JPS6358063A - Refrigeration cycle device - Google Patents

Refrigeration cycle device

Info

Publication number
JPS6358063A
JPS6358063A JP20335486A JP20335486A JPS6358063A JP S6358063 A JPS6358063 A JP S6358063A JP 20335486 A JP20335486 A JP 20335486A JP 20335486 A JP20335486 A JP 20335486A JP S6358063 A JPS6358063 A JP S6358063A
Authority
JP
Japan
Prior art keywords
heat storage
heat exchanger
valve
storage device
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20335486A
Other languages
Japanese (ja)
Inventor
須摩 誓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20335486A priority Critical patent/JPS6358063A/en
Publication of JPS6358063A publication Critical patent/JPS6358063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、空気調和機などに用いろ冷凍サイクル装置
に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a refrigeration cycle device used in an air conditioner or the like.

(従来の技術) 一般に、空気調和機にあっては、第3図に示すように、
能力可変圧縮機41.四方弁42.室外熱交換器43.
減圧装置たとえば膨張弁44.v内熱交換器45などを
順次連通してなるヒートポンプ式冷凍サイクルを備え、
冷房および暖房運転を可能とするものがある。なお、4
6は室外ファン、47は室内ファンである。
(Prior art) Generally, in an air conditioner, as shown in Fig. 3,
Variable capacity compressor 41. Four-way valve 42. Outdoor heat exchanger 43.
A pressure reducing device such as an expansion valve 44. Equipped with a heat pump type refrigeration cycle formed by sequentially communicating a v internal heat exchanger 45, etc.
Some allow cooling and heating operation. In addition, 4
6 is an outdoor fan, and 47 is an indoor fan.

すなわち、冷房運転時は図示実線矢印の方向に冷媒を流
して冷房サイクルを形成し、室外熱交換器43を凝縮器
、室内熱交換器45を蒸発器として作用させる。暖房運
転時は四方弁42を切換作動することにより図示破線矢
印の方向に冷媒を流して暖房サイクルを形成し、至内熱
交J!!II器45を凝縮器、室外熱交換器43を蒸発
器として作用させる。また、負荷(室内温度と設定温度
との差)に応じて圧縮機41の運転周波数(インバータ
回路の出力周波数)を1ltll 1IIL、その負荷
に対応する最適な能力を得るようにしている。
That is, during cooling operation, the refrigerant flows in the direction of the solid arrow shown in the figure to form a cooling cycle, and the outdoor heat exchanger 43 acts as a condenser and the indoor heat exchanger 45 acts as an evaporator. During heating operation, the four-way valve 42 is switched and operated to flow the refrigerant in the direction of the broken line arrow in the figure to form a heating cycle, thereby achieving internal heat exchange J! ! The II vessel 45 acts as a condenser, and the outdoor heat exchanger 43 acts as an evaporator. Further, the operating frequency (output frequency of the inverter circuit) of the compressor 41 is adjusted to 1ltll 1IIL depending on the load (difference between the indoor temperature and the set temperature) to obtain the optimum capacity corresponding to the load.

ただし、このようなヒートポンプ式冷凍サイクルにおい
ては、暖房運転時、起動に際してのBMr能力の立上が
りが遅いという欠点がある。
However, such a heat pump type refrigeration cycle has a drawback that the BMr capacity rises slowly during startup during heating operation.

そこで、従来、蓄熱器を設け、その蓄熱器を補助熱源と
して利用することにより、起動に際してのr1匁房能力
の不足分を補うようにしたちのがある。
Therefore, conventionally, a heat storage device is provided and the heat storage device is used as an auxiliary heat source to compensate for the lack of r1 capacity at the time of startup.

この場合、予め券熱器に7l−J−ろ蓄熱運転を行なう
ようにしており、その蓄熱運転に際しては蓄熱能力を高
め、蓄熱にかかる時間をグコ縮するべく、圧11し1の
運転周波数を高めことが5山常行なわれている。
In this case, the ticket heater is set to perform a 7l-J-filter heat storage operation in advance, and during the heat storage operation, the operating frequency is set at a pressure of 11 to 1 in order to increase the heat storage capacity and significantly reduce the time required for heat storage. It is common practice to increase the 5 mountains.

