three-way valve (56) and the fourth three-way valve (57) are provided between the outdoor expansion valve (25) and each outdoor expansion valve (25) of the main circuit (29), respectively. 56) is connected to the outdoor expansion valve (25) side, and the fourth three-way valve (57) is connected to the indoor expansion valve (26) side. The third three-way valve (56) connects the outdoor expansion valve (25) to the fourth three-way valve (57) and shuts it off from the air conditioning side connection pipe (53) and the outdoor expansion valve (25) to the air conditioning side connection pipe. The state is switched to the state of being disconnected from the fourth three-way valve (57) by communicating with (53). The fourth three-way valve (57) includes a state in which each indoor expansion valve (26) communicates with the third three-way valve (56) and is disconnected from the air conditioning side connection pipe (53), and each indoor expansion valve (26) is on the air conditioning side. The connection pipe (53) communicates with the third three-way valve (56) and switches to a state where it is shut off.

第5三方弁(58)は、主回路(29)の四方切換弁(23)の第3ポートと室外熱交換器(24)とを接続するガス配管の中途部に接続され、第6三方弁(59)は空調側接続配管(53)における空調側熱交換器(34)の第3三方弁(56)側に接続されている。第5三方弁(58)は、四方切換弁(23)の第3ポートを室外熱交換器(24)に連通させて第1バイパス配管(54)から遮断する状態と四方切換弁(23)の第3ポートを第1バイパス配管(54)に連通させて室外熱交換器(24)から遮断する状態とに切り換わる。第6三方弁(59)は、空調側熱交換器(34)を第3三方弁(56)に連通させて第1バイパス配管(54)から遮断する状態と空調側熱交換器(34)を第1バイパス配管(54)に連通させて第3三方弁(56)から遮断する状態とに切り換わる。     The fifth three-way valve (58) is connected to the middle part of the gas pipe connecting the third port of the four-way switching valve (23) of the main circuit (29) and the outdoor heat exchanger (24), and the sixth three-way valve (59) is connected to the third three-way valve (56) side of the air conditioning side heat exchanger (34) in the air conditioning side connection pipe (53). The fifth three-way valve (58) communicates the third port of the four-way switching valve (23) with the outdoor heat exchanger (24) and shuts off the first bypass pipe (54) and the four-way switching valve (23). The third port communicates with the first bypass pipe (54) and switches to a state where it is shut off from the outdoor heat exchanger (24). The sixth three-way valve (59) connects the air-conditioning side heat exchanger (34) with the third three-way valve (56) and shuts off the first bypass pipe (54) and the air-conditioning side heat exchanger (34). The first bypass pipe (54) communicates with the third three-way valve (56) and switches to a state where it is shut off.

第7三方弁(60)は、主回路(29)の四方切換弁(23)の第4ポートと各室内熱交換器(27)とを接続するガス配管の中途部に接続され、第8三方弁(61)は空調側接続配管(53)における空調側熱交換器(34)の第4三方弁(57)側に接続されている。第7三方弁(60)は、四方切換弁(23)の第4ポートを各室内熱交換器(27)に連通させて第2バイパス配管(55)から遮断する状態と四方切換弁(23)の第4ポートを第2バイパス配管(55)に連通させて各室内熱交換器(27)から遮断する状態とに切り換わる。第8三方弁(61)は、空調側熱交換器(34)を第4三方弁(57)に連通させて第2バイパス配管(55)から遮断する状態と空調側熱交換器(34)を第2バイパス配管(55)に連通させて第4三方弁(57)から遮断する状態とに切り換わる。     The seventh three-way valve (60) is connected to the middle part of the gas pipe connecting the fourth port of the four-way switching valve (23) of the main circuit (29) and each indoor heat exchanger (27). The valve (61) is connected to the fourth three-way valve (57) side of the air conditioning side heat exchanger (34) in the air conditioning side connection pipe (53). The seventh three-way valve (60) includes a state in which the fourth port of the four-way switching valve (23) communicates with each indoor heat exchanger (27) and is shut off from the second bypass pipe (55). The 4th port of this is connected to the 2nd bypass piping (55), and it switches to the state where it cuts off from each indoor heat exchanger (27). The eighth three-way valve (61) connects the air-conditioning side heat exchanger (34) to the fourth three-way valve (57) and shuts off the air-conditioning side heat exchanger (34) from the second bypass pipe (55). The second bypass pipe (55) communicates with the fourth three-way valve (57) and switches to a state where it is shut off.

〈蓄熱装置〉
蓄熱装置(30)は、蓄熱槽(31)と、蓄熱媒体回路(32)とを備えている。
<Heat storage device>
The heat storage device (30) includes a heat storage tank (31) and a heat storage medium circuit (32).

蓄熱槽(31)は、直方体状のタンクである。この蓄熱槽(31)は、潜熱利用蓄熱媒体(例えば、TBAB(臭化テトラnブチルアンモニウム)水溶液、TME(トリメチロールエタン)水溶液、パラフィン系スラリーなど)を、蓄熱媒体として貯留している。     The heat storage tank (31) is a rectangular parallelepiped tank. The heat storage tank (31) stores a latent heat utilization heat storage medium (for example, a TBAB (tetra-n-butylammonium bromide) aqueous solution, a TME (trimethylolethane) aqueous solution, a paraffin-based slurry, etc.) as a heat storage medium.

蓄熱媒体回路(32)は、給湯側熱交換器(33)と、空調側熱交換器(34)と、循環路(35)と、ポンプ(36)と、第1調整弁(37)と、第2調整弁(38)とを備えている。     The heat storage medium circuit (32) includes a hot water supply side heat exchanger (33), an air conditioning side heat exchanger (34), a circulation path (35), a pump (36), a first adjustment valve (37), A second regulating valve (38).

給湯側熱交換器(33)は、一次側流路(33a)と二次側流路(33b)とが複数ずつ形成されたプレート式熱交換器であり、一次側流路(33a)を流れる流体と二次側流路(33b)を流れる流体とを熱交換させる。給湯側熱交換器(33)の一次側流路(33a)には、給湯用冷媒回路(40)に接続された給湯側接続配管(50)が接続されている。給湯側熱交換器(33)の二次側流路(33b)には、後述する循環路(35)の第1分岐管(35b)が接続されている。     The hot water supply side heat exchanger (33) is a plate heat exchanger in which a plurality of primary side flow paths (33a) and secondary side flow paths (33b) are formed, and flows through the primary flow path (33a). Heat exchange is performed between the fluid and the fluid flowing through the secondary channel (33b). A hot water supply side connection pipe (50) connected to the hot water supply refrigerant circuit (40) is connected to the primary flow path (33a) of the hot water supply side heat exchanger (33). A first branch pipe (35b) of a circulation path (35) described later is connected to the secondary flow path (33b) of the hot water supply side heat exchanger (33).

空調側熱交換器(34)は、一次側流路(34a)と二次側流路(34b)とが複数ずつ形成されたプレート式熱交換器であり、一次側流路(34a)を流れる流体と二次側流路(34b)を流れる流体とを熱交換させる。空調側熱交換器(34)の一次側流路(34a)には、空調用冷媒回路(21)に接続された空調側接続配管(53)が接続されている。空調側熱交換器(34)の二次側流路(34b)には、後述する循環路(35)の第2分岐管(35c)が接続されている。     The air conditioning side heat exchanger (34) is a plate heat exchanger in which a plurality of primary side flow paths (34a) and secondary side flow paths (34b) are formed, and flows through the primary side flow path (34a). Heat exchange is performed between the fluid and the fluid flowing through the secondary channel (34b). An air conditioning side connection pipe (53) connected to the air conditioning refrigerant circuit (21) is connected to the primary flow path (34a) of the air conditioning side heat exchanger (34). A second branch pipe (35c) of a circulation path (35) described later is connected to the secondary side flow path (34b) of the air conditioning side heat exchanger (34).

循環路(35)は、流入管(35a)と、第1分岐管(35b)と、第2分岐管(35c)とを備えている。流入管(35a)は、入口端が蓄熱槽(31)の底部に接続され、出口端には第1分岐管(35b)及び第2分岐管(35c)の入口端が接続されている。第1分岐管(35b)及び第2分岐管(35c)の出口端は、それぞれ蓄熱槽(31)の頂部に接続されている。なお、流入管(35a)と第1分岐管(35b)とによって蓄熱槽(31)と給湯側熱交換器(33)との間において蓄熱媒体を循環させる第1循環路が構成され、流入管(35a)と第2分岐管(35c)とによって蓄熱槽(31)と空調側熱交換器(34)との間において蓄熱媒体を循環させる第2循環路が構成される。     The circulation path (35) includes an inflow pipe (35a), a first branch pipe (35b), and a second branch pipe (35c). The inlet end of the inflow pipe (35a) is connected to the bottom of the heat storage tank (31), and the inlet ends of the first branch pipe (35b) and the second branch pipe (35c) are connected to the outlet end. The exit ends of the first branch pipe (35b) and the second branch pipe (35c) are each connected to the top of the heat storage tank (31). The inflow pipe (35a) and the first branch pipe (35b) constitute a first circulation path for circulating the heat storage medium between the heat storage tank (31) and the hot water supply side heat exchanger (33). (35a) and the second branch pipe (35c) constitute a second circulation path for circulating the heat storage medium between the heat storage tank (31) and the air conditioning side heat exchanger (34).

ポンプ(36)は、循環路(35)の流入管(35a)に設けられている。第1調整弁(37)は、第1分岐管(35b)における給湯側熱交換器(33)の二次側流路(33b)の上流側に設けられている。第2調整弁(38)は、第2分岐管(35c)における空調側熱交換器(34)の二次側流路(34b)の上流側に設けられている。     The pump (36) is provided in the inflow pipe (35a) of the circulation path (35). The first regulating valve (37) is provided on the upstream side of the secondary flow path (33b) of the hot water supply side heat exchanger (33) in the first branch pipe (35b). The second regulating valve (38) is provided on the upstream side of the secondary flow path (34b) of the air conditioning side heat exchanger (34) in the second branch pipe (35c).

−運転動作−
給湯空調システム(1)の運転動作を説明する。給湯空調システム(1)は、蓄冷運転と、第1利用冷房運転と、第2利用冷房運転と、単純冷房運転と、蓄熱運転と、利用暖房運転と、単純暖房運転と、単純湯沸かし運転とを行う。
-Driving action-
The operation of the hot water supply air conditioning system (1) will be described. The hot water supply air conditioning system (1) includes a cold storage operation, a first use cooling operation, a second use cooling operation, a simple cooling operation, a heat storage operation, a use heating operation, a simple heating operation, and a simple water heating operation. Do.

〈蓄冷運転〉
蓄冷運転について、図2を参照しながら説明する。蓄冷運転では、給湯空調システム(1)は、給湯側蓄熱動作と空調側蓄熱動作とを行う。給湯側蓄熱動作は、給湯装置(10)が給湯用冷媒回路(40)において冷凍サイクルを行って貯湯槽(11)内の水を加熱する一方、冷凍サイクルによって得られた冷熱で蓄熱槽(31)内の蓄熱媒体を冷却する。一方、空調側蓄熱動作では、空気調和装置(20)が空調用冷媒回路(21)において冷凍サイクルを行い、該冷凍サイクルによって得られた冷熱で蓄熱槽(31)内の蓄熱媒体を冷却する。この給湯装置(10)の給湯側蓄熱動作によって得られた冷熱と、空気調和装置(20)の空調側蓄熱動作によって得られた冷熱とを蓄熱装置(30)が蓄熱槽(31)に蓄える。
<Cool storage operation>
The cold storage operation will be described with reference to FIG. In the cold storage operation, the hot water supply air conditioning system (1) performs a hot water supply side heat storage operation and an air conditioning side heat storage operation. In the hot water supply side heat storage operation, the hot water supply device (10) performs the refrigeration cycle in the hot water supply refrigerant circuit (40) to heat the water in the hot water storage tank (11), while the cold storage heat (31 ) Cool the heat storage medium inside. On the other hand, in the air conditioning side heat storage operation, the air conditioner (20) performs the refrigeration cycle in the air conditioning refrigerant circuit (21), and cools the heat storage medium in the heat storage tank (31) with the cold heat obtained by the refrigeration cycle. The heat storage device (30) stores the cold heat obtained by the hot water supply side heat storage operation of the hot water supply device (10) and the cold heat obtained by the air conditioning side heat storage operation of the air conditioner (20) in the heat storage tank (31).

給湯装置(10)では、第1及び第2三方弁(51,52)は、低温側回路(41)において冷媒が蒸発器(46)をバイパスして給湯側接続配管(50)に流れるように切り換えられる。つまり、第1三方弁(51)は、低温側回路(41)の膨張弁(45)を給湯側接続配管(50)に連通させて蒸発器(46)から遮断する状態に切り換えられ、第2三方弁(52)は、低温側回路(41)の圧縮機(44)を給湯側接続配管(50)に連通させて蒸発器(46)から遮断する状態に切り換えられる。この状態において、給湯装置(10)の圧縮機(44,47)が作動することにより、給湯用冷媒回路(40)が給湯側熱交換器(33)を蒸発器として用いた二元冷凍サイクルを行う。その際、低温側回路(41)の膨張弁(45)は、給湯側熱交換器(33)の一次側流路(33a)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。また、高温側回路(42)の膨張弁(49)は、カスケード熱交換器(43)の二次側流路(43b)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。また、水回路(12)のポンプ(13)が作動し、貯湯槽(11)と加熱用熱交換器(48)の間を水が循環する。     In the hot water supply device (10), the first and second three-way valves (51, 52) allow the refrigerant to bypass the evaporator (46) and flow to the hot water supply side connection pipe (50) in the low temperature side circuit (41). Can be switched. That is, the first three-way valve (51) is switched to a state in which the expansion valve (45) of the low temperature side circuit (41) is communicated with the hot water supply side connection pipe (50) and is shut off from the evaporator (46). The three-way valve (52) is switched to a state in which the compressor (44) of the low temperature side circuit (41) is communicated with the hot water supply side connection pipe (50) and shut off from the evaporator (46). In this state, when the compressor (44, 47) of the hot water supply device (10) is operated, the hot water supply refrigerant circuit (40) performs a dual refrigeration cycle using the hot water supply side heat exchanger (33) as an evaporator. Do. At that time, the expansion valve (45) of the low temperature side circuit (41) is set so that the degree of superheat of the refrigerant at the outlet of the primary side flow path (33a) of the hot water supply side heat exchanger (33) becomes a predetermined target value. The opening is adjusted. Further, the expansion valve (49) of the high temperature side circuit (42) has its refrigerant superheat degree at the outlet of the secondary side flow path (43b) of the cascade heat exchanger (43) so as to reach a predetermined target value. The opening is adjusted. Moreover, the pump (13) of the water circuit (12) is operated, and water circulates between the hot water tank (11) and the heat exchanger (48) for heating.

給湯用冷媒回路(40)における冷媒の流れを説明する。低温側回路(41)の圧縮機(44)から吐出された冷媒は、カスケード熱交換器(43)の一次側流路(43a)を通過する際に、その二次側流路(43b)を流れる冷媒に放熱して凝縮する。カスケード熱交換器(43)から流出した冷媒は、膨張弁(45)を通過する際に減圧され、その後に給湯側接続配管(50)に接続された給湯側熱交換器(33)の一次側流路(33a)へ流入する。給湯側熱交換器(33)の一次側流路(33a)を流れる冷媒は、その二次側流路(33b)を流れる熱媒体から吸熱して蒸発する。その後、冷媒は、圧縮機(44)へ吸入される。圧縮機(44)は、吸入した冷媒を圧縮してから吐出する。     The flow of the refrigerant in the hot water supply refrigerant circuit (40) will be described. When the refrigerant discharged from the compressor (44) of the low-temperature circuit (41) passes through the primary flow path (43a) of the cascade heat exchanger (43), the refrigerant flows through the secondary flow path (43b). It dissipates heat to the flowing refrigerant and condenses. The refrigerant flowing out of the cascade heat exchanger (43) is depressurized when passing through the expansion valve (45), and then the primary side of the hot water supply side heat exchanger (33) connected to the hot water supply side connection pipe (50). It flows into the channel (33a). The refrigerant flowing through the primary flow path (33a) of the hot water supply side heat exchanger (33) absorbs heat from the heat medium flowing through the secondary flow path (33b) and evaporates. Thereafter, the refrigerant is sucked into the compressor (44). The compressor (44) compresses the sucked refrigerant and discharges it.

また、高温側回路(42)の圧縮機(47)から吐出された冷媒は、加熱用熱交換器(48)の一次側流路(48a)を通過する際に放熱して凝縮する。加熱用熱交換器(48)から流出した冷媒は、膨張弁(49)を通過する際に減圧され、その後にカスケード熱交換器(43)の二次側流路(43b)へ流入する。カスケード熱交換器(43)の二次側流路(43b)を流れる冷媒は、その一次側流路(43a)を流れる冷媒から吸熱して蒸発する。その後、冷媒は、圧縮機(47)へ吸入される。圧縮機(47)は、吸入した冷媒を圧縮してから吐出する。     Further, the refrigerant discharged from the compressor (47) of the high temperature side circuit (42) dissipates heat and condenses when passing through the primary flow path (48a) of the heat exchanger for heating (48). The refrigerant flowing out of the heating heat exchanger (48) is depressurized when passing through the expansion valve (49), and then flows into the secondary flow path (43b) of the cascade heat exchanger (43). The refrigerant flowing through the secondary flow path (43b) of the cascade heat exchanger (43) absorbs heat from the refrigerant flowing through the primary flow path (43a) and evaporates. Thereafter, the refrigerant is sucked into the compressor (47). The compressor (47) compresses the sucked refrigerant and discharges it.

水回路(12)における水の流れを説明する。貯湯槽(11)の底部に存在する低温の水は、ポンプ(13)によって加熱用熱交換器(48)の二次側流路(48b)へ送られ、その一次側流路(48a)を流れる冷媒によって加熱される。そして、加熱後の高温の水は、貯湯槽(11)の頂部へ送り返される。     The flow of water in the water circuit (12) will be described. The low-temperature water present at the bottom of the hot water storage tank (11) is sent to the secondary flow path (48b) of the heating heat exchanger (48) by the pump (13), and the primary flow path (48a) is Heated by flowing refrigerant. And the hot water after a heating is sent back to the top part of a hot water tank (11).

一方、空気調和装置(20)では、四方切換弁(23)が第1状態となり、第1ポートが第3ポートと連通し且つ第2ポートが第4ポートと連通する。また、第5三方弁(58)は、四方切換弁(23)の第3ポートを室外熱交換器(24)に連通させて第1バイパス配管(54)から遮断する状態に切り換えられる。第3三方弁(56)は、室外膨張弁(25)を空調側接続配管(53)に連通させて第4三方弁(57)から遮断する状態に切り換えられる。第6三方弁(59)は、空調側熱交換器(34)を第3三方弁(56)に連通させて第1バイパス配管(54)から遮断する状態に切り換えられる。第8三方弁(61)は、空調側熱交換器(34)を第2バイパス配管(55)に連通させて第4三方弁(57)から遮断する状態に切り換えられる。第7三方弁(60)は、四方切換弁(23)の第4ポートを第2バイパス配管(55)に連通させて各室内熱交換器(27)から遮断する状態に切り換えられる。     On the other hand, in the air conditioner (20), the four-way switching valve (23) is in the first state, the first port communicates with the third port, and the second port communicates with the fourth port. The fifth three-way valve (58) is switched to a state in which the third port of the four-way switching valve (23) is communicated with the outdoor heat exchanger (24) and shut off from the first bypass pipe (54). The third three-way valve (56) is switched to a state in which the outdoor expansion valve (25) is communicated with the air conditioning side connection pipe (53) and is shut off from the fourth three-way valve (57). The sixth three-way valve (59) is switched to a state where the air-conditioning side heat exchanger (34) communicates with the third three-way valve (56) and is shut off from the first bypass pipe (54). The eighth three-way valve (61) is switched to a state where the air-conditioning side heat exchanger (34) communicates with the second bypass pipe (55) and is shut off from the fourth three-way valve (57). The seventh three-way valve (60) is switched to a state in which the fourth port of the four-way switching valve (23) communicates with the second bypass pipe (55) and is shut off from each indoor heat exchanger (27).

