JP2014126350A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2014126350A
JP2014126350A JP2012285953A JP2012285953A JP2014126350A JP 2014126350 A JP2014126350 A JP 2014126350A JP 2012285953 A JP2012285953 A JP 2012285953A JP 2012285953 A JP2012285953 A JP 2012285953A JP 2014126350 A JP2014126350 A JP 2014126350A
Authority
JP
Japan
Prior art keywords
heat storage
heat exchanger
outdoor
heat
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012285953A
Other languages
Japanese (ja)
Inventor
Hideji Furui
秀治 古井
Koichi Yasuo
晃一 安尾
Masakazu Okamoto
昌和 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2012285953A priority Critical patent/JP2014126350A/en
Publication of JP2014126350A publication Critical patent/JP2014126350A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To propose an air conditioner capable of switching over between a heating operation and the other operation without increasing the number of expansion valves.SOLUTION: An air conditioner comprises: a heat-storage heat exchanger (30) that causes heat exchange between refrigerant of an outdoor circuit (21) and a heat storage medium; and switching mechanisms (27, 44, 45, 50, 52, 53, 54, 55, 100) configured to switch an operation over between a first operation in which refrigerant compressed in a compressor (24) is made to radiate heat in an indoor heat exchanger (62), subjected to pressure reduction in an outdoor expansion valve (28), and evaporated in an outdoor heat exchanger (25), and a second operation in which the refrigerant compressed by the compressor (24) is made to radiate heat in the outdoor heat exchanger (25), subjected to pressure reduction in the outdoor expansion valve (28) and evaporated in the heat-storage heat exchanger (30).

Description

本発明は、蓄熱用熱交換器を備えた空気調和機に関するものである。     The present invention relates to an air conditioner equipped with a heat storage heat exchanger.

従来より、室内の冷房や暖房を行う空気調和機が知られている。この種の空気調和機として、冷媒によって蓄熱媒体を冷却し、この蓄熱媒体のいわゆる冷熱を利用して冷房能力の向上を図るものが知られている。     Conventionally, an air conditioner that performs indoor cooling or heating is known. As this type of air conditioner, there is known one that cools a heat storage medium with a refrigerant and uses the so-called cold heat of the heat storage medium to improve the cooling capacity.

例えば特許文献1に開示の空気調和機は、圧縮機と、室外熱交換器と、室内熱交換器と、蓄熱用熱交換器(第1コイル)と、過冷却用熱交換器(第2コイル)とが接続された冷媒回路を有している。蓄熱用熱交換器と過冷却用熱交換器とは、それぞれ蓄熱媒体を含む蓄熱槽内に配置される。この冷媒回路では、蓄熱用熱交換器と、室外熱交換器とが互いに並列に接続され、且つ冷媒回路の液管に過冷却用熱交換器の流入端と流出端とが接続される(例えば同文献の図1を参照)。この空気調和機では、冷媒によって蓄熱媒体を冷却する蓄冷熱運転と、蓄熱媒体によって冷媒を過冷却する蓄冷熱回収運転と、通常の冷房運転とが切り換えて行われる。     For example, an air conditioner disclosed in Patent Document 1 includes a compressor, an outdoor heat exchanger, an indoor heat exchanger, a heat storage heat exchanger (first coil), and a supercooling heat exchanger (second coil). ) And a refrigerant circuit connected thereto. The heat storage heat exchanger and the supercooling heat exchanger are respectively disposed in a heat storage tank including a heat storage medium. In this refrigerant circuit, the heat storage heat exchanger and the outdoor heat exchanger are connected in parallel to each other, and the inflow end and the outflow end of the supercooling heat exchanger are connected to the liquid pipe of the refrigerant circuit (for example, (See FIG. 1 of the document). In this air conditioner, a cold storage heat operation in which the heat storage medium is cooled by the refrigerant, a cold storage heat recovery operation in which the refrigerant is supercooled by the heat storage medium, and a normal cooling operation are performed.

具体的に、蓄冷熱運転では、圧縮機で圧縮された冷媒が、室外熱交換器で凝縮し、第1バイパス流路を通じて蓄熱用熱交換器を流れる。蓄熱用熱交換器では、冷媒が蓄熱媒体から吸熱して蒸発する。これにより、蓄熱媒体には、いわゆる冷熱が付与される。蓄熱用熱交換器を流出した冷媒は、圧縮機に吸入されて再び圧縮される。また、蓄冷熱回収運転では、圧縮機で圧縮された冷媒が、室外熱交換器で凝縮し、液管を通じて過冷却用熱交換器を流れる。過冷却用熱交換器では、蓄熱媒体によって冷媒が過冷却される。過冷却用熱交換器で過冷却された冷媒は、室内熱交換器で蒸発し、室内の冷房に利用される。また、通常の冷房運転では、室外熱交換器で放熱した冷媒が、蓄熱用熱交換器や過冷却用熱交換器をバイパスするように液管を流れ、室内熱交換器で蒸発する。これにより、通常の冷凍サイクルによる冷房運転が行われる。     Specifically, in the cold storage heat operation, the refrigerant compressed by the compressor is condensed by the outdoor heat exchanger and flows through the heat storage heat exchanger through the first bypass flow path. In the heat storage heat exchanger, the refrigerant absorbs heat from the heat storage medium and evaporates. Thereby, what is called cold heat is provided to a thermal storage medium. The refrigerant flowing out of the heat storage heat exchanger is sucked into the compressor and compressed again. In the cold storage heat recovery operation, the refrigerant compressed by the compressor is condensed by the outdoor heat exchanger and flows through the supercooling heat exchanger through the liquid pipe. In the supercooling heat exchanger, the refrigerant is supercooled by the heat storage medium. The refrigerant supercooled by the supercooling heat exchanger is evaporated by the indoor heat exchanger and used for indoor cooling. In a normal cooling operation, the refrigerant radiated by the outdoor heat exchanger flows through the liquid pipe so as to bypass the heat storage heat exchanger and the supercooling heat exchanger, and evaporates in the indoor heat exchanger. Thereby, the cooling operation by a normal refrigerating cycle is performed.

特開平1−174864号公報JP-A-1-174864

ところで、特許文献1に開示の図1における室外熱交換器2の液側に室外膨張弁を付与し、冷媒回路で逆の冷凍サイクルを行うことで、暖房運転を可能にすることが考えられる。つまり、圧縮機で圧縮した冷媒を、室内熱交換器4で放熱させ、室外膨張弁で減圧した後、室外熱交換器で蒸発させることで、室内の暖房を行うことができる。しかし、このようにすると、冷媒回路では、膨張弁の数が増えるため、コストの増大を招いてしまう。     By the way, it is conceivable to enable heating operation by providing an outdoor expansion valve on the liquid side of the outdoor heat exchanger 2 in FIG. 1 disclosed in Patent Document 1 and performing a reverse refrigeration cycle in the refrigerant circuit. In other words, the refrigerant compressed by the compressor can be radiated by the indoor heat exchanger 4, depressurized by the outdoor expansion valve, and then evaporated by the outdoor heat exchanger, thereby heating the room. However, if it does in this way, in a refrigerant circuit, since the number of expansion valves will increase, it will cause an increase in cost.

本発明は、かかる点に鑑みてなされたものであり、その目的は、膨張弁の数量を増やすことなく、暖房運転と他の運転とを切り換えることができる空気調和機を提案することである。     This invention is made | formed in view of this point, The objective is to propose the air conditioner which can switch heating operation and another operation | movement, without increasing the quantity of an expansion valve.

第1の発明は、圧縮機(24)と室外膨張弁(28)と室外熱交換器(25)が接続される室外回路(21)と、室内膨張弁(63)及び室内熱交換器(62)が接続される室内回路(61)とを備え、上記室内回路(61)と室外回路(21)とが互いに接続されて冷媒回路(15)が構成される空気調和機を対象とし、上記室外回路(21)の冷媒と蓄熱媒体とを熱交換させる蓄熱用熱交換器(30)と、上記圧縮機(24)で圧縮した冷媒を上記室内熱交換器(62)で放熱させ、上記室外膨張弁(28)で減圧した後、上記室外熱交換器(25)で蒸発させる第1運転と、上記圧縮機(24)で圧縮した冷媒を上記室外熱交換器(25)で放熱させ、上記室外膨張弁(28)で減圧した後、上記蓄熱用熱交換器(30)で蒸発させる第2運転とを切り換えるように構成される切換機構(27,44,45,50,52,53,54,55,100)とを備えていることを特徴とする。     The first invention includes an outdoor circuit (21) to which a compressor (24), an outdoor expansion valve (28), and an outdoor heat exchanger (25) are connected, an indoor expansion valve (63), and an indoor heat exchanger (62 ) Is connected to the indoor circuit (61), and the indoor circuit (61) and the outdoor circuit (21) are connected to each other to form a refrigerant circuit (15). The heat storage heat exchanger (30) for exchanging heat between the refrigerant of the circuit (21) and the heat storage medium, and the refrigerant compressed by the compressor (24) is radiated by the indoor heat exchanger (62), and the outdoor expansion is performed. After the pressure is reduced by the valve (28), the first operation for evaporating by the outdoor heat exchanger (25), and the refrigerant compressed by the compressor (24) is radiated by the outdoor heat exchanger (25), and the outdoor A switching mechanism (27, 44, 45, etc.) configured to switch between the second operation in which the pressure is reduced by the expansion valve (28) and evaporated by the heat storage heat exchanger (30). 50, 52, 53, 54, 55, 100).

