JP3852501B2 - Thermal storage air conditioner - Google Patents

Thermal storage air conditioner Download PDF

Info

Publication number
JP3852501B2
JP3852501B2 JP12079697A JP12079697A JP3852501B2 JP 3852501 B2 JP3852501 B2 JP 3852501B2 JP 12079697 A JP12079697 A JP 12079697A JP 12079697 A JP12079697 A JP 12079697A JP 3852501 B2 JP3852501 B2 JP 3852501B2
Authority
JP
Japan
Prior art keywords
heat storage
time
cold
cool
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12079697A
Other languages
Japanese (ja)
Other versions
JPH10311567A (en
Inventor
啓司 野浪
武司 吉田
康文 畑村
秀明 田頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12079697A priority Critical patent/JP3852501B2/en
Publication of JPH10311567A publication Critical patent/JPH10311567A/en
Application granted granted Critical
Publication of JP3852501B2 publication Critical patent/JP3852501B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【0001】
【発明の属する技術分野】
本発明は、昼間電力の抑制と平準化対策に係り、蓄熱媒体を内蔵する蓄熱槽を備えた蓄熱式空気調和装置に関するものである。
【0002】
【従来の技術】
図12は従来の蓄熱式空気調和装置の冷媒配管系統図であり、蓄冷運転は圧縮機1、凝縮器2、減圧機構3、蓄冷用熱交換器4、及びバイパス回路5、6から成る蓄冷用回路、放冷運転は冷媒ガスポンプ7、蓄冷用熱交換器4、第1の減圧機構8、及び蒸発器9から成る放冷用回路を形成することによって行われる。前記蓄冷用熱交換器4は、蓄熱媒体10(ここでは水)を内蔵する蓄熱槽11内に設けられており、蓄冷運転時は、蓄冷用熱交換器4の伝熱管周囲に熱を奪われて潜熱変化した氷が付着し、逆に放冷運転時は氷の持つ冷熱を冷媒の凝縮潜熱に使用されて伝熱管周囲から融解する。
【0003】
図13および図14は従来の蓄熱式空気調和装置の蓄冷運転時間設定を示す運転サイクル図であり、蓄冷運転の開始、終了時刻をタイマ設定により決定する時間制御としており、蓄冷運転許可指令は蓄冷運転開始時刻T1および蓄冷運転終了時刻T2までの間の残氷の有無で行う概念を示している。また、T5、T6はそれぞれ夜間電力料金時間帯開始時刻、終了時刻である。
図中、斜線で示した部分は実際に蓄冷を行っている時間帯であり、蓄冷指令(T3)により蓄冷運転が開始される。蓄冷運転開始時刻T1および蓄冷運転終了時刻T2は予めタイマ設定されている。
【0004】
次に動作について説明する。
まず図13において、蓄冷量制御は、蓄冷運転開始時刻T1、蓄冷運転終了時刻T2をタイマ設定により決定する時間制御としており、センサ等により残氷の有無を確認後、蓄冷指令を出力する。蓄冷開始時刻T1にて残氷がない場合は、T1と同時に蓄冷運転を開始し終了時刻T2と共に運転終了する。従ってこの場合は、設定時間分の蓄冷が行われ、通常の所要量の100%とする。
【0005】
次に、蓄冷運転開始時刻T1にて残氷がある場合は、図14に示すように、設定した蓄冷時間に従って蓄冷運転を行い、終了指令T4とともに運転終了する。この場合の蓄冷運転は融氷分を補う追加蓄冷となるから、蓄冷運転時間は蓄熱槽の所要蓄冷量を超える設定が成されることはない。
図15は前述の運転モードにおいて蓄冷量制御を行う際のアルゴリズムを示す。図において、放冷運転の積算は、所要蓄冷時間(TSE)算出終了時間で始まり、次回の蓄冷開始設定時刻まで継続される。
残氷ありの場合の蓄冷指令はTSEの算出後に行われる。
【0006】
【発明が解決しようとする課題】
従来の蓄冷式空気調和装置の蓄冷指令方式は図13、図14に示すように行われているので、前記放冷運転モード終了直後の前記蓄熱媒体温度が一定値以下であることを検知して蓄冷時間を設定する場合、前回の蓄冷運転終了時刻から今回の蓄冷運転開始時刻までの間の放冷運転時間を算出して、蓄熱槽の最大蓄冷量に対する融氷量の割合を判断し、融氷量に対応した蓄冷運転時間を与える蓄冷運転指令を出力するわけであるが、実際の融氷量の割合は放冷運転時間のみでなく放冷能力によって変化している、この放冷能力は室内空気条件、冷媒配管長および室内風量になどの要因により変化するが、従来の方式ではこれによる補正は行われておらず、正確に融氷量を判断することはできていなかった。
【0007】
また、放冷能力を高めるために無理に長時間追加蓄冷をしようとすると、例えば氷が伝熱管周囲で部分的にしか融けなかったような場合に、残氷と伝熱管の間に封じ込められた水の再凝固による体積膨張によって伝熱管が破壊されるなどの問題点があり、蓄冷量制御を行う場合は、氷の作りすぎを避けるため、判断した融氷量に対して蓄冷時間を短めに設定していた。このため、翌日の蓄冷量がわずかであるが少なめになり放冷時間が短くなっていた。
【0008】
また、昼間の空調時間中の放冷運転中に槽水温が一定値を超え放冷運転が終了し、この時空気調和装置の運転スイッチがOFFとなった場合、蓄熱槽内の水の対流により槽水温が再度一定値以下となってしまう事がある。ここで、蓄冷開始時刻になった場合、槽水温が一定値以上になったにもかかわらず、蓄熱槽内に残氷ありと判断するため、蓄冷量制御が作動して、前項記述の理由により翌日の蓄冷量がわずかであるが少なめになり放冷時間が短くなっていた。
【0010】
本発明は以上のような問題点を解決するためになされたもので、負荷の変動に応じた適正な蓄冷量が得られ、必要最小限の経済的な運転を行うことができる蓄熱式空気調和装置を得ることを目的とする。
【0011】
【課題を解決するための手段】
本発明に係る蓄熱式空気調和装置は、圧縮機、凝縮器、第1の減圧機構、及び蓄熱媒体を内蔵しかつ熱交換器を内設する蓄熱槽から成り、前記蓄熱槽に冷熱エネルギーを蓄積するために蓄冷運転を行う蓄冷用手段と、前記蓄熱槽、第2の減圧機構、蒸発器、及び冷媒ポンプから成り、前記蓄熱槽内の冷熱エネルギーを使用して放冷運転を行う放冷用手段と、前記蓄熱槽内に蓄えた氷の有無を前記蓄熱媒体の温度によって判断する残氷検知手段と、室温を検知する室温検知手段と、前記残氷検知手段によって前記放冷運転終了直後の前記蓄熱媒体温度が一定値以上であることを検知した場合は、所定の時間蓄冷運転を行い、一定値以下であることを検知した場合は、前回の蓄冷運転終了時刻から今回の蓄冷運転開始時刻までの積算放冷時間を算出して、前記蓄熱槽の最大蓄冷量に対する融氷量の割合を判断し、前記融氷量に対応して設定された蓄冷運転時間を室温が所定値の時の基準値とし、前記室温検知手段により検知された室温が所定値に対し高い場合は、前記蓄冷運転時間を基準値より長く、低い場合は、前記蓄冷運転時間を基準値より短く設定し蓄冷運転を行う蓄冷制御手段とを備えたものである。
【0012】
また、圧縮機、凝縮器、第1の減圧機構、及び蓄熱媒体を内蔵しかつ熱交換器を内設する蓄熱槽から成り、前記蓄熱槽に冷熱エネルギーを蓄積するために蓄冷運転を行う蓄冷用手段と、前記蓄熱槽、第2の減圧機構、蒸発器、及び冷媒ポンプから成り、前記蓄熱槽内の冷熱エネルギーを使用して放冷運転を行う放冷用手段と、前記蓄熱槽内に蓄えた氷の有無を前記蓄熱媒体の温度によって判断する残氷検知手段と、前記残氷検知手段によって前記放冷運転終了直後の前記蓄熱媒体温度が一定値以上であることを検知した場合は、所定の時間蓄冷運転を行い、一定値以下であることを検知した場合は、前回の蓄冷運転終了時刻から今回の蓄冷運転開始時刻までの積算放冷時間を算出して、前記蓄熱槽の最大蓄冷量に対する融氷量の割合を判断し、前記融氷量に対応して設定された蓄冷運転時間を前記蒸発器と前記熱交換器間の冷媒配管距離が所定値の時の基準値とし、前記冷媒配管距離が所定値に対し長い場合は、前記蓄冷運転時間を基準値より短く、短い場合は、前記蓄冷運転時間を基準値より長く設定し蓄冷運転を行う蓄冷制御手段とを備えたものである。
【0013】
また、圧縮機、凝縮器、第1の減圧機構、及び蓄熱媒体を内蔵しかつ熱交換器を内設する蓄熱槽から成り、前記蓄熱槽に冷熱エネルギーを蓄積するために蓄冷運転を行う蓄冷用手段と、前記蓄熱槽、第2の減圧機構、蒸発器、及び冷媒ポンプから成り、前記蓄熱槽内の冷熱エネルギーを使用して放冷運転を行う放冷用手段と、前記蓄熱槽内に蓄えた氷の有無を前記蓄熱媒体の温度によって判断する残氷検知手段と、前記残氷検知手段によって前記放冷運転終了直後の前記蓄熱媒体温度が一定値以上であることを検知した場合は、所定の時間蓄冷運転を行い、一定値以下であることを検知した場合は、前回の蓄冷運転終了時刻から今回の蓄冷運転開始時刻までの積算放冷時間を算出して、前記蓄熱槽の最大蓄冷量に対する融氷量の割合を判断し、前記融氷量に対応して設定された蓄冷運転時間を前記蒸発器側の風量が所定値の時の基準値とし、前記蒸発器側の風量が所定値に対し多い場合は、前記蓄冷運転時間を基準値より長く、少ない場合は、前記蓄冷運転時間を基準値より短く設定し蓄冷運転を行う蓄冷制御手段とを備えたものである。
【0014】
また、圧縮機、凝縮器、第1の減圧機構、及び蓄熱媒体を内蔵しかつ熱交換器を内設する蓄熱槽から成り、前記蓄熱槽に冷熱エネルギーを蓄積するために蓄冷運転を行う蓄冷用手段と、前記蓄熱槽、第2の減圧機構、蒸発器、及び冷媒ポンプから成り、前記蓄熱槽内の冷熱エネルギーを使用して放冷運転を行う放冷用手段と、前記蓄熱槽内に蓄えた氷の有無を前記蓄熱媒体の温度によって判断する残氷検知手段と、前記残氷検知手段によって前記放冷運転終了直後の前記蓄熱媒体温度が一定値以上であることを検知した場合は、所定の時間蓄冷運転を行い、一定値以下であることを検知した場合は、前回の蓄冷運転終了時刻から今回の蓄冷運転開始時刻までの積算放冷時間を算出して、前記蓄熱槽の最大蓄冷量に対する融氷量の割合を判断し、前記融氷量に対応して設定された蓄冷運転時間により蓄冷運転を行い、一定値以下であることを検知しかつ前記放冷運転中に前記蓄熱媒体温度が一定値以上であることを検知した場合は、前記設定された蓄冷運転時間よりも長く蓄冷運転時間を設定し蓄冷運転を行う蓄冷制御手段を備えたものである。
【0015】
また、圧縮機、凝縮器、第1の減圧機構、及び蓄熱媒体を内蔵しかつ熱交換器を内設する蓄熱槽から成り、前記蓄熱槽に冷熱エネルギーを蓄積するために蓄冷運転を行う蓄冷用手段と、前記蓄熱槽、第2の減圧機構、蒸発器、及び冷媒ポンプから成り、前記蓄熱槽内の冷熱エネルギーを使用して放冷運転を行う放冷用手段と、前記蓄熱槽内に蓄えた氷の有無を前記蓄熱媒体の温度によって判断する残氷検知手段と、前記残氷検知手段によって前記放冷運転終了直後の前記蓄熱媒体温度が一定値以上であることを検知した場合は、所定の時間蓄冷運転を行い、一定値以下であることを検知した場合は、前回の蓄冷運転終了時刻から今回の蓄冷運転開始時刻までの積算放冷時間を算出して、前記蓄熱槽の最大蓄冷量に対する融氷量の割合を判断し、前記融氷量に対応して設定された蓄冷運転時間により蓄冷運転を行い、一定値以下であることを検知しかつ前記放冷運転中に前記蓄熱媒体温度が一定値以上であることを検知した場合は、前記所定の時間蓄冷運転を行う蓄冷制御手段とを備えたものである。
【0018】
【発明の実施の形態】
以下、本発明に係る実施の形態を図について説明する。
図1は本発明の実施の形態に係る蓄熱式空気調和装置を示す冷媒配管系統図である。
蓄冷運転は圧縮機1、凝縮器2、第1の減圧機構3、蓄冷用熱交換器4、及びバイパス回路5、6から成る蓄冷用回路、放冷運転は冷媒ガスポンプ7、蓄冷用熱交換器4、第2の減圧機構8、及び蒸発器9から成る放冷用回路を形成することによって行われる。蓄冷用熱交換器4は、蓄熱媒体10(ここでは水)を内蔵する蓄熱槽11内に設けられており、蓄冷運転時は、蓄冷用熱交換器4の伝熱管周囲に熱を奪われて潜熱変化した氷が付着し、逆に放冷運転時は氷の持つ冷熱を冷媒の凝縮潜熱に使用されて伝熱管周囲から融解する。蓄熱槽11における残氷を検出するための残氷検知手段12とタイマ13からの信号が蓄冷制御手段14に入力される。
実施の形態1.
図1において、室温検知手段15によって放冷運転積算中の室内吸込み空気温度を検知して蓄冷制御手段14に入力する。
【0019】
図2は本発明の実施の形態1における積算放冷時間(TUE)に対する所要蓄冷時間(TSE)の関係を示す一例であり、所要蓄冷時間(TSE)は積算放冷時間(TUE)のk倍で与えられる。図中、実線で示した部分が通常の蓄冷量制御に対応したものである。kは室内吸込み空気温度の関数となり、室内吸込み空気温度が通常より高かった時は、通常の積算放冷時間(TUE)に対して所要蓄冷時間(TSE)を長めに、逆に室内吸込み空気温度が通常より低かった時は所要蓄冷時間(TSE)を短めに設定する。例えば一点鎖線で示したものは室内吸込み空気温度が高かった場合で、放冷能力が増すために、放冷時間の最大値(Tu)は減少してTu■へ移動する。逆の傾向が二点鎖線で示したように室内吸込み空気温度が低い場合についてもあり得る。このように室内吸込み空気温度の高低に対応して所要蓄冷時間(TSE)の出力が可能な制御仕様とすることによって、常に適正蓄冷量を得ることができる。
【0020】
実施の形態2.
図1において16、17は設置制約上生じる放冷用冷媒回路の延長配管であり、予め空調装置設備設置時に冷媒配管長はスイッチ設定などの方法により蓄冷制御手段14に入力される。
図3は本発明の実施の形態2における積算放冷時間(TUE)に対する所要蓄冷時間(TSE)の関係を示す一例であり、所要蓄冷時間(TSE)は積算放冷時間(TUE)のk倍で与えられる。図中、実線で示した部分が通常の蓄冷量制御に対応したものである。kは冷媒配管長の関数となり、冷媒配管長が通常より短い時は、通常の積算放冷時間(TUE)に対して所要蓄冷時間(TSE)を長めに、逆に冷媒配管長が長い時は所要蓄冷時間(TSE)を短めに設定する。例えば一点鎖線で示したものは冷媒配管長が短い場合で、放冷能力が増すために、放冷時間の最大値(Tu)は減少してTu■へ移動する。逆の傾向が二点鎖線で示したように冷媒配管長が長い場合についてもあり得る。このように冷媒配管長の長短に対応して所要蓄冷時間(TSE)の出力が可能な制御仕様とすることによって、常に適正蓄冷量を得ることができる。
【0021】
実施の形態3.
予め空調装置設備設置時に放冷運転蒸発器側風量(以下室内風量)はスイッチ設定などの方法により蓄冷制御手段14に入力される。
図4は本発明の実施の形態3における積算放冷時間(TUE)に対する所要蓄冷時間(TSE)の関係を示す一例であり、所要蓄冷時間(TSE)は積算放冷時間(TUE)のk倍で与えられる。図中、実線で示した部分が通常の蓄冷量制御に対応したものである。kは室内風量の関数となり、室内風量が通常より多い時は、通常の積算放冷時間(TUE)に対して所要蓄冷時間(TSE)を長めに、逆に室内風量が少ない時は所要蓄冷時間(TSE)を短めに設定する。例えば一点鎖線で示したものは室内風量が多い場合で、放冷能力が増すために、放冷時間の最大値(Tu)は減少してTu■へ移動する。逆の傾向が二点鎖線で示したように室内風量が少ない場合についてもあり得る。このように室内風量の多少に対応して所要蓄冷時間(TSE)の出力が可能な制御仕様とすることによって、常に適正蓄冷量を得ることができる。
【0022】
実施の形態4.
図5の(1)は従来の一日の運転における蓄熱槽水温の変化及び運転モードを示す図であり、(2)は実施の形態4により蓄冷時間を長く設定する制御手段を示す蓄熱槽水温の変化及び運転モードを示す図である。
図5において、昼間の放冷運転で氷を使いきり蓄熱槽水温が一定値(ここでは7℃)を超えたので放冷運転は終了する。ここで運転スイッチOFFにより空調を終了した場合、蓄熱槽内の水の対流により槽水温の検知温度が低下して、蓄冷運転開始時刻T1で水温が7℃以下となることがある。この場合、蓄冷量制御を行うわけであるが、従来の蓄冷量制御による所要蓄冷時間(TSE)よりも長く蓄冷運転を行うように蓄冷制御手段を変更する。所要蓄冷時間(TSE)の決定方法は図6のグラフを基づいて行う。
図6は、本発明における積算放冷時間(TUE)に対する所要蓄冷時間(TSE)の関係を示すグラフであり、図中、実線で示した部分が通常の蓄冷量制御に対応したものであり、図中一点鎖線が放冷運転中に一度7℃以上を検知したにもかかわらず残氷ありと判断した場合の所要蓄冷時間(TSE)である。
【0023】
実施の形態5.
図7の(1)は従来の一日の運転における蓄熱槽水温の変化及び運転モードを示す図であり、(2)は実施の形態5により蓄冷時間を長く設定する制御手段を示す蓄熱槽水温の変化及び運転モードを示す図である。
図7において、昼間の放冷運転で氷を使いきり蓄熱槽水温が一定値(ここでは7℃)を超えたので放冷運転は終了する。ここで運転スイッチOFFにより空調を終了した場合、蓄熱槽内の水の対流により槽水温の検知温度が低下して、蓄冷運転開始時刻T1で水温が7℃以下となることがある。この場合、蓄冷量制御を行なわずタイマにより設定された設定時間分(T1〜T2)蓄冷指令を出力する。
【0024】
実施の形態6.
図8は蓄冷運転時間設定を示す運転サイクル図であり、蓄冷運転の開始時刻(T1)、終了時刻(T2)とタイマの設定により決定する時間制御としており、本発明に係る蓄冷量制御は、図中(2)、(3)の残氷がある場合について行う。まず、検知手段12によって残氷が検知されない場合はタイマ13等による蓄冷開始時刻になると蓄冷指令(T3)を行い、蓄冷運転終了時刻に達すると終了指令(T4)にて蓄冷運転を終了させる。また、残氷がある場合は、蓄冷制御手段14において所要蓄冷時間を算出後、それが夜間電力料金時間帯開始時刻〜蓄冷終了時刻(T5〜T2)よりも長い場合は、直ちに蓄冷指令(T3)を出力し蓄冷運転を開始する、所要蓄冷時間経過すると終了指令(T4)にて蓄冷運転を終了させる。
【0025】
また、蓄冷制御手段14において所要蓄冷時間を算出後、それが夜間電力料金時間帯開始時刻〜蓄冷終了時刻(T5〜T2)よりも短い場合は、夜間電力時間帯開始時刻(T5)に蓄冷指令(T3)を出力し蓄冷運転を開始する、所要蓄冷時間経過すると終了指令(T4)にて蓄冷運転を終了させる。
図9は上記の運転モードにおいて蓄冷量制御を行う際のアルゴリズムを示す。図において、放冷運転の積算は所要蓄冷時間算出終了時点で始まり、次回の蓄冷開始設定時刻まで継続される。
【0026】
実施の形態7.
図10は蓄冷運転時間設定を示す運転サイクル図であり、蓄冷運転の開始時刻(T1)、終了時刻(T2)とタイマの設定により決定する時間制御としており、本発明に係る蓄冷量制御は、図中(2)、(3)の残氷がある場合について行う。まず、検知手段12によって残氷が検知されない場合はタイマ13等による蓄冷開始時刻になると蓄冷指令(T3)を行い、蓄冷運転時刻に達すると終了指令(T4)にて蓄冷運転を終了させる。また、残氷がある場合は、蓄冷制御手段14において所要蓄冷時間を算出後、それが蓄冷開始時刻〜夜間電力料金時間帯終了時刻(T1〜T6)よりも短い場合は、夜間電力料金時間帯終了時刻から所要蓄冷運転時間を逆算し蓄冷開始時刻を決定する。算出された時刻に蓄冷開始を出力し夜間電力料金時間帯終了時刻になると蓄冷運転を終了する。
