WO2019202709A1 - Heat pump type hot water supply device - Google Patents

Heat pump type hot water supply device Download PDF

Info

Publication number
WO2019202709A1
WO2019202709A1 PCT/JP2018/016174 JP2018016174W WO2019202709A1 WO 2019202709 A1 WO2019202709 A1 WO 2019202709A1 JP 2018016174 W JP2018016174 W JP 2018016174W WO 2019202709 A1 WO2019202709 A1 WO 2019202709A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
temperature
refrigerant
pressure
enthalpy
Prior art date
Application number
PCT/JP2018/016174
Other languages
French (fr)
Japanese (ja)
Inventor
雄也 藤丸
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/016174 priority Critical patent/WO2019202709A1/en
Priority to JP2020514869A priority patent/JPWO2019202709A1/en
Publication of WO2019202709A1 publication Critical patent/WO2019202709A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type

Definitions

  • the present invention relates to a heat pump type hot water supply apparatus.
  • Patent Document 1 describes a technique for stopping a compressor when the discharge pressure of the compressor having the highest pressure in the refrigerant circuit is equal to or higher than a predetermined value.
  • Patent Document 1 discloses a technique related to a method for estimating the discharge pressure of a compressor.
  • the discharge pressure of the compressor when it is assumed that the refrigerant is compressed by the isentropic change is calculated using the inlet temperature of the evaporator, the outlet temperature of the evaporator, and the discharge temperature of the compressor.
  • the discharge pressure calculated based on the above assumption is required to be higher than the actual discharge pressure. Therefore, in the technique of Patent Document 1, the calculated discharge pressure is corrected using correction values specified from the inlet temperature of the evaporator, the outlet temperature of the evaporator, and the discharge temperature of the compressor.
  • the present invention has been made in order to solve the above-described problems, and provides a heat pump type hot water supply apparatus capable of suppressing excessive pressure increase of a heat source unit by accurately estimating the discharge pressure of a compressor.
  • the purpose is to do.
  • a heat pump hot water supply apparatus includes a compressor that compresses a refrigerant, a heat exchanger that heats a heat medium with the refrigerant compressed by the compressor, a decompression device, and an evaporator in order.
  • a connected heat source device a first temperature detection device that detects a discharge temperature that is a temperature of refrigerant discharged from the compressor, and a second temperature that detects an evaporator outlet temperature that is the temperature of the refrigerant at the outlet of the evaporator A detection device, a third temperature detection device that detects an evaporator inlet temperature that is a temperature of the refrigerant at the inlet of the evaporator, and a control device that controls the heat source unit to heat the heat medium.
  • the control device includes a discharge pressure estimation unit that estimates a discharge pressure that is a pressure of refrigerant discharged from the compressor based on the discharge temperature, the evaporator outlet temperature, and the evaporator inlet temperature, and the discharge pressure exceeds the allowable pressure. And a compressor control unit that stops driving the compressor.
  • the discharge pressure estimation unit calculates the saturation pressure corresponding to the evaporator inlet temperature as the compressor inlet refrigerant pressure that is the refrigerant pressure at the compressor inlet, using the relationship between the refrigerant temperature and the saturation pressure.
  • the compressor inlet entropy calculation unit for calculating the compressor inlet entropy, which is the entropy at the compressor inlet, the evaporator outlet temperature and the compression
  • a compressor inlet enthalpy calculation unit that calculates the compressor inlet enthalpy, which is the enthalpy at the compressor inlet, using the compressor inlet refrigerant pressure, and the compressor adiabatically compresses the refrigerant using the discharge temperature and the compressor inlet entropy.
  • the heat pump hot water supply apparatus of the present invention it is possible to accurately estimate the discharge pressure of the compressor. Thereby, it becomes possible to provide the heat pump type hot water supply apparatus which can suppress the excessive pressure
  • FIG. 2 is a control block diagram of a control device provided in the heat pump hot water supply apparatus of Embodiment 1.
  • FIG. It is a flowchart of a routine in which the heat pump type hot water supply apparatus of the first embodiment executes compressor control. It is a compressor frequency map which prescribed
  • 2 is a Mollier diagram of a refrigerant used in the heat source device of Embodiment 1.
  • FIG. 1 is a Mollier diagram of a refrigerant used in the heat source device of Embodiment 1.
  • FIG. 3 is a flowchart of a routine in which the heat pump hot water supply apparatus according to Embodiment 1 executes discharge pressure estimation control. It is a figure which shows the example of the hardware constitutions of the control apparatus with which the heat pump type hot-water supply apparatus of Embodiment 1 is provided. It is a figure which shows the other example of the hardware constitutions of the control apparatus with which the heat pump type hot-water supply apparatus of Embodiment 1 is provided.
  • FIG. 1 is a diagram for explaining a circuit configuration of the heat pump hot water supply apparatus according to the first embodiment.
  • the heat pump hot water supply apparatus 100 includes a compressor 1, a refrigerant-water heat exchanger 2, a pressure reducing valve 3, an evaporator 4, a fan as components constituting a heat source device 50 using a heat pump cycle.
  • a motor 5 and a fan 6 are mounted.
  • the refrigerant circuit of the heat source device 50 is formed by connecting these components in an annular shape by the refrigerant pipe 12.
  • Compressor 1 compresses low-pressure refrigerant gas.
  • the kind of refrigerant is not particularly limited.
  • a CO2 refrigerant is used in the heat pump hot water supply apparatus of the first embodiment.
  • the CO2 refrigerant has an ozone depletion coefficient of 0 and a global warming coefficient of 1.
  • the CO2 refrigerant is a refrigerant having features such as a low environmental load, no toxicity, no flammability, safety, and low cost.
  • the refrigeration cycle using the CO 2 refrigerant is a transcritical cycle in which the pressure of the high-pressure refrigerant compressed by the compressor 1 becomes a supercritical pressure. Thereby, a high coefficient of performance COP can be obtained.
  • the refrigerant-water heat exchanger 2 is an example of a condenser that exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 1 and water or other liquid heat medium.
  • the liquid heat medium may be, for example, a calcium chloride aqueous solution, an ethylene glycol aqueous solution, an alcohol, or the like.
  • water is used as a heat medium.
  • the pressure reducing valve 3 is an example of a pressure reducing device that depressurizes the high-pressure refrigerant that has passed through the refrigerant-water heat exchanger 2 to form a low-pressure refrigerant.
  • the pressure reducing valve 3 is configured as, for example, an electronically controlled expansion valve whose opening degree can be varied.
  • the decompressed low-pressure refrigerant is in a gas-liquid two-phase state.