しかしながら、圧縮別には第4図に示すような運転周波
数−効$特性があり、いくら運転周波数を高めてら効率
は悪くなるだけであり、蓄熱能力を高めることができな
いのが実情である。しかも、効率が悪いと運転コストが
高尚するという問題もある。
However, each type of compression has an operating frequency-efficiency characteristic as shown in FIG. 4, and the reality is that no matter how high the operating frequency is raised, the efficiency only worsens and the heat storage capacity cannot be increased. Moreover, there is also the problem that poor efficiency results in high operating costs.

(発明が解決しようとする問題点) この発明は上記のような事情に名みてなされたもので、
その目的とするところは、i ?能力の向上を図ること
ができ、これにより蓄熱にかかる時間をlA1l1!す
ることができ、さらには運転コストの低減をも可能とす
る冷凍サイクル装置を提供することにある。
(Problem to be solved by the invention) This invention was made in view of the above circumstances.
What is its purpose? It is possible to improve the capacity, thereby reducing the time required for heat storage. It is an object of the present invention to provide a refrigeration cycle device that is capable of reducing operating costs.

[発明の構成] (問題点を解決するための手段) 能力可変圧縮l、凝ill器、減圧装買、蒸発器などを
順次連通してなる冷凍サイクルに蓄熱器を備え、この蓄
熱器を補助PIl源として利用する冷凍サイクル装置に
おいて、前記蓄熱器に対する蓄熱運転時、前記圧に6目
の運転周波数を効率の高い特定周波数に設定する手段を
設ける。
[Structure of the invention] (Means for solving the problem) A refrigeration cycle consisting of a variable capacity compressor, a condenser, a vacuum unit, an evaporator, etc. connected in sequence is equipped with a heat storage device, and this heat storage device is assisted. In a refrigeration cycle device used as a PIl source, means is provided for setting a sixth operating frequency at the pressure to a specific frequency with high efficiency during heat storage operation for the heat storage device.

(作用) 蓄熱運転時、圧wJ機が効率の高い特定の運転周波数に
て運転を行なう。
(Function) During heat storage operation, the pressure wJ machine operates at a specific operating frequency with high efficiency.

(実施例) 以下、この発明の一実加例について図面を参照して説明
する。
(Example) Hereinafter, an example of implementing the present invention will be described with reference to the drawings.

第1図に示すように、能力可変圧hiii、四方弁2、
室外熱交換器3、電磁開閉弁4、減圧装置たとえば膨張
弁5、室内熱交換器6、電磁開閉弁7を順次連通し、ヒ
ートポンプ式冷凍サイクルを構成する。そして、室外熱
交換器3の近傍に至外フ1ン8、室内熱交換器6の近傍
に室内ファン9を配設する。さらに、電磁開閉弁7およ
び四方弁2の相互連通部に電磁開閉か11な介して蓄熱
器12の一端を連通し、蓄熱器12の他端を電磁開閉弁
4および膨張弁5の相互連通部に連通ずる。また、電磁
開閉弁4に対し、膨張弁13を並列に連通する。
As shown in FIG. 1, variable capacity pressure hiii, four-way valve 2,
An outdoor heat exchanger 3, an electromagnetic on-off valve 4, a pressure reducing device such as an expansion valve 5, an indoor heat exchanger 6, and an electromagnetic on-off valve 7 are successively connected to form a heat pump type refrigeration cycle. An outer fan 18 is disposed near the outdoor heat exchanger 3, and an indoor fan 9 is disposed near the indoor heat exchanger 6. Further, one end of the heat storage device 12 is connected to the mutual communication portion of the electromagnetic on-off valve 7 and the four-way valve 2 via the electromagnetic on-off valve 11, and the other end of the heat storage device 12 is connected to the mutual communication portion of the electromagnetic on-off valve 4 and the expansion valve 5. It will be communicated to. Furthermore, an expansion valve 13 is connected in parallel to the electromagnetic on-off valve 4 .