第1の発明では、切換機構(27,44,45,50,52,53,54,55,100)によって、第1運転と第2運転とが切り換えて行われる。第1運転では、圧縮機(24)で圧縮された冷媒が室内熱交換器(62)で室内空気へ放熱して凝縮する。この結果、室内の暖房が行われる。室内熱交換器(62)で凝縮した冷媒は、室外膨張弁(28)で減圧された後、室外熱交換器(25)で蒸発する。室外熱交換器(25)で蒸発した冷媒は、圧縮機(24)に吸入される。     In the first invention, the first operation and the second operation are switched by the switching mechanism (27, 44, 45, 50, 52, 53, 54, 55, 100). In the first operation, the refrigerant compressed by the compressor (24) dissipates heat to the indoor air and condenses in the indoor heat exchanger (62). As a result, the room is heated. The refrigerant condensed in the indoor heat exchanger (62) is depressurized by the outdoor expansion valve (28) and then evaporated in the outdoor heat exchanger (25). The refrigerant evaporated in the outdoor heat exchanger (25) is sucked into the compressor (24).

第2運転では、圧縮機で圧縮された冷媒が、室外熱交換器(25)で室外空気へ放熱して凝縮する。室外熱交換器(25)で凝縮された冷媒は、室外膨張弁(28)で減圧された後、蓄熱用熱交換器(30)を流れる。蓄熱用熱交換器(30)では、減圧された低圧の冷媒と、蓄熱媒体とが熱交換する。この結果、冷媒が蓄熱媒体から吸熱して蒸発する一方、蓄熱媒体にいわゆる冷熱が付与される。蓄熱用熱交換器(30)で蓄熱媒体の冷却に利用された冷媒は、圧縮機(24)に吸入される。     In the second operation, the refrigerant compressed by the compressor dissipates heat to the outdoor air and condenses in the outdoor heat exchanger (25). The refrigerant condensed in the outdoor heat exchanger (25) is depressurized by the outdoor expansion valve (28) and then flows through the heat storage heat exchanger (30). In the heat storage heat exchanger (30), heat is exchanged between the decompressed low-pressure refrigerant and the heat storage medium. As a result, the refrigerant absorbs heat from the heat storage medium and evaporates, while so-called cold heat is applied to the heat storage medium. The refrigerant used for cooling the heat storage medium in the heat storage heat exchanger (30) is sucked into the compressor (24).

以上のように、本発明では、第1運転と第2運転との双方において、室外膨張弁(28)が冷媒の減圧に利用される。     As described above, in the present invention, the outdoor expansion valve (28) is used for decompression of the refrigerant in both the first operation and the second operation.

第2の発明は、第1の発明において、上記切換機構(27,44,45,50,52,53,54,55,100)は、上記圧縮機(24)で圧縮した冷媒を上記室外熱交換器(25)で放熱させ、上記蓄熱用熱交換器(30)の蓄熱媒体によって冷却し、上記室内膨張弁(63)で減圧した後、上記室内熱交換器(62)で蒸発させる第3運転を行うように構成されることを特徴とする。     In a second aspect based on the first aspect, the switching mechanism (27, 44, 45, 50, 52, 53, 54, 55, 100) is configured such that the refrigerant compressed by the compressor (24) is converted into the outdoor heat exchanger. A third operation is performed in which the heat is radiated in (25), cooled by the heat storage medium of the heat storage heat exchanger (30), depressurized by the indoor expansion valve (63), and then evaporated by the indoor heat exchanger (62). It is configured to do.

第2の発明では、切換機構(27,44,45,50,52,53,54,55,100)によって、第3運転が切り換えて行われる。第3運転では、圧縮機(24)で圧縮された冷媒が、室外熱交換器(25)で放熱し、蓄熱用熱交換器(30)を流れる。蓄熱用熱交換器(30)では、蓄熱媒体によって冷媒が冷却される。蓄熱用熱交換器(30)で過冷却度が増大した冷媒は、室内熱交換器(62)で蒸発する。これにより、室内の冷媒が行われる。室内熱交換器(62)で蒸発した冷媒は、圧縮機(24)に吸入される。     In the second invention, the third operation is switched by the switching mechanism (27, 44, 45, 50, 52, 53, 54, 55, 100). In the third operation, the refrigerant compressed by the compressor (24) dissipates heat in the outdoor heat exchanger (25) and flows through the heat storage heat exchanger (30). In the heat storage heat exchanger (30), the refrigerant is cooled by the heat storage medium. The refrigerant whose degree of supercooling has increased in the heat storage heat exchanger (30) evaporates in the indoor heat exchanger (62). Thereby, an indoor refrigerant | coolant is performed. The refrigerant evaporated in the indoor heat exchanger (62) is sucked into the compressor (24).

第3の発明は、第1又は第2の発明において、流動性を有する蓄熱媒体が貯留される貯留部(72)と、該蓄熱媒体を搬送するポンプ(73)と、上記蓄熱用熱交換器(30)の蓄熱媒体側の流路(32)が接続され、上記蓄熱媒体が循環する蓄熱回路(71)とを備えていることを特徴とする。     According to a third invention, in the first or second invention, a storage part (72) in which a heat storage medium having fluidity is stored, a pump (73) for conveying the heat storage medium, and the heat storage heat exchanger The heat storage medium side flow path (32) of (30) is connected, and the heat storage circuit (71) through which the heat storage medium circulates is provided.

第3の発明では、蓄熱回路(71)のポンプ(73)が運転されることで、貯留部(72)の蓄熱媒体が蓄熱回路(71)を循環する。蓄熱用熱交換器(30)では、蓄熱回路(71)を循環する蓄熱媒体と、冷媒回路(15)を流れる冷媒とが熱交換する。     In 3rd invention, the heat storage medium of a storage part (72) circulates through a heat storage circuit (71) because the pump (73) of a heat storage circuit (71) is drive | operated. In the heat storage heat exchanger (30), the heat storage medium circulating in the heat storage circuit (71) and the refrigerant flowing in the refrigerant circuit (15) exchange heat.

第4の発明は、請求項3において、上記蓄熱回路(71)の蓄熱媒体は、臭化テトラnブチルアンモニウム水溶液であることを特徴とする。     A fourth invention is characterized in that, in claim 3, the heat storage medium of the heat storage circuit (71) is a tetra-n-butylammonium bromide aqueous solution.

第4の発明では、冷媒と熱交換する蓄熱媒体として、臭化テトラnブチルアンモニウム水溶液が用いられる。臭化テトラnブチルアンモニウム水溶液は、0℃よりも高い所定の温度まで冷却されると、臭化テトラnブチルアンモニウムを中心とした水との包接水和物を含むスラリー状になる。このため、蓄熱媒体に含まれる包接水和物の潜熱を利用して冷媒を冷却することができ、且つこの蓄熱媒体を蓄熱回路(71)で循環させることができる。     In the fourth invention, an aqueous solution of tetra-n-butylammonium bromide is used as a heat storage medium that exchanges heat with the refrigerant. When the aqueous solution of tetra-n-butylammonium bromide is cooled to a predetermined temperature higher than 0 ° C., it becomes a slurry containing clathrate hydrate with water centering on tetra-n-butylammonium bromide. For this reason, the refrigerant can be cooled using the latent heat of the clathrate hydrate contained in the heat storage medium, and the heat storage medium can be circulated in the heat storage circuit (71).

本発明によれば、第1運転と第2運転との双方において、室外回路(21)の室外膨張弁(28)を兼用する構成としたので、冷媒回路(15)の部品点数を削減することができる。この結果、空気調和機の低コスト化を図ることができる。     According to the present invention, since the outdoor expansion valve (28) of the outdoor circuit (21) is also used in both the first operation and the second operation, the number of parts of the refrigerant circuit (15) can be reduced. Can do. As a result, the cost of the air conditioner can be reduced.

第2の発明では、蓄熱媒体に付与したいわゆる冷熱を利用して室内の冷房を行うことができる。また、第3の発明では、蓄熱用熱交換器(30)において、流動性を有する蓄熱媒体と冷媒とを熱交換させることで、蓄熱媒体に冷熱を付与する、あるいはこの蓄熱媒体によって冷媒を冷却することができる。特に、第4の発明によれば、蓄熱媒体として臭化テトラnブチルアンモニウム水溶液を用いることで、蓄熱媒体による冷媒の冷却能力を向上でき、省エネ性に優れた空気調和機を提供できる。     In 2nd invention, indoor cooling can be performed using what is called the cold provided to the thermal storage medium. In the third invention, in the heat storage heat exchanger (30), the heat storage medium having fluidity and the refrigerant are subjected to heat exchange, whereby cold heat is applied to the heat storage medium or the refrigerant is cooled by the heat storage medium. can do. In particular, according to the fourth aspect of the invention, by using an aqueous solution of tetra-n-butylammonium bromide as the heat storage medium, it is possible to improve the cooling capacity of the refrigerant by the heat storage medium and provide an air conditioner with excellent energy saving.

図1は、実施形態1に係る空気調和機の概略の構成を示す配管系統図である。FIG. 1 is a piping diagram illustrating a schematic configuration of the air conditioner according to the first embodiment. 図2は、実施形態1に係る空気調和機の概略の構成を示す配管系統図であり、蓄熱運転時の冷媒及び蓄熱媒体の流れを表したものである。FIG. 2 is a piping system diagram illustrating a schematic configuration of the air conditioner according to the first embodiment, and illustrates the flow of the refrigerant and the heat storage medium during the heat storage operation. 図3は、実施形態1に係る空気調和機の概略の構成を示す配管系統図であり、蓄熱利用冷房運転時の冷媒及び蓄熱媒体の流れを表したものである。FIG. 3 is a piping system diagram showing a schematic configuration of the air conditioner according to the first embodiment, and shows the flow of the refrigerant and the heat storage medium during the heat storage cooling operation. 図4は、実施形態1に係る空気調和機の概略の構成を示す配管系統図であり、冷房運転時の冷媒及び蓄熱媒体の流れを表したものである。FIG. 4 is a piping system diagram illustrating a schematic configuration of the air conditioner according to the first embodiment, and illustrates the flow of the refrigerant and the heat storage medium during the cooling operation. 図5は、実施形態1に係る空気調和機の概略の構成を示す配管系統図であり、暖房運転時の冷媒及び蓄熱媒体の流れを表したものである。FIG. 5 is a piping system diagram illustrating a schematic configuration of the air conditioner according to the first embodiment, and illustrates the flow of the refrigerant and the heat storage medium during the heating operation. 図6は、実施形態1の変形例に係る空気調和機の概略の構成を示す配管系統図である。FIG. 6 is a piping diagram illustrating a schematic configuration of an air conditioner according to a modification of the first embodiment. 図7は、実施形態2に係る空気調和機の概略の構成を示す配管系統図である。FIG. 7 is a piping diagram illustrating a schematic configuration of the air conditioner according to the second embodiment. 図8は、実施形態2の変形例1に係る空気調和機の概略の構成を示す配管系統図である。FIG. 8 is a piping diagram illustrating a schematic configuration of the air conditioner according to the first modification of the second embodiment. 図9は、実施形態2の変形例2に係る空気調和機の概略の構成を示す配管系統図である。FIG. 9 is a piping system diagram illustrating a schematic configuration of an air conditioner according to a second modification of the second embodiment.