【0027】
また、蓄冷制御手段14において所要蓄冷時間を算出後、それが蓄冷開始時刻〜夜間電力料金時間帯終了時刻(T1〜T6)よりも長い場合は、直ちに蓄冷指令(T3)を出力し蓄冷運転を開始する、所要蓄冷時間経過すると終了指令(T4)にて蓄冷運転を終了する。
図11は上記の運転モードにおいて蓄冷量制御を行う際のアルゴリズムを示す。図において、放冷運転の積算は所要蓄冷時間算出終了時点で始まり、次回の蓄冷開始設定時刻まで継続される。
【0028】
【発明の効果】
以上のように、本発明によれば、圧縮機、凝縮器、第1の減圧機構、及び蓄熱媒体を内蔵しかつ熱交換器を内設する蓄熱槽から成り、蓄熱槽に冷熱エネルギーを蓄積するために蓄冷運転を行う蓄冷用手段と、蓄熱槽、第2の減圧機構、蒸発器、及び冷媒ポンプから成り、蓄熱槽内の冷熱エネルギーを使用して放冷運転を行う放冷用手段と、蓄熱槽内に蓄えた氷の有無を蓄熱媒体の温度によって判断する残氷検知手段と、室温を検知する室温検知手段と、残氷検知手段によって放冷運転終了直後の蓄熱媒体温度が一定値以上であることを検知した場合は、所定の時間蓄冷運転を行い、一定値以下であることを検知した場合は、前回の蓄冷運転終了時刻から今回の蓄冷運転開始時刻までの積算放冷時間を算出して、蓄熱槽の最大蓄冷量に対する融氷量の割合を判断し、融氷量に対応して設定された蓄冷運転時間を室温が所定値の時の基準値とし、室温検知手段により検知された室温が所定値に対し高い場合は、蓄冷運転時間を基準値より長く、低い場合は、蓄冷運転時間を基準値より短く設定し蓄冷運転を行う蓄冷制御手段とを備えたことにより、室内吸込み空気温度の変動に合せて、所要蓄冷量が可変の蓄冷量制御を行うことができ、室温の変動に応じた適正な蓄冷量が得られ、必要最小限の経済的な運転を行うことで、ランニングコストの低減を図れる効果がある。
【0029】
また、圧縮機、凝縮器、第1の減圧機構、及び蓄熱媒体を内蔵しかつ熱交換器を内設する蓄熱槽から成り、蓄熱槽に冷熱エネルギーを蓄積するために蓄冷運転を行う蓄冷用手段と、蓄熱槽、第2の減圧機構、蒸発器、及び冷媒ポンプから成り、蓄熱槽内の冷熱エネルギーを使用して放冷運転を行う放冷用手段と、蓄熱槽内に蓄えた氷の有無を蓄熱媒体の温度によって判断する残氷検知手段と、残氷検知手段によって放冷運転終了直後の蓄熱媒体温度が一定値以上であることを検知した場合は、所定の時間蓄冷運転を行い、一定値以下であることを検知した場合は、前回の蓄冷運転終了時刻から今回の蓄冷運転開始時刻までの積算放冷時間を算出して、蓄熱槽の最大蓄冷量に対する融氷量の割合を判断し、融氷量に対応して設定された蓄冷運転時間を蒸発器と熱交換器間の冷媒配管距離が所定値の時の基準値とし、冷媒配管距離が所定値に対し長い場合は、蓄冷運転時間を基準値より短く、短い場合は、蓄冷運転時間を基準値より長く設定し蓄冷運転を行う蓄冷制御手段とを備えたことにより、冷媒配管長に合せて、適正な蓄冷量制御を行うことができ、適正な蓄冷量が得られ、必要最小限の経済的な運転を行うことで、ランニングコストの低減を図れる効果がある。
【0030】
また、圧縮機、凝縮器、第1の減圧機構、及び蓄熱媒体を内蔵しかつ熱交換器を内設する蓄熱槽から成り、蓄熱槽に冷熱エネルギーを蓄積するために蓄冷運転を行う蓄冷用手段と、蓄熱槽、第2の減圧機構、蒸発器、及び冷媒ポンプから成り、蓄熱槽内の冷熱エネルギーを使用して放冷運転を行う放冷用手段と、蓄熱槽内に蓄えた氷の有無を蓄熱媒体の温度によって判断する残氷検知手段と、残氷検知手段によって放冷運転終了直後の蓄熱媒体温度が一定値以上であることを検知した場合は、所定の時間蓄冷運転を行い、一定値以下であることを検知した場合は、前回の蓄冷運転終了時刻から今回の蓄冷運転開始時刻までの積算放冷時間を算出して、蓄熱槽の最大蓄冷量に対する融氷量の割合を判断し、融氷量に対応して設定された蓄冷運転時間を蒸発器側の風量が所定値の時の基準値とし、蒸発器側の風量が所定値に対し多い場合は、蓄冷運転時間を基準値より長く、少ない場合は、蓄冷運転時間を基準値より短く設定し蓄冷運転を行う蓄冷制御手段とを備えたことにより、室内風量に合せて、適正な蓄冷量制御を行うことができ、適正な蓄冷量が得られ、必要最小限の経済的な運転を行うことで、ランニングコストの低減を図れる効果がある。
【0031】
また、圧縮機、凝縮器、第1の減圧機構、及び蓄熱媒体を内蔵しかつ熱交換器を内設する蓄熱槽から成り、蓄熱槽に冷熱エネルギーを蓄積するために蓄冷運転を行う蓄冷用手段と、蓄熱槽、第2の減圧機構、蒸発器、及び冷媒ポンプから成り、蓄熱槽内の冷熱エネルギーを使用して放冷運転を行う放冷用手段と、蓄熱槽内に蓄えた氷の有無を蓄熱媒体の温度によって判断する残氷検知手段と、残氷検知手段によって放冷運転終了直後の蓄熱媒体温度が一定値以上であることを検知した場合は、所定の時間蓄冷運転を行い、一定値以下であることを検知した場合は、前回の蓄冷運転終了時刻から今回の蓄冷運転開始時刻までの積算放冷時間を算出して、蓄熱槽の最大蓄冷量に対する融氷量の割合を判断し、融氷量に対応して設定された蓄冷運転時間により蓄冷運転を行い、一定値以下であることを検知しかつ放冷運転中に蓄熱媒体温度が一定値以上であることを検知した場合は、設定された蓄冷運転時間よりも長く蓄冷運転時間を設定し蓄冷運転を行う蓄冷制御手段を備えたことにより、適正に蓄熱槽内の残氷量を判断し、適正な蓄冷量制御を行いつつ、必要最小限の経済的な運転を行うことで、ランニングコストの低減を図ることができる。
【0032】
また、圧縮機、凝縮器、第1の減圧機構、及び蓄熱媒体を内蔵しかつ熱交換器を内設する蓄熱槽から成り、蓄熱槽に冷熱エネルギーを蓄積するために蓄冷運転を行う蓄冷用手段と、蓄熱槽、第2の減圧機構、蒸発器、及び冷媒ポンプから成り、蓄熱槽内の冷熱エネルギーを使用して放冷運転を行う放冷用手段と、蓄熱槽内に蓄えた氷の有無を蓄熱媒体の温度によって判断する残氷検知手段と、残氷検知手段によって放冷運転終了直後の蓄熱媒体温度が一定値以上であることを検知した場合は、所定の時間蓄冷運転を行い、一定値以下であることを検知した場合は、前回の蓄冷運転終了時刻から今回の蓄冷運転開始時刻までの積算放冷時間を算出して、蓄熱槽の最大蓄冷量に対する融氷量の割合を判断し、融氷量に対応して設定された蓄冷運転時間により蓄冷運転を行い、一定値以下であることを検知しかつ放冷運転中に蓄熱媒体温度が一定値以上であることを検知した場合は、所定の時間蓄冷運転を行う蓄冷制御手段とを備えたことにより、適正に蓄熱槽内の残氷量を判断し、適正な蓄冷量制御を行うことによって、翌日の蓄冷量不足を防止できる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る蓄熱式空気調和装置を示すの冷媒配管系統図である。
【図2】 本発明の実施の形態1による蓄熱式空気調和装置おいて所要蓄冷時間が積算放冷時間のk倍で与えられる関係を示し、上記kは室温の関数である関係を示すグラフである。
【図3】 本発明の実施の形態2による蓄熱式空気調和装置おいて所要蓄冷時間が積算放冷時間のk倍で与えられる関係を示し、上記kは配管長の関数である関係を示すグラフである。
【図4】 本発明の実施の形態3による蓄熱式空気調和装置おいて所要蓄冷時間が積算放冷時間のk倍で与えられる関係を示し、上記kは室内風量の関数である関係を示すグラフである。
【図5】 本発明の実施の形態4による蓄熱式空気調和装置における蓄熱槽水温と運転パターンを示す説明図である。
【図6】 本発明の実施の形態4による蓄熱式空気調和装置における積算放冷時間に対する所要蓄冷時間の関係を示す説明図である。
【図7】 本発明の実施の形態5による蓄熱式空気調和装置における蓄熱槽水温と運転パターンを示す説明図である。
【図8】 本発明の実施の形態6による蓄熱式空気調和装置における蓄冷運転時間設定を示す運転サイクル図である。
【図9】 本発明の実施の形態6による蓄熱式空気調和装置における蓄冷量制御のアルゴリズムを示すフローチャートである。
【図10】 本発明の実施の形態7による蓄熱式空気調和装置における蓄冷運転時間設定を示す運転サイクル図である
【図11】 本発明の実施の形態7による蓄熱式空気調和装置における蓄冷量制御のアルゴリズムを示すフローチャートである。
【図12】 従来の蓄熱式空気調和装置を示す冷媒配管系統図である。
【図13】 従来の蓄熱式空気調和装置における蓄冷運転時間設定を示す運転サイクル図である。
【図14】 従来の蓄熱式空気調和装置における蓄冷運転時間設定の他の例を示す運転サイクル図である。
【図15】 従来の蓄熱式空気調和装置における蓄冷量制御のアルゴリズムを示すフローチャートである。
【符号の説明】
1 圧縮機、2 凝縮器、3 第1の減圧機構、4 蓄冷用熱交換器、
5 バイパス回路、6 バイパス回路、7 冷媒ガスポンプ、
8 第2の減圧機構、9 蒸発器、10 蓄熱媒体、11 蓄熱槽、
12 残氷検知手段、13 タイマ、14 蓄冷制御手段、
15 室温検知手段、16 冷媒延長配管 17 冷媒延長配管。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to daytime power suppression and leveling measures, and relates to a heat storage type air conditioner including a heat storage tank containing a heat storage medium.
[0002]
[Prior art]
FIG. 12 is a refrigerant piping system diagram of a conventional heat storage type air conditioner. The cold storage operation is for cold storage comprising a compressor 1, a condenser 2, a pressure reducing mechanism 3, a cold storage heat exchanger 4, and bypass circuits 5 and 6. The circuit and the cooling operation are performed by forming a cooling circuit comprising the refrigerant gas pump 7, the cold storage heat exchanger 4, the first pressure reducing mechanism 8, and the evaporator 9. The heat storage heat exchanger 4 is provided in a heat storage tank 11 containing a heat storage medium 10 (in this case, water), and heat is taken around the heat transfer tubes of the heat storage heat exchanger 4 during the cold storage operation. On the contrary, during the cooling operation, the ice's cold heat is used for the condensation latent heat of the refrigerant and melts around the heat transfer tube.
[0003]
FIG. 13 and FIG. 14 are operation cycle diagrams showing the cold storage operation time setting of the conventional heat storage type air conditioner, and the time control for determining the start and end times of the cold storage operation by the timer setting is used. The concept performed by the presence or absence of remaining ice between the operation start time T1 and the cold storage operation end time T2 is shown. Moreover, T5 and T6 are the night time electricity charge time zone start time and end time, respectively.
In the figure, the hatched portion is the time zone during which cold storage is actually performed, and the cold storage operation is started by the cold storage command (T3). The cool storage operation start time T1 and the cool storage operation end time T2 are set in advance as timers.
[0004]
Next, the operation will be described.
First, in FIG. 13, the cool storage amount control is time control in which the cool storage operation start time T1 and the cool storage operation end time T2 are determined by timer settings, and after confirming the presence or absence of residual ice by a sensor or the like, a cool storage command is output. When there is no remaining ice at the cold storage start time T1, the cold storage operation is started at the same time as T1, and the operation is ended at the end time T2. Therefore, in this case, cold storage for a set time is performed, which is 100% of the normal required amount.
[0005]
Next, when there is remaining ice at the cold storage operation start time T1, as shown in FIG. 14, the cold storage operation is performed according to the set cold storage time, and the operation ends with the end command T4. Since the cold storage operation in this case is additional cold storage that supplements the melted ice, the cold storage operation time is not set to exceed the required cold storage amount of the heat storage tank.
FIG. 15 shows an algorithm when the cold storage amount control is performed in the above-described operation mode. In the figure, the integration of the cooling operation starts at the required cool storage time (TSE) calculation end time and continues until the next cool storage start set time.
The cold storage command when there is residual ice is issued after the calculation of TSE.
[0006]
[Problems to be solved by the invention]
Since the cold storage command method of the conventional cold storage type air conditioner is performed as shown in FIGS. 13 and 14, it is detected that the temperature of the heat storage medium immediately after the end of the cooling operation mode is below a certain value. When setting the cool storage time, calculate the cooling operation time from the previous cool storage operation end time to the current cool storage operation start time, determine the ratio of the amount of ice melt to the maximum cool storage amount of the heat storage tank, and The cool storage operation command that gives the cool storage operation time corresponding to the amount of ice is output, but the actual percentage of ice melt varies not only with the cool operation time but also with the cool cooling capacity. Although it varies depending on factors such as indoor air conditions, refrigerant pipe length, and indoor air volume, the conventional method has not been corrected by this, and the amount of ice melt has not been accurately determined.
[0007]