さらに、四方弁2および室外熱交換器3の相互連通部と
蓄熱器12の一端との閂に電磁開閉弁14を連通ザる。
Further, an electromagnetic on-off valve 14 is connected to a bolt between the mutual communication portion of the four-way valve 2 and the outdoor heat exchanger 3 and one end of the heat storage device 12 .

蓄熱器12は、熱交換器の周りに蓄熱材たとえばパラフ
ィンを装填したものである。
The heat storage device 12 is a heat storage material, such as paraffin, placed around a heat exchanger.

第2図は制御回路である。FIG. 2 shows the control circuit.

20は$11叩部で、マイクロコンピュータおよびその
周辺回路などからなり、外部に運転操作部21、室内+
31U tフサ22、蓄熱温度センサ23、熱交温度セ
ンサ24、ファン駆動回路25、四方弁駆動回路26、
ファン駆動回路27、インバータ駆動回路28、弁駆動
回路29を接続している。
20 is a $11 unit, which consists of a microcomputer and its peripheral circuits, and has an external operation control unit 21 and an indoor +
31U t-fusa 22, heat storage temperature sensor 23, heat exchanger temperature sensor 24, fan drive circuit 25, four-way valve drive circuit 26,
A fan drive circuit 27, an inverter drive circuit 28, and a valve drive circuit 29 are connected.

運転操作部21は、各種運転条件を入力するためのもの
である。学内温度センサ22は、型内温度を検知するも
のである。蓄熱温度ぜンサ23は、蓄熱器12の湿度を
検知するものである。熱交1度センサ24は、室外熱交
換器3の温度を検知するものである。ファン駆動回路2
5は、室外ファンモータ8Mを駆動するものである。四
方弁駆動回路2Gは、四方弁2を駆動するものである。
The driving operation section 21 is for inputting various driving conditions. The internal temperature sensor 22 detects the internal temperature of the mold. The heat storage temperature sensor 23 detects the humidity of the heat storage device 12. The heat exchange 1 degree sensor 24 detects the temperature of the outdoor heat exchanger 3. Fan drive circuit 2
5 drives the outdoor fan motor 8M. The four-way valve drive circuit 2G drives the four-way valve 2.

ファン駆動回路27は、室内ファンモータ 9Mを駆動
するものである。インバータ駆動回路28は、インバー
タ回路30を駆動するものである。弁駆動回路29は、
N Efi開閉弁4. 7.11.14をそれぞれ駆動
するものである。そして、上記インバータ回路30は、
交流電源31の出力を直流に変換し、それをスイッチン
グにより所定周波数の交流電圧に変換して圧縮機モータ
 1Mに供給するものである。
The fan drive circuit 27 drives the indoor fan motor 9M. The inverter drive circuit 28 drives the inverter circuit 30. The valve drive circuit 29 is
N Efi on/off valve4. 7, 11, and 14 respectively. The inverter circuit 30 is
The output of the AC power supply 31 is converted into DC, which is converted into an AC voltage of a predetermined frequency by switching, and is supplied to the compressor motor 1M.

つぎに、上記のような構成において下記表を参照しなが
ら作用を説明する。
Next, the operation of the above configuration will be explained with reference to the table below.