上述の状態において圧縮機(22)を作動させると、空調用冷媒回路(21)では、室外熱交換器(24)が凝縮器(即ち、放熱器)となり、空調側熱交換器(34)が蒸発器となる冷凍サイクルを行う。その際、室外膨張弁(25)は、空調側熱交換器(34)の一次側流路(34a)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。     When the compressor (22) is operated in the above-described state, in the refrigerant circuit for air conditioning (21), the outdoor heat exchanger (24) becomes a condenser (that is, a radiator), and the air conditioning side heat exchanger (34) The refrigeration cycle that becomes the evaporator is performed. At that time, the degree of opening of the outdoor expansion valve (25) is adjusted so that the degree of superheat of the refrigerant at the outlet of the primary flow path (34a) of the air conditioning side heat exchanger (34) becomes a predetermined target value. The

空調用冷媒回路(21)における冷媒の流れを説明する。圧縮機(22)から吐出された冷媒は、室外熱交換器(24)へ流入し、該室外熱交換器(24)を通過する際に、室外空気に放熱して凝縮する。室外熱交換器(24)から流出した冷媒は、室外膨張弁(25)を通過する際に減圧され、その後に空調側接続配管(53)へ流入する。空調側接続配管(53)へ流入した冷媒は、空調側熱交換器(34)の一次側流路(34a)へ流入し、該一次側流路(34a)を通過する間に二次側流路(34b)を流れる蓄熱媒体から吸熱して蒸発する。空調側熱交換器(34)を通過した冷媒は、第2バイパス配管(55)を流れた後、圧縮機(22)へ吸入される。圧縮機(22)は、吸入した冷媒を圧縮してから吐出する。     The flow of the refrigerant in the air conditioning refrigerant circuit (21) will be described. The refrigerant discharged from the compressor (22) flows into the outdoor heat exchanger (24), and when it passes through the outdoor heat exchanger (24), it dissipates heat to the outdoor air and condenses. The refrigerant flowing out of the outdoor heat exchanger (24) is depressurized when passing through the outdoor expansion valve (25), and then flows into the air conditioning side connection pipe (53). The refrigerant that has flowed into the air conditioning side connection pipe (53) flows into the primary flow path (34a) of the air conditioning side heat exchanger (34) and passes through the secondary flow path while passing through the primary flow path (34a). It absorbs heat from the heat storage medium flowing through the passage (34b) and evaporates. The refrigerant that has passed through the air conditioning side heat exchanger (34) flows through the second bypass pipe (55) and is then sucked into the compressor (22). The compressor (22) compresses the sucked refrigerant and discharges it.

また、蓄熱装置(30)では、蓄熱媒体回路(32)のポンプ(36)が作動し、蓄熱槽(31)と給湯側熱交換器(33)との間、及び蓄熱槽(31)と空調側熱交換器(34)との間においてそれぞれ蓄熱媒体が循環する。具体的には、蓄熱槽(31)内の蓄熱媒体は、ポンプ(36)によって流入管(35a)から第1分岐管(35b)を介して給湯側熱交換器(33)の二次側流路(33b)へ流入し、該二次側流路(33b)を流れる際に一次側流路(33a)を流れる給湯用冷媒回路(40)の冷媒によって冷却される。また、蓄熱槽(31)内の蓄熱媒体は、ポンプ(36)によって流入管(35a)から第2分岐管(35c)を介して空調側熱交換器(34)の二次側流路(34b)へ流入し、該二次側流路(34b)を流れる際に一次側流路(34a)を流れる空調用冷媒回路(21)の冷媒によって冷却される。給湯側熱交換器(33)及び空調側熱交換器(34)の二次側流路(33b,34b)から流出した蓄熱媒体は、蓄熱槽(31)へ送り返される。そして、給湯側熱交換器(33)及び空調側熱交換器(34)において蓄熱媒体に付与された冷熱は、潜熱として蓄熱槽(31)内に蓄えられる。     In addition, in the heat storage device (30), the pump (36) of the heat storage medium circuit (32) is operated, between the heat storage tank (31) and the hot water supply side heat exchanger (33), and between the heat storage tank (31) and the air conditioner. The heat storage medium circulates between the side heat exchangers (34). Specifically, the heat storage medium in the heat storage tank (31) is transferred from the inflow pipe (35a) through the first branch pipe (35b) by the pump (36) to the secondary side stream of the hot water supply side heat exchanger (33). When flowing into the channel (33b) and flowing through the secondary channel (33b), it is cooled by the refrigerant in the hot water supply refrigerant circuit (40) flowing through the primary channel (33a). Further, the heat storage medium in the heat storage tank (31) is transferred from the inflow pipe (35a) to the secondary side flow path (34b) of the air conditioning side heat exchanger (34) through the second branch pipe (35c) by the pump (36). ) And is cooled by the refrigerant of the air conditioning refrigerant circuit (21) flowing through the primary channel (34a) when flowing through the secondary channel (34b). The heat storage medium flowing out from the secondary flow path (33b, 34b) of the hot water supply side heat exchanger (33) and the air conditioning side heat exchanger (34) is sent back to the heat storage tank (31). And the cold energy provided to the heat storage medium in the hot water supply side heat exchanger (33) and the air conditioning side heat exchanger (34) is stored in the heat storage tank (31) as latent heat.

以上のようにして、蓄冷運転中には、給湯装置(10)が給湯用冷媒回路(40)において冷凍サイクルを行って貯湯槽(11)内の水を加熱する一方、冷凍サイクルによって得られた冷熱で蓄熱装置(30)が蓄熱槽(31)内の蓄熱媒体を冷却する給湯側蓄冷動作と、空気調和装置(20)が空調用冷媒回路(21)において冷凍サイクルを行い、該冷凍サイクルによって得られた冷熱で蓄熱装置(30)が蓄熱槽(31)内の蓄熱媒体を冷却する空調側蓄冷動作とが同時に行われる。なお、貯湯槽(11)内の水のほぼ全てが80〜90℃程度の高温水になるか、貯湯槽(11)内の高温水の量が翌日の給湯需要を賄える量に達すると、給湯空調システム(1)は、給湯側蓄熱動作を停止し、空調側蓄熱動作のみを行う。     As described above, during the cold storage operation, the hot water supply device (10) performs the refrigeration cycle in the hot water supply refrigerant circuit (40) to heat the water in the hot water storage tank (11), while being obtained by the refrigeration cycle. The hot water storage side cold storage operation in which the heat storage device (30) cools the heat storage medium in the heat storage tank (31) with cold heat, and the air conditioner (20) performs a refrigeration cycle in the refrigerant circuit (21) for air conditioning. The air storage side cold storage operation in which the heat storage device (30) cools the heat storage medium in the heat storage tank (31) is performed simultaneously with the obtained cold energy. If almost all of the water in the hot water tank (11) becomes hot water of about 80 to 90 ° C. or the amount of hot water in the hot water tank (11) reaches the amount that can meet the hot water demand on the next day, The air conditioning system (1) stops the hot water supply side heat storage operation and performs only the air conditioning side heat storage operation.

〈第1利用冷房運転〉
第1利用冷房運転について、図3を参照しながら説明する。第1利用冷房運転では、蓄熱槽(31)に蓄えられた冷熱だけを用いて室内の冷房が行われる。第1利用冷房運転では、蓄熱媒体回路(32)のポンプ(36)が作動し、蓄熱槽(31)と空調側熱交換器(34)の間を蓄熱媒体が循環する。また、第1利用冷房運転では、給湯装置(10)が停止する。
<First use cooling operation>
The first use cooling operation will be described with reference to FIG. In the first use cooling operation, indoor cooling is performed using only the cold energy stored in the heat storage tank (31). In the first use cooling operation, the pump (36) of the heat storage medium circuit (32) operates, and the heat storage medium circulates between the heat storage tank (31) and the air conditioning side heat exchanger (34). In the first use cooling operation, the hot water supply device (10) is stopped.

空気調和装置(20)では、四方切換弁(23)が第1状態となり、第1ポートが第3ポートと連通し且つ第2ポートが第4ポートと連通する。また、第5三方弁(58)は、四方切換弁(23)の第3ポートを第1バイパス配管(54)に連通させて室外熱交換器(24)から遮断する状態に切り換えられる。第6三方弁(59)は、空調側熱交換器(34)を第1バイパス配管(54)に連通させて第3三方弁(56)から遮断する状態に切り換えられる。第8三方弁(61)は、空調側熱交換器(34)を第4三方弁(57)に連通させて第2バイパス配管(55)から遮断する状態に切り換えられる。第4三方弁(57)は、各室外膨張弁(26)を空調側接続配管(53)に連通させて第3三方弁(56)から遮断する状態に切り換えられる。第7三方弁(60)は、四方切換弁(23)の第4ポートを各室内熱交換器(27)に連通させて第2バイパス配管(55)から遮断する状態に切り換えられる。     In the air conditioner (20), the four-way switching valve (23) is in the first state, the first port communicates with the third port, and the second port communicates with the fourth port. The fifth three-way valve (58) is switched to a state in which the third port of the four-way switching valve (23) is communicated with the first bypass pipe (54) and shut off from the outdoor heat exchanger (24). The sixth three-way valve (59) is switched to a state where the air-conditioning side heat exchanger (34) communicates with the first bypass pipe (54) and is shut off from the third three-way valve (56). The eighth three-way valve (61) is switched to a state where the air-conditioning side heat exchanger (34) communicates with the fourth three-way valve (57) and is shut off from the second bypass pipe (55). The fourth three-way valve (57) is switched to a state in which each outdoor expansion valve (26) communicates with the air conditioning side connection pipe (53) and is shut off from the third three-way valve (56). The seventh three-way valve (60) is switched to a state in which the fourth port of the four-way switching valve (23) communicates with each indoor heat exchanger (27) and is shut off from the second bypass pipe (55).

上述の状態において、各室内膨張弁(26)を全開状態に保持して空気調和装置(20)の圧縮機(22)をガスポンプとして作動させると、空調用冷媒回路(21)では、空調側熱交換器(34)と各室内熱交換器(27)の間を冷媒が循環する。     In the above-described state, when each indoor expansion valve (26) is kept fully open and the compressor (22) of the air conditioner (20) is operated as a gas pump, the air conditioning refrigerant circuit (21) The refrigerant circulates between the exchanger (34) and each indoor heat exchanger (27).

空調用冷媒回路(21)における冷媒の流れを説明する。圧縮機(22)から吐出された冷媒は、第1バイパス配管(54)を流れた後、空調側熱交換器(34)の一次側流路(34a)へ流入する。空調側熱交換器(34)の一次側流路(34a)へ流入した冷媒は、二次側流路(34b)を流れる蓄熱媒体へ放熱して凝縮する。空調側熱交換器(34)から流出した冷媒は、各室内膨張弁(26)を通過して各室内熱交換器(27)へ流入し、該各室内熱交換器(27)において室内空気から吸熱して蒸発する。各室内熱交換器(27)において冷却された室内空気は、室内へ供給される。各室内熱交換器(27)を通過した冷媒は、圧縮機(22)へ吸入される。ガスポンプとして動作する圧縮機(22)は、吸入した冷媒を昇圧させてから吐出する。     The flow of the refrigerant in the air conditioning refrigerant circuit (21) will be described. The refrigerant discharged from the compressor (22) flows through the first bypass pipe (54) and then flows into the primary flow path (34a) of the air conditioning side heat exchanger (34). The refrigerant flowing into the primary flow path (34a) of the air conditioning side heat exchanger (34) dissipates heat to the heat storage medium flowing through the secondary flow path (34b) and condenses. The refrigerant flowing out of the air conditioning side heat exchanger (34) passes through each indoor expansion valve (26) and flows into each indoor heat exchanger (27), and from each room heat exchanger (27), from the indoor air It absorbs heat and evaporates. The indoor air cooled in each indoor heat exchanger (27) is supplied indoors. The refrigerant that has passed through each indoor heat exchanger (27) is sucked into the compressor (22). The compressor (22) operating as a gas pump boosts the suctioned refrigerant and discharges it.

一方、蓄熱装置(30)では、第1調整弁(37)が全閉状態に保持される一方、第2調整弁(38)は適宜開度が調整される。この状態において、蓄熱媒体回路(32)のポンプ(36)を作動させると、蓄熱槽(31)と空調側熱交換器(34)の間において蓄熱媒体が循環する。蓄熱槽(31)内の蓄熱媒体は、ポンプ(36)によって空調側熱交換器(34)の二次側流路(34b)へ送られ、その一次側流路(34a)を流れる冷媒から吸熱する。つまり、空調側熱交換器(34)では、二次側流路(34b)の蓄熱媒体から一次側流路(34a)の冷媒へ冷熱が付与される。空調側熱交換器(34)の二次側流路(34b)を通過した蓄熱媒体は、蓄熱槽(31)へ送り返される。     On the other hand, in the heat storage device (30), the first adjustment valve (37) is held in a fully closed state, while the opening of the second adjustment valve (38) is adjusted as appropriate. In this state, when the pump (36) of the heat storage medium circuit (32) is operated, the heat storage medium circulates between the heat storage tank (31) and the air conditioning side heat exchanger (34). The heat storage medium in the heat storage tank (31) is sent to the secondary flow path (34b) of the air conditioning side heat exchanger (34) by the pump (36), and absorbs heat from the refrigerant flowing through the primary flow path (34a). To do. That is, in the air conditioning side heat exchanger (34), cold heat is applied from the heat storage medium in the secondary side flow path (34b) to the refrigerant in the primary side flow path (34a). The heat storage medium that has passed through the secondary flow path (34b) of the air conditioning side heat exchanger (34) is sent back to the heat storage tank (31).

〈第2利用冷房運転〉
第2利用冷房運転について、図4を参照しながら説明する。第2利用冷房運転では、蓄熱槽(31)に蓄えられた冷熱と、空調用冷媒回路(21)が行う冷凍サイクルによって得られた冷熱とを用いて室内の冷房が行われる。第2利用冷房運転では、蓄熱媒体回路(32)のポンプ(36)が作動し、蓄熱槽(31)と空調側熱交換器(34)の間を蓄熱媒体が循環する。また、第2利用冷房運転では、給湯装置(10)が停止する。
<Second use cooling operation>
The second usage cooling operation will be described with reference to FIG. In the second use cooling operation, the room is cooled using the cold heat stored in the heat storage tank (31) and the cold heat obtained by the refrigeration cycle performed by the air conditioning refrigerant circuit (21). In the second utilization cooling operation, the pump (36) of the heat storage medium circuit (32) is operated, and the heat storage medium circulates between the heat storage tank (31) and the air conditioning side heat exchanger (34). In the second usage cooling operation, the hot water supply device (10) is stopped.

空気調和装置(20)では、四方切換弁(23)が第1状態となり、第1ポートが第3ポートと連通し且つ第2ポートが第4ポートと連通する。また、第5三方弁(58)は、四方切換弁(23)の第3ポートを室外熱交換器(24)に連通させて第1バイパス配管(54)から遮断する状態に切り換えられる。第3三方弁(56)は、室外膨張弁(25)を空調側接続配管(53)に連通させて第4三方弁(57)から遮断する状態に切り換えられる。第6三方弁(59)は、空調側熱交換器(34)を第3三方弁(56)に連通させて第1バイパス配管(54)から遮断する状態に切り換えられる。第8三方弁(61)は、空調側熱交換器(34)を第4三方弁(57)に連通させて第2バイパス配管(55)から遮断する状態に切り換えられる。第4三方弁(57)は、各室内膨張弁(26)を空調側接続配管(53)に連通させて第3三方弁(56)から遮断する状態に切り換えられる。第7三方弁(60)は、四方切換弁(23)の第4ポートを各室内熱交換器(27)に連通させて第2バイパス配管(55)から遮断する状態に切り換えられる。     In the air conditioner (20), the four-way switching valve (23) is in the first state, the first port communicates with the third port, and the second port communicates with the fourth port. The fifth three-way valve (58) is switched to a state in which the third port of the four-way switching valve (23) is communicated with the outdoor heat exchanger (24) and shut off from the first bypass pipe (54). The third three-way valve (56) is switched to a state in which the outdoor expansion valve (25) is communicated with the air conditioning side connection pipe (53) and is shut off from the fourth three-way valve (57). The sixth three-way valve (59) is switched to a state where the air-conditioning side heat exchanger (34) communicates with the third three-way valve (56) and is shut off from the first bypass pipe (54). The eighth three-way valve (61) is switched to a state where the air-conditioning side heat exchanger (34) communicates with the fourth three-way valve (57) and is shut off from the second bypass pipe (55). The fourth three-way valve (57) is switched to a state in which each indoor expansion valve (26) communicates with the air conditioning side connection pipe (53) and is shut off from the third three-way valve (56). The seventh three-way valve (60) is switched to a state in which the fourth port of the four-way switching valve (23) communicates with each indoor heat exchanger (27) and is shut off from the second bypass pipe (55).

上述の状態において、室外膨張弁(25)を全開状態に保持しつつ圧縮機(22)を作動させると、空調用冷媒回路(21)が、室外熱交換器(24)が凝縮器(即ち、放熱器)となり、空調側熱交換器(34)が過冷却器(即ち、放熱器)となり、各室内熱交換器(27)が蒸発器となる冷凍サイクルを行う。その際、各室内膨張弁(26)は、各室内熱交換器(27)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。     In the above-described state, when the compressor (22) is operated while the outdoor expansion valve (25) is kept fully open, the air conditioning refrigerant circuit (21) is converted into the outdoor heat exchanger (24) into the condenser (that is, The air conditioning side heat exchanger (34) becomes a supercooler (that is, a radiator), and each indoor heat exchanger (27) becomes an evaporator. At that time, the opening degree of each indoor expansion valve (26) is adjusted so that the degree of superheat of the refrigerant at the outlet of each indoor heat exchanger (27) becomes a predetermined target value.

空調用冷媒回路(21)における冷媒の流れを説明する。圧縮機(22)から吐出された冷媒は、室外熱交換器(24)へ流入し、該室外熱交換器(24)を通過する際に、室外空気に放熱して凝縮する。室外熱交換器(24)から流出した冷媒は、室外膨張弁(25)を通過して空調側接続配管(53)へ流入する。空調側接続配管(53)へ流入した冷媒は、空調側熱交換器(34)の一次側流路(34a)へ流入し、該一次側流路(34a)を通過する間に二次側流路(34b)を流れる蓄熱媒体によって冷却される。空調側熱交換器(34)を通過した冷媒は、各室内膨張弁(26)へ流入し、各室内膨張弁(26)を通過する際に減圧される。各室内膨張弁(26)で減圧された冷媒は、各室内熱交換器(27)へ流入し、室内空気から吸熱して蒸発する。各室内熱交換器(27)において冷却された室内空気は、室内へ供給される。各室内熱交換器(27)を通過した冷媒は、圧縮機(22)へ吸入される。圧縮機(22)は、吸入した冷媒を圧縮してから吐出する。     The flow of the refrigerant in the air conditioning refrigerant circuit (21) will be described. The refrigerant discharged from the compressor (22) flows into the outdoor heat exchanger (24), and when it passes through the outdoor heat exchanger (24), it dissipates heat to the outdoor air and condenses. The refrigerant that has flowed out of the outdoor heat exchanger (24) passes through the outdoor expansion valve (25) and flows into the air conditioning side connection pipe (53). The refrigerant that has flowed into the air conditioning side connection pipe (53) flows into the primary flow path (34a) of the air conditioning side heat exchanger (34) and passes through the secondary flow path while passing through the primary flow path (34a). It is cooled by the heat storage medium flowing through the passage (34b). The refrigerant that has passed through the air conditioning side heat exchanger (34) flows into each indoor expansion valve (26) and is decompressed when passing through each indoor expansion valve (26). The refrigerant decompressed by each indoor expansion valve (26) flows into each indoor heat exchanger (27), absorbs heat from the indoor air, and evaporates. The indoor air cooled in each indoor heat exchanger (27) is supplied indoors. The refrigerant that has passed through each indoor heat exchanger (27) is sucked into the compressor (22). The compressor (22) compresses the sucked refrigerant and discharges it.