  • the evaporator 4 is a heat exchanger that exchanges heat between the low-pressure refrigerant decompressed by the decompression valve 3 and the outside air. Outside air is outdoor air. In the evaporator 4, the low-pressure refrigerant evaporates by absorbing the heat of the outside air.
  • the fan 6 blows air so that outside air is supplied to the evaporator 4.
  • the fan 6 is rotated by being driven by the fan motor 5.
  • the low-pressure refrigerant gas evaporated by the evaporator 4 is sucked into the compressor 1.
  • a first temperature sensor 16 is installed as a first temperature detection device that detects the temperature of the refrigerant discharged from the compressor 1.
  • the temperature of the refrigerant detected by the first temperature sensor 16 is referred to as “discharge temperature Td”.
  • a second temperature sensor 17 is installed in the refrigerant pipe 12 on the outlet side of the evaporator 4 as a second temperature detection device that detects the temperature of the refrigerant flowing out of the evaporator 4.
  • the temperature of the refrigerant detected by the second temperature sensor 17 is referred to as “evaporator outlet temperature Teo”.
  • the refrigerant pipe 12 on the inlet side of the evaporator 4 is provided with a third temperature sensor 18 as a third temperature detection device that detects the temperature of the refrigerant flowing into the evaporator 4.
  • a third temperature sensor 18 as a third temperature detection device that detects the temperature of the refrigerant flowing into the evaporator 4.
  • the temperature of the refrigerant detected by the third temperature sensor 18 is referred to as “evaporator inlet temperature Tei”.
  • an outside air temperature sensor 19 for detecting the outside air temperature is installed in the vicinity of the fan 6.
  • the circulation circuit for hot water supply includes the refrigerant-water heat exchanger 2, the circulation pump 9, and the hot water tank device 13.
  • the outlet side of the heat medium in the refrigerant-water heat exchanger 2 is connected to the upper part of the hot water tank device 13 by a first hot water circulation pipe 14.
  • the heat medium inlet side of the refrigerant-water heat exchanger 2 is connected to the lower part of the hot water tank device 13 by a second hot water circulation pipe 15.
  • the circulation pump 9 is an example of a heat medium circulation device that circulates a heat medium to the refrigerant-water heat exchanger 2.
  • the circulation pump 9 is installed in the middle of the second hot water circulation pipe 15.
  • a fourth temperature sensor 7 for detecting the temperature of the heat medium on the inlet side of the refrigerant-water heat exchanger 2 is installed in the middle of the second hot water circulation pipe 15.
  • a fifth temperature sensor 8 for detecting the temperature of the heat medium on the outlet side of the refrigerant-water heat exchanger 2 is installed in the middle of the first hot water circulation pipe 14.
  • the hot water tank device 13 stores water before heating and hot water after heating. Due to the difference in specific gravity of water depending on the temperature, a temperature stratification is formed in the hot water tank device 13 having a high temperature on the upper side and a low temperature on the lower side.
  • a hot water supply pipe (not shown) for supplying hot water to a terminal such as a hot water tap, a shower, or a bathtub is connected to the upper part of the hot water storage tank.
  • a water supply pipe (not shown) for supplying water from a water source such as a water supply is connected to the lower part of the hot water tank device 13.
  • the hot water in the upper part of the hot water tank device 13 is sent to the hot water supply pipe by the water pressure acting in the hot water storage tank from the water supply pipe.
  • the same amount of water as the hot water flowing out to the hot water supply pipe flows into the hot water tank apparatus 13 from the water supply pipe, whereby the hot water tank apparatus 13 is maintained in a full water state.
  • the heat pump hot water supply apparatus 100 can perform a heat storage operation in which, for example, hot water heated by a heat source machine is accumulated in the hot water tank apparatus 13. At the time of heat storage operation, it is as follows.
  • the compressor 1, the fan motor 5, and the circulation pump 9 are operated.
  • Water flowing out from the lower part of the hot water tank device 13 flows into the refrigerant-water heat exchanger 2 through the second hot water circulation pipe 15. This water is heated by the high-temperature and high-pressure refrigerant in the refrigerant-water heat exchanger 2 to become hot water.
  • Hot water flowing out from the refrigerant-water heat exchanger 2 flows into the upper part of the hot water tank device 13 through the first hot water circulation pipe 14.
  • the heat pump type hot water supply apparatus of the present invention is not limited to a part of the hot water supply apparatus such as the heat pump type hot water supply apparatus 100, but may be used for heating a liquid heat medium in a hot water heating system, for example. . That is, the liquid heat medium heated by the heat pump hot water supply apparatus of the present invention is applied to, for example, a floor heating panel installed under the floor, a radiator or panel heater installed on an indoor wall surface, or a heating appliance such as a fan convector. You may supply.
  • the heat pump hot water supply device 100 includes a control device 10, a circulation pump control device 40, and an operation unit 42.
  • the control device 10 controls the operation of the heat source device 50 of the heat pump hot water supply device 100.
  • the circulation pump controller 40 controls the output of the circulation pump 9 so that the refrigerant outlet temperature Two detected by the fifth temperature sensor 8 becomes the target temperature.
  • the operation unit 42 is for the user to perform various operations of the heat pump hot water supply apparatus 100.
  • the circulation pump control device 40 is electrically connected to the operation unit 42.
  • the control device 10 is electrically connected to the circulation pump control device 40.
  • FIG. 2 is a control block diagram of the control device 10 included in the heat pump type hot water supply apparatus 100 of the first embodiment.
  • the configuration of the control system of heat pump hot water supply apparatus 100 according to Embodiment 1 will be described in more detail with reference to FIG.
  • Various sensors included in the heat pump hot water supply apparatus 100 are electrically connected to the input side of the control apparatus 10. Specifically, the first temperature sensor 16, the second temperature sensor 17, the third temperature sensor 18, the outside air temperature sensor 19, the fourth temperature sensor 7, and the fifth temperature sensor 8 are connected to the input side of the control device 10. Are electrically connected. The compressor 1, the pressure reducing valve 3, and the fan motor 5 are electrically connected to the output side of the control device 10.
  • the control device 10 includes a discharge pressure estimation unit 20 and a compressor control unit 30 as functional blocks for executing various controls of the heat source device 50 of the heat pump hot water supply device 100.
  • the discharge pressure estimation unit 20 is a functional block for executing discharge pressure estimation control for estimating the pressure of the refrigerant discharged from the compressor 1.
  • discharge pressure Pd the pressure of the refrigerant discharged from the compressor 1
  • the configuration of the discharge pressure estimation unit 20 is a feature of the heat pump hot water supply apparatus 100 of the present embodiment, and will be described in detail later.