−表一 (O印は開、X印は閉) 運転操作部21で暖房運転を設定するとともに、所望の
室内?2I!2を設定し、かつ運転511始豫作を行な
う。すると、制御部20は、四方弁2を切換作動(破線
〉するとともに、開閉弁4,7.14を開放し、さらに
インバータ回路30を駆動して圧縮機1を起動する。同
時に、室外)7ン8および室内ファン9を起動する。こ
うして、圧縮機1が起動すると、圧縮機1の吐出冷媒が
四方弁2から室内熱交換器6に流入し、その室内熱交換
器6を経た冷媒が膨張弁5を介して室外熱交換器3およ
び蓄熱器12にそれぞれ流入する。そして、室外熱交換
器3および蓄熱器12を経た冷媒が共に四方弁2を通っ
て圧縮機1に吸込まれる。つまり、室内熱交換器6が凝
縮器、室外熱交換器3および蓄熱器12が共に蒸発器と
して作用し、蓄熱器12からの採熱を行ないながらの暖
房運転が開始となる。
-Table 1 (O mark is open, 2I! 2, and start operation 511. Then, the control unit 20 switches the four-way valve 2 (broken line), opens the on-off valves 4, 7, and 14, and also drives the inverter circuit 30 to start the compressor 1. 8 and indoor fan 9. In this way, when the compressor 1 starts, the refrigerant discharged from the compressor 1 flows into the indoor heat exchanger 6 from the four-way valve 2, and the refrigerant that has passed through the indoor heat exchanger 6 passes through the expansion valve 5 to the outdoor heat exchanger 3. and flows into the heat storage device 12, respectively. Then, the refrigerant that has passed through the outdoor heat exchanger 3 and the heat storage device 12 is sucked into the compressor 1 through the four-way valve 2. That is, the indoor heat exchanger 6 acts as a condenser, the outdoor heat exchanger 3 and the heat storage device 12 both act as an evaporator, and heating operation starts while collecting heat from the heat storage device 12.

このように、vi房運転の起動に際して蓄熱器12を補
助熱源として利用することにより、暖房能力の不足分を
補うことができ、暖房能力の立上がりを速めることがで
きる。
In this way, by using the heat storage device 12 as an auxiliary heat source at the time of starting the VI operation, it is possible to compensate for the deficiency in the heating capacity and to accelerate the start-up of the heating capacity.

この暖房運転時、運転開始から所定時間が経過したり、
あるいは蓄熱温度センサ23の検知温度が所定II L
X下になルト、ft1Q !1) M 20ハItn 
rn 弁4. 7f)間数状態を4持したまま開閉弁1
4を閉成する。すると、第1図に破線矢印で示すように
膨張弁5を軽た冷媒が膨張弁13および室外熱交換器3
を通して流れ、蓄熱器12には流れなくなる。つまり、
通常の暖房運転が行なわれる。
During this heating operation, if a predetermined period of time has passed since the start of operation,
Or, if the temperature detected by the heat storage temperature sensor 23 is a predetermined value II L
Ruto under X, ft1Q! 1) M 20ha Itn
rn valve 4. 7f) Open/close valve 1 while keeping the number state 4
Close 4. Then, as shown by the broken line arrow in FIG.
It flows through the heat storage device 12 and does not flow into the heat storage device 12. In other words,
Normal heating operation is performed.

なお、暖房運転時、制り0部20は室内温度センサ22
の温度と設定1度との差に応じてインバータ回路30の
出力周波数を制けりし、圧縮機1を負荷に対応する能力
で運転する。また、運転操作部21で゛急速暖房″が設
定された場合には、上記した起動時と同様に蓄熱312
からの採熱を行ない、暖房能力の増大を図る。
In addition, during heating operation, the control 0 part 20 is the indoor temperature sensor 22.
The output frequency of the inverter circuit 30 is controlled according to the difference between the temperature of In addition, when "rapid heating" is set in the operation section 21, the heat storage 312 is
The aim is to increase heating capacity by collecting heat from the

ところで、暖房運転が進むと、蒸発器として作用してい
る塞外熱交!5!器3の表面に徐々に霜が付着するよう
になる。しかして、制御部20は、熱交温度センサ24
によって室外熱交換器3の温度を定期的に検知しており
、室外熱交換器3の温度が所定値以下になると四方弁2
をv1帰するとともに、開閉弁4,7.14を閉成し、
開閉弁11を開放する。
By the way, as the heating operation progresses, the external heat exchanger acts as an evaporator! 5! Frost gradually begins to adhere to the surface of the vessel 3. Therefore, the control unit 20 controls the heat exchanger temperature sensor 24
The temperature of the outdoor heat exchanger 3 is detected periodically, and when the temperature of the outdoor heat exchanger 3 falls below a predetermined value, the four-way valve 2
Returns v1 and closes the on-off valves 4, 7.14,
Open the on-off valve 11.