一方、蓄熱装置(30)では、第1調整弁(37)が全閉状態に保持される一方、第2調整弁(38)は適宜開度が調整される。この状態において、蓄熱媒体回路(32)のポンプ(36)を作動させると、蓄熱槽(31)と空調側熱交換器(34)の間において蓄熱媒体が循環する。蓄熱槽(31)内の蓄熱媒体は、ポンプ(36)によって空調側熱交換器(34)の二次側流路(34b)へ送られ、その一次側流路(34a)を流れる冷媒から吸熱する。つまり、空調側熱交換器(34)では、二次側流路(34b)の蓄熱媒体から一次側流路(34a)の冷媒へ冷熱が付与される。空調側熱交換器(34)の二次側流路(34b)を通過した蓄熱媒体は、蓄熱槽(31)へ送り返される。     On the other hand, in the heat storage device (30), the first adjustment valve (37) is held in a fully closed state, while the opening of the second adjustment valve (38) is adjusted as appropriate. In this state, when the pump (36) of the heat storage medium circuit (32) is operated, the heat storage medium circulates between the heat storage tank (31) and the air conditioning side heat exchanger (34). The heat storage medium in the heat storage tank (31) is sent to the secondary flow path (34b) of the air conditioning side heat exchanger (34) by the pump (36), and absorbs heat from the refrigerant flowing through the primary flow path (34a). To do. That is, in the air conditioning side heat exchanger (34), cold heat is applied from the heat storage medium in the secondary side flow path (34b) to the refrigerant in the primary side flow path (34a). The heat storage medium that has passed through the secondary flow path (34b) of the air conditioning side heat exchanger (34) is sent back to the heat storage tank (31).

〈単純冷房運転〉
単純冷房運転について、図5を参照しながら説明する。単純冷房運転では、空調用冷媒回路(21)が行う冷凍サイクルによって得られた冷熱だけを用いて室内の冷房が行われる。単純冷房運転では、給湯装置(10)及び蓄熱装置(30)が停止する。
<Simple cooling operation>
The simple cooling operation will be described with reference to FIG. In the simple cooling operation, the room is cooled using only the cooling heat obtained by the refrigeration cycle performed by the air conditioning refrigerant circuit (21). In the simple cooling operation, the hot water supply device (10) and the heat storage device (30) are stopped.

空気調和装置(20)では、四方切換弁(23)が第1状態となり、第1ポートが第3ポートと連通し且つ第2ポートが第4ポートと連通する。また、第5三方弁(58)は、四方切換弁(23)の第3ポートを室外熱交換器(24)に連通させて第1バイパス配管(54)から遮断する状態に切り換えられる。第5三方弁(58)は、四方切換弁(23)の第3ポートを室外熱交換器(24)に連通させて第1バイパス配管(54)から遮断する状態に切り換えられる。第3三方弁(56)は、室外膨張弁(25)を第4三方弁(57)に連通させて空調側接続配管(53)から遮断する状態に切り換えられる。第4三方弁(57)は、各室内膨張弁(26)を第3三方弁(56)に連通させて空調側接続配管(53)から遮断する状態に切り換えられる。第7三方弁(60)は、四方切換弁(23)の第4ポートを各室内熱交換器(27)に連通させて第2バイパス配管(55)から遮断する状態に切り換えられる。     In the air conditioner (20), the four-way switching valve (23) is in the first state, the first port communicates with the third port, and the second port communicates with the fourth port. The fifth three-way valve (58) is switched to a state in which the third port of the four-way switching valve (23) is communicated with the outdoor heat exchanger (24) and shut off from the first bypass pipe (54). The fifth three-way valve (58) is switched to a state in which the third port of the four-way switching valve (23) communicates with the outdoor heat exchanger (24) and is shut off from the first bypass pipe (54). The third three-way valve (56) is switched to a state where the outdoor expansion valve (25) communicates with the fourth three-way valve (57) and is shut off from the air conditioning side connection pipe (53). The fourth three-way valve (57) is switched to a state in which each indoor expansion valve (26) communicates with the third three-way valve (56) and is shut off from the air conditioning side connection pipe (53). The seventh three-way valve (60) is switched to a state in which the fourth port of the four-way switching valve (23) communicates with each indoor heat exchanger (27) and is shut off from the second bypass pipe (55).

上述の状態において、圧縮機(22)を作動させると、空調用冷媒回路(21)では、室外熱交換器(24)が凝縮器(即ち、放熱器)となり、各室内熱交換器(27)が蒸発器となる冷凍サイクルを行う。その際、室外膨張弁(25)は、全開状態に保持され、各室内膨張弁(26)は、各室内熱交換器(27)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。     When the compressor (22) is operated in the above-described state, in the refrigerant circuit (21) for air conditioning, the outdoor heat exchanger (24) becomes a condenser (that is, a radiator), and each indoor heat exchanger (27) The refrigeration cycle that becomes an evaporator is performed. At that time, the outdoor expansion valve (25) is held in a fully open state, and each indoor expansion valve (26) is set so that the degree of superheat of the refrigerant at the outlet of each indoor heat exchanger (27) becomes a predetermined target value. The opening degree is adjusted.

空調用冷媒回路(21)における冷媒の流れを説明する。圧縮機(22)から吐出された冷媒は、室外熱交換器(24)へ流入し、該室外熱交換器(24)を通過する間に室外空気へ放熱して凝縮する。室外熱交換器(24)を通過した冷媒は、室外膨張弁(25)を通過し、その後に各室内膨張弁(26)へ流入して減圧される。各室内膨張弁(26)で減圧された冷媒は、各室内熱交換器(27)へ流入し、室内空気から吸熱して蒸発する。各室内熱交換器(27)において冷却された室内空気は、室内へ供給される。各室内熱交換器(27)を通過した冷媒は、圧縮機(22)へ吸入される。圧縮機(22)は、吸入した冷媒を圧縮してから吐出する。     The flow of the refrigerant in the air conditioning refrigerant circuit (21) will be described. The refrigerant discharged from the compressor (22) flows into the outdoor heat exchanger (24), dissipates heat to the outdoor air and condenses while passing through the outdoor heat exchanger (24). The refrigerant that has passed through the outdoor heat exchanger (24) passes through the outdoor expansion valve (25), and then flows into each indoor expansion valve (26) to be depressurized. The refrigerant decompressed by each indoor expansion valve (26) flows into each indoor heat exchanger (27), absorbs heat from the indoor air, and evaporates. The indoor air cooled in each indoor heat exchanger (27) is supplied indoors. The refrigerant that has passed through each indoor heat exchanger (27) is sucked into the compressor (22). The compressor (22) compresses the sucked refrigerant and discharges it.

〈蓄熱運転〉
蓄熱運転について、図6を参照しながら説明する。蓄熱運転では、空調用冷媒回路(21)が行う冷凍サイクルによって温熱が得られ、得られた温熱が蓄熱槽(31)に蓄えられる。蓄熱運転では、蓄熱媒体回路(32)のポンプ(36)が作動し、蓄熱槽(31)と空調側熱交換器(34)の間を蓄熱媒体が循環する。また、蓄熱運転では、給湯装置(10)が停止する。
<Heat storage operation>
The heat storage operation will be described with reference to FIG. In the heat storage operation, heat is obtained by the refrigeration cycle performed by the air conditioning refrigerant circuit (21), and the obtained heat is stored in the heat storage tank (31). In the heat storage operation, the pump (36) of the heat storage medium circuit (32) operates, and the heat storage medium circulates between the heat storage tank (31) and the air conditioning side heat exchanger (34). In the heat storage operation, the hot water supply device (10) is stopped.

空気調和装置(20)では、四方切換弁(23)が第2状態となり、第1ポートが第4ポートと連通し且つ第2ポートが第3ポートと連通する。また、第7三方弁(60)は、四方切換弁(23)の第4ポートを第2バイパス配管(55)に連通させて各室内熱交換器(27)から遮断する状態に切り換えられる。第8三方弁(61)は、空調側熱交換器(34)を第2バイパス配管(55)に連通させて第4三方弁(57)から遮断する状態に切り換えられる。第6三方弁(59)は、空調側熱交換器(34)を第3三方弁(56)に連通させて第1バイパス配管(54)から遮断する状態に切り換えられる。第3三方弁(56)は、室外膨張弁(25)を空調側接続配管(53)に連通させて第4三方弁(57)から遮断する状態に切り換えられる。第5三方弁(58)は、四方切換弁(23)の第3ポートを室外熱交換器(24)に連通させて第1バイパス配管(54)から遮断する状態に切り換えられる。     In the air conditioner (20), the four-way switching valve (23) is in the second state, the first port communicates with the fourth port, and the second port communicates with the third port. The seventh three-way valve (60) is switched to a state in which the fourth port of the four-way switching valve (23) is communicated with the second bypass pipe (55) and shut off from each indoor heat exchanger (27). The eighth three-way valve (61) is switched to a state where the air-conditioning side heat exchanger (34) communicates with the second bypass pipe (55) and is shut off from the fourth three-way valve (57). The sixth three-way valve (59) is switched to a state where the air-conditioning side heat exchanger (34) communicates with the third three-way valve (56) and is shut off from the first bypass pipe (54). The third three-way valve (56) is switched to a state in which the outdoor expansion valve (25) is communicated with the air conditioning side connection pipe (53) and is shut off from the fourth three-way valve (57). The fifth three-way valve (58) is switched to a state in which the third port of the four-way switching valve (23) communicates with the outdoor heat exchanger (24) and is shut off from the first bypass pipe (54).

上述の状態において、圧縮機(22)を作動させると、空調用冷媒回路(21)では、空調側熱交換器(34)が凝縮器(即ち、放熱器)となり、室外熱交換器(24)が蒸発器となる冷凍サイクルを行う。その際、室外膨張弁(25)は、室外熱交換器(24)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。     When the compressor (22) is operated in the above-described state, the air conditioning side heat exchanger (34) becomes a condenser (ie, a radiator) in the air conditioning refrigerant circuit (21), and the outdoor heat exchanger (24) The refrigeration cycle that becomes an evaporator is performed. At that time, the opening of the outdoor expansion valve (25) is adjusted so that the degree of superheat of the refrigerant at the outlet of the outdoor heat exchanger (24) becomes a predetermined target value.

空調用冷媒回路(21)における冷媒の流れを説明する。圧縮機(22)から吐出された冷媒は、第2バイパス配管(55)へ流入する。第2バイパス配管(55)へ流入した冷媒は、空調側熱交換器(34)の一次側流路(34a)へ流入し、該一次側流路(34a)を通過する間に二次側流路(34b)を流れる蓄熱媒体に放熱して凝縮する。空調側熱交換器(34)を通過した冷媒は、室外膨張弁(25)へ流入し、該室外膨張弁(25)を通過する際に減圧される。室外膨張弁(25)において減圧された冷媒は、室外熱交換器(24)へ流入し、室外空気から吸熱して蒸発する。室外熱交換器(24)を通過した冷媒は、圧縮機(22)へ吸入される。圧縮機(22)は、吸入した冷媒を圧縮してから吐出する。     The flow of the refrigerant in the air conditioning refrigerant circuit (21) will be described. The refrigerant discharged from the compressor (22) flows into the second bypass pipe (55). The refrigerant flowing into the second bypass pipe (55) flows into the primary flow path (34a) of the air conditioning side heat exchanger (34) and passes through the secondary side flow (34a) while passing through the primary flow path (34a). It dissipates heat to the heat storage medium flowing through the path (34b) and condenses. The refrigerant that has passed through the air conditioning side heat exchanger (34) flows into the outdoor expansion valve (25) and is decompressed when it passes through the outdoor expansion valve (25). The refrigerant decompressed in the outdoor expansion valve (25) flows into the outdoor heat exchanger (24), absorbs heat from the outdoor air, and evaporates. The refrigerant that has passed through the outdoor heat exchanger (24) is sucked into the compressor (22). The compressor (22) compresses the sucked refrigerant and discharges it.

蓄熱装置(30)では、第1調整弁(37)が全閉状態に保持される一方、第2調整弁(38)は適宜開度が調整される。この状態において、蓄熱媒体回路(32)のポンプ(36)を作動させると、蓄熱槽(31)と空調側熱交換器(34)の間において蓄熱媒体が循環する。蓄熱槽(31)内の蓄熱媒体は、ポンプ(36)によって空調側熱交換器(34)の二次側流路(34b)へ送られ、その一次側流路(34a)を流れる冷媒によって加熱される。空調側熱交換器(34)において加熱された蓄熱媒体は、蓄熱槽(31)へ送り返される。従って、蓄熱槽(31)には、圧縮機(22)から吐出された冷媒の温熱が蓄えられる。     In the heat storage device (30), the first adjustment valve (37) is held in a fully closed state, while the opening of the second adjustment valve (38) is adjusted as appropriate. In this state, when the pump (36) of the heat storage medium circuit (32) is operated, the heat storage medium circulates between the heat storage tank (31) and the air conditioning side heat exchanger (34). The heat storage medium in the heat storage tank (31) is sent by the pump (36) to the secondary side flow path (34b) of the air conditioning side heat exchanger (34) and heated by the refrigerant flowing through the primary side flow path (34a). Is done. The heat storage medium heated in the air conditioning side heat exchanger (34) is sent back to the heat storage tank (31). Accordingly, the heat storage tank (31) stores the heat of the refrigerant discharged from the compressor (22).

〈利用暖房運転〉
利用暖房運転について、図7を参照しながら説明する。利用暖房運転では、蓄熱槽(31)に蓄えられた温熱を用いて室内の暖房が行われる。利用暖房運転では、蓄熱媒体回路(32)のポンプ(36)が作動し、蓄熱槽(31)と空調側熱交換器(34)の間を蓄熱媒体が循環する。また、利用暖房運転では、給湯装置(10)が停止する。
<Use heating operation>
The utilization heating operation will be described with reference to FIG. In the use heating operation, the room is heated using the heat stored in the heat storage tank (31). In the utilization heating operation, the pump (36) of the heat storage medium circuit (32) operates, and the heat storage medium circulates between the heat storage tank (31) and the air conditioning side heat exchanger (34). In the use heating operation, the hot water supply device (10) is stopped.

空気調和装置(20)では、四方切換弁(23)が第2状態となり、第1ポートが第4ポートと連通し且つ第2ポートが第3ポートと連通する。また、第7三方弁(60)は、四方切換弁(23)の第4ポートを各室内熱交換器(27)に連通させて第2バイパス配管(55)から遮断する状態に切り換えられる。第4三方弁(57)は、各室内膨張弁(26)を空調側接続配管(53)に連通させて第3三方弁(56)から遮断する状態に切り換えられる。第8三方弁(61)は、空調側熱交換器(34)を第4三方弁(57)に連通させて第2バイパス配管(55)から遮断する状態に切り換えられる。第6三方弁(59)は、空調側熱交換器(34)を第1バイパス配管(54)に連通させて第3三方弁(56)から遮断する状態に切り換えられる。第5三方弁(58)は、四方切換弁(23)の第3ポートを第1バイパス配管(54)に連通させて室外熱交換器(24)から遮断する状態に切り換えられる。     In the air conditioner (20), the four-way switching valve (23) is in the second state, the first port communicates with the fourth port, and the second port communicates with the third port. The seventh three-way valve (60) is switched to a state in which the fourth port of the four-way switching valve (23) is communicated with each indoor heat exchanger (27) and shut off from the second bypass pipe (55). The fourth three-way valve (57) is switched to a state in which each indoor expansion valve (26) communicates with the air conditioning side connection pipe (53) and is shut off from the third three-way valve (56). The eighth three-way valve (61) is switched to a state where the air-conditioning side heat exchanger (34) communicates with the fourth three-way valve (57) and is shut off from the second bypass pipe (55). The sixth three-way valve (59) is switched to a state where the air-conditioning side heat exchanger (34) communicates with the first bypass pipe (54) and is shut off from the third three-way valve (56). The fifth three-way valve (58) is switched to a state in which the third port of the four-way switching valve (23) communicates with the first bypass pipe (54) and is shut off from the outdoor heat exchanger (24).

上述の状態において圧縮機(22)を作動させると、空調用冷媒回路(21)では、各室内熱交換器(27)が凝縮器(即ち、放熱器)となり、空調側熱交換器(34)が蒸発器となる冷凍サイクルを行う。その際、各室内膨張弁(26)は、空調側熱交換器(34)の一次側流路(34a)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。     When the compressor (22) is operated in the above-described state, in the refrigerant circuit for air conditioning (21), each indoor heat exchanger (27) becomes a condenser (ie, a radiator), and the air conditioning side heat exchanger (34) The refrigeration cycle that becomes an evaporator is performed. At that time, the opening degree of each indoor expansion valve (26) is adjusted so that the degree of superheat of the refrigerant at the outlet of the primary side flow path (34a) of the air conditioning side heat exchanger (34) becomes a predetermined target value. Is done.

空調用冷媒回路(21)における冷媒の流れを説明する。圧縮機(22)から吐出された冷媒は、各室内熱交換器(27)へ流入し、各室内熱交換器(27)を通過する間に室内空気へ放熱して凝縮する。各室内熱交換器(27)において加熱された室内空気は、室内へ供給される。各室内熱交換器(27)を通過した冷媒は、各室内膨張弁(26)を通過する際に減圧され、その後に空調側接続配管(53)へ流入する。その後、冷媒は、空調側熱交換器(34)の一次側流路(34a)へ流入し、二次側流路(34b)を流れる蓄熱媒体から吸熱して蒸発する。空調側熱交換器(34)から流出した冷媒は、第1バイパス配管(54)へ流入し、その後、圧縮機(22)へ吸入される。圧縮機(22)は、吸入した冷媒を圧縮してから吐出する。     The flow of the refrigerant in the air conditioning refrigerant circuit (21) will be described. The refrigerant discharged from the compressor (22) flows into each indoor heat exchanger (27), dissipates heat to the indoor air and condenses while passing through each indoor heat exchanger (27). The indoor air heated in each indoor heat exchanger (27) is supplied indoors. The refrigerant that has passed through each indoor heat exchanger (27) is depressurized when passing through each indoor expansion valve (26), and then flows into the air-conditioning side connection pipe (53). Thereafter, the refrigerant flows into the primary flow path (34a) of the air conditioning side heat exchanger (34), absorbs heat from the heat storage medium flowing through the secondary flow path (34b), and evaporates. The refrigerant that has flowed out of the air conditioning side heat exchanger (34) flows into the first bypass pipe (54), and is then sucked into the compressor (22). The compressor (22) compresses the sucked refrigerant and discharges it.

一方、蓄熱装置(30)では、第1調整弁(37)が全閉状態に保持される一方、第2調整弁(38)は適宜開度が調整される。この状態において、蓄熱媒体回路(32)のポンプ(36)を作動させると、蓄熱槽(31)と空調側熱交換器(34)の間において蓄熱媒体が循環する。蓄熱槽(31)内の蓄熱媒体は、ポンプ(36)によって空調側熱交換器(34)の二次側流路(34b)へ送られ、その一次側流路(34a)を流れる冷媒へ放熱する。空調側熱交換器(34)の二次側流路(34b)を通過した蓄熱媒体は、蓄熱槽(31)へ送り返される。     On the other hand, in the heat storage device (30), the first adjustment valve (37) is held in a fully closed state, while the opening of the second adjustment valve (38) is adjusted as appropriate. In this state, when the pump (36) of the heat storage medium circuit (32) is operated, the heat storage medium circulates between the heat storage tank (31) and the air conditioning side heat exchanger (34). The heat storage medium in the heat storage tank (31) is sent by the pump (36) to the secondary side flow path (34b) of the air conditioning side heat exchanger (34) and dissipated to the refrigerant flowing through the primary side flow path (34a). To do. The heat storage medium that has passed through the secondary flow path (34b) of the air conditioning side heat exchanger (34) is sent back to the heat storage tank (31).