  • the compressor control unit 30 is a functional block for controlling the operation of the compressor 1.
  • the operating speed of the compressor 1 is variable.
  • the compressor control unit 30 can change the operating speed of the compressor 1 by making the operation rotation speed (Hz) of the compressor 1 variable by inverter control.
  • the compressor control unit 30 executes compressor control for preventing excessive pressure increase in the refrigerant circuit.
  • the details of the compressor control will be described with reference to the flowchart.
  • FIG. 3 is a flowchart of a routine in which the heat pump hot water supply apparatus according to the first embodiment executes compressor control.
  • the routine shown in FIG. 3 is executed by the control device 10 when an instruction to drive the heat source device 50 is issued.
  • step S2 of the routine shown in FIG. 3 the compressor 1 is first driven. Specifically, the compressor 1 is driven after a predetermined time has elapsed since the control device 10 received a command to start compressor control.
  • step S4 the frequency of the compressor 1 is determined.
  • an average incoming water temperature Twi of an arbitrary time of the heat medium entering the refrigerant-water heat exchanger 2 is calculated.
  • an average outside air temperature Ta for an arbitrary time is calculated using the detection value of the outside air temperature sensor 19.
  • FIG. 4 is a compressor frequency map that defines the relationship between the average incoming water temperature Twi, the average outside air temperature Ta, and the compressor frequency.
  • the compressor frequency Fq corresponding to the calculated average incoming water temperature Twi and average outdoor air temperature Ta is calculated using the map shown in FIG. If the calculated average incoming water temperature Twi and average outside air temperature Ta do not exist in the map shown in FIG. 4, linear interpolation is performed to calculate the compressor frequency Fq.
  • step S6 the discharge pressure Pd is calculated.
  • the discharge pressure Pd is calculated by discharge pressure estimation control described later.
  • the allowable upper limit value here, the upper limit value of the allowable pressure determined by the design of the heat source device 50 can be used.
  • step S4 the upper limit value of the allowable pressure determined by the design of the heat source device 50.
  • step S8 it is determined that there may be a problem in durability performance of the heat source unit 50, and the process proceeds to the next step S10.
  • step S10 the driving of the compressor 1 is stopped for the purpose of protecting the heat source device 50.
  • the discharge pressure estimation unit 20 is a functional block for executing the discharge pressure estimation control for estimating the discharge pressure Pd.
  • the discharge pressure estimation unit 20 is configured to include a plurality of functional blocks for executing a calculation for estimating the discharge pressure Pd.
  • FIG. 5 is a diagram for explaining a functional block configuration of the discharge pressure estimation unit 20.
  • FIG. 6 is a Mollier diagram of the refrigerant used in the heat source device of the first embodiment.
  • FIG. 6 shows a Mollier diagram when CO2 (R744) is used as the refrigerant.
  • the discharge pressure estimation unit 20 includes a compressor inlet refrigerant pressure calculation unit 202, a compressor inlet entropy calculation unit 204, a compressor inlet enthalpy calculation unit 206, a theoretical enthalpy calculation unit 208, An efficiency calculation unit 210, an actual enthalpy calculation unit 212, and a compressor outlet pressure calculation unit 214 are provided.
  • the compressor inlet refrigerant pressure calculation unit 202 is a functional block that receives the input of the evaporator inlet temperature Tei and calculates the refrigerant pressure on the inlet side of the compressor 1.
  • the refrigerant pressure on the inlet side of the compressor 1 is referred to as “compressor inlet refrigerant pressure Ps”.
  • the compressor inlet refrigerant pressure calculation unit 202 calculates the saturation pressure corresponding to the input evaporator inlet temperature Tei from the relationship shown in the Mollier diagram of FIG. The calculated saturation pressure is set as the compressor inlet refrigerant pressure Ps.
  • the compressor inlet entropy calculating unit 204 is a functional block that receives the input of the compressor inlet refrigerant pressure Ps and the evaporator outlet temperature Teo and calculates the inlet-side entropy of the compressor 1.
  • the entropy on the inlet side of the compressor 1 is referred to as “compressor inlet entropy Si”.
  • the compressor inlet entropy calculation unit 204 calculates the entropy corresponding to the input compressor inlet refrigerant pressure Ps and the evaporator outlet temperature Teo from the relationship shown in the Mollier diagram of FIG. 6, and sets it as the compressor inlet entropy Si.
  • the compressor inlet enthalpy calculating unit 206 is a functional block that receives the inputs of the compressor inlet refrigerant pressure Ps and the evaporator outlet temperature Teo and calculates the enthalpy on the inlet side of the compressor 1.
  • the enthalpy on the inlet side of the compressor 1 is referred to as “compressor inlet enthalpy hi”.
  • the compressor inlet enthalpy calculation unit 206 calculates the enthalpy corresponding to the input compressor inlet refrigerant pressure Ps and the evaporator outlet temperature Teo from the relationship shown in the Mollier diagram of FIG. 6 and sets it as the compressor inlet enthalpy hi.
  • the theoretical enthalpy calculation unit 208 is a functional block that calculates the theoretical value of the enthalpy on the outlet side of the compressor 1 when it is assumed that ideal adiabatic compression is performed in the compressor 1.
  • the theoretical value of the enthalpy on the outlet side of the compressor 1 is referred to as “compressor outlet theoretical enthalpy ho ′”. If the theoretical value of the entropy at the outlet of the compressor 1 assuming that ideal adiabatic compression is performed in the compressor 1 is “compressor outlet theoretical entropy So ′”, the compressor outlet theoretical entropy So ′ is the compressor. It becomes a value equal to the entrance entropy Si.
  • the theoretical enthalpy calculation unit 208 calculates the enthalpy corresponding to the input compressor outlet theoretical entropy So ′ and the discharge temperature Td using the relationship shown in the Mollier diagram of FIG. 6, and the compressor outlet theoretical enthalpy ho ′ To do.
  • the adiabatic efficiency calculation unit 210 is a functional block that calculates the compressor adiabatic efficiency ⁇ c using the compressor frequency Fq.
  • FIG. 7 is a diagram illustrating an example of a rule defining the relationship of the compressor adiabatic efficiency ⁇ c with respect to the compressor frequency Fq.
  • the compressor heat insulation efficiency ⁇ c greatly depends on the motor efficiency of the compressor 1. Therefore, as shown in FIG. 7, the compressor adiabatic efficiency ⁇ c is maximized at the maximum value of the compressor frequency Fq at which the motor efficiency of the compressor 1 is maximized, and the compression is reduced as the compressor frequency Fq is further away from the maximum value.