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。     Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.

《発明の実施形態1》
本発明の実施形態1は、室内の冷房と暖房とを切り換えて行う空気調和機(10)である。空気調和機(10)は、例えばビル等の室内の空調に用いられる、いわゆるビル用マルチ式に構成される。図1に示すように、空気調和機(10)は、室外ユニット(20)と、複数の室内ユニット(60)と、蓄熱ユニット(70)を備えている。なお、図1では、2台の室内ユニット(60)を図示しているが、室内ユニット(60)を1台、あるいは3台以上としてもよい。室外ユニット(20)及び蓄熱ユニット(70)は、例えばビル等の屋上に設置されている。室内ユニット(60)は、ビル等の室内の例えば天井に設置されている。室外ユニット(20)と、複数の室内ユニット(60)とは、2本の連絡配管(液管(11)及びガス管(12))を介して互いに接続されている。これにより、空気調和機(10)では、冷媒が充填される冷媒回路(15)が構成される。冷媒回路(15)では、蒸気圧縮式の冷凍サイクルが行われる。液管(11)及びガス管(12)は、比較的長い全長(例えば150m)を有している。
Embodiment 1 of the Invention
Embodiment 1 of the present invention is an air conditioner (10) that performs switching between indoor cooling and heating. The air conditioner (10) is configured as a so-called multi-type for buildings that is used for air conditioning in a room such as a building. As shown in FIG. 1, the air conditioner (10) includes an outdoor unit (20), a plurality of indoor units (60), and a heat storage unit (70). In FIG. 1, two indoor units (60) are illustrated, but the indoor unit (60) may be one, or three or more. The outdoor unit (20) and the heat storage unit (70) are installed on the roof of a building or the like, for example. The indoor unit (60) is installed, for example, on the ceiling of a room such as a building. The outdoor unit (20) and the plurality of indoor units (60) are connected to each other via two connecting pipes (a liquid pipe (11) and a gas pipe (12)). Thereby, in an air conditioner (10), the refrigerant circuit (15) with which a refrigerant | coolant is filled is comprised. In the refrigerant circuit (15), a vapor compression refrigeration cycle is performed. The liquid pipe (11) and the gas pipe (12) have a relatively long overall length (for example, 150 m).

〈室外ユニット〉
室外ユニット(20)には、室外回路(21)が設けられている。室外回路(21)には、液閉鎖弁(22)とガス閉鎖弁(23)とが設けられる。液閉鎖弁(22)には、液管(11)の一端が接続され、ガス閉鎖弁(23)には、ガス管(12)の一端が接続される。
<Outdoor unit>
The outdoor unit (20) is provided with an outdoor circuit (21). The outdoor circuit (21) is provided with a liquid closing valve (22) and a gas closing valve (23). One end of a liquid pipe (11) is connected to the liquid closing valve (22), and one end of a gas pipe (12) is connected to the gas closing valve (23).

室外回路(21)には、圧縮機(24)と、室外熱交換器(25)とが接続されている。圧縮機(24)は、インバータの出力周波数を調節することで、モータの回転数(運転周波数)が可変に構成される。室外熱交換器(25)は、例えばフィン・アンド・チューブ式の熱交換器で構成される。室外熱交換器(25)の近傍には、室外ファン(26)が設置される。室外熱交換器(25)では、室外ファン(26)が搬送する室外空気と冷媒とが熱交換する。     A compressor (24) and an outdoor heat exchanger (25) are connected to the outdoor circuit (21). The compressor (24) is configured such that the rotational speed (operation frequency) of the motor is variable by adjusting the output frequency of the inverter. The outdoor heat exchanger (25) is constituted by, for example, a fin-and-tube heat exchanger. An outdoor fan (26) is installed in the vicinity of the outdoor heat exchanger (25). In the outdoor heat exchanger (25), the outdoor air conveyed by the outdoor fan (26) and the refrigerant exchange heat.

室外回路(21)には、四方切換弁(27)が接続されている。四方切換弁(27)は、第1から第4までのポートを有している。四方切換弁(27)では、第1ポートが圧縮機(24)の吐出側に繋がり、第2ポートがガス閉鎖弁(23)に繋がり、第3ポートが圧縮機(24)の吸入側に繋がり、第4ポートが室外熱交換器(25)のガス側端部に繋がっている。四方切換弁(27)は、第1ポートと第4ポートとが連通し且つ第2ポートと第3ポートとが連通する第1状態(図1の実線で示す状態)と、第1ポートと第2ポートとが連通し且つ第3ポートと第4ポートとが連通する第2状態(図1の破線で示す状態)とに切換可能に構成される。     A four-way switching valve (27) is connected to the outdoor circuit (21). The four-way switching valve (27) has first to fourth ports. In the four-way switching valve (27), the first port is connected to the discharge side of the compressor (24), the second port is connected to the gas shut-off valve (23), and the third port is connected to the suction side of the compressor (24). The fourth port is connected to the gas side end of the outdoor heat exchanger (25). The four-way selector valve (27) includes a first state (state indicated by a solid line in FIG. 1) in which the first port and the fourth port communicate with each other and a second port and a third port communicate with each other, It is configured to be switchable to a second state (state indicated by a broken line in FIG. 1) in which the two ports communicate and the third port and the fourth port communicate.

室外回路(21)には、蓄熱用熱交換器(30)の第1流路(31)と、室外膨張弁(28)とが接続されている。蓄熱用熱交換器(30)は、冷媒回路(15)と接続する上記第1流路(31)と、蓄熱回路(71)と接続する第2流路(32)とを有している。第1流路(31)は、室外回路(21)において、室内ユニット(60)の室内熱交換器(62)と、室外熱交換器(25)との間に直列に接続される。室外膨張弁(28)は、室外回路(21)において、室外熱交換器(25)と第1流路(31)との間に接続される。室外膨張弁(28)は、開度が調節可能な電子膨張弁で構成される。     The outdoor circuit (21) is connected to the first flow path (31) of the heat storage heat exchanger (30) and the outdoor expansion valve (28). The heat storage heat exchanger (30) includes the first flow path (31) connected to the refrigerant circuit (15) and the second flow path (32) connected to the heat storage circuit (71). In the outdoor circuit (21), the first channel (31) is connected in series between the indoor heat exchanger (62) of the indoor unit (60) and the outdoor heat exchanger (25). The outdoor expansion valve (28) is connected between the outdoor heat exchanger (25) and the first flow path (31) in the outdoor circuit (21). The outdoor expansion valve (28) is an electronic expansion valve whose opening degree can be adjusted.

室外回路(21)には、第1液配管(41)と、第2液配管(42)と、バイパス配管(43)とが接続される。第1液配管(41)は、その一端が室外熱交換器(25)の液側端部に接続している。第2液配管(42)は、その一端が第1液配管(41)の他端に接続している。第2液配管(42)の他端は、液閉鎖弁(22)に接続している。第2液配管(42)には、第1開閉弁(44)が接続されている。第1開閉弁(44)は、例えば開閉自在な電磁開閉弁で構成される。バイパス配管(43)は、その一端が第1液配管(41)と第2液配管(42)の接続部に接続している。バイパス配管(43)の他端は、四方切換弁(27)の第2ポートに接続している。バイパス配管(43)には、第2開閉弁(45)が接続されている。第2開閉弁(45)は、例えば開閉自在な電磁開閉弁で構成される。     A first liquid pipe (41), a second liquid pipe (42), and a bypass pipe (43) are connected to the outdoor circuit (21). One end of the first liquid pipe (41) is connected to the liquid side end of the outdoor heat exchanger (25). One end of the second liquid pipe (42) is connected to the other end of the first liquid pipe (41). The other end of the second liquid pipe (42) is connected to the liquid closing valve (22). A first on-off valve (44) is connected to the second liquid pipe (42). The first on-off valve (44) is constituted by, for example, an electromagnetic on-off valve that can be freely opened and closed. One end of the bypass pipe (43) is connected to the connection portion of the first liquid pipe (41) and the second liquid pipe (42). The other end of the bypass pipe (43) is connected to the second port of the four-way switching valve (27). A second on-off valve (45) is connected to the bypass pipe (43). The second on-off valve (45) is constituted by, for example, an electromagnetic on-off valve that can be freely opened and closed.

バイパス配管(43)は、第1流路(31)と圧縮機(24)の吸入側とを繋ぐバイパス流路を構成する。第2液配管(42)は、蓄熱用熱交換器(30)の第1流路(31)と液管(11)とを繋ぐ液ラインを構成する。第1開閉弁(44)及び第2開閉弁(45)は、第2液配管(42)及びバイパス配管(43)と、第1流路(31)の連通状態を切り換える流路切換機構を構成する。     The bypass pipe (43) constitutes a bypass flow path that connects the first flow path (31) and the suction side of the compressor (24). The second liquid pipe (42) constitutes a liquid line that connects the first flow path (31) and the liquid pipe (11) of the heat storage heat exchanger (30). The first on-off valve (44) and the second on-off valve (45) constitute a flow path switching mechanism for switching the communication state between the second liquid pipe (42) and the bypass pipe (43) and the first flow path (31). To do.