〈単純暖房運転〉
単純暖房運転について、図8を参照しながら説明する。単純暖房運転では、空調用冷媒回路(21)が行う冷凍サイクルによって得られた温熱だけを用いて室内の暖房が行われる。単純暖房運転では、給湯装置(10)及び蓄熱装置(30)が停止する。
<Simple heating operation>
The simple heating operation will be described with reference to FIG. In the simple heating operation, the room is heated using only the heat obtained by the refrigeration cycle performed by the air conditioning refrigerant circuit (21). In the simple heating operation, the hot water supply device (10) and the heat storage device (30) are stopped.

空気調和装置(20)では、四方切換弁(23)が第2状態となり、第1ポートが第4ポートと連通し且つ第2ポートが第3ポートと連通する。また、第7三方弁(60)は、四方切換弁(23)の第4ポートを各室内熱交換器(27)に連通させて第2バイパス配管(55)から遮断する状態に切り換えられる。第4三方弁(57)は、各室内膨張弁(26)を第3三方弁(56)に連通させて空調側接続配管(53)から遮断する状態に切り換えられる。第3三方弁(56)は、室外膨張弁(25)を第4三方弁(57)に連通させて空調側接続配管(53)から遮断する状態に切り換えられる。第5三方弁(58)は、四方切換弁(23)の第3ポートを室外熱交換器(24)に連通させて第1バイパス配管(54)から遮断する状態に切り換えられる。     In the air conditioner (20), the four-way switching valve (23) is in the second state, the first port communicates with the fourth port, and the second port communicates with the third port. The seventh three-way valve (60) is switched to a state in which the fourth port of the four-way switching valve (23) is communicated with each indoor heat exchanger (27) and shut off from the second bypass pipe (55). The fourth three-way valve (57) is switched to a state in which each indoor expansion valve (26) communicates with the third three-way valve (56) and is shut off from the air conditioning side connection pipe (53). The third three-way valve (56) is switched to a state where the outdoor expansion valve (25) communicates with the fourth three-way valve (57) and is shut off from the air conditioning side connection pipe (53). The fifth three-way valve (58) is switched to a state in which the third port of the four-way switching valve (23) communicates with the outdoor heat exchanger (24) and is shut off from the first bypass pipe (54).

上述の状態において圧縮機(22)を作動させると、空調用冷媒回路(21)では、各室内熱交換器(27)が凝縮器(即ち、放熱器)となり、室外熱交換器(24)が蒸発器となる冷凍サイクルを行う。その際、各室内膨張弁(26)は、全開状態に保持される一方、室外膨張弁(25)は、暖房側熱交換器の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。     When the compressor (22) is operated in the above-described state, in the refrigerant circuit (21) for air conditioning, each indoor heat exchanger (27) becomes a condenser (that is, a radiator), and the outdoor heat exchanger (24) A refrigeration cycle that serves as an evaporator is performed. At that time, each indoor expansion valve (26) is held in a fully open state, while the outdoor expansion valve (25) is such that the degree of superheat of the refrigerant at the outlet of the heating side heat exchanger becomes a predetermined target value. The opening is adjusted.

空調用冷媒回路(21)における冷媒の流れを説明する。圧縮機(22)から吐出された冷媒は、各室内熱交換器(27)へ流入し、各室内熱交換器(27)を通過する間に室内空気へ放熱して凝縮する。各室内熱交換器(27)において加熱された室内空気は、室内へ供給される。各室内熱交換器(27)を通過した冷媒は、各室内膨張弁(26)を通過後に室外膨張弁(25)へ流入し、該室外膨張弁(25)を通過する際に減圧される。室外膨張弁(25)において減圧された冷媒は、室外熱交換器(24)へ流入し、室外空気から吸熱して蒸発する。室外熱交換器(24)を通過した冷媒は、圧縮機(22)へ吸入される。圧縮機(22)は、吸入した冷媒を圧縮してから吐出する。     The flow of the refrigerant in the air conditioning refrigerant circuit (21) will be described. The refrigerant discharged from the compressor (22) flows into each indoor heat exchanger (27), dissipates heat to the indoor air and condenses while passing through each indoor heat exchanger (27). The indoor air heated in each indoor heat exchanger (27) is supplied indoors. The refrigerant that has passed through each indoor heat exchanger (27) flows into each outdoor expansion valve (25) after passing through each indoor expansion valve (26), and is reduced in pressure when passing through the outdoor expansion valve (25). The refrigerant decompressed in the outdoor expansion valve (25) flows into the outdoor heat exchanger (24), absorbs heat from the outdoor air, and evaporates. The refrigerant that has passed through the outdoor heat exchanger (24) is sucked into the compressor (22). The compressor (22) compresses the sucked refrigerant and discharges it.

〈単純湯沸かし運転〉
単純湯沸かし運転について、図9を参照しながら説明する。単純湯沸かし運転では、給湯用冷媒回路(40)が行う冷凍サイクルによって得られた温熱だけを用いて貯湯槽(11)内の水を加熱する。単純湯沸かし運転では、空気調和装置(20)及び蓄熱装置(30)が停止する。
<Simple water heater operation>
The simple water heater operation will be described with reference to FIG. In the simple hot water heating operation, the water in the hot water storage tank (11) is heated using only the heat obtained by the refrigeration cycle performed by the hot water supply refrigerant circuit (40). In the simple water heater operation, the air conditioner (20) and the heat storage device (30) are stopped.

給湯装置(10)では、第1及び第2三方弁(51,52)は、低温側回路(41)において冷媒が蓄熱装置(30)の給湯側熱交換器(33)に流れないように切り換えられる。つまり、第1三方弁(51)は、低温側回路(41)の膨張弁(45)を蒸発器(46)に連通させて給湯側接続配管(50)から遮断する状態に切り換えられ、第2三方弁(52)は、低温側回路(41)の圧縮機(44)を蒸発器(46)に連通させて給湯側接続配管(50)から遮断する状態に切り換えられる。この状態において、給湯装置(10)の圧縮機(44,47)が作動することにより、給湯用冷媒回路(40)が二元冷凍サイクルを行う。その際、低温側回路(41)の膨張弁(45)は、蒸発器(46)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。また、高温側回路(42)の膨張弁(49)は、カスケード熱交換器(43)の二次側流路(43b)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。また、水回路(12)のポンプ(13)が作動し、貯湯槽(11)と加熱用熱交換器(48)の間を水が循環する。     In the hot water supply device (10), the first and second three-way valves (51, 52) are switched so that the refrigerant does not flow to the hot water supply side heat exchanger (33) of the heat storage device (30) in the low temperature side circuit (41). It is done. That is, the first three-way valve (51) is switched to a state in which the expansion valve (45) of the low-temperature side circuit (41) is communicated with the evaporator (46) and cut off from the hot water supply side connection pipe (50). The three-way valve (52) is switched to a state in which the compressor (44) of the low temperature side circuit (41) is communicated with the evaporator (46) and cut off from the hot water supply side connection pipe (50). In this state, when the compressors (44, 47) of the hot water supply device (10) are operated, the hot water supply refrigerant circuit (40) performs a dual refrigeration cycle. At that time, the opening degree of the expansion valve (45) of the low temperature side circuit (41) is adjusted so that the degree of superheat of the refrigerant at the outlet of the evaporator (46) becomes a predetermined target value. Further, the expansion valve (49) of the high temperature side circuit (42) has its refrigerant superheat degree at the outlet of the secondary side flow path (43b) of the cascade heat exchanger (43) so as to reach a predetermined target value. The opening is adjusted. Moreover, the pump (13) of the water circuit (12) is operated, and water circulates between the hot water tank (11) and the heat exchanger (48) for heating.

給湯用冷媒回路(40)における冷媒の流れを説明する。低温側回路(41)の圧縮機(44)から吐出された冷媒は、カスケード熱交換器(43)の一次側流路(43a)を通過する際に、その二次側流路(43b)を流れる冷媒に放熱して凝縮する。カスケード熱交換器(43)から流出した冷媒は、膨張弁(45)を通過する際に減圧され、その後に蒸発器(46)へ流入し、室外空気から吸熱して蒸発する。その後、冷媒は、圧縮機(44)へ吸入される。圧縮機(44)は、吸入した冷媒を圧縮してから吐出する。     The flow of the refrigerant in the hot water supply refrigerant circuit (40) will be described. When the refrigerant discharged from the compressor (44) of the low-temperature circuit (41) passes through the primary flow path (43a) of the cascade heat exchanger (43), the refrigerant flows through the secondary flow path (43b). It dissipates heat to the flowing refrigerant and condenses. The refrigerant flowing out of the cascade heat exchanger (43) is depressurized when passing through the expansion valve (45), and then flows into the evaporator (46) to absorb heat from the outdoor air and evaporate. Thereafter, the refrigerant is sucked into the compressor (44). The compressor (44) compresses the sucked refrigerant and discharges it.

また、高温側回路(42)の圧縮機(47)から吐出された冷媒は、加熱用熱交換器(48)の一次側流路(48a)を通過する際に放熱して凝縮する。加熱用熱交換器(48)から流出した冷媒は、膨張弁(49)を通過する際に減圧され、その後にカスケード熱交換器(43)の二次側流路(43b)へ流入する。カスケード熱交換器(43)の二次側流路(43b)を流れる冷媒は、その一次側流路(43a)を流れる冷媒から吸熱して蒸発する。その後、冷媒は、圧縮機(47)へ吸入される。圧縮機(47)は、吸入した冷媒を圧縮してから吐出する。     Further, the refrigerant discharged from the compressor (47) of the high temperature side circuit (42) dissipates heat and condenses when passing through the primary flow path (48a) of the heat exchanger for heating (48). The refrigerant flowing out of the heating heat exchanger (48) is depressurized when passing through the expansion valve (49), and then flows into the secondary flow path (43b) of the cascade heat exchanger (43). The refrigerant flowing through the secondary flow path (43b) of the cascade heat exchanger (43) absorbs heat from the refrigerant flowing through the primary flow path (43a) and evaporates. Thereafter, the refrigerant is sucked into the compressor (47). The compressor (47) compresses the sucked refrigerant and discharges it.

水回路(12)における水の流れを説明する。貯湯槽(11)の底部に存在する低温の水は、ポンプ(13)によって加熱用熱交換器(48)の二次側流路(48b)へ送られ、その一次側流路(48a)を流れる冷媒によって加熱される。そして、加熱後の高温の水は、貯湯槽(11)の頂部へ送り返される。     The flow of water in the water circuit (12) will be described. The low-temperature water present at the bottom of the hot water storage tank (11) is sent to the secondary flow path (48b) of the heating heat exchanger (48) by the pump (13), and the primary flow path (48a) is Heated by flowing refrigerant. And the hot water after a heating is sent back to the top part of a hot water tank (11).

〈冷房シーズンにおける運転動作〉
夏季等の冷房シーズンにおいて、給湯空調システム(1)は、蓄冷運転と、第1利用冷房運転と、第2利用冷房運転と、単純冷房運転とを行う。
<Driving operation in the cooling season>
In a cooling season such as summer, the hot water supply air conditioning system (1) performs a cold storage operation, a first use cooling operation, a second use cooling operation, and a simple cooling operation.

蓄冷運転は、電力料金が安い深夜に行われる。一方、第1利用冷房運転、第2利用冷房運転、及び単純冷房運転は、主に日中から夕方にかけて行われる。     Cold storage operation is performed at midnight when the electricity bill is cheap. On the other hand, the first use cooling operation, the second use cooling operation, and the simple cooling operation are mainly performed from daytime to evening.

冷房シーズンの深夜において、給湯空調システム(1)は、蓄冷運転を必ず行う。上述したように、蓄冷運転中の給湯空調システム(1)では、給湯装置(10)が給湯用冷媒回路(40)において冷凍サイクルを行って貯湯槽(11)内の水を加熱する一方、冷凍サイクルによって得られた冷熱で蓄熱装置(30)が蓄熱槽(31)内の蓄熱媒体を冷却する給湯側蓄熱動作と、空気調和装置(20)が空調用冷媒回路(21)において冷凍サイクルを行い、該冷凍サイクルによって得られた冷熱で蓄熱装置(30)が蓄熱槽(31)内の蓄熱媒体を冷却する空調側蓄熱動作とが行われる。そして、蓄冷運転において、貯湯槽(11)内の水のほぼ全てが80〜90℃程度の高温水になるか、貯湯槽(11)内の高温水の量が翌日の給湯需要を賄える量に達すると、給湯空調システム(1)は、給湯側蓄熱動作を停止し、空調側蓄熱動作のみを行う。     In the midnight of the cooling season, the hot water supply air conditioning system (1) always performs cold storage operation. As described above, in the hot water supply air conditioning system (1) during the cold storage operation, the hot water supply device (10) performs the refrigeration cycle in the hot water supply refrigerant circuit (40) to heat the water in the hot water storage tank (11), while the refrigeration The heat storage device (30) cools the heat storage medium in the heat storage tank (31) with the cold energy obtained by the cycle, and the air conditioner (20) performs a refrigeration cycle in the air conditioning refrigerant circuit (21) The air storage side heat storage operation in which the heat storage device (30) cools the heat storage medium in the heat storage tank (31) with the cold energy obtained by the refrigeration cycle is performed. In the cold storage operation, almost all of the water in the hot water storage tank (11) becomes hot water of about 80 to 90 ° C., or the amount of high temperature water in the hot water storage tank (11) is sufficient to meet the demand for hot water supply on the next day. When it reaches, the hot water supply air conditioning system (1) stops the hot water supply side heat storage operation and performs only the air conditioning side heat storage operation.

ところで、給湯需要が比較的少なくて冷房負荷の高い夏季には、給湯側蓄熱動作によって蓄熱装置(30)に蓄えられた冷熱だけでは、日中の冷房負荷を処理しきれない場合が多い。しかし、蓄冷運転では、給湯空調システム(1)は、給湯側蓄熱動作だけでなく、空調側蓄熱動作を行うことによって蓄熱装置(30)に冷熱を蓄えることとしている。上述したように、空調側蓄熱動作では、空調用冷媒回路(21)の冷媒が蓄熱媒体から吸収した熱を室外空気へ放出しているため、貯湯槽(11)内の高温水の量とは無関係に蓄熱装置(30)に冷熱を蓄えることができる。そこで、本実施形態の給湯空調システム(1)は、深夜に給湯側蓄熱動作と空調側蓄熱動作とを行う蓄冷運転を行うことによって、蓄熱装置(30)に蓄えられた冷熱量を充分に確保している。     By the way, in the summer when the demand for hot water supply is relatively small and the cooling load is high, there are many cases where the cooling load during the day cannot be processed with only the cold heat stored in the heat storage device (30) by the hot water storage side heat storage operation. However, in the cold storage operation, the hot water supply air conditioning system (1) stores not only the hot water supply side heat storage operation but also the cold storage in the heat storage device (30) by performing the air conditioning side heat storage operation. As described above, in the air conditioning side heat storage operation, the refrigerant in the air conditioning refrigerant circuit (21) releases the heat absorbed from the heat storage medium to the outdoor air, so the amount of hot water in the hot water storage tank (11) is Regardless of this, cold heat can be stored in the heat storage device (30). Therefore, the hot water supply air-conditioning system (1) of the present embodiment sufficiently secures the amount of cold heat stored in the heat storage device (30) by performing a cold storage operation in which the hot water supply side heat storage operation and the air conditioning side heat storage operation are performed at midnight. doing.

第1利用冷房運転と第2利用冷房運転は、蓄冷運転によって蓄熱装置(30)に蓄えられた冷熱を利用して、室内を冷房する運転である。第1利用冷房運転や第2利用冷房運転における給湯空調システム(1)の消費電力は、空調用冷媒回路(21)が行う冷凍サイクルによって得られた冷熱だけを利用して冷房を行う単純冷房運転中の給湯空調システム(1)の消費電力に比べて少なくなる。このため、電力料金の高い日中から夕方にかけての給湯空調システム(1)の消費電力が減少し、給湯空調システム(1)のランニングコストが低減される。     The first usage cooling operation and the second usage cooling operation are operations for cooling the room using the cold energy stored in the heat storage device (30) by the cold storage operation. The power consumption of the hot water supply air-conditioning system (1) in the first use cooling operation and the second use cooling operation is the simple cooling operation in which the cooling is performed using only the cooling heat obtained by the refrigeration cycle performed by the air conditioning refrigerant circuit (21). It is less than the power consumption of the hot water supply air conditioning system (1). For this reason, the power consumption of the hot water supply air conditioning system (1) from the daytime to the evening when the power rate is high is reduced, and the running cost of the hot water supply air conditioning system (1) is reduced.

なお、蓄熱装置(30)に蓄えられた冷熱を使い切った後においても、室内の冷房が必要な場合がある。その様な場合、給湯空調システム(1)は、単純冷房運転を行う。     Even after the cold energy stored in the heat storage device (30) has been used up, there are cases where indoor cooling is required. In such a case, the hot water supply air conditioning system (1) performs simple cooling operation.

〈暖房シーズンにおける運転動作〉
冬季等の暖房シーズンにおいて、給湯空調システム(1)は、蓄熱運転と、利用暖房運転と、単純暖房運転と、単純湯沸かし運転とを行う。
<Operation during heating season>
In a heating season such as winter, the hot water supply air conditioning system (1) performs a heat storage operation, a utilization heating operation, a simple heating operation, and a simple water heater operation.

上述したように、蓄熱運転中の給湯空調システム(1)では、蓄熱装置(30)に温熱が蓄えられる。利用暖房運転中の給湯空調システム(1)は、蓄熱運転中に蓄熱装置(30)に蓄えられた温熱を利用して、上述した運転を行う。     As described above, in the hot water supply air conditioning system (1) during the heat storage operation, heat is stored in the heat storage device (30). The hot water supply air-conditioning system (1) during use heating operation performs the above-described operation using the heat stored in the heat storage device (30) during the heat storage operation.

なお、蓄熱装置(30)に蓄えられた温熱を使い切った後においても、室内の暖房が必要な場合がある。その様な場合、給湯空調システム(1)は、単純暖房運転を行う。また、暖房を行わずに湯沸かしのみが必要な場合がある。その様な場合、給湯空調システム(1)は、単純湯沸かし運転を行う。     In addition, even after exhausting the heat stored in the heat storage device (30), indoor heating may be required. In such a case, the hot water supply air conditioning system (1) performs simple heating operation. In some cases, only heating is required without heating. In such a case, the hot water supply air conditioning system (1) performs a simple water heating operation.

−実施形態1の効果−
本実施形態の給湯空調システム(1)では、蓄冷運転中に給湯側蓄冷動作と空調側蓄冷動作とが実行可能となっている。給湯側蓄冷動作中には、給湯用冷媒回路(40)において冷凍サイクルが行われ、加熱用熱交換器(48)において冷媒から放出された熱を利用して給湯装置(10)が温水を生成し、給湯側熱交換器(33)において得られた冷熱が蓄熱装置(30)の蓄熱槽(31)に蓄えられる。一方、空調側蓄冷動作中には、空調用冷媒回路(21)において冷凍サイクルが行われ、室外熱交換器(24)において冷媒が室外空気へ放熱し、空調側熱交換器(34)において得られた冷熱が蓄熱装置(30)の蓄熱槽(31)に蓄えられる。
-Effect of Embodiment 1-
In the hot water supply air conditioning system (1) of the present embodiment, the hot water supply side cold storage operation and the air conditioning side cold storage operation can be performed during the cold storage operation. During the hot water supply side cold storage operation, a refrigeration cycle is performed in the hot water supply refrigerant circuit (40), and the hot water supply device (10) generates hot water using the heat released from the refrigerant in the heating heat exchanger (48). And the cold energy obtained in the hot water supply side heat exchanger (33) is stored in the heat storage tank (31) of the heat storage device (30). On the other hand, during the cold storage operation on the air conditioning side, a refrigeration cycle is performed in the refrigerant circuit for air conditioning (21), and the refrigerant radiates heat to the outdoor air in the outdoor heat exchanger (24), and is obtained in the air conditioning side heat exchanger (34). The generated cold energy is stored in the heat storage tank (31) of the heat storage device (30).