  • the machine insulation efficiency ⁇ c is a small value.
  • the adiabatic efficiency calculation unit 210 receives the compressor frequency Fq calculated using the compressor frequency map shown in FIG.
  • the adiabatic efficiency calculation unit 210 calculates a compressor adiabatic efficiency ⁇ c corresponding to the input compressor frequency Fq according to a calculation formula reflecting the rules defined in FIG.
  • the actual enthalpy calculation unit 212 is a functional block for calculating the actual value of the enthalpy on the outlet side of the compressor 1.
  • the actual value of the enthalpy on the outlet side of the compressor 1 is referred to as “compressor actual enthalpy ho”.
  • the compression of the refrigerant by the compressor 1 is not actually adiabatic compression. That is, the actual compressor adiabatic efficiency ⁇ c of the compressor 1 is lower than the ideal “1”. For this reason, the compressor outlet actual enthalpy ho is larger than the compressor outlet theoretical enthalpy ho ′.
  • the actual enthalpy calculating unit 212 calculates the compressor outlet actual enthalpy ho by the following equation using the compressor adiabatic efficiency ⁇ c, the compressor outlet theoretical enthalpy ho ′, and the compressor inlet enthalpy hi. According to this equation, the compressor outlet actual enthalpy ho is calculated so as to approach the compressor outlet theoretical enthalpy ho ′ as the compressor adiabatic efficiency ⁇ c approaches 1.
  • the compressor outlet pressure calculation unit 214 is a functional block for receiving the input of the compressor outlet actual enthalpy ho and the discharge temperature Td and calculating the refrigerant discharge pressure Pd discharged from the compressor 1.
  • the compressor outlet pressure calculation unit 214 calculates the pressure corresponding to the input compressor outlet actual enthalpy ho and the discharge temperature Td from the relationship shown in the Mollier diagram of FIG. 6, and sets it as the discharge pressure Pd.
  • FIG. 8 is a flowchart of a routine in which the heat pump type hot water supply apparatus of the first embodiment executes discharge pressure estimation control.
  • the routine shown in FIG. 8 is repeatedly executed by the discharge pressure estimation unit 20 of the control device 10 while the heat source device 50 is being driven.
  • the compressor inlet refrigerant pressure calculation unit 202 calculates the compressor inlet refrigerant pressure Ps using the evaporator inlet temperature Tei detected by the third temperature sensor 18.
  • the compressor inlet entropy calculation unit 204 calculates the compressor inlet entropy Si using the calculated compressor inlet refrigerant pressure Ps and the evaporator outlet temperature Teo detected by the second temperature sensor 17.
  • the compressor inlet enthalpy calculating unit 206 calculates the compressor inlet enthalpy hi using the calculated compressor inlet refrigerant pressure Ps and the evaporator outlet temperature Teo detected by the second temperature sensor 17. To do.
  • the theoretical enthalpy calculation unit 208 calculates the compressor outlet theoretical enthalpy ho ′ using the discharge temperature Td detected by the first temperature sensor 16 and the calculated compressor inlet entropy Si.
  • the adiabatic efficiency calculation unit 210 calculates the compressor adiabatic efficiency ⁇ c using the compressor frequency Fq.
  • the compressor frequency Fq calculated here using the compressor frequency map shown in FIG. 4 is used as the compressor frequency Fq.
  • the actual enthalpy calculating unit 212 inputs the compressor adiabatic efficiency ⁇ c, the compressor outlet theoretical enthalpy ho ′, and the compressor inlet enthalpy hi into the equation (1), whereby the compressor outlet actual enthalpy ho Is calculated.
  • the compressor outlet pressure calculation unit 214 calculates the discharge pressure Pd using the compressor outlet actual enthalpy ho and the discharge temperature Td.
  • the discharge pressure Pd can be accurately calculated using the evaporator inlet temperature Tei, the evaporator outlet temperature Teo, and the discharge temperature Td.
  • the calculated discharge pressure Pd is used for compressor control, so that excessive pressure increase in the refrigerant circuit of the heat source unit 50 can be effectively prevented. Thereby, it becomes possible to provide the heat pump type hot water supply apparatus 100 with high reliability.
  • FIG. 9 is a diagram illustrating an example of a hardware configuration of the control device 10 included in the heat pump hot water supply apparatus 100 according to the embodiment.
  • Each function of the control device 10 is realized by a processing circuit.
  • the processing circuit of the control device 10 includes at least one processor 101 and at least one memory 102.
  • each function of the control device 10 is realized by software, firmware, or a combination of software and firmware. At least one of software and firmware is described as a program. At least one of software and firmware is stored in at least one memory 102. At least one processor 101 implements each function of the control device 10 by reading and executing a program stored in at least one memory 102.
  • the at least one processor 101 is also referred to as a CPU (Central Processing Unit), a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, and a DSP (Digital Signal Processor).
  • the at least one memory 102 includes a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Portable Memory, etc.).
  • a volatile semiconductor memory a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), or the like.
  • FIG. 10 is a diagram illustrating another example of the hardware configuration of the control device 10 included in the heat pump hot water supply apparatus 100 according to the embodiment.
  • the processing circuit of the control device 10 includes at least one dedicated hardware 103.
  • the processing circuit may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field). -Programmable Gate Array) or a combination of these.
  • the function of each unit of the control device 10 may be realized by a processing circuit. Further, the functions of the respective units of the control device 10 may be collectively realized by a processing circuit.
  • each function of the control device 10 may be realized by the dedicated hardware 103, and the other part may be realized by software or firmware.
  • the processing circuit realizes each function of the control device 10 by the hardware 103, software, firmware, or a combination thereof.

Abstract

Provided is a heat pump type hot water supply device including a heat source device, a detection device that detects a discharge temperature, an evaporator outlet temperature, and an evaporator inlet temperature, and a control device that controls the heat source device to heat the heating medium. The control device is configured to include a discharge pressure estimation unit that estimates the discharge pressure, and a compressor control unit that stops driving of the compressor when the discharge pressure exceeds the allowable pressure. The discharge pressure estimation unit calculates the compressor outlet theoretical enthalpy when it is assumed that the refrigerant is adiabatically compressed by the compressor. The discharge pressure estimation unit calculates the compressor outlet actual enthalpy by using the adiabatic efficiency of the compressor and the compressor outlet theoretical enthalpy, and calculates the discharge pressure by using the discharge temperature and the compressor outlet actual enthalpy.

Description

ヒートポンプ式給湯装置Heat pump type water heater
 本発明は、ヒートポンプ式給湯装置に関する。 The present invention relates to a heat pump type hot water supply apparatus.