In addition, when trying to store additional cold for a long time to increase the cooling capacity, for example, when ice melts only partially around the heat transfer tube, it was trapped between the remaining ice and the heat transfer tube. There is a problem that the heat transfer tube is destroyed by volume expansion due to re-solidification of water. When controlling the amount of cold storage, in order to avoid excessive ice formation, shorten the cold storage time for the determined amount of melted ice. It was set. For this reason, the amount of cold storage on the next day was small but small, and the cooling time was shortened.
[0008]
In addition, if the tank water temperature exceeds a certain value during the cooling operation during the daytime air conditioning time and the cooling operation is finished, and the operation switch of the air conditioner is turned off at this time, the convection of the water in the heat storage tank The tank water temperature may fall below a certain value again. Here, when the cold storage start time comes, in order to determine that there is residual ice in the heat storage tank, even though the tank water temperature has exceeded a certain value, the cold storage control is activated, and for the reason described in the previous section The amount of cold storage on the next day was small, but it was less and the cooling time was shorter.
[0010]
The present invention has been made in order to solve the above-described problems, and a regenerative air conditioner that can obtain an appropriate amount of cold storage corresponding to a load change and can perform a minimum necessary economical operation. The object is to obtain a device.
[0011]
[Means for Solving the Problems]
The regenerative air conditioner according to the present invention includes a compressor, a condenser, a first decompression mechanism, and a heat storage tank that incorporates a heat storage medium and has a heat exchanger, and stores cold energy in the heat storage tank. Cold storage means for performing a cold storage operation, and comprising the heat storage tank, the second pressure reducing mechanism, an evaporator, and a refrigerant pump, and performing the cooling operation using the cold energy in the heat storage tank Means for detecting the presence or absence of ice stored in the heat storage tank based on the temperature of the heat storage medium, room temperature detection means for detecting room temperature, and the residual ice detection means immediately after completion of the cooling operation. When it is detected that the temperature of the heat storage medium is equal to or higher than a predetermined value, a cold storage operation is performed for a predetermined time. When it is detected that the temperature is equal to or lower than a predetermined value, the current cold storage operation start time is determined from the previous cold storage operation end time. Calculate the total cooling time until Determining the ratio of the amount of ice melt to the maximum amount of cold storage in the heat storage tank, and setting the cold storage operation time set corresponding to the ice melt amount as a reference value when the room temperature is a predetermined value, the room temperature detecting means When the room temperature detected by the above is higher than a predetermined value, the cold storage operation time is longer than a reference value, and when the room temperature is lower, the cold storage operation time is set shorter than the reference value and cold storage control means for performing the cold storage operation is provided. Is.
[0012]
Moreover, it is comprised of a heat storage tank containing a compressor, a condenser, a first pressure reducing mechanism, and a heat storage medium and having a heat exchanger, and performing a cold storage operation for storing cold energy in the heat storage tank Means, a heat storage tank, a second pressure reducing mechanism, an evaporator, and a refrigerant pump, and a cooling means for performing a cooling operation using the cold energy in the heat storage tank, and storing in the heat storage tank When the remaining ice detecting means for determining the presence or absence of ice is determined based on the temperature of the heat storage medium, and the residual ice detecting means detects that the temperature of the heat storage medium immediately after the cooling operation is over a predetermined value, If it is detected that the temperature is less than a certain value, the accumulated cool down time from the previous cool storage operation end time to the current cool storage operation start time is calculated, and the maximum cool storage amount of the heat storage tank is calculated. The ratio of the amount of ice melt to The cold storage operation time set corresponding to the amount of ice melt is a reference value when the refrigerant piping distance between the evaporator and the heat exchanger is a predetermined value, and the refrigerant piping distance is longer than the predetermined value When the cold storage operation time is shorter than the reference value and shorter, the cold storage operation time is set longer than the reference value, and cold storage control means for performing the cold storage operation is provided.
[0013]
Moreover, it is comprised of a compressor, a condenser, a first pressure reducing mechanism, and a heat storage tank that incorporates a heat storage medium and has a heat exchanger, and for performing cold storage operation for storing cold energy in the heat storage tank Means, a heat storage tank, a second pressure reducing mechanism, an evaporator, and a refrigerant pump, and a cooling means for performing a cooling operation using cold energy in the heat storage tank, and storing in the heat storage tank When the remaining ice detecting means for determining the presence or absence of ice is determined based on the temperature of the heat storage medium, and the residual ice detecting means detects that the temperature of the heat storage medium immediately after the cooling operation is over a predetermined value, If it is detected that the temperature is below a certain value, the integrated cool-down time from the previous cool storage operation end time to the current cool storage operation start time is calculated, and the maximum cool storage amount of the heat storage tank is calculated. The ratio of the amount of ice melt to The cool storage operation time set corresponding to the amount of ice melt is set as a reference value when the airflow on the evaporator side is a predetermined value, and when the airflow on the evaporator side is larger than the predetermined value, the cool storage operation time Is longer than the reference value and less than the reference value, cold storage control means for setting the cold storage operation time shorter than the reference value and performing the cold storage operation is provided.
[0014]
Moreover, it is comprised of a heat storage tank containing a compressor, a condenser, a first pressure reducing mechanism, and a heat storage medium and having a heat exchanger, and performing a cold storage operation for storing cold energy in the heat storage tank Means, a heat storage tank, a second pressure reducing mechanism, an evaporator, and a refrigerant pump, and a cooling means for performing a cooling operation using cold energy in the heat storage tank, and storing in the heat storage tank When the remaining ice detecting means for determining the presence or absence of ice is determined based on the temperature of the heat storage medium, and the residual ice detecting means detects that the temperature of the heat storage medium immediately after the cooling operation is over a predetermined value, If it is detected that the temperature is below a certain value, the integrated cool-down time from the previous cool storage operation end time to the current cool storage operation start time is calculated, and the maximum cool storage amount of the heat storage tank is calculated. The ratio of the amount of ice melt to The cold storage operation is performed with the cold storage operation time set corresponding to the amount of ice melt, and it is detected that the temperature is below a certain value and that the temperature of the heat storage medium is detected to be above a certain value during the cooling operation. In this case, a cold storage control means for setting the cold storage operation time longer than the set cold storage operation time and performing the cold storage operation is provided.
[0015]