第2液配管(42)には、第1開閉弁(44)の前後を繋ぐ連通管(46)(連通路)が接続されている。連通管(46)には、圧力逃がし弁(47)が接続される。圧力逃がし弁(47)は、液管(11)側の圧力が上昇すると開放され、該液管(11)側の冷媒を蓄熱用熱交換器(30)側へ放出する。     The second liquid pipe (42) is connected to a communication pipe (46) (communication path) that connects the front and rear of the first on-off valve (44). A pressure relief valve (47) is connected to the communication pipe (46). The pressure relief valve (47) is opened when the pressure on the liquid pipe (11) side increases, and discharges the refrigerant on the liquid pipe (11) side to the heat storage heat exchanger (30) side.

〈室内ユニット〉
各室内ユニット(60)には、室内回路(61)がそれぞれ設けられている。室内回路(61)の液側端部には、液管(11)の他端が接続され、室内回路(61)のガス側端部には、ガス管(12)の他端が接続される。室内回路(61)には、ガス側端部から液側端部に向かって順に、室内熱交換器(62)と、室内膨張弁(63)とが接続されている。室内熱交換器(62)は、例えばフィン・アンド・チューブ式の熱交換器で構成される。室内熱交換器(62)の近傍には、室内ファン(64)が設置される。室内熱交換器(62)では、室内ファン(64)が搬送する室内空気と冷媒とが熱交換する。室内膨張弁(63)は、例えば開度が調節可能な電子膨張弁で構成される。
<Indoor unit>
Each indoor unit (60) is provided with an indoor circuit (61). The other end of the liquid pipe (11) is connected to the liquid side end of the indoor circuit (61), and the other end of the gas pipe (12) is connected to the gas side end of the indoor circuit (61). . The indoor heat exchanger (62) and the indoor expansion valve (63) are connected to the indoor circuit (61) in order from the gas side end to the liquid side end. The indoor heat exchanger (62) is constituted by, for example, a fin-and-tube heat exchanger. An indoor fan (64) is installed in the vicinity of the indoor heat exchanger (62). In the indoor heat exchanger (62), the indoor air conveyed by the indoor fan (64) and the refrigerant exchange heat. The indoor expansion valve (63) is constituted by an electronic expansion valve whose opening degree can be adjusted, for example.

〈蓄熱ユニット〉
蓄熱ユニット(70)には、流動性を有する蓄熱媒体が充填される蓄熱回路(71)の一部が設けられる。蓄熱回路(71)には、蓄熱媒体が貯留される貯留部(タンク(72))と、蓄熱媒体を搬送する搬送部(ポンプ(73))と、上記蓄熱用熱交換器(30)の第2流路(32)とが接続される。タンク(72)は、中空の密閉型に構成され、室外ユニット(20)の近傍に設置される。タンク(72)には、蓄熱回路(71)の流出管(74)と、蓄熱回路(71)の流入管(75)とが接続される。流出管(74)は、タンク(72)の上部に接続し、流入管(75)は、タンク(72)の下部に接続している。ポンプ(73)は、流出管(74)に接続している。ポンプ(73)は、運転されることで、蓄熱回路(71)の蓄熱媒体を循環させる。蓄熱用熱交換器(30)は、第1流路(31)を流れる冷媒と、第2流路(32)を流れる蓄熱媒体とを熱交換させる。蓄熱用熱交換器(30)は、例えば2重管式の熱交換器で構成される。
<Heat storage unit>
The heat storage unit (70) is provided with a part of the heat storage circuit (71) filled with a fluid heat storage medium. The heat storage circuit (71) includes a storage part (tank (72)) in which the heat storage medium is stored, a transport part (pump (73)) for transporting the heat storage medium, and the heat storage heat exchanger (30). Two flow paths (32) are connected. The tank (72) is formed in a hollow sealed type and is installed in the vicinity of the outdoor unit (20). An outflow pipe (74) of the heat storage circuit (71) and an inflow pipe (75) of the heat storage circuit (71) are connected to the tank (72). The outflow pipe (74) is connected to the upper part of the tank (72), and the inflow pipe (75) is connected to the lower part of the tank (72). The pump (73) is connected to the outflow pipe (74). The pump (73) circulates the heat storage medium of the heat storage circuit (71) when operated. The heat storage heat exchanger (30) exchanges heat between the refrigerant flowing through the first flow path (31) and the heat storage medium flowing through the second flow path (32). The heat storage heat exchanger (30) is composed of, for example, a double-pipe heat exchanger.

本実施形態の蓄熱媒体は、臭化テトラnブチルアンモニウム(TBAB)水溶液及びその包接水和物である。臭化テトラnブチルアンモニウム水溶液は、0℃よりも高い所定の温度(例えば約10℃)の状態において、臭化テトラnブチルアンモニウムを中心とした水との包接水和物を含むスラリー状になる。このため、蓄熱回路(71)では、包接水和物を含む蓄熱媒体を循環させることができる。これにより、蓄熱用熱交換器(30)では、包接水和物の潜熱を利用して冷媒を冷却することができる。     The heat storage medium of the present embodiment is a tetra n-butylammonium bromide (TBAB) aqueous solution and clathrate hydrate thereof. The tetra-n-butylammonium bromide aqueous solution is in the form of a slurry containing clathrate hydrate with water centered on tetra-n-butylammonium bromide at a predetermined temperature higher than 0 ° C. (for example, about 10 ° C.). Become. For this reason, in the heat storage circuit (71), the heat storage medium containing clathrate hydrate can be circulated. Thereby, in the heat storage heat exchanger (30), the refrigerant can be cooled using the latent heat of the clathrate hydrate.

〈コントローラ〉
空気調和機(10)は、圧縮機(24)、ポンプ(73)、四方切換弁(27)、及び各弁(27,28,44,45,63)を制御するためのコントローラ(100)(制御部)を有している。コントローラ(100)は、暖房運転(第1運転)、蓄熱運転(第2運転)、蓄熱利用冷房運転(第3運転)、及び冷房運転(蓄熱非利用冷房運転(第4運転))を開始させる信号に応じて、これらの機器を制御する。コントローラ(100)、四方切換弁(27)、第1開閉弁(44)、及び第2開閉弁(45)は、第1運転から第4運転までを切り換えるための切換機構を構成する。
<controller>
The air conditioner (10) includes a compressor (24), a pump (73), a four-way switching valve (27), and a controller (100) for controlling each valve (27, 28, 44, 45, 63) ( Control section). The controller (100) starts a heating operation (first operation), a heat storage operation (second operation), a heat storage use cooling operation (third operation), and a cooling operation (heat storage non-use cooling operation (fourth operation)). These devices are controlled according to the signal. The controller (100), the four-way switching valve (27), the first on-off valve (44), and the second on-off valve (45) constitute a switching mechanism for switching from the first operation to the fourth operation.

−運転動作−
実施形態1に係る空気調和機(10)は、蓄熱運転と、蓄熱利用冷房運転と、冷房運転と、暖房運転とを切り換えて行うように構成される。以下、各運転について説明する。
-Driving action-
The air conditioner (10) according to Embodiment 1 is configured to perform switching between a heat storage operation, a heat storage use cooling operation, a cooling operation, and a heating operation. Hereinafter, each operation will be described.

〈蓄熱運転〉
蓄熱運転では、冷媒回路(15)の冷媒によって蓄熱媒体が冷却され、この蓄熱媒体にいわゆる冷熱が付与される。蓄熱運転では、コントローラ(100)によって、四方切換弁(27)が第1状態に設定され、第1開閉弁(44)が閉鎖され、第2開閉弁(45)が開放され、室外膨張弁(28)が所定開度に調節される。また、蓄熱運転では、コントローラ(100)によって、圧縮機(24)、室外ファン(26)、及びポンプ(73)が運転される。
<Heat storage operation>
In the heat storage operation, the heat storage medium is cooled by the refrigerant in the refrigerant circuit (15), and so-called cold heat is applied to the heat storage medium. In the heat storage operation, the controller (100) sets the four-way switching valve (27) to the first state, the first on-off valve (44) is closed, the second on-off valve (45) is opened, and the outdoor expansion valve ( 28) is adjusted to the predetermined opening. In the heat storage operation, the controller (100) operates the compressor (24), the outdoor fan (26), and the pump (73).

図2に示すように、蓄熱ユニット(70)のポンプ(73)が運転されると、タンク(72)内の蓄熱媒体が流出管(74)を流出し、蓄熱用熱交換器(30)の第2流路(32)を流れる。一方、冷媒回路(15)では、圧縮機(24)で圧縮された冷媒が、室外熱交換器(25)を流れる。室外熱交換器(25)では、冷媒が室外空気へ放熱して凝縮する。室外熱交換器(25)で凝縮した冷媒は、室外膨張弁(28)で減圧された後、蓄熱用熱交換器(30)の第1流路(31)を流れる。蓄熱用熱交換器(30)では、蓄熱媒体が第2流路(32)を順次流れている。このため、第1流路(31)を流れる低圧の冷媒が、第2流路(32)の蓄熱媒体から吸熱して蒸発する。この結果、第2流路(32)を流れる蓄熱媒体は、冷媒によって順次冷却される。第2流路(32)で冷却された蓄熱媒体は、流入管(75)よりタンク(72)内に流入し、貯留される。また、蓄熱用熱交換器(30)の第1流路(31)で蒸発した冷媒は、バイパス配管(43)を経由して圧縮機(24)に吸入される。     As shown in FIG. 2, when the pump (73) of the heat storage unit (70) is operated, the heat storage medium in the tank (72) flows out of the outflow pipe (74), and the heat storage heat exchanger (30) It flows through the second flow path (32). On the other hand, in the refrigerant circuit (15), the refrigerant compressed by the compressor (24) flows through the outdoor heat exchanger (25). In the outdoor heat exchanger (25), the refrigerant dissipates heat to the outdoor air and condenses. The refrigerant condensed in the outdoor heat exchanger (25) is decompressed by the outdoor expansion valve (28) and then flows through the first flow path (31) of the heat storage heat exchanger (30). In the heat storage heat exchanger (30), the heat storage medium sequentially flows through the second flow path (32). For this reason, the low-pressure refrigerant flowing through the first flow path (31) absorbs heat from the heat storage medium in the second flow path (32) and evaporates. As a result, the heat storage medium flowing through the second flow path (32) is sequentially cooled by the refrigerant. The heat storage medium cooled in the second flow path (32) flows into the tank (72) from the inflow pipe (75) and is stored. The refrigerant evaporated in the first flow path (31) of the heat storage heat exchanger (30) is sucked into the compressor (24) via the bypass pipe (43).