 ヒートポンプ式給湯装置では、ヒートポンプ回路の圧力が許容値を超えないように圧力を調整する必要がある。例えば、特許文献1には、冷媒回路内で最も圧力が高くなる圧縮機の吐出圧力が所定値以上の場合に圧縮機を停止する技術が記載されている。 In the heat pump type hot water supply device, it is necessary to adjust the pressure so that the pressure of the heat pump circuit does not exceed the allowable value. For example, Patent Document 1 describes a technique for stopping a compressor when the discharge pressure of the compressor having the highest pressure in the refrigerant circuit is equal to or higher than a predetermined value.
 また、特許文献1には、圧縮機の吐出圧力の推定方法に関する技術が開示されている。この技術では、蒸発器の入口温度、蒸発器の出口温度、及び圧縮機の吐出温度を用いて、等エントロピ変化で冷媒が圧縮されたと仮定したときの圧縮機の吐出圧力が算出される。ただし、実際の運転ではエントロピが変化しているため、上記の仮定に基づき算出された吐出圧力は、実際の吐出圧力よりも高く求められる。そこで、特許文献1の技術では、蒸発器の入口温度、蒸発器の出口温度、及び圧縮機の吐出温度から特定された補正値を用いて、算出された吐出圧力が補正される。 Patent Document 1 discloses a technique related to a method for estimating the discharge pressure of a compressor. In this technique, the discharge pressure of the compressor when it is assumed that the refrigerant is compressed by the isentropic change is calculated using the inlet temperature of the evaporator, the outlet temperature of the evaporator, and the discharge temperature of the compressor. However, since entropy changes in actual operation, the discharge pressure calculated based on the above assumption is required to be higher than the actual discharge pressure. Therefore, in the technique of Patent Document 1, the calculated discharge pressure is corrected using correction values specified from the inlet temperature of the evaporator, the outlet temperature of the evaporator, and the discharge temperature of the compressor.
日本特開2005-140394号公報Japanese Unexamined Patent Publication No. 2005-140394
 圧縮機で冷媒が断熱圧縮されたと仮定した場合の吐出圧力に対する実際の吐出圧力の乖離量は、圧縮機の断熱効率に大きく依存する。このため、圧縮機の断熱効率を考慮せずに吐出圧力の補正値を算出する上記の特許文献1の技術では、実際の吐出圧力を精度よく推定できないおそれがある。圧縮機の吐出圧力の推定精度が低いと、実際の吐出圧力が許容値を超えているか否かの正確な判断を行うことができず、ヒートポンプ式給湯装置の熱源機の保護が不十分になるおそれがある。 The amount of deviation of the actual discharge pressure from the discharge pressure when it is assumed that the refrigerant is adiabatically compressed by the compressor greatly depends on the adiabatic efficiency of the compressor. For this reason, there is a possibility that the actual discharge pressure cannot be accurately estimated by the technique disclosed in Patent Document 1 that calculates the correction value of the discharge pressure without considering the heat insulation efficiency of the compressor. If the estimation accuracy of the discharge pressure of the compressor is low, it is impossible to accurately determine whether or not the actual discharge pressure exceeds the allowable value, and the heat source device of the heat pump hot water supply device is not sufficiently protected. There is a fear.
 本発明は、上述のような課題を解決するためになされたもので、圧縮機の吐出圧力を精度よく推定することにより、熱源機の過剰な昇圧を抑制することのできるヒートポンプ式給湯装置を提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and provides a heat pump type hot water supply apparatus capable of suppressing excessive pressure increase of a heat source unit by accurately estimating the discharge pressure of a compressor. The purpose is to do.
 本発明に係るヒートポンプ式給湯装置は、冷媒を圧縮する圧縮機と、圧縮機により圧縮された冷媒によって熱媒体を加熱するための熱交換器と、減圧装置と、蒸発器と、を順に環状に接続した熱源機と、圧縮機から吐出される冷媒の温度である吐出温度を検出する第一温度検出装置と、蒸発器の出口での冷媒の温度である蒸発器出口温度を検出する第二温度検出装置と、蒸発器の入口での冷媒の温度である蒸発器入口温度を検出する第三温度検出装置と、熱源機を制御して熱媒体を加熱する制御装置と、を備える。制御装置は、吐出温度、蒸発器出口温度、及び蒸発器入口温度に基づいて、圧縮機から吐出される冷媒の圧力である吐出圧力を推定する吐出圧力推定部と、吐出圧力が許容圧力を超えた場合に、圧縮機の駆動を停止する圧縮機制御部と、を含んで構成される。吐出圧力推定部は、冷媒の温度と飽和圧力の関係を用いて、蒸発器入口温度に対応する飽和圧力を、圧縮機の入口での冷媒圧力である圧縮機入口冷媒圧力として算出する圧縮機入口冷媒圧力算出部と、蒸発器出口温度及び圧縮機入口冷媒圧力を用いて、圧縮機の入口でのエントロピである圧縮機入口エントロピを算出する圧縮機入口エントロピ算出部と、蒸発器出口温度及び圧縮機入口冷媒圧力を用いて、圧縮機の入口でのエンタルピである圧縮機入口エンタルピを算出する圧縮機入口エンタルピ算出部と、吐出温度及び圧縮機入口エントロピを用いて、圧縮機によって冷媒が断熱圧縮されたと仮定した場合の圧縮機の出口でのエンタルピである圧縮機出口理論エンタルピを算出する理論エンタルピ算出部と、圧縮機の断熱効率、圧縮機出口理論エンタルピ、及び圧縮機入口エンタルピに基づいて、圧縮機の出口での実際のエンタルピである圧縮機出口実エンタルピを算出する実エンタルピ算出部と、冷媒についての温度、圧力及びエンタルピの関係に基づいて、吐出温度及び圧縮機出口実エンタルピに対応する圧力を吐出圧力として算出する圧縮機出口圧力算出部と、を含んで構成される。 A heat pump hot water supply apparatus according to the present invention includes a compressor that compresses a refrigerant, a heat exchanger that heats a heat medium with the refrigerant compressed by the compressor, a decompression device, and an evaporator in order. A connected heat source device, a first temperature detection device that detects a discharge temperature that is a temperature of refrigerant discharged from the compressor, and a second temperature that detects an evaporator outlet temperature that is the temperature of the refrigerant at the outlet of the evaporator A detection device, a third temperature detection device that detects an evaporator inlet temperature that is a temperature of the refrigerant at the inlet of the evaporator, and a control device that controls the heat source unit to heat the heat medium. The control device includes a discharge pressure estimation unit that estimates a discharge pressure that is a pressure of refrigerant discharged from the compressor based on the discharge temperature, the evaporator outlet temperature, and the evaporator inlet temperature, and the discharge pressure exceeds the allowable pressure. And a compressor control unit that stops driving the compressor. The discharge pressure estimation unit calculates the saturation pressure corresponding to the evaporator inlet temperature as the compressor inlet refrigerant pressure that is the refrigerant pressure at the compressor inlet, using the relationship between the refrigerant temperature and the saturation pressure. Using the refrigerant pressure calculation unit, the evaporator outlet temperature and the compressor inlet refrigerant pressure, the compressor inlet entropy calculation unit for calculating the compressor inlet entropy, which is the entropy at the compressor inlet, the evaporator outlet temperature and the compression A compressor inlet enthalpy calculation unit that calculates the compressor inlet enthalpy, which is the enthalpy at the compressor inlet, using the compressor inlet refrigerant pressure, and the compressor adiabatically compresses the refrigerant using the discharge temperature and the compressor inlet entropy. A theoretical enthalpy calculation unit for calculating the theoretical enthalpy of the compressor outlet, which is the enthalpy at the outlet of the compressor when it is assumed, and the adiabatic efficiency of the compressor, the compressor outlet The actual enthalpy calculation unit that calculates the actual enthalpy of the compressor outlet, which is the actual enthalpy at the outlet of the compressor, based on the enthalpy and the enthalpy of the compressor inlet, and the relationship between the temperature, pressure, and enthalpy of the refrigerant A compressor outlet pressure calculation unit that calculates a discharge temperature and a pressure corresponding to the actual compressor outlet enthalpy as a discharge pressure.