Moreover, it is comprised of a heat storage tank containing a compressor, a condenser, a first pressure reducing mechanism, and a heat storage medium and having a heat exchanger, and performing a cold storage operation for storing cold energy in the heat storage tank Means, a heat storage tank, a second pressure reducing mechanism, an evaporator, and a refrigerant pump, and a cooling means for performing a cooling operation using cold energy in the heat storage tank, and storing in the heat storage tank When the remaining ice detecting means for determining the presence or absence of ice is determined based on the temperature of the heat storage medium, and the residual ice detecting means detects that the temperature of the heat storage medium immediately after the cooling operation is over a predetermined value, If it is detected that the temperature is below a certain value, the integrated cool-down time from the previous cool storage operation end time to the current cool storage operation start time is calculated, and the maximum cool storage amount of the heat storage tank is calculated. The ratio of the amount of ice melt to The cold storage operation is performed with the cold storage operation time set corresponding to the amount of ice melt, and it is detected that the temperature is below a certain value and that the temperature of the heat storage medium is detected to be above a certain value during the cooling operation. In this case, the apparatus includes a cold storage control means for performing the cold storage operation for the predetermined time.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a refrigerant piping system diagram showing a heat storage type air conditioner according to an embodiment of the present invention.
The regenerative operation is a compressor 1, a condenser 2, a first pressure reducing mechanism 3, a regenerative heat exchanger 4, and a regenerator circuit comprising bypass circuits 5 and 6, and the cool operation is a refrigerant gas pump 7 and a regenerative heat exchanger. 4 and the second decompression mechanism 8 and the evaporator 9 are formed to form a cooling circuit. The heat storage heat exchanger 4 is provided in a heat storage tank 11 containing a heat storage medium 10 (here, water), and heat is taken away around the heat transfer tube of the heat storage heat exchanger 4 during the cold storage operation. Ice with changed latent heat adheres, and conversely during cooling operation, the cold heat of the ice is used for the latent heat of condensation of the refrigerant and melts around the heat transfer tube. A signal from the remaining ice detection means 12 and the timer 13 for detecting the remaining ice in the heat storage tank 11 is input to the cold storage control means 14.
Embodiment 1 FIG.
In FIG. 1, the room intake air temperature during the cooling operation integration is detected by the room temperature detection unit 15 and input to the cold storage control unit 14.
[0019]
FIG. 2 is an example showing the relationship of the required cool storage time (TSE) with respect to the accumulated cool down time (TUE) in Embodiment 1 of the present invention, and the required cool storage time (TSE) is k times the accumulated cool down time (TUE). Given in. In the figure, the part indicated by a solid line corresponds to normal cold storage amount control. k is a function of the indoor intake air temperature. When the indoor intake air temperature is higher than normal, the required cool storage time (TSE) is set longer than the normal accumulated cooling time (TUE), and the indoor intake air temperature is reversed. When is lower than usual, the required cool storage time (TSE) is set short. For example, the one indicated by the alternate long and short dash line is the case where the indoor intake air temperature is high, and the maximum cooling time (Tu) decreases and moves to Tu 2 because the cooling capacity increases. The reverse tendency may also occur when the indoor intake air temperature is low as indicated by the two-dot chain line. As described above, by adopting a control specification capable of outputting the required cool storage time (TSE) corresponding to the level of indoor intake air temperature, an appropriate cool storage amount can always be obtained.
[0020]
Embodiment 2. FIG.
In FIG. 1, reference numerals 16 and 17 denote extension pipes of the cooling-use refrigerant circuit that occur due to installation restrictions, and the refrigerant pipe length is previously input to the cold storage control means 14 by a method such as switch setting when the air conditioner equipment is installed.
FIG. 3 is an example showing the relationship of the required cool storage time (TSE) with respect to the cumulative cool-down time (TUE) in Embodiment 2 of the present invention, and the required cool storage time (TSE) is k times the cumulative cool-down time (TUE). Given in. In the figure, the part indicated by a solid line corresponds to normal cold storage amount control. k is a function of the refrigerant pipe length. When the refrigerant pipe length is shorter than normal, the required cool storage time (TSE) is longer than the normal accumulated cooling time (TUE), and conversely when the refrigerant pipe length is long. Set the required cool storage time (TSE) short. For example, the one shown by the alternate long and short dash line is a case where the refrigerant pipe length is short, and since the cooling capacity is increased, the maximum value (Tu) of the cooling time decreases and moves to Tu. The reverse tendency can also occur when the refrigerant pipe length is long as indicated by the two-dot chain line. In this way, by setting the control specifications that can output the required cold storage time (TSE) corresponding to the length of the refrigerant pipe, the appropriate cold storage amount can always be obtained.
[0021]
Embodiment 3 FIG.
When the air-conditioning equipment is installed, the evaporator-side air volume (hereinafter referred to as indoor air volume) is input to the cold storage control means 14 by a method such as switch setting.
FIG. 4 is an example showing the relationship of the required cool storage time (TSE) with respect to the total cool-down time (TUE) in Embodiment 3 of the present invention, and the required cool storage time (TSE) is k times the total cool-down time (TUE). Given in. In the figure, the part indicated by a solid line corresponds to normal cold storage amount control. k is a function of the indoor air volume. When the indoor air volume is higher than normal, the required cool storage time (TSE) is longer than the normal accumulated cooling time (TUE). Conversely, when the indoor air volume is small, the required cool storage time is Set (TSE) short. For example, the one indicated by the alternate long and short dash line is a case where the indoor air volume is large, and since the cooling capacity is increased, the maximum value (Tu) of the cooling time decreases and moves to Tu. The reverse tendency may also occur when the indoor air volume is small as indicated by the two-dot chain line. As described above, by adopting a control specification capable of outputting the required cool storage time (TSE) corresponding to the amount of indoor airflow, an appropriate cool storage amount can always be obtained.
[0022]
Embodiment 4 FIG.
(1) of FIG. 5 is a figure which shows the change of the heat storage tank water temperature in the conventional one-day driving | operation, and an operation mode, (2) is the heat storage tank water temperature which shows the control means which sets cool storage time long by Embodiment 4. It is a figure which shows the change of and an operation mode.
In FIG. 5, since the ice is used up in the daytime cooling operation and the temperature of the heat storage tank exceeds a certain value (here, 7 ° C.), the cooling operation ends. Here, when the air conditioning is ended by turning off the operation switch, the detection temperature of the tank water temperature may be lowered due to the convection of the water in the heat storage tank, and the water temperature may become 7 ° C. or less at the cold storage operation start time T1. In this case, the cool storage amount control is performed, but the cool storage control means is changed so that the cool storage operation is performed longer than the required cool storage time (TSE) by the conventional cool storage amount control. The required cold storage time (TSE) is determined based on the graph of FIG.
FIG. 6 is a graph showing the relationship of the required cool storage time (TSE) with respect to the total cool-down time (TUE) in the present invention, and the portion shown by a solid line in the figure corresponds to normal cool storage amount control, The alternate long and short dash line in the figure is the required cool storage time (TSE) when it is determined that there is residual ice even though 7 ° C. or higher is detected once during the cooling operation.