〈蓄熱利用冷房運転〉
蓄熱利用冷房運転では、蓄熱媒体によって冷媒が冷却されながら、室内の冷房が行われる。蓄熱利用冷房運転では、コントローラ(100)によって、四方切換弁(27)が第1状態に設定され、第1開閉弁(44)が開放され、第2開閉弁(45)が閉鎖され、室外膨張弁(28)が全開状態となる。また、蓄熱利用冷房運転では、コントローラ(100)によって、圧縮機(24)、室外ファン(26)、及びポンプ(73)が運転される。また、室内ユニット(60)では、室内膨張弁(63)の開度が調節され、室内ファン(64)が運転される。
<Cooling operation using heat storage>
In the regenerative cooling operation, the room is cooled while the refrigerant is cooled by the heat storage medium. In the regenerative cooling operation, the controller (100) sets the four-way switching valve (27) to the first state, the first on-off valve (44) is opened, the second on-off valve (45) is closed, and the outdoor expansion is performed. The valve (28) is fully opened. In the regenerative cooling operation, the controller (100) operates the compressor (24), the outdoor fan (26), and the pump (73). In the indoor unit (60), the opening of the indoor expansion valve (63) is adjusted, and the indoor fan (64) is operated.

図3に示すように、蓄熱ユニット(70)のポンプ(73)が運転されると、タンク(72)内の蓄熱媒体が流出管(74)を流出し、蓄熱用熱交換器(30)の第2流路(32)を流れる。一方、冷媒回路(15)では、圧縮機(24)で圧縮された冷媒が、室外熱交換器(25)を流れる。室外熱交換器(25)では、冷媒が室外空気へ放熱して凝縮する。室外熱交換器(25)で凝縮した冷媒は、室外膨張弁(28)をそのまま通過し、第1流路(31)を流れる。蓄熱用熱交換器(30)では、蓄熱媒体が第2流路(32)を順次流れている。このため、第1流路(31)を流れる高圧冷媒が、蓄熱媒体によって順次冷却される。第2流路(32)で冷媒を冷却した蓄熱媒体は、流出管(74)よりタンク(72)内に流入し、貯留される。蓄熱用熱交換器(30)の第1流路(31)で過冷却された冷媒は、第2液配管(42)、液管(11)を経由して各室内ユニット(60)へ送られる。     As shown in FIG. 3, when the pump (73) of the heat storage unit (70) is operated, the heat storage medium in the tank (72) flows out of the outflow pipe (74), and the heat storage heat exchanger (30) It flows through the second flow path (32). On the other hand, in the refrigerant circuit (15), the refrigerant compressed by the compressor (24) flows through the outdoor heat exchanger (25). In the outdoor heat exchanger (25), the refrigerant dissipates heat to the outdoor air and condenses. The refrigerant condensed in the outdoor heat exchanger (25) passes through the outdoor expansion valve (28) as it is and flows through the first flow path (31). In the heat storage heat exchanger (30), the heat storage medium sequentially flows through the second flow path (32). For this reason, the high-pressure refrigerant flowing through the first flow path (31) is sequentially cooled by the heat storage medium. The heat storage medium that has cooled the refrigerant in the second flow path (32) flows into the tank (72) through the outflow pipe (74) and is stored. The refrigerant supercooled in the first flow path (31) of the heat storage heat exchanger (30) is sent to each indoor unit (60) via the second liquid pipe (42) and the liquid pipe (11). .

室内ユニット(60)に流入した冷媒は、室内膨張弁(63)で減圧された後、室内熱交換器(62)を流れる。室内熱交換器(62)では、冷媒が室内空気から吸熱して蒸発する。この結果、室内の冷媒が行われる。室内熱交換器(62)で蒸発した冷媒は、ガス管(12)を経由して室外ユニット(20)へ送られ、圧縮機(24)に吸入される。     The refrigerant flowing into the indoor unit (60) is decompressed by the indoor expansion valve (63) and then flows through the indoor heat exchanger (62). In the indoor heat exchanger (62), the refrigerant absorbs heat from the indoor air and evaporates. As a result, indoor refrigerant is performed. The refrigerant evaporated in the indoor heat exchanger (62) is sent to the outdoor unit (20) via the gas pipe (12) and is sucked into the compressor (24).

〈冷房運転〉
冷房運転では、蓄熱媒体で冷媒を冷却せずに、室内の冷房が行われる。通常冷房運転では、コントローラ(100)によって、四方切換弁(27)が第1状態に設定され、第1開閉弁(44)が開放され、第2開閉弁(45)が閉鎖され、室外膨張弁(28)が全開状態となる。また、冷房運転ではコントローラ(100)によって、圧縮機(24)、室外ファン(26)が運転される一方、ポンプ(73)は停止状態となる。また、室内ユニット(60)では、室内膨張弁(63)の開度が調節され、室内ファン(64)が運転される。
<Cooling operation>
In the cooling operation, indoor cooling is performed without cooling the refrigerant with the heat storage medium. In normal cooling operation, the controller (100) sets the four-way switching valve (27) to the first state, opens the first on-off valve (44), closes the second on-off valve (45), and opens the outdoor expansion valve. (28) is fully open. In the cooling operation, the controller (100) operates the compressor (24) and the outdoor fan (26), while the pump (73) is stopped. In the indoor unit (60), the opening of the indoor expansion valve (63) is adjusted, and the indoor fan (64) is operated.

図4に示すように、蓄熱ユニット(70)では、ポンプ(73)が停止状態となる。このため、蓄熱回路(71)では、蓄熱媒体が循環することはなく、蓄熱用熱交換器(30)を蓄熱媒体が流れることもない。一方、冷媒回路(15)では、圧縮機(24)で圧縮された冷媒が、室外熱交換器(25)を流れる。室外熱交換器(25)では、冷媒が室外空気へ放熱して凝縮する。室外熱交換器(25)で凝縮した冷媒は、室外膨張弁(28)をそのまま通過し、第1流路(31)を流れる。蓄熱用熱交換器(30)では、上述のように蓄熱媒体が第2流路(32)を流れていない。このため、第1流路(31)を流れる高圧冷媒は、蓄熱媒体によって実質的に冷却されず、第1流路(31)を通過する。第1流路(31)を通過した冷媒は、第2液配管(42)、液管(11)を経由して各室内ユニット(60)へ送られる。     As shown in FIG. 4, in the heat storage unit (70), the pump (73) is stopped. For this reason, in the heat storage circuit (71), the heat storage medium does not circulate, and the heat storage medium does not flow through the heat storage heat exchanger (30). On the other hand, in the refrigerant circuit (15), the refrigerant compressed by the compressor (24) flows through the outdoor heat exchanger (25). In the outdoor heat exchanger (25), the refrigerant dissipates heat to the outdoor air and condenses. The refrigerant condensed in the outdoor heat exchanger (25) passes through the outdoor expansion valve (28) as it is and flows through the first flow path (31). In the heat storage heat exchanger (30), the heat storage medium does not flow through the second flow path (32) as described above. For this reason, the high-pressure refrigerant flowing through the first flow path (31) is not substantially cooled by the heat storage medium and passes through the first flow path (31). The refrigerant that has passed through the first flow path (31) is sent to each indoor unit (60) via the second liquid pipe (42) and the liquid pipe (11).

室内ユニット(60)に流入した冷媒は、室内膨張弁(63)で減圧された後、室内熱交換器(62)を流れる。室内熱交換器(62)では、冷媒が室内空気から吸熱して蒸発する。この結果、室内の冷媒が行われる。室内熱交換器(62)で蒸発した冷媒は、ガス管(12)を経由して室外ユニット(20)へ送られ、圧縮機(24)に吸入される。     The refrigerant flowing into the indoor unit (60) is decompressed by the indoor expansion valve (63) and then flows through the indoor heat exchanger (62). In the indoor heat exchanger (62), the refrigerant absorbs heat from the indoor air and evaporates. As a result, indoor refrigerant is performed. The refrigerant evaporated in the indoor heat exchanger (62) is sent to the outdoor unit (20) via the gas pipe (12) and is sucked into the compressor (24).

〈暖房運転〉
暖房運転では、室内の暖房が行われる。暖房運転では、コントローラ(100)によって、四方切換弁(27)が第2状態に設定され、第1開閉弁(44)が開放され、第2開閉弁(45)が閉鎖され、室外膨張弁(28)の開度が調節される。また、暖房運転では、コントローラ(100)によって、圧縮機(24)、室外ファン(26)が運転される一方、ポンプ(73)は停止状態となる。また、室内ユニット(60)では、室内膨張弁(63)が全開状態となり、室内ファン(64)が運転される。
<Heating operation>
In the heating operation, the room is heated. In the heating operation, the controller (100) sets the four-way switching valve (27) to the second state, the first opening / closing valve (44) is opened, the second opening / closing valve (45) is closed, and the outdoor expansion valve ( The opening degree of 28) is adjusted. In the heating operation, the compressor (24) and the outdoor fan (26) are operated by the controller (100), while the pump (73) is stopped. In the indoor unit (60), the indoor expansion valve (63) is fully opened, and the indoor fan (64) is operated.