このように本実施形態の給湯空調システム(1)によれば、給湯側蓄冷動作だけでなく空調側蓄冷動作を行うことにより、給湯側蓄冷動作のみを行う場合に比べて多くの冷熱を蓄熱装置(30)の蓄熱槽(31)に蓄えることができる。そのため、温水を生成する際に得られる冷熱だけでなく、空調用冷媒回路(21)の冷媒が室外空気へ放熱することによって得られる冷熱も蓄熱装置(30)の蓄熱槽(31)に蓄えることができる。従って、本実施形態の給湯空調システム(1)によれば、電力料金の安い深夜に蓄冷運転を行い、その蓄冷運転中に給湯側蓄冷動作と空調側蓄冷動作とを行うことによって日中の利用冷房運転に必要な十分な量の冷熱を蓄熱槽(31)に蓄えることができる。その結果、日中に室内を冷房するために消費される電力量を十分に削減でき、給湯空調システムのランニングコストを十分に削減することができる。     Thus, according to the hot water supply air conditioning system (1) of this embodiment, not only the hot water supply side cold storage operation but also the air conditioning side cold storage operation is performed, so that a larger amount of cold heat is stored than in the case of performing only the hot water supply side cold storage operation. It can be stored in the heat storage tank (31) of (30). Therefore, not only the cold energy that is obtained when hot water is generated, but also the cold energy that is obtained when the refrigerant in the air conditioning refrigerant circuit (21) radiates heat to the outdoor air is stored in the heat storage tank (31) of the heat storage device (30). Can do. Therefore, according to the hot water supply air-conditioning system (1) of the present embodiment, the cold storage operation is performed at midnight when the electricity rate is low, and the hot water supply side cold storage operation and the air conditioning side cold storage operation are performed during the cold storage operation. A sufficient amount of cold energy required for cooling operation can be stored in the heat storage tank (31). As a result, the amount of power consumed to cool the room during the day can be sufficiently reduced, and the running cost of the hot water supply air conditioning system can be sufficiently reduced.

また、本実施形態の給湯空調システム(1)によれば、給湯側熱交換器(33)と蓄熱槽(31)との間で蓄熱媒体を循環させる第1循環路(35a,35b)と、空調側熱交換器(34)と蓄熱槽(31)との間で蓄熱媒体を循環させる第2循環路(35a,35c)とを設けることにより、給湯側蓄冷動作と空調側蓄冷動作とを同時に行って、給湯用冷媒回路における冷凍サイクルによって得られた冷熱と空調用冷媒回路における冷凍サイクルによって得られた冷熱とを同じ蓄熱槽(31)に蓄えることができる。従って、給湯空調システム(1)をコンパクトに構成することができる。     Moreover, according to the hot water supply air conditioning system (1) of the present embodiment, the first circulation path (35a, 35b) for circulating the heat storage medium between the hot water supply side heat exchanger (33) and the heat storage tank (31), By providing the second circulation path (35a, 35c) for circulating the heat storage medium between the air conditioning side heat exchanger (34) and the heat storage tank (31), the hot water supply side cold storage operation and the air conditioning side cold storage operation can be performed simultaneously. Thus, the cold heat obtained by the refrigeration cycle in the hot water supply refrigerant circuit and the cold heat obtained by the refrigeration cycle in the air conditioning refrigerant circuit can be stored in the same heat storage tank (31). Therefore, the hot water supply air conditioning system (1) can be configured in a compact manner.

また、本実施形態の給湯空調システム(1)によれば、給湯側蓄熱動作と空調側蓄熱動作とを同時に並行して行うこととしているため、給湯側蓄熱動作の終了後に空調側蓄熱動作を行う場合に比べて蓄冷運転に要する時間を短縮することができる。 Further, according to the hot water supply air conditioning system (1) of the present embodiment, the hot water supply side heat storage operation and the air conditioning side heat storage operation are performed simultaneously in parallel, so the air conditioning side heat storage operation is performed after the hot water supply side heat storage operation is completed. Compared to the case, the time required for the cold storage operation can be shortened.

《発明の実施形態2》
実施形態2の給湯空調システム(1)は、実施形態1の給湯空調システム(1)において、空気調和装置(20)及び蓄熱装置(30)の構成を変更したものである。なお、給湯装置(10)は、実施形態1と同様に構成されている。以下、図10を用いて説明する。
<< Embodiment 2 of the Invention >>
The hot water supply air conditioning system (1) of Embodiment 2 is obtained by changing the configurations of the air conditioner (20) and the heat storage device (30) in the hot water supply air conditioning system (1) of Embodiment 1. The hot water supply device (10) is configured in the same manner as in the first embodiment. Hereinafter, a description will be given with reference to FIG.

〈空気調和装置〉
実施形態2では、空気調和装置(20)は、第1〜第3空調ユニット(20A,20B,20C)を備えている。各空調ユニット(20A,20B,20C)は、冷媒が充填された閉回路である空調用冷媒回路(21)と、室外ファン(24a)と、室内ファン(27a)とを備えている。
<Air conditioning device>
In Embodiment 2, the air conditioner (20) includes first to third air conditioning units (20A, 20B, 20C). Each air conditioning unit (20A, 20B, 20C) includes an air conditioning refrigerant circuit (21) that is a closed circuit filled with a refrigerant, an outdoor fan (24a), and an indoor fan (27a).

空調用冷媒回路(21)は、実施形態1において、空調側接続配管(53)における空調側熱交換器(34)の第4三方弁(57)側に接続されていた第8三方弁(61)が、主回路(29)の第3三方弁(56)と第4三方弁(57)との間に接続されている点、及び空調側接続配管(53)に空調側熱交換器(34)ではなく伝熱管(39)が接続される点以外は実施形態1と同様に構成されている。実施形態2では、第8三方弁(61)は、第4三方弁(57)を第3三方弁(56)に連通させて第2バイパス配管(55)を遮断する状態と第4三方弁(57)を第2バイパス配管(55)に連通させて第3三方弁(56)を遮断する状態とに切り換わる。     In the first embodiment, the air conditioning refrigerant circuit (21) is connected to the fourth three-way valve (57) side of the air-conditioning side heat exchanger (34) in the air-conditioning side connection pipe (53). ) Is connected between the third three-way valve (56) and the fourth three-way valve (57) of the main circuit (29), and the air conditioning side heat exchanger (34) is connected to the air conditioning side connection pipe (53). ), But the heat transfer tube (39) is connected in the same manner as in the first embodiment. In the second embodiment, the eighth three-way valve (61) includes a state in which the fourth three-way valve (57) communicates with the third three-way valve (56) and the second bypass pipe (55) is shut off, and the fourth three-way valve ( 57) is connected to the second bypass pipe (55) to switch to a state in which the third three-way valve (56) is shut off.

〈蓄熱装置〉
実施形態2では、蓄熱装置(30)は、第1〜第3蓄熱ユニット(30A,30B,30C)と、各蓄熱ユニット(30A,30B,30C)を接続する第1〜第4接続管(81〜84)と、第1〜第8流路切換弁(71〜78)とを備えている。
<Heat storage device>
In Embodiment 2, the heat storage device (30) includes the first to fourth connection pipes (81) connecting the first to third heat storage units (30A, 30B, 30C) and the heat storage units (30A, 30B, 30C). To 84) and first to eighth flow path switching valves (71 to 78).

各蓄熱ユニット(30A,30B,30C)は、蓄熱槽(31)と、伝熱管(39)とを備えている。伝熱管(39)は、蓄熱槽(31)内に配置され、蓄熱媒体に浸かった状態で上下に蛇行している。また、実施形態2では、蓄熱槽(31)には、水が蓄熱媒体として貯留されている。詳細については後述するが、蓄熱装置(30)は、蓄熱槽(31)に蓄熱媒体として貯留された水を凍結させることによって冷熱を蓄え、蓄熱槽(31)に蓄熱媒体として貯留された水を加熱して温水を生成することによって温熱を蓄える。     Each heat storage unit (30A, 30B, 30C) includes a heat storage tank (31) and a heat transfer tube (39). The heat transfer tube (39) is arranged in the heat storage tank (31), and meanders up and down while being immersed in the heat storage medium. Moreover, in Embodiment 2, water is stored as a heat storage medium in the heat storage tank (31). Although details will be described later, the heat storage device (30) stores cold energy by freezing water stored as a heat storage medium in the heat storage tank (31), and stores water stored as a heat storage medium in the heat storage tank (31). Heat is stored by generating warm water by heating.

第1流路切換弁(71)及び第2流路切換弁(72)は、三方弁によって構成され、給湯側接続配管(50)の中途部及び第1空調ユニット(20A)の空調側接続配管(53)の中途部にそれぞれ接続されている。給湯側接続配管(50)において、第1流路切換弁(71)は第2三方弁(52)側に接続され、第2流路切換弁(72)は第1三方弁(51)側に接続されている。一方、第1空調ユニット(20A)の空調側接続配管(53)において、第1流路切換弁(71)は第3三方弁(56)側に接続され、第2流路切換弁(72)は第4三方弁(57)側に接続されている。また、第1流路切換弁(71)には第1蓄熱ユニット(30A)の伝熱管(39)の一端が接続され、第2流路切換弁(72)には第1蓄熱ユニット(30A)の伝熱管(39)の他端が接続されている。     A 1st flow-path switching valve (71) and a 2nd flow-path switching valve (72) are comprised by the three-way valve, the middle part of the hot-water supply side connection piping (50), and the air-conditioning side connection piping of a 1st air conditioning unit (20A) (53) Connected to the middle part respectively. In the hot water supply side connection pipe (50), the first flow path switching valve (71) is connected to the second three-way valve (52) side, and the second flow path switching valve (72) is connected to the first three-way valve (51) side. It is connected. On the other hand, in the air conditioning side connection pipe (53) of the first air conditioning unit (20A), the first flow path switching valve (71) is connected to the third three-way valve (56) side, and the second flow path switching valve (72). Is connected to the fourth three-way valve (57) side. One end of the heat transfer pipe (39) of the first heat storage unit (30A) is connected to the first flow path switching valve (71), and the first heat storage unit (30A) is connected to the second flow path switching valve (72). The other end of the heat transfer tube (39) is connected.

第3流路切換弁(73)は、三方弁によって構成され、第1空調ユニット(20A)の空調側接続配管(53)の第1流路切換弁(71)と第6三方弁(59)との間に接続されている。第4流路切換弁(74)は、三方弁によって構成され、第1空調ユニット(20A)の空調側接続配管(53)の第2流路切換弁(72)と第4三方弁(57)との間に接続されている。     The third flow path switching valve (73) is constituted by a three-way valve, and the first flow path switching valve (71) and the sixth three-way valve (59) of the air conditioning side connection pipe (53) of the first air conditioning unit (20A). Connected between and. The fourth flow path switching valve (74) is constituted by a three-way valve, and the second flow path switching valve (72) and the fourth three-way valve (57) of the air conditioning side connection pipe (53) of the first air conditioning unit (20A). Connected between and.

第5流路切換弁(75)及び第6流路切換弁(76)は、四方弁によって構成され、第2空調ユニット(20B)の空調側接続配管(53)の中途部にそれぞれ接続されている。第2空調ユニット(20B)の空調側接続配管(53)において、第5流路切換弁(75)は第3三方弁(56)側に接続され、第6流路切換弁(76)は第4三方弁(57)側に接続されている。また、第5流路切換弁(75)には第2蓄熱ユニット(30B)の伝熱管(39)の一端が接続され、第6流路切換弁(76)には第2蓄熱ユニット(30B)の伝熱管(39)の他端が接続されている。     The fifth flow path switching valve (75) and the sixth flow path switching valve (76) are constituted by four-way valves, and are respectively connected to midway portions of the air conditioning side connection pipe (53) of the second air conditioning unit (20B). Yes. In the air conditioning side connection pipe (53) of the second air conditioning unit (20B), the fifth channel switching valve (75) is connected to the third three-way valve (56) side, and the sixth channel switching valve (76) is the second one. 4 Connected to the three-way valve (57) side. One end of the heat transfer tube (39) of the second heat storage unit (30B) is connected to the fifth flow path switching valve (75), and the second heat storage unit (30B) is connected to the sixth flow path switching valve (76). The other end of the heat transfer tube (39) is connected.

第7流路切換弁(77)及び第8流路切換弁(78)は、三方弁によって構成され、第3空調ユニット(20C)の空調側接続配管(53)の中途部にそれぞれ接続されている。第3空調ユニット(20C)の空調側接続配管(53)において、第7流路切換弁(77)は第3三方弁(56)側に接続され、第8流路切換弁(78)は第4三方弁(57)側に接続されている。また、第7流路切換弁(77)には第3蓄熱ユニット(30C)の伝熱管(39)の一端が接続され、第8流路切換弁(78)には第3蓄熱ユニット(30C)の伝熱管(39)の他端が接続されている。     The seventh flow path switching valve (77) and the eighth flow path switching valve (78) are constituted by three-way valves and are respectively connected to midway portions of the air conditioning side connection pipe (53) of the third air conditioning unit (20C). Yes. In the air conditioning side connection pipe (53) of the third air conditioning unit (20C), the seventh flow path switching valve (77) is connected to the third three-way valve (56) side, and the eighth flow path switching valve (78) is 4 Connected to the three-way valve (57) side. One end of the heat transfer tube (39) of the third heat storage unit (30C) is connected to the seventh flow path switching valve (77), and the third heat storage unit (30C) is connected to the eighth flow path switching valve (78). The other end of the heat transfer tube (39) is connected.

第1接続管(81)は、第3流路切換弁(73)と第5流路切換弁(75)とに接続されている。第2接続管(82)は、第5流路切換弁(75)と第7流路切換弁(77)とに接続されている。第3接続管(83)は、第4流路切換弁(74)と第6流路切換弁(76)とに接続されている。第4接続管(84)は、第6流路切換弁(76)と第8流路切換弁(78)とに接続されている。     The first connection pipe (81) is connected to the third flow path switching valve (73) and the fifth flow path switching valve (75). The second connection pipe (82) is connected to the fifth flow path switching valve (75) and the seventh flow path switching valve (77). The third connection pipe (83) is connected to the fourth flow path switching valve (74) and the sixth flow path switching valve (76). The fourth connection pipe (84) is connected to the sixth flow path switching valve (76) and the eighth flow path switching valve (78).

このような構成により、各伝熱管(39)は、第1〜第8流路切換弁(71〜78)の切換により、給湯用冷媒回路(40)と各空調用冷媒回路(21)とに選択的に接続されることとなる。つまり、実施形態2では、蓄熱槽(31)内に設けられた伝熱管(39)は、本発明に係る給湯側熱交換器と空調側熱交換器とを兼ねることとなる。     With such a configuration, each heat transfer tube (39) is switched between the hot water supply refrigerant circuit (40) and each air conditioning refrigerant circuit (21) by switching the first to eighth flow path switching valves (71 to 78). It will be selectively connected. That is, in Embodiment 2, the heat transfer tube (39) provided in the heat storage tank (31) serves as both the hot water supply side heat exchanger and the air conditioning side heat exchanger according to the present invention.

−運転動作−
給湯空調システム(1)の運転動作を説明する。給湯空調システム(1)は、蓄冷運転と、第1利用冷房運転と、第2利用冷房運転と、単純冷房運転と、蓄熱運転と、利用暖房運転と、単純暖房運転と、単純湯沸かし運転とを行う。なお、単純冷房運転と単純暖房運転と単純湯沸かし運転とは、実施形態1と同様であるため、以下では蓄冷運転と、第1利用冷房運転と、第2利用冷房運転と、蓄熱運転と、利用暖房運転とについて説明する。
-Driving action-
The operation of the hot water supply air conditioning system (1) will be described. The hot water supply air conditioning system (1) includes a cold storage operation, a first use cooling operation, a second use cooling operation, a simple cooling operation, a heat storage operation, a use heating operation, a simple heating operation, and a simple water heating operation. Do. The simple cooling operation, the simple heating operation, and the simple water heater operation are the same as those in the first embodiment. Therefore, in the following, the cold storage operation, the first use cooling operation, the second use cooling operation, the heat storage operation, and the use The heating operation will be described.

〈蓄冷運転〉
蓄冷運転について、図11を参照しながら説明する。蓄冷運転では、給湯空調システム(1)は、給湯側蓄熱動作と空調側蓄熱動作とを行う。給湯側蓄熱動作は、給湯装置(10)が給湯用冷媒回路(40)において冷凍サイクルを行って貯湯槽(11)内の水を加熱する一方、冷凍サイクルによって得られた冷熱で第1蓄熱ユニット(30A)の蓄熱槽(31)内の蓄熱媒体を冷却する。一方、空調側蓄熱動作では、空気調和装置(20)が第2及び第3空調ユニット(20B,20C)の空調用冷媒回路(21)において冷凍サイクルを行い、該冷凍サイクルによって得られた冷熱で第2及び第3蓄熱ユニット(30B,30C)の蓄熱槽(31)内の蓄熱媒体を冷却する。この給湯装置(10)の給湯側蓄熱動作によって得られた冷熱と、空気調和装置(20)の空調側蓄熱動作によって得られた冷熱とを蓄熱装置(30)が第1〜第3蓄熱ユニット(30A〜30C)の蓄熱槽(31)に蓄える。また、この蓄冷運転では、第1空調ユニット(20A)が停止する。
<Cool storage operation>
The cold storage operation will be described with reference to FIG. In the cold storage operation, the hot water supply air conditioning system (1) performs a hot water supply side heat storage operation and an air conditioning side heat storage operation. In the hot water supply side heat storage operation, the hot water supply device (10) performs the refrigeration cycle in the hot water supply refrigerant circuit (40) to heat the water in the hot water storage tank (11), while the cold heat obtained by the refrigeration cycle uses the first heat storage unit. The heat storage medium in the (30A) heat storage tank (31) is cooled. On the other hand, in the air conditioning side heat storage operation, the air conditioner (20) performs a refrigeration cycle in the air conditioning refrigerant circuit (21) of the second and third air conditioning units (20B, 20C), and the cold heat obtained by the refrigeration cycle is used. The heat storage medium in the heat storage tank (31) of the second and third heat storage units (30B, 30C) is cooled. The heat storage device (30) combines the cold energy obtained by the hot water supply side heat storage operation of the hot water supply device (10) and the cold heat obtained by the air conditioning side heat storage operation of the air conditioner (20) by the first to third heat storage units ( Store in heat storage tank (31) of 30A-30C). In this cold storage operation, the first air conditioning unit (20A) is stopped.

給湯側蓄熱動作における給湯装置(10)の動作は、給湯側熱交換器(33)が伝熱管(39)に置き換わること以外は実施形態1とほぼ同様であるため、説明を省略する。     Since the operation of the hot water supply device (10) in the hot water supply side heat storage operation is substantially the same as that of the first embodiment except that the hot water supply side heat exchanger (33) is replaced with the heat transfer tube (39), the description thereof is omitted.

空気調和装置(20)では、第1空調ユニット(20A)が停止する一方、第2及び第3空調ユニット(20B,20C)が空調側蓄熱動作を行う。なお、第2及び第3空調ユニット(20B,20C)における空調側蓄熱動作は、空調側熱交換器(34)が伝熱管(39)に置き換わって伝熱管(39)を流れる冷媒が蓄熱槽(31)の蓄熱媒体から吸熱すること、第4三方弁(57)が第8三方弁(61)を空調側接続配管(53)に連通させて室内膨張弁(26)から遮断する状態に切り換えられること、及び第8三方弁(61)が第2バイパス配管(55)を第4三方弁(57)に連通させて第3三方弁(56)から遮断する状態に切り換えられること以外は実施形態1とほぼ同様であるため、説明を省略する。     In the air conditioner (20), the first air conditioning unit (20A) stops, while the second and third air conditioning units (20B, 20C) perform the air conditioning side heat storage operation. In the second and third air conditioning units (20B, 20C), the air conditioning side heat storage operation is performed by replacing the air conditioning side heat exchanger (34) with the heat transfer tube (39) so that the refrigerant flowing through the heat transfer tube (39) is stored in the heat storage tank (39). 31) absorbing heat from the heat storage medium, the fourth three-way valve (57) is switched to a state in which the eighth three-way valve (61) communicates with the air conditioning side connection pipe (53) and is shut off from the indoor expansion valve (26). And the eighth three-way valve (61) is switched to a state in which the second bypass pipe (55) is communicated with the fourth three-way valve (57) and shut off from the third three-way valve (56). The description is omitted because it is almost the same.