[0023]
Embodiment 5 FIG.
(1) of FIG. 7 is a figure which shows the change of the heat storage tank water temperature in the conventional one-day driving | operation, and an operation mode, (2) is the heat storage tank water temperature which shows the control means which sets cool storage time long by Embodiment 5. It is a figure which shows the change of and an operation mode.
In FIG. 7, since the ice is used up in the daytime cooling operation and the temperature of the heat storage tank exceeds a certain value (here, 7 ° C.), the cooling operation ends. Here, when the air conditioning is ended by turning off the operation switch, the detection temperature of the tank water temperature may be lowered due to the convection of the water in the heat storage tank, and the water temperature may become 7 ° C. or less at the cold storage operation start time T1. In this case, the cool storage command is output for the set time (T1 to T2) set by the timer without performing the cool storage amount control.
[0024]
Embodiment 6 FIG.
FIG. 8 is an operation cycle diagram showing cold storage operation time setting, which is time control determined by the start time (T1), end time (T2) and timer setting of the cold storage operation, and the cold storage amount control according to the present invention is: This is done when there is residual ice (2) and (3) in the figure. First, when the remaining ice is not detected by the detection means 12, a cold storage command (T3) is issued when the cold storage start time by the timer 13 or the like is reached, and when the cold storage operation end time is reached, the cold storage operation is terminated by an end command (T4). In addition, when there is residual ice, after the required cool storage time is calculated in the cool storage control means 14, if it is longer than the night power charge time zone start time to cool storage end time (T 5 to T 2), the cool storage command (T 3 ) To start the cold storage operation. When the required cold storage time has elapsed, the cold storage operation is terminated by an end command (T4).
[0025]
In addition, after the required cool storage time is calculated in the cool storage control means 14, if it is shorter than the night power charge time zone start time to the cool storage end time (T5 to T2), the cool storage command is issued at the night power hour start time (T5). (T3) is output and the cold storage operation is started. When the required cold storage time has elapsed, the cold storage operation is terminated with an end command (T4).
FIG. 9 shows an algorithm for performing the cold storage amount control in the above operation mode. In the figure, the integration of the cool-down operation starts at the time when the required cool storage time calculation ends and continues until the next cool storage start setting time.
[0026]
Embodiment 7 FIG.
FIG. 10 is an operation cycle diagram showing the cold storage operation time setting, which is time control determined by the start time (T1), end time (T2) and timer setting of the cold storage operation, and the cold storage amount control according to the present invention is: This is done when there is residual ice (2) and (3) in the figure. First, when the remaining ice is not detected by the detection means 12, a cold storage command (T3) is issued when the cold storage start time by the timer 13 or the like is reached, and when the cold storage operation time is reached, the cold storage operation is terminated by an end command (T4). If there is residual ice, the cold storage control means 14 calculates the required cold storage time, and if it is shorter than the cold storage start time to the night power charge time zone end time (T1 to T6), the night power charge time zone The required cold storage operation time is calculated backward from the end time to determine the cold storage start time. The cold storage start is output at the calculated time, and the cold storage operation is ended when the night electricity rate period end time is reached.
[0027]
In addition, after calculating the required cool storage time in the cool storage control means 14, if it is longer than the cool storage start time to the night power charge time zone end time (T 1 to T 6), the cool storage command (T 3) is immediately output to perform the cool storage operation. When the required cool storage time has elapsed, the cool storage operation is terminated with an end command (T4).
FIG. 11 shows an algorithm when the cold storage amount control is performed in the above operation mode. In the figure, the integration of the cool-down operation starts at the time when the required cool storage time calculation ends and continues until the next cool storage start setting time.
[0028]
【The invention's effect】
As described above, according to the present invention, the compressor, the condenser, the first pressure reducing mechanism, and the heat storage tank that incorporates the heat storage medium and includes the heat exchanger, and stores the cold energy in the heat storage tank. A cool storage means for performing a cool storage operation, a heat storage tank, a second decompression mechanism, an evaporator, and a refrigerant pump, and a cool discharge means for performing a cool cooling operation using cold energy in the heat storage tank; Remaining ice detection means for determining the presence or absence of ice stored in the heat storage tank based on the temperature of the heat storage medium, room temperature detection means for detecting the room temperature, and the temperature of the heat storage medium immediately after the cool-down operation is over by the residual ice detection means If it is detected that it is, it performs a cold storage operation for a predetermined time, and if it is detected that it is below a certain value, it calculates the integrated cooling time from the previous cool storage operation end time to the current cool storage operation start time To the maximum cold storage amount of the heat storage tank If the room temperature detected by the room temperature detection means is higher than the predetermined value, the cool storage operation time set according to the amount of ice melt is determined as the reference value when the room temperature is a predetermined value. When the operation time is longer than the reference value and lower, the cool storage operation time is set shorter than the reference value and the cool storage control means for performing the cool storage operation is provided, so that the required cool storage amount can be adjusted according to the fluctuation of the indoor intake air temperature. Variable cold storage amount control can be performed, and an appropriate cold storage amount corresponding to a change in room temperature can be obtained, and there is an effect that the running cost can be reduced by performing the minimum necessary economical operation.
[0029]
Also, a cold storage means that includes a compressor, a condenser, a first pressure reduction mechanism, and a heat storage tank that incorporates a heat storage medium and has a heat exchanger, and performs a cold storage operation to store cold energy in the heat storage tank. And a heat storage tank, a second decompression mechanism, an evaporator, and a refrigerant pump, and a cooling means for performing a cooling operation using the cold energy in the heat storage tank, and the presence or absence of ice stored in the heat storage tank If the remaining ice detection means detects that the temperature of the heat storage medium immediately after the cool-down operation is over a certain value, the cold storage operation is performed for a predetermined time. If it is detected that the value is less than or equal to the value, calculate the integrated cooling time from the previous cool storage operation end time to the current cool storage operation start time, and determine the ratio of the amount of ice melt to the maximum cool storage amount of the heat storage tank. Cold storage operation set according to the amount of ice melt The reference value when the refrigerant piping distance between the evaporator and the heat exchanger is a predetermined value is between, and when the refrigerant piping distance is longer than the predetermined value, the cold storage operation time is shorter than the reference value, and when the refrigerant piping distance is short, the cold storage operation By providing a cold storage control means that sets the time longer than the reference value and performs the cold storage operation, it is possible to perform an appropriate cold storage amount control according to the refrigerant pipe length, and to obtain an appropriate cold storage amount, which is the minimum necessary There is an effect that the running cost can be reduced by performing the limited economical driving.