 本発明のヒートポンプ式給湯装置によれば、圧縮機の吐出圧力を精度よく推定することができる。これにより、熱源機の過剰な昇圧を抑制することのできるヒートポンプ式給湯装置を提供することが可能となる。 According to the heat pump hot water supply apparatus of the present invention, it is possible to accurately estimate the discharge pressure of the compressor. Thereby, it becomes possible to provide the heat pump type hot water supply apparatus which can suppress the excessive pressure | voltage rise of a heat source machine.
実施の形態1のヒートポンプ式給湯装置の回路構成を説明するための図である。It is a figure for demonstrating the circuit structure of the heat pump type hot-water supply apparatus of Embodiment 1. FIG. 実施の形態1のヒートポンプ式給湯装置が備える制御装置の制御ブロック図である。2 is a control block diagram of a control device provided in the heat pump hot water supply apparatus of Embodiment 1. FIG. 実施の形態1のヒートポンプ式給湯装置が圧縮機制御を実行するルーチンのフローチャートである。It is a flowchart of a routine in which the heat pump type hot water supply apparatus of the first embodiment executes compressor control. 平均入水温度Twiと平均外気温度Taと圧縮機周波数との関係を規定した圧縮機周波数マップである。It is a compressor frequency map which prescribed | regulated the relationship between the average water temperature Twi, the average outside air temperature Ta, and the compressor frequency. 吐出圧力推定部の機能ブロックの構成を説明するための図である。It is a figure for demonstrating the structure of the functional block of a discharge pressure estimation part. 実施の形態1の熱源機で用いられる冷媒のモリエル線図である。2 is a Mollier diagram of a refrigerant used in the heat source device of Embodiment 1. FIG. 圧縮機周波数Fqに対する圧縮機断熱効率ηcの関係を示す図である。It is a figure which shows the relationship of the compressor heat insulation efficiency (eta) c with respect to the compressor frequency Fq. 実施の形態1のヒートポンプ式給湯装置が吐出圧力推定制御を実行するルーチンのフローチャートである。3 is a flowchart of a routine in which the heat pump hot water supply apparatus according to Embodiment 1 executes discharge pressure estimation control. 実施の形態1のヒートポンプ式給湯装置が備える制御装置のハードウェア構成の例を示す図である。It is a figure which shows the example of the hardware constitutions of the control apparatus with which the heat pump type hot-water supply apparatus of Embodiment 1 is provided. 実施の形態1のヒートポンプ式給湯装置が備える制御装置のハードウェア構成の他の例を示す図である。It is a figure which shows the other example of the hardware constitutions of the control apparatus with which the heat pump type hot-water supply apparatus of Embodiment 1 is provided.
 以下、図面を参照して本発明の実施の形態について説明する。ただし、各図において共通する要素には、同一の符号を付して重複する説明を省略する。なお、以下に示す実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合又は原理的に明らかにその数に特定される場合を除いて、その言及した数に、この発明が限定されるものではない。また、以下に示す実施の形態において説明する構造は、特に明示した場合又は明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。また、本開示は、以下の各実施の形態で説明する構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含み得る。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the same reference numerals are given to common elements in the drawings, and redundant description is omitted. In the following embodiment, when referring to the number of each element, quantity, quantity, range, etc., unless otherwise specified or clearly specified in principle, the reference However, the present invention is not limited to these numbers. The structures described in the embodiments described below are not necessarily essential to the present invention unless otherwise specified or clearly specified in principle. In addition, the present disclosure may include all combinations of configurations that can be combined among the configurations described in the following embodiments.
実施の形態1.
[実施の形態1のヒートポンプ式給湯装置の構成]
 図1は、実施の形態1のヒートポンプ式給湯装置の回路構成を説明するための図である。この図に示すように、ヒートポンプ式給湯装置100には、ヒートポンプサイクルを利用した熱源機50を構成する部品として、圧縮機1、冷媒-水熱交換器2、減圧弁3、蒸発器4、ファンモータ5及びファン6が搭載されている。これらの部品が冷媒配管12によって環状に接続されることにより、熱源機50の冷媒回路が形成されている。
Embodiment 1 FIG.
[Configuration of Heat Pump Type Hot Water Supply Apparatus of Embodiment 1]
FIG. 1 is a diagram for explaining a circuit configuration of the heat pump hot water supply apparatus according to the first embodiment. As shown in this figure, the heat pump hot water supply apparatus 100 includes a compressor 1, a refrigerant-water heat exchanger 2, a pressure reducing valve 3, an evaporator 4, a fan as components constituting a heat source device 50 using a heat pump cycle. A motor 5 and a fan 6 are mounted. The refrigerant circuit of the heat source device 50 is formed by connecting these components in an annular shape by the refrigerant pipe 12.