図5に示すように、蓄熱ユニット(70)では、ポンプ(73)が停止状態となる。このため、蓄熱回路(71)では、蓄熱媒体が循環することはなく、蓄熱用熱交換器(30)を蓄熱媒体が流れることもない。一方、冷媒回路(15)では、圧縮機(24)で圧縮された冷媒が、ガス管(12)を経由して各室内ユニット(60)へ送られる。室内ユニット(60)に流入した冷媒は、室内熱交換器(62)を流れる。室内熱交換器(62)では、冷媒が室内空気へ放熱して凝縮する。この結果、室内の暖房が行われる。室内熱交換器(62)で凝縮した冷媒は、室内膨張弁(63)をそのまま通過し、液管(11)を経由して室外ユニット(20)へ送られる。     As shown in FIG. 5, in the heat storage unit (70), the pump (73) is stopped. For this reason, in the heat storage circuit (71), the heat storage medium does not circulate, and the heat storage medium does not flow through the heat storage heat exchanger (30). On the other hand, in the refrigerant circuit (15), the refrigerant compressed by the compressor (24) is sent to each indoor unit (60) via the gas pipe (12). The refrigerant that has flowed into the indoor unit (60) flows through the indoor heat exchanger (62). In the indoor heat exchanger (62), the refrigerant dissipates heat to the indoor air and condenses. As a result, the room is heated. The refrigerant condensed in the indoor heat exchanger (62) passes through the indoor expansion valve (63) as it is, and is sent to the outdoor unit (20) via the liquid pipe (11).

室外ユニット(20)に流入した冷媒は、蓄熱用熱交換器(30)の第1流路(31)を流れる。蓄熱用熱交換器(30)では、上述のように蓄熱媒体が第2流路(32)を流れていない。このため、第1流路(31)を流れる高圧冷媒は、蓄熱媒体と実質的に熱交換せず、第1流路(31)を通過する。第1流路(31)を通過した冷媒は、室外膨張弁(28)で減圧された後、室外熱交換器(25)を流れる。室外熱交換器(25)では、冷媒が室外空気から吸熱して蒸発する。室外熱交換器(25)で蒸発した冷媒は、圧縮機(24)に吸入される。     The refrigerant that has flowed into the outdoor unit (20) flows through the first flow path (31) of the heat storage heat exchanger (30). In the heat storage heat exchanger (30), the heat storage medium does not flow through the second flow path (32) as described above. For this reason, the high-pressure refrigerant flowing through the first flow path (31) does not substantially exchange heat with the heat storage medium, and passes through the first flow path (31). The refrigerant that has passed through the first flow path (31) is depressurized by the outdoor expansion valve (28), and then flows through the outdoor heat exchanger (25). In the outdoor heat exchanger (25), the refrigerant absorbs heat from the outdoor air and evaporates. The refrigerant evaporated in the outdoor heat exchanger (25) is sucked into the compressor (24).

−実施形態1の効果−
実施形態1によれば、上述した蓄熱運転と暖房運転との双方において、冷媒を室外膨張弁(28)によって減圧するようにしている。つまり、室外膨張弁(28)は、蓄熱運転と暖房運転との双方で減圧機構を兼用している。このため、実施形態1の空気調和機(10)では、部品点数を削減でき、ひいては空気調和機(10)の低コスト化を図ることができる。
-Effect of Embodiment 1-
According to the first embodiment, the refrigerant is decompressed by the outdoor expansion valve (28) in both the heat storage operation and the heating operation described above. That is, the outdoor expansion valve (28) also serves as a pressure reducing mechanism in both the heat storage operation and the heating operation. For this reason, in the air conditioner (10) of Embodiment 1, the number of parts can be reduced, and the cost of the air conditioner (10) can be reduced.

更に、上述した実施形態では、蓄熱媒体として臭化テトラnブチルアンモニウム水溶液及びその包接水和物を用いている。このため、蓄熱回路(71)で蓄熱媒体を循環させつつ、この蓄熱媒体の潜熱を利用して冷媒を冷却することができる。     Furthermore, in the above-described embodiment, an aqueous solution of tetra n-butylammonium bromide and its clathrate hydrate are used as the heat storage medium. For this reason, it is possible to cool the refrigerant using the latent heat of the heat storage medium while circulating the heat storage medium in the heat storage circuit (71).

〈実施形態1の変形例〉
図6に示す変形例は、実施形態1の2つの開閉弁(44,45)を1つの三方弁(50)(切換機構)に置き換えたものである。三方弁(50)は、第2液配管(42)の一端に接続されている。三方弁(50)は、第1流路(31)と繋がる第1ポートと、バイパス配管(43)と繋がる第2ポートと、第2液配管(42)と繋がる第3ポートとを有している。三方弁(50)は、第1ポートと第2ポートとを連通し第3ポートを閉鎖する第1状態(図6の実線で示す状態)と、第1ポートと第3ポートとを連通し第2ポートを閉鎖する第2状態(図6の破線で示す状態)とに切り換えられる。この変形例においても、上記実施形態1と同様にして、第1運転から第4運転までを切り換えて行うことができる。ここで、変形例においても、蓄熱運転と暖房運転との双方で、冷媒が室外膨張弁(28)によって減圧される。このため、変形例においても、空気調和機(10)の部品点数を削減できる。
<Modification of Embodiment 1>
The modification shown in FIG. 6 is obtained by replacing the two on-off valves (44, 45) of the first embodiment with one three-way valve (50) (switching mechanism). The three-way valve (50) is connected to one end of the second liquid pipe (42). The three-way valve (50) has a first port connected to the first flow path (31), a second port connected to the bypass pipe (43), and a third port connected to the second liquid pipe (42). Yes. The three-way valve (50) communicates the first port and the second port with the first state (shown by the solid line in FIG. 6) and the first port with the third port. It is switched to the second state (the state indicated by the broken line in FIG. 6) in which the two ports are closed. Also in this modified example, the first operation to the fourth operation can be switched as in the first embodiment. Here, also in the modified example, the refrigerant is decompressed by the outdoor expansion valve (28) in both the heat storage operation and the heating operation. For this reason, also in a modification, the number of parts of an air conditioner (10) can be reduced.

《発明の実施形態2》
実施形態2は、実施形態1と冷媒回路(15)の構成が異なっている。図7に示すように、実施形態2では、第1液配管(41)において、蓄熱用熱交換器(30)の第1流路(31)と室外膨張弁(28)と間に第3開閉弁(51)が接続される。第3開閉弁(51)は、例えば開閉自在な電磁弁で構成される。また、室外回路(21)には、第1液配管(41)と並列に第3液配管(52)が接続される。第3液配管(52)の一端は、第1液配管(41)における室外膨張弁(28)と第3開閉弁(51)との間に接続される。第3液配管(52)の他端は、第2液配管(42)における液閉鎖弁(22)と第1開閉弁(44)との間に接続される。第3液配管(52)には、第4開閉弁(53)(切換機構)が接続される。第4開閉弁(53)は、開閉自在な電磁弁で構成される。実施形態2では、上述した実施形態1と同様にして、蓄熱運転、蓄熱利用冷房運転、冷房運転、暖房運転が行われる。
<< Embodiment 2 of the Invention >>
The second embodiment is different from the first embodiment in the configuration of the refrigerant circuit (15). As shown in FIG. 7, in the second embodiment, in the first liquid pipe (41), a third opening / closing is provided between the first flow path (31) of the heat storage heat exchanger (30) and the outdoor expansion valve (28). A valve (51) is connected. The third on-off valve (51) is composed of, for example, an openable / closable electromagnetic valve. A third liquid pipe (52) is connected to the outdoor circuit (21) in parallel with the first liquid pipe (41). One end of the third liquid pipe (52) is connected between the outdoor expansion valve (28) and the third on-off valve (51) in the first liquid pipe (41). The other end of the third liquid pipe (52) is connected between the liquid closing valve (22) and the first on-off valve (44) in the second liquid pipe (42). A fourth open / close valve (53) (switching mechanism) is connected to the third liquid pipe (52). The fourth on-off valve (53) is an openable / closable solenoid valve. In the second embodiment, the heat storage operation, the heat storage use cooling operation, the cooling operation, and the heating operation are performed in the same manner as in the first embodiment.

実施形態2の蓄熱運転では、第1開閉弁(44)が閉鎖され、第2開閉弁(45)が開放され、第3開閉弁(51)が開放され、第4開閉弁(53)が閉鎖される。また、四方切換弁(27)が第1状態に設定され、室外膨張弁(28)の開度が適宜調節される。また、圧縮機(24)及びポンプ(73)が運転される。そして、蓄熱運転では、実施形態1と同様にして、室外熱交換器(25)で冷媒が凝縮し、蓄熱用熱交換器(30)で冷媒が蒸発する冷凍サイクルが行われる。     In the heat storage operation of Embodiment 2, the first on-off valve (44) is closed, the second on-off valve (45) is opened, the third on-off valve (51) is opened, and the fourth on-off valve (53) is closed. Is done. Further, the four-way switching valve (27) is set to the first state, and the opening degree of the outdoor expansion valve (28) is appropriately adjusted. Further, the compressor (24) and the pump (73) are operated. In the heat storage operation, a refrigeration cycle in which the refrigerant is condensed in the outdoor heat exchanger (25) and the refrigerant is evaporated in the heat storage heat exchanger (30) is performed as in the first embodiment.