[0030]
Also, a cold storage means that includes a compressor, a condenser, a first pressure reduction mechanism, and a heat storage tank that incorporates a heat storage medium and has a heat exchanger, and performs a cold storage operation to store cold energy in the heat storage tank. And a heat storage tank, a second decompression mechanism, an evaporator, and a refrigerant pump, and a cooling means for performing a cooling operation using the cold energy in the heat storage tank, and the presence or absence of ice stored in the heat storage tank If the remaining ice detection means detects that the temperature of the heat storage medium immediately after the cool-down operation is over a certain value, the cold storage operation is performed for a predetermined time. If it is detected that the value is less than or equal to the value, calculate the integrated cooling time from the previous cool storage operation end time to the current cool storage operation start time, and determine the ratio of the amount of ice melt to the maximum cool storage amount of the heat storage tank. Cold storage operation set according to the amount of ice melt The reference value when the airflow on the evaporator side is a predetermined value is the interval, and if the airflow on the evaporator side is larger than the predetermined value, the cool storage operation time is longer than the reference value, and if it is less, the cool storage operation time is the reference value By providing a cool storage control means that performs a cool storage operation with a shorter setting, it is possible to perform an appropriate cool storage amount control according to the indoor air volume, and to obtain an appropriate cool storage amount. There is an effect that the running cost can be reduced by driving.
[0031]
Also, a cold storage means that includes a compressor, a condenser, a first pressure reduction mechanism, and a heat storage tank that incorporates a heat storage medium and has a heat exchanger, and performs a cold storage operation to store cold energy in the heat storage tank. And a heat storage tank, a second decompression mechanism, an evaporator, and a refrigerant pump, and a cooling means for performing a cooling operation using the cold energy in the heat storage tank, and the presence or absence of ice stored in the heat storage tank If the remaining ice detection means detects that the temperature of the heat storage medium immediately after the cool-down operation is over a certain value, the cold storage operation is performed for a predetermined time. If it is detected that the value is less than or equal to the value, calculate the integrated cooling time from the previous cool storage operation end time to the current cool storage operation start time, and determine the ratio of the amount of ice melt to the maximum cool storage amount of the heat storage tank. Cold storage operation set according to the amount of ice melt The cool storage operation time is longer than the set cool storage operation time when it is detected that the cool storage operation is performed at intervals, and it is detected that the temperature of the heat storage medium is not less than a certain value during the cool-down operation. By providing a cold storage control means that performs cold storage operation, it is possible to judge the amount of ice remaining in the heat storage tank properly, perform appropriate cold storage amount control, and perform the minimum economical operation The running cost can be reduced.
[0032]
Also, a cold storage means that includes a compressor, a condenser, a first pressure reduction mechanism, and a heat storage tank that incorporates a heat storage medium and has a heat exchanger, and performs a cold storage operation to store cold energy in the heat storage tank. And a heat storage tank, a second decompression mechanism, an evaporator, and a refrigerant pump, and a cooling means for performing a cooling operation using the cold energy in the heat storage tank, and the presence or absence of ice stored in the heat storage tank If the remaining ice detection means detects that the temperature of the heat storage medium immediately after the cool-down operation is over a certain value, the cold storage operation is performed for a predetermined time. If it is detected that the value is less than or equal to the value, calculate the integrated cooling time from the previous cool storage operation end time to the current cool storage operation start time, and determine the ratio of the amount of ice melt to the maximum cool storage amount of the heat storage tank. Cold storage operation set according to the amount of ice melt When the cool storage operation is performed, it is detected that the temperature is below a certain value and the temperature of the heat storage medium is detected to be above a certain value during the cool-down operation, and a cool storage control means for performing the cool storage operation for a predetermined time. By having prepared, the amount of remaining ice in a thermal storage tank can be judged appropriately, and the amount of cold storage of the next day can be prevented by performing appropriate cold storage control.
[Brief description of the drawings]
FIG. 1 is a refrigerant piping system diagram showing a heat storage type air conditioner according to an embodiment of the present invention.
FIG. 2 is a graph showing a relationship in which the required cool storage time is given by k times the total cool-down time in the regenerative air conditioner according to Embodiment 1 of the present invention, where k is a function of room temperature. is there.
FIG. 3 is a graph showing a relationship in which a required cool storage time is given by k times an integrated cooling time in a heat storage type air conditioner according to Embodiment 2 of the present invention, where k is a function of pipe length. It is.
FIG. 4 is a graph showing a relationship in which a required cool storage time is given by k times an integrated cooling time in a heat storage type air conditioner according to Embodiment 3 of the present invention, where k is a function of the indoor air volume. It is.
FIG. 5 is an explanatory diagram showing a heat storage tank water temperature and an operation pattern in a heat storage type air conditioner according to Embodiment 4 of the present invention.
FIG. 6 is an explanatory diagram showing a relationship between required cool storage time and accumulated cool down time in a heat storage type air conditioner according to Embodiment 4 of the present invention.
FIG. 7 is an explanatory diagram showing a heat storage tank water temperature and an operation pattern in a heat storage type air conditioner according to Embodiment 5 of the present invention.
FIG. 8 is an operation cycle diagram showing cold storage operation time setting in a heat storage type air conditioner according to Embodiment 6 of the present invention.
FIG. 9 is a flowchart showing an algorithm of cold storage amount control in a heat storage type air conditioner according to Embodiment 6 of the present invention.
FIG. 10 is an operation cycle diagram showing setting of a cold storage operation time in the heat storage type air conditioner according to Embodiment 7 of the present invention. FIG. 11 is a control of the amount of cold stored in the heat storage type air conditioner according to Embodiment 7 of the present invention. It is a flowchart which shows the algorithm of.
FIG. 12 is a refrigerant piping system diagram showing a conventional heat storage type air conditioner.
FIG. 13 is an operation cycle diagram showing cold storage operation time setting in a conventional heat storage type air conditioner.
FIG. 14 is an operation cycle diagram illustrating another example of cold storage operation time setting in a conventional heat storage type air conditioner.
FIG. 15 is a flowchart showing an algorithm of cold storage amount control in a conventional heat storage type air conditioner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor, 2 Condenser, 3 1st decompression mechanism, 4 Heat exchanger for cool storage,
5 Bypass circuit, 6 Bypass circuit, 7 Refrigerant gas pump,
8 Second decompression mechanism, 9 evaporator, 10 heat storage medium, 11 heat storage tank,
12 remaining ice detection means, 13 timer, 14 cool storage control means,
15 Room temperature detection means, 16 Refrigerant extension piping 17 Refrigerant extension piping.