 圧縮機1は、低圧冷媒ガスを圧縮する。冷媒の種類は、特に限定されない。実施の形態1のヒートポンプ式給湯装置では、CO2冷媒が使用される。CO2冷媒は、オゾン破壊係数が0であり、地球温暖化係数が1である。このため、CO2冷媒は、環境への負荷が小さい、毒性がない、可燃性がない、安全、及び安価等の特徴を有する冷媒である。また、CO2冷媒を用いた冷凍サイクルでは、圧縮機1で圧縮された高圧冷媒の圧力が超臨界圧となる遷臨界サイクルとなる。これにより、高い成績係数COPを得ることができる。 Compressor 1 compresses low-pressure refrigerant gas. The kind of refrigerant is not particularly limited. In the heat pump hot water supply apparatus of the first embodiment, a CO2 refrigerant is used. The CO2 refrigerant has an ozone depletion coefficient of 0 and a global warming coefficient of 1. For this reason, the CO2 refrigerant is a refrigerant having features such as a low environmental load, no toxicity, no flammability, safety, and low cost. Further, the refrigeration cycle using the CO 2 refrigerant is a transcritical cycle in which the pressure of the high-pressure refrigerant compressed by the compressor 1 becomes a supercritical pressure. Thereby, a high coefficient of performance COP can be obtained.
 冷媒-水熱交換器2は、圧縮機1から吐出された高温高圧の冷媒と、水または他の液状熱媒体との間で熱を交換する凝縮器の例である。液状の熱媒体は、例えば、塩化カルシウム水溶液、エチレングリコール水溶液、アルコール、などでもよい。実施の形態1のヒートポンプ式給湯装置では、熱媒体として水が使用される。 The refrigerant-water heat exchanger 2 is an example of a condenser that exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 1 and water or other liquid heat medium. The liquid heat medium may be, for example, a calcium chloride aqueous solution, an ethylene glycol aqueous solution, an alcohol, or the like. In the heat pump hot water supply apparatus of the first embodiment, water is used as a heat medium.
 減圧弁3は、冷媒-水熱交換器2を通過した高圧の冷媒を減圧して低圧冷媒にする減圧装置の例である。減圧弁3は、例えば開度を可変にできる電子制御式の膨張弁等として構成される。減圧された低圧冷媒は、気液二相の状態になる。蒸発器4は、減圧弁3で減圧された低圧冷媒と外気との間で熱を交換する熱交換器である。外気とは、屋外の空気である。蒸発器4において、低圧冷媒は、外気の熱を吸収することで蒸発する。ファン6は、外気が蒸発器4へ供給されるように送風する。ファン6は、ファンモータ5に駆動されることで回転する。蒸発器4で蒸発した低圧冷媒ガスは、圧縮機1に吸入される。 The pressure reducing valve 3 is an example of a pressure reducing device that depressurizes the high-pressure refrigerant that has passed through the refrigerant-water heat exchanger 2 to form a low-pressure refrigerant. The pressure reducing valve 3 is configured as, for example, an electronically controlled expansion valve whose opening degree can be varied. The decompressed low-pressure refrigerant is in a gas-liquid two-phase state. The evaporator 4 is a heat exchanger that exchanges heat between the low-pressure refrigerant decompressed by the decompression valve 3 and the outside air. Outside air is outdoor air. In the evaporator 4, the low-pressure refrigerant evaporates by absorbing the heat of the outside air. The fan 6 blows air so that outside air is supplied to the evaporator 4. The fan 6 is rotated by being driven by the fan motor 5. The low-pressure refrigerant gas evaporated by the evaporator 4 is sucked into the compressor 1.
 圧縮機1の吐出側の冷媒配管12には、圧縮機1から吐出される冷媒の温度を検出する第一温度検出装置としての第一温度センサ16が設置されている。以下の説明では、第一温度センサ16によって検出される冷媒の温度を「吐出温度Td」と称する。また、蒸発器4の出口側の冷媒配管12には、蒸発器4から流出する冷媒の温度を検出する第二温度検出装置として第二温度センサ17が設置されている。以下の説明では、第二温度センサ17によって検出される冷媒の温度を「蒸発器出口温度Teo」と称する。また、蒸発器4の入口側の冷媒配管12には、蒸発器4に流入する冷媒の温度を検出する第三温度検出装置としての第三温度センサ18が設置されている。以下の説明では、第三温度センサ18によって検出される冷媒の温度を「蒸発器入口温度Tei」と称する。さらに、ファン6の近傍には、外気温度を検出するための外気温度センサ19が設置されている。 In the refrigerant pipe 12 on the discharge side of the compressor 1, a first temperature sensor 16 is installed as a first temperature detection device that detects the temperature of the refrigerant discharged from the compressor 1. In the following description, the temperature of the refrigerant detected by the first temperature sensor 16 is referred to as “discharge temperature Td”. In addition, a second temperature sensor 17 is installed in the refrigerant pipe 12 on the outlet side of the evaporator 4 as a second temperature detection device that detects the temperature of the refrigerant flowing out of the evaporator 4. In the following description, the temperature of the refrigerant detected by the second temperature sensor 17 is referred to as “evaporator outlet temperature Teo”. The refrigerant pipe 12 on the inlet side of the evaporator 4 is provided with a third temperature sensor 18 as a third temperature detection device that detects the temperature of the refrigerant flowing into the evaporator 4. In the following description, the temperature of the refrigerant detected by the third temperature sensor 18 is referred to as “evaporator inlet temperature Tei”. Further, an outside air temperature sensor 19 for detecting the outside air temperature is installed in the vicinity of the fan 6.
 一方、給湯用の循環回路は、前述の冷媒-水熱交換器2と、循環ポンプ9と、温水タンク装置13と、を備える。冷媒-水熱交換器2における熱媒体の出口側は、第一温水循環配管14によって温水タンク装置13の上部に接続される。冷媒-水熱交換器2の熱媒体の入口側は、第二温水循環配管15によって温水タンク装置13の下部に接続される。循環ポンプ9は、冷媒-水熱交換器2へ熱媒体を循環させる熱媒体循環装置の例である。循環ポンプ9は、第二温水循環配管15の途中に設置される。第二温水循環配管15の途中には、冷媒-水熱交換器2の入口側の熱媒体の温度を検出するための第四温度センサ7が設置されている。また、第一温水循環配管14の途中には、冷媒-水熱交換器2の出口側の熱媒体の温度を検出するための第五温度センサ8が設置されている。 On the other hand, the circulation circuit for hot water supply includes the refrigerant-water heat exchanger 2, the circulation pump 9, and the hot water tank device 13. The outlet side of the heat medium in the refrigerant-water heat exchanger 2 is connected to the upper part of the hot water tank device 13 by a first hot water circulation pipe 14. The heat medium inlet side of the refrigerant-water heat exchanger 2 is connected to the lower part of the hot water tank device 13 by a second hot water circulation pipe 15. The circulation pump 9 is an example of a heat medium circulation device that circulates a heat medium to the refrigerant-water heat exchanger 2. The circulation pump 9 is installed in the middle of the second hot water circulation pipe 15. A fourth temperature sensor 7 for detecting the temperature of the heat medium on the inlet side of the refrigerant-water heat exchanger 2 is installed in the middle of the second hot water circulation pipe 15. A fifth temperature sensor 8 for detecting the temperature of the heat medium on the outlet side of the refrigerant-water heat exchanger 2 is installed in the middle of the first hot water circulation pipe 14.