すると、第1図に二点鎖線矢印で示すように、E縮(1
!1の吐出冷媒が四方弁2を通して室外熱交換器3に流
入し、そのγ外熱交換器3を経た冷媒が膨張弁13.N
熱器12.開閉弁11.四方弁2を通って圧縮機1に吸
込まれる。つまり、蓄熱器12からの採熱および圧縮機
1から吐出される高部冷媒の熱により、室外熱交換器3
に対する除霜が行なわれる。7↓ト、〕D■官埼昭、I
Tカドファン己、qj7+7と)。
Then, as shown by the two-dot chain arrow in Fig. 1, E contraction (1
! 1 flows into the outdoor heat exchanger 3 through the four-way valve 2, and the refrigerant that has passed through the γ external heat exchanger 3 flows into the expansion valve 13. N
Heater 12. Open/close valve 11. It is sucked into the compressor 1 through the four-way valve 2. In other words, the outdoor heat exchanger 3
defrosting is performed. 7↓T,]D■ Kansakiaki, I
T Cadfan himself, qj7+7).

このように、除霜運転に際しても蓄熱器12を補助熱源
として利用することにより、除雪能力の向上および除霜
時間の短線が図れ、結果的5こ9ガ房効率が向上して快
適性が向トする。
In this way, by using the heat storage device 12 as an auxiliary heat source during defrosting operation, it is possible to improve the snow removal ability and shorten the defrosting time, resulting in improved efficiency and comfort. to

しかして、制御部20は、定期的に蓄熱運転を11なう
。この蓄熱運転は、開閉弁11のみを開放し、第1図に
一点鎖線矢印で示すように圧縮機1の吐出冷媒を四方弁
20間閉弁11.蓄熱器12.膨張弁13、室外熱交換
器3の峰路で流し、蓄熱器12を凝縮器、室外熱交換器
3を蒸発器として作用させろものである。つまり、室外
熱交換器3の吸み上げ熱を蓄熱器12に蓄えることにな
る。
Thus, the control unit 20 periodically performs the heat storage operation. In this heat storage operation, only the on-off valve 11 is opened, and the refrigerant discharged from the compressor 1 is transferred between the four-way valves 20 and 11 when the four-way valve 20 is closed, as shown by the dashed-dotted line arrow in FIG. Heat storage device 12. The heat is allowed to flow through the expansion valve 13 and the outdoor heat exchanger 3, and the heat storage device 12 acts as a condenser and the outdoor heat exchanger 3 acts as an evaporator. In other words, the heat sucked up by the outdoor heat exchanger 3 is stored in the heat storage device 12.

そして、この蓄熱運転時、制御部20はインバータ回路
30の出力周波数つまり圧縮を11の運転周波数を特定
周波数たとえば第4図に示す70Hzに設定する。すな
わら、第4図の運転周波数−効率特性に示すように、圧
縮機1の総合効率ηは運転周波数70H2においてピー
ク圃を有しており、そのような高い効率で圧縮機1を運
転することにより、蓄熱能力が高まり、よって蓄熱にか
かる時間を短縮することができる。しかも、運転コスト
の低減が図れる。ここで、圧縮n1の総合効率ηは、機
械効率9尻、モータ効率ηmQ 、圧縮効率ηCの積で
ある。また、制御部20は、蓄熱温度センサ23によっ
て蓄熱器12の温度を監視し、蓄熱温度が最適な状態た
とえば50℃程度となるよう蓄熱運転の実行制御を行な
う。なお、蓄熱運転の実行タイミングとしては、運転操
作部21で蓄熱運転が設定された場合、蓄熱器12の)
8度が所定値以下になったとき(蓄熱を使い切ったとき
)、あるいは安1i!tiな深夜電力を利用できるとき
などt種々が考えられる。
During this heat storage operation, the control unit 20 sets the output frequency of the inverter circuit 30, that is, the compression frequency 11, to a specific frequency, for example, 70 Hz as shown in FIG. In other words, as shown in the operating frequency-efficiency characteristic in Fig. 4, the overall efficiency η of the compressor 1 has a peak at the operating frequency of 70H2, and the compressor 1 is operated at such high efficiency. As a result, the heat storage capacity is increased and the time required for heat storage can be shortened. Furthermore, operating costs can be reduced. Here, the overall efficiency η of the compression n1 is the product of the mechanical efficiency 9, the motor efficiency ηmQ, and the compression efficiency ηC. Further, the control unit 20 monitors the temperature of the heat storage device 12 using the heat storage temperature sensor 23, and controls execution of the heat storage operation so that the heat storage temperature becomes an optimum state, for example, about 50°C. Note that the execution timing of the heat storage operation is when the heat storage operation is set in the operation unit 21,
When 8 degrees falls below the predetermined value (when the heat storage is used up), or when the temperature is 1i! Various situations can be considered, such as when late-night electricity is available.