Claims (5)

圧縮機、凝縮器、第1の減圧機構、及び蓄熱媒体を内蔵しかつ熱交換器を内設する蓄熱槽から成り、前記蓄熱槽に冷熱エネルギーを蓄積するために蓄冷運転を行う蓄冷用手段と、前記蓄熱槽、第2の減圧機構、蒸発器、及び冷媒ポンプから成り、前記蓄熱槽内の冷熱エネルギーを使用して放冷運転を行う放冷用手段と、前記蓄熱槽内に蓄えた氷の有無を前記蓄熱媒体の温度によって判断する残氷検知手段と、室温を検知する室温検知手段と、前記残氷検知手段によって前記放冷運転終了直後の前記蓄熱媒体温度が一定値以上であることを検知した場合は、所定の時間蓄冷運転を行い、一定値以下であることを検知した場合は、前回の蓄冷運転終了時刻から今回の蓄冷運転開始時刻までの積算放冷時間を算出して、前記蓄熱槽の最大蓄冷量に対する融氷量の割合を判断し、前記融氷量に対応して設定された蓄冷運転時間を室温が所定値の時の基準値とし、前記室温検知手段により検知された室温が所定値に対し高い場合は、前記蓄冷運転時間を基準値より長く、低い場合は、前記蓄冷運転時間を基準値より短く設定し蓄冷運転を行う蓄冷制御手段とを備えたことを特徴とする蓄熱式空気調和装置。  A regenerator means for storing a compressor, a condenser, a first pressure reducing mechanism, and a heat storage tank having a built-in heat storage medium and having a heat exchanger, and performing a cold storage operation to store cold energy in the heat storage tank; The heat storage tank, the second pressure reducing mechanism, the evaporator, and the refrigerant pump, and the cooling means for performing the cooling operation using the cold energy in the heat storage tank, and the ice stored in the heat storage tank The temperature of the heat storage medium immediately after the cool-down operation is completed by the residual ice detection means, the room temperature detection means for detecting the room temperature, and the residual ice detection means. Is detected for a predetermined time, and if it is detected that it is below a certain value, the integrated cool down time from the previous cool storage operation end time to the current cool storage operation start time is calculated, The maximum cold storage amount of the heat storage tank The ratio of the amount of ice melt to be determined is determined, the cold storage operation time set corresponding to the amount of ice melt is used as a reference value when the room temperature is a predetermined value, and the room temperature detected by the room temperature detecting means is relative to the predetermined value. A heat storage type air conditioner characterized by comprising a cold storage control means for setting the cold storage operation time to be shorter than the reference value when the temperature is high, and setting the cold storage operation time to be shorter than the reference value when the time is low. . 圧縮機、凝縮器、第1の減圧機構、及び蓄熱媒体を内蔵しかつ熱交換器を内設する蓄熱槽から成り、前記蓄熱槽に冷熱エネルギーを蓄積するために蓄冷運転を行う蓄冷用手段と、前記蓄熱槽、第2の減圧機構、蒸発器、及び冷媒ポンプから成り、前記蓄熱槽内の冷熱エネルギーを使用して放冷運転を行う放冷用手段と、前記蓄熱槽内に蓄えた氷の有無を前記蓄熱媒体の温度によって判断する残氷検知手段と、前記残氷検知手段によって前記放冷運転終了直後の前記蓄熱媒体温度が一定値以上であることを検知した場合は、所定の時間蓄冷運転を行い、一定値以下であることを検知した場合は、前回の蓄冷運転終了時刻から今回の蓄冷運転開始時刻までの積算放冷時間を算出して、前記蓄熱槽の最大蓄冷量に対する融氷量の割合を判断し、前記融氷量に対応して設定された蓄冷運転時間を前記蒸発器と前記熱交換器間の冷媒配管距離が所定値の時の基準値とし、前記冷媒配管距離が所定値に対し長い場合は、前記蓄冷運転時間を基準値より短く、短い場合は、前記蓄冷運転時間を基準値より長く設定し蓄冷運転を行う蓄冷制御手段とを備えたことを特徴とする蓄熱式空気調和装置。  A regenerator means for storing a compressor, a condenser, a first pressure reducing mechanism, and a heat storage tank having a built-in heat storage medium and having a heat exchanger, and performing a cold storage operation to store cold energy in the heat storage tank; The heat storage tank, the second pressure reducing mechanism, the evaporator, and the refrigerant pump, and the cooling means for performing the cooling operation using the cold energy in the heat storage tank, and the ice stored in the heat storage tank When the remaining ice detecting means for judging the presence or absence of the heat storage medium is detected by the temperature of the heat storage medium and the temperature of the heat storage medium immediately after the end of the cooling operation is detected by the remaining ice detection means for a predetermined time When a cool storage operation is performed and it is detected that the temperature is below a certain value, an integrated cooling time from the previous cool storage operation end time to the current cool storage operation start time is calculated, and the amount of cooling with respect to the maximum cool storage amount of the heat storage tank is calculated. Determine the percentage of ice The cold storage operation time set corresponding to the amount of ice is a reference value when the refrigerant pipe distance between the evaporator and the heat exchanger is a predetermined value, and when the refrigerant pipe distance is longer than the predetermined value, A regenerative air conditioner comprising: a regenerator control unit configured to perform a regenerator operation by setting the regenerator operation time longer than a reference value when the regenerator operation time is shorter than a reference value. 圧縮機、凝縮器、第1の減圧機構、及び蓄熱媒体を内蔵しかつ熱交換器を内設する蓄熱槽から成り、前記蓄熱槽に冷熱エネルギーを蓄積するために蓄冷運転を行う蓄冷用手段と、前記蓄熱槽、第2の減圧機構、蒸発器、及び冷媒ポンプから成り、前記蓄熱槽内の冷熱エネルギーを使用して放冷運転を行う放冷用手段と、前記蓄熱槽内に蓄えた氷の有無を前記蓄熱媒体の温度によって判断する残氷検知手段と、前記残氷検知手段によって前記放冷運転終了直後の前記蓄熱媒体温度が一定値以上であることを検知した場合は、所定の時間蓄冷運転を行い、一定値以下であることを検知した場合は、前回の蓄冷運転終了時刻から今回の蓄冷運転開始時刻までの積算放冷時間を算出して、前記蓄熱槽の最大蓄冷量に対する融氷量の割合を判断し、前記融氷量に対応して設定された蓄冷運転時間を前記蒸発器側の風量が所定値の時の基準値とし、前記蒸発器側の風量が所定値に対し多い場合は、前記蓄冷運転時間を基準値より長く、少ない場合は、前記蓄冷運転時間を基準値より短く設定し蓄冷運転を行う蓄冷制御手段とを備えたことを特徴とする蓄熱式空気調和装置。  A regenerator means for storing a compressor, a condenser, a first pressure reducing mechanism, and a heat storage tank having a built-in heat storage medium and having a heat exchanger, and performing a cold storage operation to store cold energy in the heat storage tank; The heat storage tank, the second pressure reducing mechanism, the evaporator, and the refrigerant pump, and the cooling means for performing the cooling operation using the cold energy in the heat storage tank, and the ice stored in the heat storage tank When the remaining ice detecting means for judging the presence or absence of the heat storage medium is detected by the temperature of the heat storage medium and the temperature of the heat storage medium immediately after the end of the cooling operation is detected by the remaining ice detection means for a predetermined time When a cool storage operation is performed and it is detected that the temperature is below a certain value, an integrated cooling time from the previous cool storage operation end time to the current cool storage operation start time is calculated, and the amount of cooling for the maximum cool storage amount of the heat storage tank is calculated. Determine the percentage of ice The cool storage operation time set according to the amount of ice is set as a reference value when the airflow on the evaporator side is a predetermined value, and when the airflow on the evaporator side is larger than the predetermined value, the cool storage operation time is used as a reference. A heat storage type air conditioner comprising: a cold storage control means for performing the cold storage operation by setting the cold storage operation time to be shorter than a reference value when the value is longer or less than the value. 圧縮機、凝縮器、第1の減圧機構、及び蓄熱媒体を内蔵しかつ熱交換器を内設する蓄熱槽から成り、前記蓄熱槽に冷熱エネルギーを蓄積するために蓄冷運転を行う蓄冷用手段と、前記蓄熱槽、第2の減圧機構、蒸発器、及び冷媒ポンプから成り、前記蓄熱槽内の冷熱エネルギーを使用して放冷運転を行う放冷用手段と、前記蓄熱槽内に蓄えた氷の有無を前記蓄熱媒体の温度によって判断する残氷検知手段と、前記残氷検知手段によって前記放冷運転終了直後の前記蓄熱媒体温度が一定値以上であることを検知した場合は、所定の時間蓄冷運転を行い、一定値以下であることを検知した場合は、前回の蓄冷運転終了時刻から今回の蓄冷運転開始時刻までの積算放冷時間を算出して、前記蓄熱槽の最大蓄冷量に対する融氷量の割合を判断し、前記融氷量に対応して設定された蓄冷運転時間により蓄冷運転を行い、一定値以下であることを検知しかつ前記放冷運転中に前記蓄熱媒体温度が一定値以上であることを検知した場合は、前記設定された蓄冷運転時間よりも長く蓄冷運転時間を設定し蓄冷運転を行う蓄冷制御手段とを備えたことを特徴とする蓄熱式空気調和装置。  A regenerator means for storing a compressor, a condenser, a first pressure reducing mechanism, and a heat storage tank having a built-in heat storage medium and having a heat exchanger, and performing a cold storage operation to store cold energy in the heat storage tank; The heat storage tank, the second pressure reducing mechanism, the evaporator, and the refrigerant pump, and the cooling means for performing the cooling operation using the cold energy in the heat storage tank, and the ice stored in the heat storage tank When the remaining ice detecting means for judging the presence or absence of the heat storage medium is detected by the temperature of the heat storage medium and the temperature of the heat storage medium immediately after the end of the cooling operation is detected by the remaining ice detection means for a predetermined time When a cool storage operation is performed and it is detected that the temperature is below a certain value, an integrated cooling time from the previous cool storage operation end time to the current cool storage operation start time is calculated, and the amount of cooling with respect to the maximum cool storage amount of the heat storage tank is calculated. Determine the percentage of ice When the cold storage operation is performed according to the cold storage operation time set corresponding to the amount of ice, it is detected that the temperature is below a certain value and the temperature of the heat storage medium is detected to be above a certain value during the cooling operation. A heat storage type air conditioner comprising: a cold storage control means for setting a cold storage operation time longer than the set cold storage operation time and performing the cold storage operation. 圧縮機、凝縮器、第1の減圧機構、及び蓄熱媒体を内蔵しかつ熱交換器を内設する蓄熱槽から成り、前記蓄熱槽に冷熱エネルギーを蓄積するために蓄冷運転を行う蓄冷用手段と、前記蓄熱槽、第2の減圧機構、蒸発器、及び冷媒ポンプから成り、前記蓄熱槽内の冷熱エネルギーを使用して放冷運転を行う放冷用手段と、前記蓄熱槽内に蓄えた氷の有無を前記蓄熱媒体の温度によって判断する残氷検知手段と、前記残氷検知手段によって前記放冷運転終了直後の前記蓄熱媒体温度が一定値以上であることを検知した場合は、所定の時間蓄冷運転を行い、一定値以下であることを検知した場合は、前回の蓄冷運転終了時刻から今回の蓄冷運転開始時刻までの積算放冷時間を算出して、前記蓄熱槽の最大蓄冷量に対する融氷量の割合を判断し、前記融氷量に対応して設定された蓄冷運転時間により蓄冷運転を行い、一定値以下であることを検知しかつ前記放冷運転中に前記蓄熱媒体温度が一定値以上であることを検知した場合は、前記所定の時間蓄冷運転を行う蓄冷制御手段とを備えた蓄熱式空気調和装置。  A regenerator means for storing a compressor, a condenser, a first pressure reducing mechanism, and a heat storage tank having a built-in heat storage medium and having a heat exchanger, and performing a cold storage operation to store cold energy in the heat storage tank; The heat storage tank, the second pressure reducing mechanism, the evaporator, and the refrigerant pump, and the cooling means for performing the cooling operation using the cold energy in the heat storage tank, and the ice stored in the heat storage tank When the remaining ice detecting means for judging the presence or absence of the heat storage medium is detected by the temperature of the heat storage medium and the temperature of the heat storage medium immediately after the end of the cooling operation is detected by the remaining ice detection means for a predetermined time When a cool storage operation is performed and it is detected that the temperature is below a certain value, an integrated cooling time from the previous cool storage operation end time to the current cool storage operation start time is calculated, and the amount of cooling with respect to the maximum cool storage amount of the heat storage tank is calculated. Determine the percentage of ice When the cold storage operation is performed according to the cold storage operation time set corresponding to the amount of ice, it is detected that the temperature is below a certain value and the temperature of the heat storage medium is detected to be above a certain value during the cooling operation. A heat storage type air conditioner comprising: a cold storage control means for performing the cold storage operation for a predetermined time.
JP12079697A 1997-05-12 1997-05-12 Thermal storage air conditioner Expired - Lifetime JP3852501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12079697A JP3852501B2 (en) 1997-05-12 1997-05-12 Thermal storage air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12079697A JP3852501B2 (en) 1997-05-12 1997-05-12 Thermal storage air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006165790A Division JP4389898B2 (en) 2006-06-15 2006-06-15 Thermal storage air conditioner