蓄熱装置(30)では、第1流路切換弁(71)及び第2流路切換弁(72)は、それぞれ第1蓄熱ユニット(30A)の伝熱管(39)を給湯側接続配管(50)に連通させて第1空調ユニット(20A)の空調側接続配管(53)から遮断する。第5流路切換弁(75)は、第2蓄熱ユニット(30B)の伝熱管(39)を第2空調ユニット(20B)の空調側接続配管(53)に連通させて第1接続管(81)及び第2接続管(82)から遮断する。第6流路切換弁(76)は、第2蓄熱ユニット(30B)の伝熱管(39)を第2空調ユニット(20B)の空調側接続配管(53)に連通させて第3接続管(83)及び第4接続管(84)から遮断する。第7流路切換弁(77)は、第3蓄熱ユニット(30C)の伝熱管(39)を第3空調ユニット(20C)の空調側接続配管(53)に連通させて第2接続管(82)から遮断する。第8流路切換弁(78)は、第3蓄熱ユニット(30C)の伝熱管(39)を第3空調ユニット(20C)の空調側接続配管(53)に連通させて第4接続管(84)から遮断する。     In the heat storage device (30), the first flow path switching valve (71) and the second flow path switching valve (72) respectively connect the heat transfer pipe (39) of the first heat storage unit (30A) to the hot water supply side connection pipe (50). And is disconnected from the air conditioning side connection pipe (53) of the first air conditioning unit (20A). The fifth flow path switching valve (75) communicates the heat transfer pipe (39) of the second heat storage unit (30B) to the air conditioning side connection pipe (53) of the second air conditioning unit (20B) to connect the first connection pipe (81 ) And the second connecting pipe (82). The sixth flow path switching valve (76) connects the heat transfer pipe (39) of the second heat storage unit (30B) to the air conditioning side connection pipe (53) of the second air conditioning unit (20B) to connect the third connection pipe (83 ) And the fourth connecting pipe (84). The seventh flow path switching valve (77) communicates the heat transfer pipe (39) of the third heat storage unit (30C) to the air conditioning side connection pipe (53) of the third air conditioning unit (20C) to connect the second connection pipe (82 ). The eighth flow path switching valve (78) communicates the heat transfer pipe (39) of the third heat storage unit (30C) to the air conditioning side connection pipe (53) of the third air conditioning unit (20C) to connect the fourth connection pipe (84 ).

上述のように第1〜第8流路切換弁(71〜78)を切り換えることにより、第1蓄熱ユニット(30A)の伝熱管(39)は、給湯装置(10)の給湯用冷媒回路(40)に接続され、第2蓄熱ユニット(30B)の伝熱管(39)は、第2空調ユニット(20B)の空調用冷媒回路(21)に接続され、第3蓄熱ユニット(30C)の伝熱管(39)は、第3空調ユニット(20C)の空調用冷媒回路(21)に接続される。つまり、第1蓄熱ユニット(30A)では、伝熱管(39)に給湯用冷媒回路(40)の冷媒が流入し、第2蓄熱ユニット(30B)では、伝熱管(39)に第2空調ユニット(20B)の空調用冷媒回路(21)の冷媒が流入し、第3蓄熱ユニット(30C)では、伝熱管(39)に第3空調ユニット(20C)の空調用冷媒回路(21)の冷媒が流入する。各蓄熱槽(31)では、各伝熱管(39)を流れる冷媒によって蓄熱槽(31)内の蓄熱媒体が冷却される。     By switching the first to eighth flow path switching valves (71 to 78) as described above, the heat transfer tube (39) of the first heat storage unit (30A) is connected to the hot water supply refrigerant circuit (40) of the hot water supply device (10). ), The heat transfer tube (39) of the second heat storage unit (30B) is connected to the refrigerant circuit (21) for air conditioning of the second air conditioning unit (20B), and the heat transfer tube of the third heat storage unit (30C) ( 39) is connected to the air conditioning refrigerant circuit (21) of the third air conditioning unit (20C). That is, in the first heat storage unit (30A), the refrigerant of the hot water supply refrigerant circuit (40) flows into the heat transfer pipe (39), and in the second heat storage unit (30B), the second air conditioning unit (30) is connected to the heat transfer pipe (39). The refrigerant of the air conditioning refrigerant circuit (21) of 20B) flows in, and in the third heat storage unit (30C), the refrigerant of the air conditioning refrigerant circuit (21) of the third air conditioning unit (20C) flows into the heat transfer pipe (39). To do. In each heat storage tank (31), the heat storage medium in the heat storage tank (31) is cooled by the refrigerant flowing through each heat transfer tube (39).

ここで、実施形態2では、各蓄熱槽(31)には、水が蓄熱媒体として貯留されている。そのため、蓄熱装置(30)は、各蓄熱槽(31)に蓄熱媒体として貯留された水を凍結させることによって、冷熱を蓄える。つまり、蓄冷運転では、蓄熱槽(31)内の水が伝熱管(39)を流れる冷媒によって冷却され、伝熱管(39)の周囲の水が凍って氷となる。実施形態2の蓄冷運転では、このようにして給湯用冷媒回路(40)における冷凍サイクルによって得られた冷熱と第2及び第3空調ユニット(20B,20C)の空調用冷媒回路(21)における冷凍サイクルによって得られた冷熱とが蓄熱装置(30)に蓄えられる。     Here, in Embodiment 2, water is stored in each heat storage tank (31) as a heat storage medium. Therefore, the heat storage device (30) stores cold energy by freezing water stored as a heat storage medium in each heat storage tank (31). That is, in the cold storage operation, the water in the heat storage tank (31) is cooled by the refrigerant flowing through the heat transfer pipe (39), and the water around the heat transfer pipe (39) is frozen to become ice. In the cold storage operation of the second embodiment, the cold heat thus obtained by the refrigeration cycle in the hot water supply refrigerant circuit (40) and the refrigeration in the air conditioning refrigerant circuit (21) of the second and third air conditioning units (20B, 20C). The cold energy obtained by the cycle is stored in the heat storage device (30).

以上のようにして、実施形態2の蓄冷運転中においても、給湯空調システム(1)では、給湯側蓄冷動作と空調側蓄冷動作とが同時に行われる。なお、貯湯槽(11)内の水のほぼ全てが80〜90℃程度の高温水になるか、貯湯槽(11)内の高温水の量が翌日の給湯需要を賄える量に達すると、給湯空調システム(1)は、給湯側蓄熱動作を停止し、空調側蓄熱動作のみを行う。     As described above, even during the cold storage operation of the second embodiment, the hot water supply air conditioning system (1) performs the hot water supply side cold storage operation and the air conditioning side cold storage operation simultaneously. If almost all of the water in the hot water tank (11) becomes hot water of about 80 to 90 ° C. or the amount of hot water in the hot water tank (11) reaches the amount that can meet the hot water demand on the next day, The air conditioning system (1) stops the hot water supply side heat storage operation and performs only the air conditioning side heat storage operation.

〈第1利用冷房運転〉
第1利用冷房運転について、図12を参照しながら説明する。第1利用冷房運転では、各蓄熱槽(31)に蓄えられた冷熱だけを用いて各空調ユニット(20A,20B,20C)の室内の冷房が行われる。第1利用冷房運転では、給湯装置(10)が停止する。
<First use cooling operation>
The first use cooling operation will be described with reference to FIG. In the first use cooling operation, the cooling of the air conditioning units (20A, 20B, 20C) is performed using only the cold heat stored in each heat storage tank (31). In the first use cooling operation, the hot water supply device (10) is stopped.

空気調和装置(20)では、各空調ユニット(20A,20B,20C)の空調用冷媒回路(21)において圧縮機(22)をガスポンプとして用いた冷媒循環動作が行われる。この冷媒循環動作は、空調側熱交換器(34)が伝熱管(39)に置き換わって伝熱管(39)を流れる冷媒が蓄熱槽(31)の蓄熱媒体に放熱すること以外は実施形態1とほぼ同様であるため、説明を省略する。     In the air conditioner (20), the refrigerant circulation operation using the compressor (22) as a gas pump is performed in the air conditioning refrigerant circuit (21) of each air conditioning unit (20A, 20B, 20C). This refrigerant circulation operation is the same as in the first embodiment except that the air-conditioning side heat exchanger (34) is replaced with the heat transfer pipe (39) and the refrigerant flowing through the heat transfer pipe (39) dissipates heat to the heat storage medium of the heat storage tank (31). Since it is substantially the same, description is abbreviate | omitted.

蓄熱装置(30)では、第1流路切換弁(71)及び第2流路切換弁(72)は、それぞれ第1蓄熱ユニット(30A)の伝熱管(39)を第1空調ユニット(20A)の空調側接続配管(53)に連通させて給湯側接続配管(50)から遮断する。第5流路切換弁(75)は、第2蓄熱ユニット(30B)の伝熱管(39)を第2空調ユニット(20B)の空調側接続配管(53)に連通させて第1接続管(81)及び第2接続管(82)から遮断する。第6流路切換弁(76)は、第2蓄熱ユニット(30B)の伝熱管(39)を第2空調ユニット(20B)の空調側接続配管(53)に連通させて第3接続管(83)及び第4接続管(84)から遮断する。第7流路切換弁(77)は、第3蓄熱ユニット(30C)の伝熱管(39)を第3空調ユニット(20C)の空調側接続配管(53)に連通させて第2接続管(82)から遮断する。第8流路切換弁(78)は、第3蓄熱ユニット(30C)の伝熱管(39)を第3空調ユニット(20C)の空調側接続配管(53)に連通させて第4接続管(84)から遮断する。     In the heat storage device (30), the first flow path switching valve (71) and the second flow path switching valve (72) respectively connect the heat transfer pipe (39) of the first heat storage unit (30A) to the first air conditioning unit (20A). Communicating with the air conditioning side connecting pipe (53) and shutting off from the hot water supply side connecting pipe (50). The fifth flow path switching valve (75) communicates the heat transfer pipe (39) of the second heat storage unit (30B) to the air conditioning side connection pipe (53) of the second air conditioning unit (20B) to connect the first connection pipe (81 ) And the second connecting pipe (82). The sixth flow path switching valve (76) connects the heat transfer pipe (39) of the second heat storage unit (30B) to the air conditioning side connection pipe (53) of the second air conditioning unit (20B) to connect the third connection pipe (83 ) And the fourth connecting pipe (84). The seventh flow path switching valve (77) communicates the heat transfer pipe (39) of the third heat storage unit (30C) to the air conditioning side connection pipe (53) of the third air conditioning unit (20C) to connect the second connection pipe (82 ). The eighth flow path switching valve (78) communicates the heat transfer pipe (39) of the third heat storage unit (30C) to the air conditioning side connection pipe (53) of the third air conditioning unit (20C) to connect the fourth connection pipe (84 ).

上述のように第1〜第8流路切換弁(71〜78)を切り換えることにより、各蓄熱ユニット(30A〜30C)の伝熱管(39)は、各空調ユニット(20A〜20C)の空調用冷媒回路(21)に接続される。つまり、各蓄熱ユニット(30A〜30C)において、伝熱管(39)に各空調ユニット(20A〜20C)の空調用冷媒回路(21)の冷媒が流入する。その結果、各蓄熱槽(31)では、蓄熱媒体が各伝熱管(39)を流れる冷媒から吸熱して、各伝熱管(39)を流れる冷媒が冷却される。つまり、各伝熱管(39)を流れる冷媒が蓄熱槽(31)内の氷によって冷却される。その結果、各蓄熱槽(31)内の氷は融解する。     By switching the first to eighth flow path switching valves (71 to 78) as described above, the heat transfer pipe (39) of each heat storage unit (30A to 30C) is used for air conditioning of each air conditioning unit (20A to 20C). Connected to the refrigerant circuit (21). That is, in each heat storage unit (30A-30C), the refrigerant of the air conditioning refrigerant circuit (21) of each air conditioning unit (20A-20C) flows into the heat transfer tube (39). As a result, in each heat storage tank (31), the heat storage medium absorbs heat from the refrigerant flowing through each heat transfer tube (39), and the refrigerant flowing through each heat transfer tube (39) is cooled. That is, the refrigerant flowing through each heat transfer tube (39) is cooled by the ice in the heat storage tank (31). As a result, the ice in each heat storage tank (31) melts.

〈第2利用冷房運転〉
第2利用冷房運転について、図13を参照しながら説明する。第2利用冷房運転では、各蓄熱槽(31)に蓄えられた冷熱と、各空調ユニット(20A,20B,20C)の空調用冷媒回路(21)が行う冷凍サイクルによって得られた冷熱とを用いて各空調ユニット(20A,20B,20C)の室内の冷房が行われる。第2利用冷房運転では、給湯装置(10)が停止する。
<Second use cooling operation>
The second usage cooling operation will be described with reference to FIG. In the second use cooling operation, the cold heat stored in each heat storage tank (31) and the cold heat obtained by the refrigeration cycle performed by the air conditioning refrigerant circuit (21) of each air conditioning unit (20A, 20B, 20C) are used. The air conditioning units (20A, 20B, 20C) are cooled in the room. In the second usage cooling operation, the hot water supply device (10) is stopped.

空気調和装置(20)では、各空調ユニット(20A,20B,20C)の空調用冷媒回路(21)において冷媒が循環して冷凍サイクルが行われる。この冷媒循環動作は、空調側熱交換器(34)が伝熱管(39)に置き換わって伝熱管(39)を流れる冷媒が蓄熱槽(31)の蓄熱媒体に放熱すること以外は実施形態1とほぼ同様であるため、説明を省略する。     In the air conditioner (20), the refrigerant circulates in the air conditioning refrigerant circuit (21) of each air conditioning unit (20A, 20B, 20C) to perform a refrigeration cycle. This refrigerant circulation operation is the same as in the first embodiment except that the air-conditioning side heat exchanger (34) is replaced with the heat transfer pipe (39) and the refrigerant flowing through the heat transfer pipe (39) dissipates heat to the heat storage medium of the heat storage tank (31). Since it is substantially the same, description is abbreviate | omitted.

蓄熱装置(30)では、第1利用冷房運転と同様に第1〜第8流路切換弁(71〜78)が切り換えられて、各蓄熱ユニット(30A〜30C)の伝熱管(39)に各空調ユニット(20A〜20C)の空調用冷媒回路(21)の冷媒が流入する。その結果、各蓄熱槽(31)では、蓄熱媒体が各伝熱管(39)を流れる冷媒から吸熱して、各伝熱管(39)を流れる冷媒が冷却される。つまり、各伝熱管(39)を流れる冷媒が蓄熱槽(31)内の氷によって冷却される。その結果、各蓄熱槽(31)内の氷は融解する。     In the heat storage device (30), the first to eighth flow path switching valves (71 to 78) are switched in the same manner as in the first use cooling operation, and the heat transfer tubes (39) of the heat storage units (30A to 30C) The refrigerant of the air conditioning refrigerant circuit (21) of the air conditioning units (20A to 20C) flows in. As a result, in each heat storage tank (31), the heat storage medium absorbs heat from the refrigerant flowing through each heat transfer tube (39), and the refrigerant flowing through each heat transfer tube (39) is cooled. That is, the refrigerant flowing through each heat transfer tube (39) is cooled by the ice in the heat storage tank (31). As a result, the ice in each heat storage tank (31) melts.

〈蓄熱運転〉
蓄熱運転について、図14を参照しながら説明する。蓄熱運転では、各空調ユニット(20A,20B,20C)の空調用冷媒回路(21)が行う冷凍サイクルによって温熱が得られ、得られた温熱が各蓄熱槽(31)に蓄えられる。蓄熱運転では、給湯装置(10)が停止する。
<Heat storage operation>
The heat storage operation will be described with reference to FIG. In the heat storage operation, heat is obtained by the refrigeration cycle performed by the air conditioning refrigerant circuit (21) of each air conditioning unit (20A, 20B, 20C), and the obtained heat is stored in each heat storage tank (31). In the heat storage operation, the hot water supply device (10) stops.

空気調和装置(20)では、各空調ユニット(20A,20B,20C)の空調用冷媒回路(21)において冷媒が循環して冷凍サイクルが行われる。この冷媒循環動作は、空調側熱交換器(34)が伝熱管(39)に置き換わって伝熱管(39)を流れる冷媒が蓄熱槽(31)の蓄熱媒体に放熱すること、第4三方弁(57)が第8三方弁(61)を空調側接続配管(53)に連通させて室内膨張弁(26)から遮断する状態に切り換えられること、及び第8三方弁(61)が第2バイパス配管(55)を第4三方弁(57)に連通させて第3三方弁(56)から遮断する状態に切り換えられること以外は実施形態1とほぼ同様であるため、説明を省略する。     In the air conditioner (20), the refrigerant circulates in the air conditioning refrigerant circuit (21) of each air conditioning unit (20A, 20B, 20C) to perform a refrigeration cycle. This refrigerant circulation operation is performed by the fact that the air-conditioning side heat exchanger (34) is replaced with the heat transfer pipe (39) and the refrigerant flowing through the heat transfer pipe (39) dissipates heat to the heat storage medium of the heat storage tank (31), the fourth three-way valve ( 57) is switched to a state in which the eighth three-way valve (61) communicates with the air conditioning side connection pipe (53) and is shut off from the indoor expansion valve (26), and the eighth three-way valve (61) is switched to the second bypass pipe. Except for switching (55) to the fourth three-way valve (57) and switching to the state of blocking from the third three-way valve (56), the description is omitted.

蓄熱装置(30)では、第1利用冷房運転と同様に第1〜第8流路切換弁(71〜78)が切り換えられて、各蓄熱ユニット(30A〜30C)の伝熱管(39)に各空調ユニット(20A〜20C)の空調用冷媒回路(21)の冷媒が流入する。その結果、各蓄熱槽(31)では、蓄熱媒体が各伝熱管(39)を流れる冷媒によって加熱される。蓄熱装置(30)は、このようにして各蓄熱槽(31)に、圧縮機(22)から吐出された冷媒の温熱を蓄える。     In the heat storage device (30), the first to eighth flow path switching valves (71 to 78) are switched in the same manner as in the first use cooling operation, and the heat transfer tubes (39) of the heat storage units (30A to 30C) The refrigerant of the air conditioning refrigerant circuit (21) of the air conditioning units (20A to 20C) flows in. As a result, in each heat storage tank (31), the heat storage medium is heated by the refrigerant flowing through each heat transfer tube (39). The heat storage device (30) thus stores the heat of the refrigerant discharged from the compressor (22) in each heat storage tank (31).

〈利用暖房運転〉
利用暖房運転について、図15を参照しながら説明する。利用暖房運転では、各蓄熱槽(31)に蓄えられた温熱を用いて各空調ユニット(20A,20B,20C)の室内の暖房が行われる。利用暖房運転では、給湯装置(10)が停止する。
<Use heating operation>
The utilization heating operation will be described with reference to FIG. In the use heating operation, the indoors of the air conditioning units (20A, 20B, 20C) are heated using the heat stored in the heat storage tanks (31). In the use heating operation, the hot water supply device (10) stops.

空気調和装置(20)では、各空調ユニット(20A,20B,20C)の空調用冷媒回路(21)において冷媒が循環して冷凍サイクルが行われる。この冷媒循環動作は、空調側熱交換器(34)が伝熱管(39)に置き換わって伝熱管(39)を流れる冷媒が蓄熱槽(31)の蓄熱媒体から吸熱すること以外は実施形態1とほぼ同様であるため、説明を省略する。     In the air conditioner (20), the refrigerant circulates in the air conditioning refrigerant circuit (21) of each air conditioning unit (20A, 20B, 20C) to perform a refrigeration cycle. This refrigerant circulation operation is the same as that of Embodiment 1 except that the air-conditioning side heat exchanger (34) is replaced with the heat transfer pipe (39) and the refrigerant flowing through the heat transfer pipe (39) absorbs heat from the heat storage medium of the heat storage tank (31). Since it is almost the same, the description is omitted.