一方、運転操作部21で冷房運転を設定するとともに、
所望の室内温度を設定し、かつ運転開始操作を行なう。
On the other hand, while setting the cooling operation using the operation unit 21,
Set the desired room temperature and start operation.

すると、制御部20は、四方弁2を復帰(非作動)状態
とし、開閉弁4,7を開放し、さらにインバータ回路3
0を駆動して圧縮機1を起動する。同時に、室外ファン
8および室内ファン9を起動する。こうして、圧縮i1
が起動すると、圧縮機1の吐出冷媒が第1図に実線矢印
で示すように四方弁2.室外熱交換器31間閉弁4.膨
張弁5.室内熱交換器61間閉弁7を通して流れる。
Then, the control unit 20 returns the four-way valve 2 to a restored (non-operating) state, opens the on-off valves 4 and 7, and further closes the inverter circuit 3.
0 to start the compressor 1. At the same time, the outdoor fan 8 and indoor fan 9 are activated. Thus, compression i1
When the compressor 1 starts up, the refrigerant discharged from the compressor 1 flows through the four-way valve 2. as shown by the solid line arrow in FIG. Close the valve between outdoor heat exchangers 314. Expansion valve 5. It flows through the closed valve 7 between the indoor heat exchanger 61.

つまり、室外熱交換器3が凝縮器、室内熱交換器6が蒸
発器として作用し、通常の冷房運転が開始となる。
That is, the outdoor heat exchanger 3 acts as a condenser, the indoor heat exchanger 6 acts as an evaporator, and normal cooling operation starts.

ところで、“急速冷房゛′が設定されると、制御部20
は開閉弁7,14の開放状態を維持しながらさらに開閉
弁4を開放する。すると、開閉弁4によって膨張弁13
がバイパスされるので、四方弁2を経た冷媒が室外熱交
換器3だけでなく蓄熱器12にも多量に流入するように
なる。つまり、室外熱交換器3r!3よぴ蓄熱器12が
共に凝縮器として作用し、蓄熱器12からの採熱(採冷
熱)を行ないながらの冷房運転が行なわれる。このよう
に、蓄熱器12を冷房用踊助熱源として利用することに
より、冷房能力を増大することができる。
By the way, when "rapid cooling" is set, the control unit 20
further opens the on-off valve 4 while keeping the on-off valves 7 and 14 open. Then, the expansion valve 13 is opened by the on-off valve 4.
Since the refrigerant is bypassed, a large amount of the refrigerant that has passed through the four-way valve 2 flows not only into the outdoor heat exchanger 3 but also into the heat storage device 12. In other words, outdoor heat exchanger 3r! The three heat accumulators 12 together act as a condenser, and cooling operation is performed while collecting heat from the heat accumulators 12 (cooling heat collected). In this way, by using the heat storage device 12 as a heating source for cooling, the cooling capacity can be increased.

なお、この冷房運転においても、制御部20は室内温度
センサ22の温度と設定温度との差に応じてインバータ
回路30の出力周波数を制御XI、圧縮U’J1を負荷
に対応する能力で運転する。
Also in this cooling operation, the control unit 20 controls the output frequency of the inverter circuit 30 according to the difference between the temperature of the indoor temperature sensor 22 and the set temperature, and operates the compression U'J1 at a capacity corresponding to the load. .