Publications (2)

Publication Number Publication Date
JPH10311567A JPH10311567A (en) 1998-11-24
JP3852501B2 true JP3852501B2 (en) 2006-11-29

Family

ID=14795217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12079697A Expired - Lifetime JP3852501B2 (en) 1997-05-12 1997-05-12 Thermal storage air conditioner

Country Status (1)

Country Link
JP (1) JP3852501B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004021621D1 (en) * 2003-10-15 2009-07-30 Ice Energy Inc COOLER
JP5333557B2 (en) * 2011-09-30 2013-11-06 ダイキン工業株式会社 Hot water supply air conditioning system
CN109751825A (en) * 2017-11-07 2019-05-14 丹阳市宏光机械有限公司 A kind of cold accumulating pond cold supply system
CN109237734B (en) * 2018-08-31 2021-03-19 青岛海尔空调电子有限公司 Heating control method for chassis of air conditioner outdoor unit
CN113074448B (en) * 2021-03-22 2022-03-08 海信(山东)空调有限公司 Method for controlling starting of air conditioner, computer storage medium and air conditioner

Also Published As

Publication number Publication date
JPH10311567A (en) 1998-11-24

Similar Documents

Publication Publication Date Title
JP2002120551A (en) Air conditioner control device for vehicle
JP3852501B2 (en) Thermal storage air conditioner
JP5499982B2 (en) Air defrosting device for air defrost
JP4389898B2 (en) Thermal storage air conditioner
JPH0828987A (en) Liquid refrigerant discharging device for compressor
JP2966786B2 (en) Air conditioner
JP2004074824A (en) Air conditioner for vehicle
JPH0245777B2 (en)
JP2856015B2 (en) Thermal storage type air conditioner
JP3513740B2 (en) Air conditioner
JP3433600B2 (en) Air conditioner
JP2005003250A (en) Air conditioner and its control method
JP2884874B2 (en) Air conditioner
JPH0755236A (en) Air conditioner
JPH11132605A (en) Air conditioner
JPS63231131A (en) Heat pump type air-conditioning machine
JP2589105B2 (en) Heat pump type air conditioner
JPH0285629A (en) Heat pump type air conditioner
JP3033260B2 (en) Defrosting control device for refrigeration equipment
JPS6399442A (en) Defrosting controller of air conditioner
JPS60114670A (en) Air conditioner
JPH07217965A (en) Air conditioning equipment
JPH1194406A (en) Air conditioner
JP2503785B2 (en) Operation control device for air conditioner
JPS58175747A (en) Defrosting controller for heat pump type air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term