実施形態2の蓄熱利用冷房運転では、第1開閉弁(44)が開放され、第2開閉弁(45)が閉鎖され、第3開閉弁(51)が開放され、第4開閉弁(53)が閉鎖される。また、四方切換弁(27)が第1状態に設定され、室外膨張弁(28)が全開となり、室内膨張弁(63)の開度が適宜調節される。また、圧縮機(24)及びポンプ(73)が運転される。そして、蓄熱利用冷房運転では、実施形態1と同様にして、室外熱交換器(25)で冷媒が凝縮し、蓄熱用熱交換器(30)で冷媒が過冷却され、室内熱交換器(62)で冷媒が蒸発する冷凍サイクルが行われる。     In the heat storage-use cooling operation of Embodiment 2, the first on-off valve (44) is opened, the second on-off valve (45) is closed, the third on-off valve (51) is opened, and the fourth on-off valve (53). Is closed. Further, the four-way switching valve (27) is set to the first state, the outdoor expansion valve (28) is fully opened, and the opening degree of the indoor expansion valve (63) is appropriately adjusted. Further, the compressor (24) and the pump (73) are operated. In the regenerative cooling operation, the refrigerant is condensed in the outdoor heat exchanger (25) in the same manner as in the first embodiment, the refrigerant is subcooled in the heat storage heat exchanger (30), and the indoor heat exchanger (62 ), A refrigeration cycle in which the refrigerant evaporates is performed.

実施形態2の冷房運転では、第1開閉弁(44)が閉鎖され、第2開閉弁(45)が閉鎖され、第3開閉弁(51)が閉鎖され、第4開閉弁(53)が開放される。また、四方切換弁(27)が第1状態に設定され、室外膨張弁(28)が全開となり、室内膨張弁(63)の開度が適宜調節される。また、圧縮機(24)が運転され、ポンプ(73)が停止する。実施形態2の冷房運転では、圧縮機(24)で圧縮された冷媒が室外熱交換器(25)で凝縮した後、全開状態の室外膨張弁(28)を通過する。この冷媒は、第3液配管(52)、第2液配管(42)、液管(11)を順に流れ、室内熱交換器(62)で蒸発する。室内熱交換器(62)で蒸発した冷媒は、ガス管(12)を流れた後、圧縮機(24)に吸入される。     In the cooling operation of Embodiment 2, the first on-off valve (44) is closed, the second on-off valve (45) is closed, the third on-off valve (51) is closed, and the fourth on-off valve (53) is opened. Is done. Further, the four-way switching valve (27) is set to the first state, the outdoor expansion valve (28) is fully opened, and the opening degree of the indoor expansion valve (63) is appropriately adjusted. Further, the compressor (24) is operated and the pump (73) is stopped. In the cooling operation of the second embodiment, the refrigerant compressed by the compressor (24) is condensed by the outdoor heat exchanger (25), and then passes through the fully-expanded outdoor expansion valve (28). This refrigerant flows through the third liquid pipe (52), the second liquid pipe (42), and the liquid pipe (11) in this order, and evaporates in the indoor heat exchanger (62). The refrigerant evaporated in the indoor heat exchanger (62) flows through the gas pipe (12) and then is sucked into the compressor (24).

実施形態2の暖房運転では、第1開閉弁(44)が閉鎖され、第2開閉弁(45)が閉鎖され、第3開閉弁(51)が閉鎖され、第4開閉弁(53)が開放される。また、四方切換弁(27)が第2状態に設定され、室内膨張弁(63)が全開となり、室外膨張弁(28)の開度が適宜調節される。また、圧縮機(24)が運転され、ポンプ(73)が停止する。実施形態2の暖房運転では、圧縮機(24)で圧縮された冷媒が室内熱交換器(62)で放熱し、暖房に利用される。室内熱交換器(62)で凝縮した冷媒は、全開状態の室内膨張弁(63)を通過し、液管(11)を経由して室外回路(21)へ送られる。この冷媒は、第2液配管、第3液配管(52)を順に通過し、室外膨張弁(28)で減圧され、室外熱交換器(25)で蒸発する。室外熱交換器(25)で蒸発した冷媒は、圧縮機(24)に吸入される。     In the heating operation of the second embodiment, the first on-off valve (44) is closed, the second on-off valve (45) is closed, the third on-off valve (51) is closed, and the fourth on-off valve (53) is opened. Is done. Further, the four-way switching valve (27) is set to the second state, the indoor expansion valve (63) is fully opened, and the opening degree of the outdoor expansion valve (28) is adjusted as appropriate. Further, the compressor (24) is operated and the pump (73) is stopped. In the heating operation of Embodiment 2, the refrigerant compressed by the compressor (24) dissipates heat in the indoor heat exchanger (62) and is used for heating. The refrigerant condensed in the indoor heat exchanger (62) passes through the fully opened indoor expansion valve (63) and is sent to the outdoor circuit (21) via the liquid pipe (11). The refrigerant sequentially passes through the second liquid pipe and the third liquid pipe (52), is depressurized by the outdoor expansion valve (28), and is evaporated by the outdoor heat exchanger (25). The refrigerant evaporated in the outdoor heat exchanger (25) is sucked into the compressor (24).

実施形態2においても、実施形態1と同様にして、蓄熱運転と暖房運転との双方で、冷媒が室外膨張弁(28)で減圧される。この結果、空気調和機(10)の部品点数を削減できる。     In the second embodiment, similarly to the first embodiment, the refrigerant is decompressed by the outdoor expansion valve (28) in both the heat storage operation and the heating operation. As a result, the number of parts of the air conditioner (10) can be reduced.

〈実施形態2の変形例1〉
図8に示す変形例1は、実施形態2の蓄熱回路(71)が省略される一方、蓄熱用熱交換器(30)が蓄熱槽(77)の内部に配置されたものである。蓄熱槽(77)の内部には、蓄熱媒体(例えば水等)が貯留されている。空気調和機のその他の構成は、実施形態2と同様である。
<Modification 1 of Embodiment 2>
In the first modification shown in FIG. 8, the heat storage circuit (71) of the second embodiment is omitted, while the heat storage heat exchanger (30) is arranged inside the heat storage tank (77). A heat storage medium (such as water) is stored inside the heat storage tank (77). Other configurations of the air conditioner are the same as those in the second embodiment.

この変形例1では、実施形態2と同様にして、蓄熱運転、蓄熱利用冷房運転、冷房運転、及び暖房運転が行われる。この変形例の蓄熱運転では、室外熱交換器(25)で凝縮した冷媒が、蓄熱用熱交換器(30)の周囲の蓄熱媒体から吸熱して蒸発する。また、この変形例の蓄熱利用冷房運転では、室外熱交換器(25)で凝縮した冷媒が蓄熱用熱交換器(30)の周囲の蓄熱媒体で冷却された後、室内熱交換器(62)で蒸発する。     In the first modification, the heat storage operation, the heat storage use cooling operation, the cooling operation, and the heating operation are performed as in the second embodiment. In the heat storage operation of this modification, the refrigerant condensed in the outdoor heat exchanger (25) absorbs heat from the heat storage medium around the heat storage heat exchanger (30) and evaporates. Further, in the cooling operation using the heat storage of this modification, the refrigerant condensed in the outdoor heat exchanger (25) is cooled by the heat storage medium around the heat storage heat exchanger (30), and then the indoor heat exchanger (62) Evaporate at.

この変形例1においても、実施形態1及び2と同様にして、蓄熱運転と暖房運転との双方で、冷媒が室外膨張弁(28)で減圧される。この結果、空気調和機(10)の部品点数を削減できる。     Also in the first modification, as in the first and second embodiments, the refrigerant is decompressed by the outdoor expansion valve (28) in both the heat storage operation and the heating operation. As a result, the number of parts of the air conditioner (10) can be reduced.

〈実施形態2の変形例2〉
図9に示す変形例2では、実施形態2の第2開閉弁(45)が省略される一方、第2液配管(42)とバイパス配管(43)の間に第1三方弁(54)(切換機構)が接続される。また、実施形態2の第3開閉弁(51)及び第4開閉弁(53)に代わって、第1液配管(41)と第3液配管(52)の接続部に第2三方弁(55)(切換機構)が接続される。第1三方弁(54)と第2三方弁(55)とは、それぞれ第1から第3までのポートを有している。第1三方弁(54)では、第1ポートが第1液配管(41)に繋がり、第2ポートがバイパス配管(43)に繋がり、第3ポートが第2液配管(42)に繋がっている。また、第2三方弁(55)では、第1ポートが室外熱交換器(25)の液側端部に、第2ポートが蓄熱用熱交換器(30)に、第3ポートが第3液配管(52)に繋がっている。第1三方弁(54)と第2三方弁(55)とは、第1ポートと第2ポートとを連通し第3ポートを閉鎖する第1状態(図9の実線で示す状態)と、第1ポートと第3ポートとを連通し第2ポートを閉鎖する第2状態(図9の破線で示す状態)とに切り換えられる。
<Modification 2 of Embodiment 2>
In the second modification shown in FIG. 9, the second on-off valve (45) of the second embodiment is omitted, while the first three-way valve (54) (between the second liquid pipe (42) and the bypass pipe (43)). Switching mechanism) is connected. Further, instead of the third on-off valve (51) and the fourth on-off valve (53) of the second embodiment, a second three-way valve (55) is connected to the connecting portion of the first liquid pipe (41) and the third liquid pipe (52). ) (Switching mechanism) is connected. The first three-way valve (54) and the second three-way valve (55) have first to third ports, respectively. In the first three-way valve (54), the first port is connected to the first liquid pipe (41), the second port is connected to the bypass pipe (43), and the third port is connected to the second liquid pipe (42). . In the second three-way valve (55), the first port is at the liquid end of the outdoor heat exchanger (25), the second port is at the heat storage heat exchanger (30), and the third port is at the third liquid. It is connected to the pipe (52). The first three-way valve (54) and the second three-way valve (55) communicate with the first port and the second port and close the third port (the state indicated by the solid line in FIG. 9), It is switched to a second state (state indicated by a broken line in FIG. 9) in which the first port communicates with the third port and the second port is closed.