しかして、制御部20は、定期的に蓄熱(蓄冷)運転を
行なう。この蓄熱運転は、開閉弁11のみを開放し、圧
縮機1の吐出冷媒を四方弁2.室外熱交換器3.膨張弁
13.蓄熱器12.開閉弁11の経路で流し、室外熱交
換器3を凝縮器、蓄熱器12を蒸発器として作用させる
ものである。つまり、蓄熱器12から熱を奪い、その蓄
熱器12に冷熱を蓄えることにむる。
Thus, the control unit 20 periodically performs heat storage (cold storage) operation. In this heat storage operation, only the on-off valve 11 is opened, and the refrigerant discharged from the compressor 1 is transferred to the four-way valve 2. Outdoor heat exchanger 3. Expansion valve 13. Heat storage device 12. The air flows through the on-off valve 11, and the outdoor heat exchanger 3 acts as a condenser and the heat storage device 12 acts as an evaporator. In other words, heat is taken from the heat storage device 12 and cold heat is stored in the heat storage device 12.

そして、この蓄熱運転時、制御部20は暖房蓄熱運転と
同様にインバータ回路30の出力周波数つまり圧縮81
1の運転周波数を特定層′11数であるところの70H
zに設定する。すなわち、高い効率で圧縮機1を運転す
ることにより、蓄熱(蓄冷)能力を高め、蓄熱(蓄冷)
にかかる時間の短縮および運転コストの低減を図るもの
である。また、制御部20は、蓄熱温度センサ23によ
って蓄熱器12の温度を監視し、蓄熱(蓄冷)温度が最
適な状態となるよう蓄熱運転の実行制御を行なう。
During this heat storage operation, the control unit 20 controls the output frequency of the inverter circuit 30, that is, the compression 81, as in the heating heat storage operation.
The operating frequency of 1 is 70H, which is the specific layer '11 number.
Set to z. In other words, by operating the compressor 1 with high efficiency, the heat storage (cold storage) capacity is increased and the heat storage (cold storage)
The aim is to shorten the time required for the process and reduce operating costs. Further, the control unit 20 monitors the temperature of the heat storage device 12 using the heat storage temperature sensor 23, and controls execution of the heat storage operation so that the heat storage (cold storage) temperature is in an optimal state.

なお、上記実施例では空気調和様への適用について説明
したが、ショーケースや給水器などにもの値については
圧縮機の種類などに応じて適宜定まるものであり、必ず
しも70H2になるとは限らない。その他、この発明は
上記実施例に限定されるものではなく、要旨を変えない
範囲で種々変形実施可能である。
In addition, in the above embodiment, the application to air conditioning was explained, but the value for showcases, water supply devices, etc. is determined as appropriate depending on the type of compressor, etc., and is not necessarily 70H2. In addition, the present invention is not limited to the above-mentioned embodiments, and various modifications can be made without changing the gist.

[発明の効果〕 以上述べたようにこの発明によれば、蓄熱運転時、圧縮
機の運転周波数を効率の高い特定周波数に設定する手段
を設けたので、蓄熱能力の向上を図ることができ、これ
により蓄熱にかかる時間を短縮することができ、さらに
は運転コストの低減をも可能とする冷凍サイクル装置を
提供できる。
[Effects of the Invention] As described above, according to the present invention, since a means for setting the operating frequency of the compressor to a specific frequency with high efficiency during heat storage operation is provided, the heat storage capacity can be improved. Thereby, it is possible to provide a refrigeration cycle device that can shorten the time required for heat storage and furthermore, can reduce operating costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実流例における冷凍サイクルの構
成を示す図、第2図は同実施例における制御回路の構成
を示す図、第3図は従来における冷凍サイクルの構成を
示す図、第4図は能力可変圧縮機の運転周波数−効率特
性を示す図である。 1・・・能力可変圧縮機、3・・・室外熱交換器、6・
・・室内熱交換器、12・・・蓄熱器、20・・・制御
部、30・・・インバータ回路。
FIG. 1 is a diagram showing the configuration of a refrigeration cycle in an actual flow example of the present invention, FIG. 2 is a diagram showing the configuration of a control circuit in the same embodiment, and FIG. 3 is a diagram showing the configuration of a conventional refrigeration cycle. FIG. 4 is a diagram showing the operating frequency-efficiency characteristics of the variable capacity compressor. 1... variable capacity compressor, 3... outdoor heat exchanger, 6...
...Indoor heat exchanger, 12...Regenerator, 20...Control unit, 30...Inverter circuit.