蓄熱装置(30)では、第1利用冷房運転と同様に第1〜第8流路切換弁(71〜78)が切り換えられて、各蓄熱ユニット(30A〜30C)の伝熱管(39)に各空調ユニット(20A〜20C)の空調用冷媒回路(21)の冷媒が流入する。その結果、各蓄熱槽(31)では、蓄熱媒体が各伝熱管(39)を流れる冷媒に放熱し、各伝熱管(39)を流れる冷媒が加熱される。     In the heat storage device (30), the first to eighth flow path switching valves (71 to 78) are switched in the same manner as in the first use cooling operation, and the heat transfer tubes (39) of the heat storage units (30A to 30C) The refrigerant of the air conditioning refrigerant circuit (21) of the air conditioning units (20A to 20C) flows in. As a result, in each heat storage tank (31), the heat storage medium radiates heat to the refrigerant flowing through each heat transfer tube (39), and the refrigerant flowing through each heat transfer tube (39) is heated.

以上のように、本実施形態2の給湯空調システム(1)においても、蓄冷運転中に給湯側蓄熱動作だけでなく空調側蓄熱動作を行うこととしている。これにより、実施形態1と同様の効果を奏することができる。また、本実施形態2の給湯空調システム(1)によれば、本発明に係る給湯側熱交換器と空調側熱交換器とを蓄熱槽(31)内に設けられた伝熱管(39)によって構成することにより、給湯空調システムの部品点数を削減することができる。従って、給湯空調システムを安価に構成することができる。     As described above, also in the hot water supply air conditioning system (1) of the second embodiment, not only the hot water supply side heat storage operation but also the air conditioning side heat storage operation is performed during the cold storage operation. Thereby, there can exist the same effect as Embodiment 1. FIG. Moreover, according to the hot water supply air conditioning system (1) of Embodiment 2, the hot water supply side heat exchanger and the air conditioning side heat exchanger according to the present invention are provided by the heat transfer tube (39) provided in the heat storage tank (31). By configuring, the number of parts of the hot water supply air conditioning system can be reduced. Therefore, the hot water supply air conditioning system can be configured at low cost.

《発明の実施形態3》
実施形態3の給湯空調システム(1)は、実施形態2の給湯空調システム(1)において、第1利用冷房運転と第2利用冷房運転における動作を変更したものである。以下、実施形態2と異なる第1利用冷房運転と第2利用冷房運転の動作について説明する。
<< Embodiment 3 of the Invention >>
The hot water supply air conditioning system (1) of the third embodiment is obtained by changing the operations in the first use cooling operation and the second use cooling operation in the hot water supply air conditioning system (1) of the second embodiment. Hereinafter, operations of the first use cooling operation and the second use cooling operation different from those of the second embodiment will be described.

ここで、実施形態2では、蓄冷運転において、第1蓄熱ユニット(30A)の蓄熱槽(31)には、給湯装置(10)の給湯用冷媒回路(40)における冷凍サイクルによって得られた冷熱が蓄えられ、第2及び第3蓄熱ユニット(30B,30C)の蓄熱槽(31)には、空気調和装置(20)の第2及び第3空調ユニット(20B,20C)の給湯用冷媒回路(40)における冷凍サイクルによって得られた冷熱が蓄えられている。蓄冷運転において、貯湯槽(11)内の水のほぼ全てが80〜90℃程度の高温水になるか、貯湯槽(11)内の高温水の量が翌日の給湯需要を賄える量に達すると、給湯空調システム(1)は、給湯側蓄熱動作を停止する。すなわち、第1蓄熱ユニット(30A)の蓄熱槽(31)へ冷熱が蓄えられなくなる。そのため、第1蓄熱ユニット(30A)の蓄熱槽(31)には、第2及び第3蓄熱ユニット(30B,30C)の蓄熱槽(31)に比べて蓄えられる冷熱が少なくなる。     Here, in Embodiment 2, in the cold storage operation, cold heat obtained by the refrigeration cycle in the hot water supply refrigerant circuit (40) of the hot water supply device (10) is stored in the heat storage tank (31) of the first heat storage unit (30A). The stored heat storage tank (31) of the second and third heat storage units (30B, 30C) has a hot water supply refrigerant circuit (40 for the second and third air conditioning units (20B, 20C) of the air conditioner (20)). The cold energy obtained by the refrigeration cycle is stored. In the cold storage operation, when almost all of the water in the hot water storage tank (11) becomes hot water of about 80-90 ° C, or the amount of hot water in the hot water storage tank (11) reaches an amount that can meet the demand for hot water supply on the next day. The hot water supply air conditioning system (1) stops the hot water supply side heat storage operation. That is, cold energy cannot be stored in the heat storage tank (31) of the first heat storage unit (30A). Therefore, the cold energy stored in the heat storage tank (31) of the first heat storage unit (30A) is less than that of the heat storage tank (31) of the second and third heat storage units (30B, 30C).

そこで、以下の第1利用冷房運転及び第2利用冷房運転では、まず実施形態2と同様の第1動作を行い、第1蓄熱ユニット(30A)の蓄熱槽(31)の冷熱が利用できなくなると、第1空調ユニット(20A)が第2蓄熱ユニット(30B)の蓄熱槽(31)の冷熱を利用する第2動作を行い、さらに第2蓄熱ユニット(30B)の蓄熱槽(31)の冷熱が利用できなくなると、第1及び第2空調ユニット(20A,20B)が第3蓄熱ユニット(30C)の蓄熱槽(31)の冷熱を利用する第3動作を行うこととしている。     Therefore, in the following first use cooling operation and second use cooling operation, first, the first operation similar to that of the second embodiment is performed, and the cooling heat in the heat storage tank (31) of the first heat storage unit (30A) cannot be used. The first air conditioning unit (20A) performs the second operation using the cold energy of the heat storage tank (31) of the second heat storage unit (30B), and further the cold heat of the heat storage tank (31) of the second heat storage unit (30B) When it becomes impossible to use, the first and second air conditioning units (20A, 20B) perform the third operation using the cold energy of the heat storage tank (31) of the third heat storage unit (30C).

〈第1利用冷房運転〉
実施形態3では、第1利用冷房運転では、上述のように第1〜第3動作が実行される。そして、第1動作(図12参照)において、第1蓄熱ユニット(30A)の蓄熱槽(31)内の氷が全て若しくはほぼ融解して伝熱管(39)内を流れる冷媒を冷却できなくなると、図16に示すように、第3〜第6流路切換弁(73〜76)が切り換えられて第2動作に切り換えられる。
<First use cooling operation>
In the third embodiment, in the first use cooling operation, the first to third operations are executed as described above. In the first operation (see FIG. 12), when the ice in the heat storage tank (31) of the first heat storage unit (30A) is completely or substantially melted and the refrigerant flowing in the heat transfer tube (39) cannot be cooled, As shown in FIG. 16, the third to sixth flow path switching valves (73 to 76) are switched to the second operation.

第2動作では、第3流路切換弁(73)は、第1空調ユニット(20A)の第6三方弁(59)を第1接続管(81)に連通させて第1流路切換弁(71)から遮断する状態に切り換えられる。第4流路切換弁(74)は、第1空調ユニット(20A)の第4三方弁(57)を第3接続管(83)に連通させて第2流路切換弁(72)から遮断する状態に切り換えられる。第5流路切換弁(75)は、第2空調ユニット(20B)の第6三方弁(59)を第1接続管(81)及び第2蓄熱ユニット(30B)の伝熱管(39)に連通させて第2接続管(82)から遮断する状態に切り換えられる。第6流路切換弁(76)は、第2空調ユニット(20B)の第4三方弁(57)を第3接続管(83)及び第2蓄熱ユニット(30B)の伝熱管(39)に連通させて第4接続管(84)から遮断する状態に切り換えられる。     In the second operation, the third flow path switching valve (73) connects the sixth three-way valve (59) of the first air conditioning unit (20A) to the first connection pipe (81) to connect the first flow path switching valve ( 71) is switched to the shut-off state. The fourth flow path switching valve (74) connects the fourth three-way valve (57) of the first air conditioning unit (20A) to the third connection pipe (83) and shuts off from the second flow path switching valve (72). Switch to state. The fifth flow path switching valve (75) communicates the sixth three-way valve (59) of the second air conditioning unit (20B) to the first connection pipe (81) and the heat transfer pipe (39) of the second heat storage unit (30B). In this way, the second connection pipe (82) is switched to a shut-off state. The sixth flow path switching valve (76) communicates the fourth three-way valve (57) of the second air conditioning unit (20B) to the third connection pipe (83) and the heat transfer pipe (39) of the second heat storage unit (30B). In this way, the state is switched to the state where the fourth connection pipe (84) is cut off.

このように第3〜第6流路切換弁(73〜76)が切り換えられることにより、第1空調ユニット(20A)の圧縮機(22)から吐出されて第1バイパス配管(54)を通過して第6三方弁(59)に流入した冷媒は、第1接続管(81)を通過し、第5流路切換弁(75)において第2空調ユニット(20B)からの冷媒と合流して第2蓄熱ユニット(30B)の伝熱管(39)に流入する。第2蓄熱ユニット(30B)の伝熱管(39)において蓄熱槽(31)内の蓄熱媒体によって冷却された冷媒は、第6流路切換弁(76)において分流され、一部は第3接続管(83)及び第4流路切換弁(74)を通過して第1空調ユニット(20A)の第4三方弁(57)に流入し、残りは第2空調ユニット(20B)の第4三方弁(57)に流入する。その他の動作は第1動作と同様である。このような第2動作において、やがて第2蓄熱ユニット(30B)の蓄熱槽(31)内の氷が全て若しくはほぼ融解して伝熱管(39)内を流れる冷媒を冷却できなくなると、図17に示すように、第5〜第8流路切換弁(75〜78)が切り換えられて第3動作に切り換えられる。     Thus, by switching the 3rd-6th flow-path switching valve (73-76), it discharges from the compressor (22) of a 1st air conditioning unit (20A), and passes 1st bypass piping (54). Then, the refrigerant flowing into the sixth three-way valve (59) passes through the first connection pipe (81), and merges with the refrigerant from the second air conditioning unit (20B) in the fifth flow path switching valve (75). 2 It flows into the heat transfer tube (39) of the heat storage unit (30B). The refrigerant cooled by the heat storage medium in the heat storage tank (31) in the heat transfer tube (39) of the second heat storage unit (30B) is divided in the sixth flow path switching valve (76), and a part thereof is the third connection pipe. (83) and the fourth flow path switching valve (74) and flows into the fourth three-way valve (57) of the first air conditioning unit (20A), and the rest is the fourth three-way valve of the second air conditioning unit (20B). Flows into (57). Other operations are the same as the first operation. In such a second operation, when the ice flowing in the heat storage tank (31) of the second heat storage unit (30B) is eventually completely melted or almost melted and the refrigerant flowing in the heat transfer tube (39) can no longer be cooled, FIG. As shown, the fifth to eighth flow path switching valves (75 to 78) are switched to the third operation.

第3動作では、第5流路切換弁(75)は、第2空調ユニット(20B)の第6三方弁(59)及び第1接続管(81)を第2接続管(82)に連通させて第2蓄熱ユニット(30B)の伝熱管(39)から遮断する状態に切り換えられる。第6流路切換弁(76)は、第2空調ユニット(20B)の第4三方弁(57)及び第3接続管(83)を第4接続管(84)に連通させて第2蓄熱ユニット(30B)の伝熱管(39)から遮断する状態に切り換えられる。第7流路切換弁(77)は、第3空調ユニット(20C)の第6三方弁(59)及び第2接続管(82)を第3蓄熱ユニット(30C)の伝熱管(39)に連通させる状態に切り換えられる。第8流路切換弁(78)は、第3空調ユニット(20C)の第4三方弁(57)及び第4接続管(84)を第3蓄熱ユニット(30C)の伝熱管(39)に連通させる状態に切り換えられる。     In the third operation, the fifth flow path switching valve (75) causes the sixth three-way valve (59) and the first connection pipe (81) of the second air conditioning unit (20B) to communicate with the second connection pipe (82). Thus, the state is switched to the state where the heat transfer tube (39) of the second heat storage unit (30B) is cut off. The sixth flow path switching valve (76) communicates the fourth three-way valve (57) and the third connection pipe (83) of the second air conditioning unit (20B) with the fourth connection pipe (84) to provide a second heat storage unit. It is switched to the state of shutting off from the heat transfer tube (39) of (30B). The seventh flow path switching valve (77) communicates the sixth three-way valve (59) of the third air conditioning unit (20C) and the second connection pipe (82) to the heat transfer pipe (39) of the third heat storage unit (30C). It is switched to the state to be made. The eighth flow path switching valve (78) communicates the fourth three-way valve (57) and the fourth connection pipe (84) of the third air conditioning unit (20C) to the heat transfer pipe (39) of the third heat storage unit (30C). It is switched to the state to be made.

このように第5〜第8流路切換弁(75〜78)が切り換えられることにより、第1空調ユニット(20A)の圧縮機(22)から吐出されて第1バイパス配管(54)を通過して第6三方弁(59)に流入した冷媒は、第1接続管(81)を通過して第5流路切換弁(75)において第2空調ユニット(20B)からの冷媒と合流し、第2接続管(82)を通過して第7流路切換弁(77)において第3空調ユニット(20C)からの冷媒と合流して第3蓄熱ユニット(30C)の伝熱管(39)に流入する。第3蓄熱ユニット(30C)の伝熱管(39)において蓄熱槽(31)内の蓄熱媒体によって冷却された冷媒は、第8流路切換弁(78)において分流され、一部は第4接続管(84)を通過して第6流路切換弁(76)に流入し、残りは第3空調ユニット(20C)の第4三方弁(57)に流入する。第6流路切換弁(76)に流入した冷媒は、第6流路切換弁(76)において分流され、一部は第3接続管(83)及び第4流路切換弁(74)を通過して第1空調ユニット(20A)の第4三方弁(57)に流入し、残りは第2空調ユニット(20B)の第4三方弁(57)に流入する。その他の動作は第1及び第2動作と同様である。このような第3動作において、やがて第3蓄熱ユニット(30C)の蓄熱槽(31)内の氷が全て若しくはほぼ融解して伝熱管(39)内を流れる冷媒を冷却できなくなると第1利用冷房運転を終了する。     By switching the fifth to eighth flow path switching valves (75 to 78) in this way, the air is discharged from the compressor (22) of the first air conditioning unit (20A) and passes through the first bypass pipe (54). The refrigerant flowing into the sixth three-way valve (59) passes through the first connection pipe (81) and merges with the refrigerant from the second air conditioning unit (20B) in the fifth flow path switching valve (75). Passes through the two connecting pipes (82), merges with the refrigerant from the third air conditioning unit (20C) at the seventh flow path switching valve (77), and flows into the heat transfer pipe (39) of the third heat storage unit (30C). . The refrigerant cooled by the heat storage medium in the heat storage tank (31) in the heat transfer tube (39) of the third heat storage unit (30C) is divided in the eighth flow path switching valve (78), and a part thereof is the fourth connection pipe. (84) and flows into the sixth flow path switching valve (76), and the remainder flows into the fourth three-way valve (57) of the third air conditioning unit (20C). The refrigerant that has flowed into the sixth flow path switching valve (76) is diverted in the sixth flow path switching valve (76), and partly passes through the third connection pipe (83) and the fourth flow path switching valve (74). Then, it flows into the fourth three-way valve (57) of the first air conditioning unit (20A), and the rest flows into the fourth three-way valve (57) of the second air conditioning unit (20B). Other operations are the same as the first and second operations. In such a third operation, if the ice in the heat storage tank (31) of the third heat storage unit (30C) is eventually completely or substantially melted and the refrigerant flowing in the heat transfer tube (39) can no longer be cooled, the first use cooling End driving.

〈第2利用冷房運転〉
実施形態3では、第2利用冷房運転では、上述のように第1〜第3動作が実行される。そして、実施形態2の第2利用冷房運転と同様の第1動作(図13参照)において、第1蓄熱ユニット(30A)の蓄熱槽(31)内の氷が全て若しくはほぼ融解して伝熱管(39)内を流れる冷媒を冷却できなくなると、図18に示すように、第3〜第6流路切換弁(73〜76)が上記第1利用冷房運転と同様に切り換えられて第2動作に切り換えられる。
<Second use cooling operation>
In the third embodiment, in the second usage cooling operation, the first to third operations are executed as described above. And in 1st operation | movement (refer FIG. 13) similar to 2nd utilization air_conditionaing | cooling operation of Embodiment 2, all or substantially the ice in the heat storage tank (31) of a 1st heat storage unit (30A) melt | dissolved, and a heat exchanger tube ( 39) When the refrigerant flowing in the interior can no longer be cooled, as shown in FIG. 18, the third to sixth flow path switching valves (73 to 76) are switched in the same manner as in the first use cooling operation, so that the second operation is performed. Can be switched.

第3〜第6流路切換弁(73〜76)が切り換えられることにより、第1空調ユニット(20A)の圧縮機(22)から吐出されて室外熱交換器(24)及び室外膨張弁(25)を通過して第6三方弁(59)に流入した冷媒は、第1接続管(81)を通過し、第5流路切換弁(75)において第2空調ユニット(20B)からの冷媒と合流して第2蓄熱ユニット(30B)の伝熱管(39)に流入する。第2蓄熱ユニット(30B)の伝熱管(39)において蓄熱槽(31)内の蓄熱媒体によって冷却された冷媒は、第6流路切換弁(76)において分流され、一部は第3接続管(83)及び第4流路切換弁(74)を通過して第1空調ユニット(20A)の第4三方弁(57)に流入し、残りは第2空調ユニット(20B)の第4三方弁(57)に流入する。その他の動作は第1動作と同様である。このような第2動作において、やがて第2蓄熱ユニット(30B)の蓄熱槽(31)内の氷が全て若しくはほぼ融解して伝熱管(39)内を流れる冷媒を冷却できなくなると、図19に示すように、第5〜第8流路切換弁(75〜78)が上記第1利用冷房運転と同様に切り換えられて第3動作に切り換えられる。     By switching the 3rd-6th flow-path switching valve (73-76), it discharges from the compressor (22) of a 1st air conditioning unit (20A), an outdoor heat exchanger (24), and an outdoor expansion valve (25 ) Passed through the first three-way valve (59) through the first connecting pipe (81) and the refrigerant from the second air conditioning unit (20B) in the fifth flow path switching valve (75). Merge and flow into the heat transfer tube (39) of the second heat storage unit (30B). The refrigerant cooled by the heat storage medium in the heat storage tank (31) in the heat transfer tube (39) of the second heat storage unit (30B) is divided in the sixth flow path switching valve (76), and a part thereof is the third connection pipe. (83) and the fourth flow path switching valve (74) and flows into the fourth three-way valve (57) of the first air conditioning unit (20A), and the rest is the fourth three-way valve of the second air conditioning unit (20B). Flows into (57). Other operations are the same as the first operation. In such a second operation, when the ice flowing in the heat storage tank (31) of the second heat storage unit (30B) is all or almost melted and the refrigerant flowing in the heat transfer tube (39) can no longer be cooled, FIG. As shown, the fifth to eighth flow path switching valves (75 to 78) are switched to the third operation in the same manner as in the first use cooling operation.