変形例2においても、実施形態2と同様にして、実施形態1及び2と同様にして、蓄熱運転と暖房運転との双方で、冷媒が室外膨張弁(28)で減圧される。この結果、空気調和機(10)の部品点数を削減できる。     Also in the modified example 2, as in the second embodiment, the refrigerant is decompressed by the outdoor expansion valve (28) in both the heat storage operation and the heating operation, as in the first and second embodiments. As a result, the number of parts of the air conditioner (10) can be reduced.

以上説明したように、蓄熱用熱交換器を備えた空気調和機について有用である。     As described above, the air conditioner provided with the heat exchanger for heat storage is useful.

10 空気調和機
15 冷媒回路
21 室外回路
24 圧縮機
25 室外熱交換器
27 四方切換弁(切換機構)
28 室外膨張弁
30 蓄熱用熱交換器
44 第1開閉弁(切換機構)
45 第2開閉弁(切換機構)
50 三方弁(切換機構)
51 第3開閉弁(切換機構)
53 第4開閉弁(切換機構)
54 第1三方弁(切換機構)
55 第2三方弁(切換機構)
61 室内回路
62 室内熱交換器
71 蓄熱回路
72 貯留部(タンク)
73 ポンプ
100 コントローラ(切換機構)
10 Air conditioner
15 Refrigerant circuit
21 Outdoor circuit
24 compressor
25 Outdoor heat exchanger
27 Four-way switching valve (switching mechanism)
28 Outdoor expansion valve
30 Heat exchanger for heat storage
44 First on-off valve (switching mechanism)
45 Second on-off valve (switching mechanism)
50 Three-way valve (switching mechanism)
51 3rd on-off valve (switching mechanism)
53 4th open / close valve (switching mechanism)
54 First three-way valve (switching mechanism)
55 Second three-way valve (switching mechanism)
61 Indoor circuit
62 Indoor heat exchanger
71 Heat storage circuit
72 Reservoir (tank)
73 Pump
100 controller (switching mechanism)

Claims (4)

圧縮機(24)と室外膨張弁(28)と室外熱交換器(25)が接続される室外回路(21)と、室内膨張弁(63)及び室内熱交換器(62)が接続される室内回路(61)とを備え、上記室内回路(61)と室外回路(21)とが互いに接続されて冷媒回路(15)が構成される空気調和機であって、
上記室外回路(21)の冷媒と蓄熱媒体とを熱交換させる蓄熱用熱交換器(30)と、
上記圧縮機(24)で圧縮した冷媒を上記室内熱交換器(62)で放熱させ、上記室外膨張弁(28)で減圧した後、上記室外熱交換器(25)で蒸発させる第1運転と、上記圧縮機(24)で圧縮した冷媒を上記室外熱交換器(25)で放熱させ、上記室外膨張弁(28)で減圧した後、上記蓄熱用熱交換器(30)で蒸発させる第2運転とを切り換えるように構成される切換機構(27,44,45,50,52,53,54,55,100)と
を備えている
ことを特徴とする空気調和機。
The outdoor circuit (21) to which the compressor (24), the outdoor expansion valve (28) and the outdoor heat exchanger (25) are connected, and the indoor to which the indoor expansion valve (63) and the indoor heat exchanger (62) are connected. An air conditioner comprising a circuit (61), wherein the indoor circuit (61) and the outdoor circuit (21) are connected to each other to form a refrigerant circuit (15),
A heat storage heat exchanger (30) for exchanging heat between the refrigerant in the outdoor circuit (21) and the heat storage medium;
A first operation in which the refrigerant compressed by the compressor (24) is radiated by the indoor heat exchanger (62), depressurized by the outdoor expansion valve (28), and then evaporated by the outdoor heat exchanger (25); The refrigerant compressed by the compressor (24) is radiated by the outdoor heat exchanger (25), depressurized by the outdoor expansion valve (28), and then evaporated by the heat storage heat exchanger (30). An air conditioner comprising a switching mechanism (27, 44, 45, 50, 52, 53, 54, 55, 100) configured to switch between operation.
請求項1において、
上記切換機構(27,44,45,50,52,53,54,55,100)は、上記圧縮機(24)で圧縮した冷媒を上記室外熱交換器(25)で放熱させ、上記蓄熱用熱交換器(30)の蓄熱媒体によって冷却し、上記室内膨張弁(63)で減圧した後、上記室内熱交換器(62)で蒸発させる第3運転を行うように構成される
ことを特徴とする空気調和機。
In claim 1,
The switching mechanism (27, 44, 45, 50, 52, 53, 54, 55, 100) radiates the refrigerant compressed by the compressor (24) by the outdoor heat exchanger (25), and performs heat exchange for the heat storage. Air that is cooled by the heat storage medium of the condenser (30), depressurized by the indoor expansion valve (63), and then evaporated by the indoor heat exchanger (62). Harmony machine.
請求項1又は2において、
流動性を有する蓄熱媒体が貯留される貯留部(72)と、該蓄熱媒体を搬送するポンプ(73)と、上記蓄熱用熱交換器(30)の蓄熱媒体側の流路(32)が接続され、上記蓄熱媒体が循環する蓄熱回路(71)を備えている
ことを特徴とする空気調和機。
In claim 1 or 2,
A storage part (72) for storing a heat storage medium having fluidity, a pump (73) for conveying the heat storage medium, and a flow path (32) on the heat storage medium side of the heat storage heat exchanger (30) are connected. An air conditioner comprising a heat storage circuit (71) through which the heat storage medium circulates.
請求項3において、
上記蓄熱回路(71)の蓄熱媒体は、臭化テトラnブチルアンモニウム水溶液である
ことを特徴とする空気調和機。
In claim 3,
The heat storage medium of the said heat storage circuit (71) is tetra n butyl ammonium bromide aqueous solution. The air conditioner characterized by the above-mentioned.
JP2012285953A 2012-12-27 2012-12-27 Air conditioner Pending JP2014126350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012285953A JP2014126350A (en) 2012-12-27 2012-12-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012285953A JP2014126350A (en) 2012-12-27 2012-12-27 Air conditioner

Publications (1)

Publication Number Publication Date
JP2014126350A true JP2014126350A (en) 2014-07-07

Family

ID=51405983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012285953A Pending JP2014126350A (en) 2012-12-27 2012-12-27 Air conditioner

Country Status (1)

Country Link
JP (1) JP2014126350A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013798A1 (en) * 2014-07-21 2016-01-28 Lg Electronics Inc. Refrigerator and control method thereof
KR101620178B1 (en) * 2014-07-21 2016-05-12 엘지전자 주식회사 A refrigerator and a control method the same
WO2016103684A1 (en) * 2014-12-26 2016-06-30 ダイキン工業株式会社 Regenerative air conditioner
JP2016125714A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Heat storage type air conditioner
KR20160091106A (en) * 2015-01-23 2016-08-02 엘지전자 주식회사 Refrigerator
KR20160091105A (en) * 2015-01-23 2016-08-02 엘지전자 주식회사 Refrigerator
WO2017195397A1 (en) * 2016-05-11 2017-11-16 三菱電機株式会社 Air conditioner

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106662388B (en) * 2014-07-21 2019-09-06 Lg电子株式会社 Refrigerator and its control method
KR101620178B1 (en) * 2014-07-21 2016-05-12 엘지전자 주식회사 A refrigerator and a control method the same
US10718560B2 (en) 2014-07-21 2020-07-21 Lg Electronics Inc. Refrigerator and control method thereof
WO2016013798A1 (en) * 2014-07-21 2016-01-28 Lg Electronics Inc. Refrigerator and control method thereof
CN106662388A (en) * 2014-07-21 2017-05-10 Lg电子株式会社 Refrigerator and control method thereof
WO2016103684A1 (en) * 2014-12-26 2016-06-30 ダイキン工業株式会社 Regenerative air conditioner
JP2016125721A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Heat storage type air conditioner
JP2016125714A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Heat storage type air conditioner
KR20160091105A (en) * 2015-01-23 2016-08-02 엘지전자 주식회사 Refrigerator
KR20160091106A (en) * 2015-01-23 2016-08-02 엘지전자 주식회사 Refrigerator
KR102261102B1 (en) 2015-01-23 2021-06-07 엘지전자 주식회사 Refrigerator
KR102261114B1 (en) 2015-01-23 2021-06-07 엘지전자 주식회사 Refrigerator
JPWO2017195397A1 (en) * 2016-05-11 2018-05-24 三菱電機株式会社 Air conditioner
WO2017195397A1 (en) * 2016-05-11 2017-11-16 三菱電機株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
JP5327308B2 (en) Hot water supply air conditioning system
JP5730335B2 (en) Air conditioner
JP5611376B2 (en) Air conditioner
JP2014126350A (en) Air conditioner
JP5866000B2 (en) Air conditioning and hot water supply system
JP5183804B2 (en) Refrigeration cycle equipment, air conditioning equipment
JP2016125808A (en) Storage air conditioner
WO2012077166A1 (en) Air conditioner
WO2013008365A1 (en) Air-conditioning device
JP2005299935A (en) Air conditioner
JP2011242048A (en) Refrigerating cycle device
JP2016125721A (en) Heat storage type air conditioner
JP2013083439A5 (en)
JP2013083439A (en) Hot water supply air conditioning system
JP6433422B2 (en) Refrigeration cycle equipment
EP3290827A1 (en) Defrosting without reversing refrigerant cycle
JP6020548B2 (en) Thermal storage air conditioner
JP5216557B2 (en) Refrigeration cycle equipment
WO2019189838A1 (en) Refrigeration device
JP2014020735A (en) Air conditioner
JP6537603B2 (en) Air conditioner
JP2015218954A (en) Refrigeration cycle device
JP5333557B2 (en) Hot water supply air conditioning system
JP2014126348A (en) Air conditioner
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method