Claims (1)

【特許請求の範囲】[Claims] 能力可変圧縮機、凝縮器、減圧装置、蒸発器などを順次
連通してなる冷凍サイクルに蓄熱器を備え、この蓄熱器
を補助熱源として利用する冷凍サイクル装置において、
前記蓄熱器に対する蓄熱運転時、前記圧縮機の運転周波
数を効率の高い特定周波数に設定する手段を設けたこと
を特徴とする冷凍サイクル装置。
In a refrigeration cycle device in which a refrigeration cycle consisting of a variable capacity compressor, a condenser, a pressure reducing device, an evaporator, etc. are connected in sequence, a regenerator is provided, and the regenerator is used as an auxiliary heat source.
A refrigeration cycle device comprising means for setting the operating frequency of the compressor to a specific frequency with high efficiency during heat storage operation for the heat storage device.
JP20335486A 1986-08-29 1986-08-29 Refrigeration cycle device Pending JPS6358063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20335486A JPS6358063A (en) 1986-08-29 1986-08-29 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20335486A JPS6358063A (en) 1986-08-29 1986-08-29 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JPS6358063A true JPS6358063A (en) 1988-03-12

Family

ID=16472638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20335486A Pending JPS6358063A (en) 1986-08-29 1986-08-29 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JPS6358063A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318621A (en) * 1997-05-19 1998-12-04 Toshiba Corp Freezing cycle device
JP2012083066A (en) * 2010-10-14 2012-04-26 Panasonic Corp Air conditioning apparatus
JP2012083065A (en) * 2010-10-14 2012-04-26 Panasonic Corp Air conditioner
WO2019202709A1 (en) * 2018-04-19 2019-10-24 三菱電機株式会社 Heat pump type hot water supply device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60256762A (en) * 1984-06-04 1985-12-18 株式会社日立製作所 Heat pump type air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60256762A (en) * 1984-06-04 1985-12-18 株式会社日立製作所 Heat pump type air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318621A (en) * 1997-05-19 1998-12-04 Toshiba Corp Freezing cycle device
JP2012083066A (en) * 2010-10-14 2012-04-26 Panasonic Corp Air conditioning apparatus
JP2012083065A (en) * 2010-10-14 2012-04-26 Panasonic Corp Air conditioner
WO2019202709A1 (en) * 2018-04-19 2019-10-24 三菱電機株式会社 Heat pump type hot water supply device

Similar Documents

Publication Publication Date Title
US4798059A (en) Air conditioner with heat regeneration cycle
CN100485281C (en) Air conditioner
JPS6358063A (en) Refrigeration cycle device
KR100499486B1 (en) accumulator of heat pump system with at least two compressors
JPH0756390B2 (en) Air conditioner
JP4240837B2 (en) Refrigeration equipment
JP4259693B2 (en) Air conditioner
CN2758672Y (en) Air conditioner with auxiliary defroster
JP3583792B2 (en) Hot water supply / air conditioning system
JPH05256497A (en) Controlling method for dry operation of air conditioner
JP2538202B2 (en) Engine driven air conditioner
JPH086951B2 (en) air conditioner
JPH0147698B2 (en)
JPS63153373A (en) Air conditioner
JPS6011068A (en) Automatic operation control method of air conditioner utilizing engine drive type heat pump
JPS5922421Y2 (en) air conditioner
JPH04136669A (en) Multi-room air conditioner
JPS5815791Y2 (en) Kuukichiyouwaki
JPS5933943Y2 (en) air conditioner
JPS592807B2 (en) Room temperature control method for air conditioning heating and cooling
JPS6291755A (en) Refrigerator functioning as capacity control in combination
CN115247863A (en) Air conditioner and control method thereof
JPS62158960A (en) Defrostation control system of air conditioner
JPS62166246A (en) Air conditioner
JPS61175453A (en) Heat engine heat-pump type air conditioner