第5〜第8流路切換弁(75〜78)が切り換えられることにより、第1空調ユニット(20A)の圧縮機(22)から吐出されて室外熱交換器(24)及び室外膨張弁(25)を通過して第6三方弁(59)に流入した冷媒は、第1接続管(81)を通過して第5流路切換弁(75)において第2空調ユニット(20B)からの冷媒と合流し、第2接続管(82)を通過して第7流路切換弁(77)において第3空調ユニット(20C)からの冷媒と合流して第3蓄熱ユニット(30C)の伝熱管(39)に流入する。第3蓄熱ユニット(30C)の伝熱管(39)において蓄熱槽(31)内の蓄熱媒体によって冷却された冷媒は、第8流路切換弁(78)において分流され、一部は第4接続管(84)を通過して第6流路切換弁(76)に流入し、残りは第3空調ユニット(20C)の第4三方弁(57)に流入する。第6流路切換弁(76)に流入した冷媒は、第6流路切換弁(76)において分流され、一部は第3接続管(83)及び第4流路切換弁(74)を通過して第1空調ユニット(20A)の第4三方弁(57)に流入し、残りは第2空調ユニット(20B)の第4三方弁(57)に流入する。その他の動作は第1及び第2動作と同様である。このような第3動作において、やがて第3蓄熱ユニット(30C)の蓄熱槽(31)内の氷が全て若しくはほぼ融解して伝熱管(39)内を流れる冷媒を冷却できなくなると第2利用冷房運転を終了する。     When the fifth to eighth flow path switching valves (75 to 78) are switched, they are discharged from the compressor (22) of the first air conditioning unit (20A), and the outdoor heat exchanger (24) and the outdoor expansion valve (25 ) And the refrigerant flowing into the sixth three-way valve (59) passes through the first connection pipe (81) and the refrigerant from the second air conditioning unit (20B) in the fifth flow path switching valve (75). It merges, passes through the second connecting pipe (82), joins with the refrigerant from the third air conditioning unit (20C) in the seventh flow path switching valve (77), and heat transfer pipe (39 of the third heat storage unit (30C)) ). The refrigerant cooled by the heat storage medium in the heat storage tank (31) in the heat transfer tube (39) of the third heat storage unit (30C) is divided in the eighth flow path switching valve (78), and a part thereof is the fourth connection pipe. (84) and flows into the sixth flow path switching valve (76), and the remainder flows into the fourth three-way valve (57) of the third air conditioning unit (20C). The refrigerant that has flowed into the sixth flow path switching valve (76) is diverted in the sixth flow path switching valve (76), and partly passes through the third connection pipe (83) and the fourth flow path switching valve (74). Then, it flows into the fourth three-way valve (57) of the first air conditioning unit (20A), and the rest flows into the fourth three-way valve (57) of the second air conditioning unit (20B). Other operations are the same as the first and second operations. In such a third operation, when the ice in the heat storage tank (31) of the third heat storage unit (30C) is eventually completely melted or almost melted and the refrigerant flowing in the heat transfer tube (39) can no longer be cooled, the second use cooling End driving.

《発明の実施形態4》
実施形態4の給湯空調システム(1)は、実施形態2の給湯空調システム(1)において、給湯装置(10)及び蓄熱装置(30)の構成を変更したものである。なお、空気調和装置(20)は、実施形態2と同様に構成されている。以下、図20を用いて説明する。
<< Embodiment 4 of the Invention >>
The hot water supply air conditioning system (1) of the fourth embodiment is obtained by changing the configurations of the hot water supply device (10) and the heat storage device (30) in the hot water supply air conditioning system (1) of the second embodiment. The air conditioner (20) is configured in the same manner as in the second embodiment. Hereinafter, a description will be given with reference to FIG.

〈給湯装置〉
実施形態4では、給湯装置(10)は、第1〜第3給湯ユニット(10A,10B,10C)を備えている。各給湯ユニット(10A,10B,10C)は、実施形態2と同様の給湯用冷媒回路(40)とファン(46a)とを備えている。
<Water heater>
In the fourth embodiment, the hot water supply device (10) includes first to third hot water supply units (10A, 10B, 10C). Each hot water supply unit (10A, 10B, 10C) includes a hot water supply refrigerant circuit (40) and a fan (46a) similar to those of the second embodiment.

〈蓄熱装置〉
実施形態4では、蓄熱装置(30)は、実施形態2において第1蓄熱ユニット(30A)のみに設けられていた第1及び第2流路切換弁(81,82)が、第2及び第3蓄熱ユニット(30B,30C)にも設けられている。
<Heat storage device>
In the fourth embodiment, the heat storage device (30) includes the first and second flow path switching valves (81, 82) provided only in the first heat storage unit (30A) in the second embodiment. It is also provided in the heat storage unit (30B, 30C).

具体的には、実施形態4では、各蓄熱ユニット(30A,30B,30C)のそれぞれにおいて、第1流路切換弁(71)及び第2流路切換弁(72)は、給湯側接続配管(50)の中途部及び各空調ユニット(20A,20B,20C)の空調側接続配管(53)の中途部にそれぞれ接続されている。給湯側接続配管(50)において、第1流路切換弁(71)は第2三方弁(52)側に接続され、第2流路切換弁(72)は第1三方弁(51)側に接続されている。一方、各空調ユニット(20A,20B,20C)の空調側接続配管(53)において、各第1流路切換弁(71)は第3三方弁(56)側に接続され、各第2流路切換弁(72)は第4三方弁(57)側に接続されている。また、各蓄熱ユニット(30A,30B,30C)において、第1流路切換弁(71)には対応する蓄熱ユニット(30A,30B,30C)の伝熱管(39)の一端が接続され、第2流路切換弁(72)には対応する蓄熱ユニット(30A,30B,30C)の伝熱管(39)の他端が接続されている。第1流路切換弁(71)及び第2流路切換弁(72)は、伝熱管(39)を給湯側接続配管(50)に連通させて空調側接続配管(53)から遮断する状態と、伝熱管(39)を空調側接続配管(53)に連通させて給湯側接続配管(50)から遮断する状態とにそれぞれ切り換わる。     Specifically, in the fourth embodiment, in each of the heat storage units (30A, 30B, 30C), the first flow path switching valve (71) and the second flow path switching valve (72) are connected to the hot water supply side connection pipe ( 50) and the midway part of the air conditioning side connection pipe (53) of each air conditioning unit (20A, 20B, 20C). In the hot water supply side connection pipe (50), the first flow path switching valve (71) is connected to the second three-way valve (52) side, and the second flow path switching valve (72) is connected to the first three-way valve (51) side. It is connected. On the other hand, in the air conditioning side connection pipe (53) of each air conditioning unit (20A, 20B, 20C), each first flow path switching valve (71) is connected to the third three-way valve (56) side, and each second flow path. The switching valve (72) is connected to the fourth three-way valve (57) side. In each heat storage unit (30A, 30B, 30C), one end of the heat transfer tube (39) of the corresponding heat storage unit (30A, 30B, 30C) is connected to the first flow path switching valve (71), and the second The other end of the heat transfer tube (39) of the corresponding heat storage unit (30A, 30B, 30C) is connected to the flow path switching valve (72). The first flow path switching valve (71) and the second flow path switching valve (72) connect the heat transfer pipe (39) to the hot water supply side connection pipe (50) and shut off from the air conditioning side connection pipe (53). The heat transfer pipe (39) is connected to the air conditioning side connection pipe (53) and switched to a state where it is cut off from the hot water supply side connection pipe (50).

その他の構成は、実施形態2と同様である。このような形態であっても実施形態2と同様の運転を行うことができ、同様の効果を奏することができる。また、実施形態4によれば、蓄冷運転において、第1及び第2蓄熱ユニット(30A,30B)において給湯側蓄冷動作によって得られた冷熱を蓄熱し、第3蓄熱ユニット(30C)において空調側蓄冷動作によって得られた冷熱を蓄熱することも可能である。     Other configurations are the same as those of the second embodiment. Even if it is such a form, the driving | operation similar to Embodiment 2 can be performed and there can exist the same effect. Further, according to the fourth embodiment, in the cold storage operation, the first and second heat storage units (30A, 30B) store the cold heat obtained by the hot water supply side cold storage operation, and the third heat storage unit (30C) stores the air conditioning side cold storage. It is also possible to store the cold energy obtained by the operation.

《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.

上記各実施形態では、蓄冷運転において、給湯側蓄冷動作と空調側蓄冷動作とを同時に行い、貯湯槽(11)内の水のほぼ全てが80〜90℃程度の高温水になるか、貯湯槽(11)内の高温水の量が翌日の給湯需要を賄える量に達すると、給湯側蓄熱動作を停止することとしていた。しかし、給湯側蓄冷動作と空調側蓄冷動作とは必ずしも同時に行う必要はない。例えば、給湯側蓄冷動作を行った後に空調側蓄冷動作を行ってもよい。     In each of the above embodiments, in the cold storage operation, the hot water supply side cold storage operation and the air conditioning side cold storage operation are performed at the same time, and almost all of the water in the hot water storage tank (11) becomes high-temperature water of about 80 to 90 ° C, or the hot water storage tank (11) When the amount of hot water in the water reaches the amount that can meet the demand for hot water supply the next day, the hot water supply side heat storage operation was stopped. However, the hot water supply side cold storage operation and the air conditioning side cold storage operation are not necessarily performed simultaneously. For example, the air conditioning side cold storage operation may be performed after the hot water supply side cold storage operation is performed.

また、上記各実施形態では、給湯装置(10)は、低温側回路(41)と高温側回路(42)とを備えて二元冷凍サイクルを行うように構成されていたが、カスケード熱交換器(43)を加熱用熱交換器(48)に変更した低温側回路(41)のみを備えて単段冷凍サイクルを行うように構成してもよい。     In each of the above embodiments, the hot water supply device (10) includes the low-temperature side circuit (41) and the high-temperature side circuit (42) and is configured to perform the dual refrigeration cycle. However, the cascade heat exchanger A single-stage refrigeration cycle may be configured by providing only the low-temperature circuit (41) in which (43) is changed to the heating heat exchanger (48).

また、上記各実施形態では、空調用冷媒回路(21)には圧縮機(22)が1台だけ接続されていたが、圧縮機(22)を複数接続することとしてもよい。その際には、少なくとも1台の圧縮機(22)をガスポンプとして利用できるロータリ式圧縮機にすることにより、第1利用冷房運転が可能となる。その他の圧縮機は、ロータリ式圧縮機以外の圧縮機、例えば、スクロール式圧縮機であってもよい。     In each of the above embodiments, only one compressor (22) is connected to the air conditioning refrigerant circuit (21), but a plurality of compressors (22) may be connected. In that case, a 1st utilization air_conditionaing | cooling operation is attained by making it a rotary type compressor which can utilize at least 1 compressor (22) as a gas pump. The other compressor may be a compressor other than the rotary compressor, for example, a scroll compressor.

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。     In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、給湯装置と空気調和装置と蓄熱装置とを備えた給湯空調システムについて有用である。     As described above, the present invention is useful for a hot water supply air conditioning system including a hot water supply device, an air conditioner, and a heat storage device.

1 給湯空調システム
10 給湯装置
20 空気調和装置
21 空調用冷媒回路
24 室外熱交換器
27 室内熱交換器
30 蓄熱装置
31 蓄熱槽
33 給湯側熱交換器
34 空調側熱交換器
39 伝熱管(給湯側熱交換器、空調側熱交換器)
40 給湯用冷媒回路
1 Hot water supply air conditioning system
10 Water heater
20 Air conditioner
21 Air conditioning refrigerant circuit
24 outdoor heat exchanger
27 Indoor heat exchanger
30 heat storage device
31 heat storage tank
33 Hot water supply side heat exchanger
34 Air-conditioning side heat exchanger
39 Heat transfer tubes (hot water supply side heat exchanger, air conditioning side heat exchanger)
40 Refrigerant circuit for hot water supply

Claims (3)

給湯用の温水を蓄える貯湯槽(11)と、該貯湯槽(11)の水を加熱するための加熱用熱交換器(48)が接続された給湯用冷媒回路(40)とを有する給湯装置(10)と、
室内熱交換器(27)と室外熱交換器(24)とが接続された空調用冷媒回路(21)を有して室内を空気調和する空気調和装置(20)と、
蓄熱媒体を貯留する蓄熱槽(31)と、上記給湯用冷媒回路(40)の冷媒と上記蓄熱槽(31)内の蓄熱媒体とを熱交換させる給湯側熱交換器(33)と、上記空調用冷媒回路(21)の冷媒と上記蓄熱槽(31)内の蓄熱媒体とを熱交換させる空調側熱交換器(34)とを有する蓄熱装置(30)とを備え、
上記蓄熱装置(30)が上記蓄熱槽(31)内の蓄熱媒体を冷却する蓄冷運転と、
上記空気調和装置(20)が上記空調用冷媒回路(21)において冷媒を上記空調側熱交換器(34)から上記室内熱交換器(27)へ流れるように循環させ、上記蓄熱装置(30)が上記空調側熱交換器(34)を流れる冷媒を上記蓄熱槽(31)内の蓄熱媒体によって冷却する利用冷房運転とが実行可能に構成され、
上記蓄冷運転中には、
上記給湯装置(10)の上記給湯用冷媒回路(40)が上記加熱用熱交換器(48)が放熱器となり且つ上記給湯側熱交換器(33)が蒸発器となる冷凍サイクルを行い、上記蓄熱装置(30)が上記給湯側熱交換器(33)において上記蓄熱槽(31)内の蓄熱媒体を冷却する給湯側蓄冷動作と、
上記空気調和装置(20)の上記空調用冷媒回路(21)が上記室外熱交換器(24)が放熱器となり且つ上記空調側熱交換器(34)が蒸発器となる冷凍サイクルを行い、上記蓄熱装置(30)が上記空調側熱交換器(34)において上記蓄熱槽(31)内の蓄熱媒体を冷却する空調側蓄冷動作とが同時に並行して実行可能である
ことを特徴とする給湯空調システム。
A hot water supply apparatus having a hot water storage tank (11) for storing hot water for hot water supply, and a hot water supply refrigerant circuit (40) connected to a heating heat exchanger (48) for heating water in the hot water storage tank (11) (10) and
An air conditioner (20) that has an air conditioning refrigerant circuit (21) to which an indoor heat exchanger (27) and an outdoor heat exchanger (24) are connected, and that air-conditions the room;
A heat storage tank (31) for storing the heat storage medium, a hot water supply side heat exchanger (33) for exchanging heat between the refrigerant in the hot water supply refrigerant circuit (40) and the heat storage medium in the heat storage tank (31), and the air conditioning A heat storage device (30) having an air conditioning side heat exchanger (34) for exchanging heat between the refrigerant in the refrigerant circuit (21) and the heat storage medium in the heat storage tank (31),
A cold storage operation in which the heat storage device (30) cools the heat storage medium in the heat storage tank (31);
The air conditioner (20) circulates the refrigerant in the air conditioning refrigerant circuit (21) so as to flow from the air conditioning side heat exchanger (34) to the indoor heat exchanger (27), and the heat storage device (30) Is configured to be capable of performing a cooling operation that cools the refrigerant flowing through the air-conditioning side heat exchanger (34) with a heat storage medium in the heat storage tank (31),
During the cold storage operation,
The hot water supply refrigerant circuit (40) of the hot water supply device (10) performs a refrigeration cycle in which the heating heat exchanger (48) serves as a radiator and the hot water supply side heat exchanger (33) serves as an evaporator, A hot water storage side cold storage operation in which the heat storage device (30) cools the heat storage medium in the heat storage tank (31) in the hot water supply side heat exchanger (33);
The refrigerant circuit (21) for air conditioning of the air conditioner (20) performs a refrigeration cycle in which the outdoor heat exchanger (24) serves as a radiator and the air conditioning side heat exchanger (34) serves as an evaporator, The hot water supply air conditioner characterized in that the heat storage device (30) can simultaneously execute the air conditioning side cold storage operation for cooling the heat storage medium in the heat storage tank (31) in the air conditioning side heat exchanger (34) in parallel. system.
請求項1において、
上記蓄熱装置(30)は、
上記給湯側熱交換器(33)と上記蓄熱槽(31)との間で蓄熱媒体を循環させる第1循環路(35a,35b)と、
上記空調側熱交換器(34)と上記蓄熱槽(31)との間で蓄熱媒体を循環させる第2循環路(35a,35c)とを備えている
ことを特徴とする給湯空調システム。
In claim 1,
The heat storage device (30)
A first circulation path (35a, 35b) for circulating a heat storage medium between the hot water supply side heat exchanger (33) and the heat storage tank (31);
A hot water supply air conditioning system comprising: a second circulation path (35a, 35c) for circulating a heat storage medium between the air conditioning side heat exchanger (34) and the heat storage tank (31).
請求項1において、
上記蓄熱槽(31)内には、内部を流通する冷媒と蓄熱媒体とを熱交換させる伝熱管(39)が設けられ、該伝熱管(39)が上記給湯側熱交換器及び上記空調側熱交換器を兼ねている
ことを特徴とする給湯空調システム。
In claim 1,
The heat storage tank (31) is provided with a heat transfer tube (39) for exchanging heat between the refrigerant flowing through the heat storage medium and the heat storage medium, and the heat transfer tube (39) includes the hot water supply side heat exchanger and the air conditioning side heat. A hot water supply air conditioning system that also serves as an exchanger.
JP2011216414A 2011-09-30 2011-09-30 Hot water supply air conditioning system Expired - Fee Related JP5333557B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011216414A JP5333557B2 (en) 2011-09-30 2011-09-30 Hot water supply air conditioning system
PCT/JP2012/006255 WO2013046723A1 (en) 2011-09-30 2012-09-28 Hot-water-supplying, air-conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011216414A JP5333557B2 (en) 2011-09-30 2011-09-30 Hot water supply air conditioning system

Publications (2)

Publication Number Publication Date
JP2013076509A JP2013076509A (en) 2013-04-25
JP5333557B2 true JP5333557B2 (en) 2013-11-06

Family

ID=47994797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011216414A Expired - Fee Related JP5333557B2 (en) 2011-09-30 2011-09-30 Hot water supply air conditioning system

Country Status (2)

Country Link
JP (1) JP5333557B2 (en)
WO (1) WO2013046723A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051471A1 (en) * 2014-09-29 2016-04-07 三菱電機株式会社 Management device for cooling/heating devices
HU5373U (en) * 2021-05-03 2022-01-28 Laszlo Szentgyoergyi System for storing and using of cooling/heating energy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852501B2 (en) * 1997-05-12 2006-11-29 三菱電機株式会社 Thermal storage air conditioner
JP2000356429A (en) * 1999-06-11 2000-12-26 Mitsubishi Electric Corp External melting cold dissipating combined ice heat storage system
JP2006023006A (en) * 2004-07-07 2006-01-26 Sanyo Electric Co Ltd Refrigeration facility
JP2009186116A (en) * 2008-02-07 2009-08-20 Sanyo Electric Co Ltd Heat pump type hot water supply device
JP5233405B2 (en) * 2008-05-21 2013-07-10 ダイキン工業株式会社 Air conditioning system

Also Published As

Publication number Publication date
JP2013076509A (en) 2013-04-25
WO2013046723A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
JP5327308B2 (en) Hot water supply air conditioning system
KR101391775B1 (en) Heat pump system
JP5380226B2 (en) Air conditioning and hot water supply system and heat pump unit
JP5455521B2 (en) Air conditioning and hot water supply system
JP5183804B2 (en) Refrigeration cycle equipment, air conditioning equipment
WO2013027757A1 (en) Combined binary refrigeration cycle apparatus
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
KR100998483B1 (en) Module multi type air conditioning and heating system using geothermal heat pump
KR20120125857A (en) Heat storaging apparatus having cascade cycle and Control process of the same
JP5969268B2 (en) Geothermal heat pump device
JP2013083439A (en) Hot water supply air conditioning system
JP2013083439A5 (en)
JP2014126350A (en) Air conditioner
JP5333557B2 (en) Hot water supply air conditioning system
JP2015124909A (en) Hot water supply air-conditioning system
KR100877055B1 (en) Hybrid heat pump type heat and cooling system with feeding steam water
KR100877056B1 (en) Hybrid heat pump type heat and cooling system
KR101649447B1 (en) Geothermal heat pump system using gas
JP2006017440A (en) Heat pump air conditioner
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
KR20140133375A (en) Two stage heat pump cooling and heating apparatus using air heat source
KR20140112928A (en) Two stage heat pump cooling and heating apparatus using air heat source
KR101272021B1 (en) Two stage heat pump cooling and heating apparatus
KR101175635B1 (en) An air conditioning system with non-defrost
KR100983325B1 (en) An air conditioning system with one body heat sink

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

LAPS Cancellation because of no payment of annual fees