 温水タンク装置13には、加熱前の水及び加熱後の湯が貯留される。温水タンク装置13内には、温度による水の比重の違いにより、上側が高温で下側が低温の温度成層が形成される。貯湯タンクの上部には、例えば給湯栓、シャワー、浴槽などの端末へ給湯するための給湯管(図示せず)が接続される。温水タンク装置13の下部には、水道などの水源からの水を供給する給水管(図示せず)が接続される。温水タンク装置13から給湯するときには、給水管から貯湯タンク内に作用する水圧により温水タンク装置13の上部の湯が給湯管へ送出される。給湯管へ流出した湯と同量の水が給水管から温水タンク装置13内に流入することで、温水タンク装置13内が満水状態に維持される。 The hot water tank device 13 stores water before heating and hot water after heating. Due to the difference in specific gravity of water depending on the temperature, a temperature stratification is formed in the hot water tank device 13 having a high temperature on the upper side and a low temperature on the lower side. A hot water supply pipe (not shown) for supplying hot water to a terminal such as a hot water tap, a shower, or a bathtub is connected to the upper part of the hot water storage tank. A water supply pipe (not shown) for supplying water from a water source such as a water supply is connected to the lower part of the hot water tank device 13. When hot water is supplied from the hot water tank device 13, the hot water in the upper part of the hot water tank device 13 is sent to the hot water supply pipe by the water pressure acting in the hot water storage tank from the water supply pipe. The same amount of water as the hot water flowing out to the hot water supply pipe flows into the hot water tank apparatus 13 from the water supply pipe, whereby the hot water tank apparatus 13 is maintained in a full water state.
 ヒートポンプ式給湯装置100は、例えば熱源機で加熱された湯を温水タンク装置13内に蓄積する蓄熱運転を実施できる。蓄熱運転のときには、以下のようになる。圧縮機1、ファンモータ5、及び循環ポンプ9が運転される。温水タンク装置13の下部から流出した水が、第二温水循環配管15を通って冷媒-水熱交換器2の内部へと流入する。この水は、冷媒-水熱交換器2にて高温高圧の冷媒により加熱されて湯になる。冷媒-水熱交換器2から流出した湯は、第一温水循環配管14を通って温水タンク装置13の上部に流入する。 The heat pump hot water supply apparatus 100 can perform a heat storage operation in which, for example, hot water heated by a heat source machine is accumulated in the hot water tank apparatus 13. At the time of heat storage operation, it is as follows. The compressor 1, the fan motor 5, and the circulation pump 9 are operated. Water flowing out from the lower part of the hot water tank device 13 flows into the refrigerant-water heat exchanger 2 through the second hot water circulation pipe 15. This water is heated by the high-temperature and high-pressure refrigerant in the refrigerant-water heat exchanger 2 to become hot water. Hot water flowing out from the refrigerant-water heat exchanger 2 flows into the upper part of the hot water tank device 13 through the first hot water circulation pipe 14.
 本発明のヒートポンプ式給湯装置は、上記ヒートポンプ式給湯装置100のような給湯装置の一部を構成するものに限らず、例えば温水暖房システムにおける液状熱媒体を加熱する用途に使用されるものでもよい。すなわち、本発明のヒートポンプ式給湯装置により加熱された液状熱媒体を、例えば、床下に設置される床暖房パネル、室内壁面に設置されるラジエータもしくはパネルヒーター、または、ファンコンベクターのような暖房器具へ供給してもよい。 The heat pump type hot water supply apparatus of the present invention is not limited to a part of the hot water supply apparatus such as the heat pump type hot water supply apparatus 100, but may be used for heating a liquid heat medium in a hot water heating system, for example. . That is, the liquid heat medium heated by the heat pump hot water supply apparatus of the present invention is applied to, for example, a floor heating panel installed under the floor, a radiator or panel heater installed on an indoor wall surface, or a heating appliance such as a fan convector. You may supply.
 実施の形態1のヒートポンプ式給湯装置100は、制御装置10と、循環ポンプ用制御装置40と、操作部42と、を備える。制御装置10は、ヒートポンプ式給湯装置100の熱源機50の動作を制御する。循環ポンプ用制御装置40は、第五温度センサ8によって検出される冷媒の出口温度Twoが目標温度となるように、循環ポンプ9の出力を制御する。また、操作部42は、使用者がヒートポンプ式給湯装置100の各種操作を行うためのものである。循環ポンプ用制御装置40は、操作部42と電気的に接続される。また、制御装置10は、循環ポンプ用制御装置40と電気的に接続される。 The heat pump hot water supply device 100 according to the first embodiment includes a control device 10, a circulation pump control device 40, and an operation unit 42. The control device 10 controls the operation of the heat source device 50 of the heat pump hot water supply device 100. The circulation pump controller 40 controls the output of the circulation pump 9 so that the refrigerant outlet temperature Two detected by the fifth temperature sensor 8 becomes the target temperature. The operation unit 42 is for the user to perform various operations of the heat pump hot water supply apparatus 100. The circulation pump control device 40 is electrically connected to the operation unit 42. The control device 10 is electrically connected to the circulation pump control device 40.
 図2は、実施の形態1のヒートポンプ式給湯装置100が備える制御装置10の制御ブロック図である。以下、図2も参照して、実施の形態1のヒートポンプ式給湯装置100の制御系の構成について、さらに詳しく説明する。 FIG. 2 is a control block diagram of the control device 10 included in the heat pump type hot water supply apparatus 100 of the first embodiment. Hereinafter, the configuration of the control system of heat pump hot water supply apparatus 100 according to Embodiment 1 will be described in more detail with reference to FIG.
 制御装置10の入力側には、ヒートポンプ式給湯装置100が備える各種センサが電気的に接続される。具体的には、第一温度センサ16、第二温度センサ17、第三温度センサ18、外気温度センサ19、第四温度センサ7、及び第五温度センサ8は、制御装置10の入力側に対して電気的に接続される。また、圧縮機1、減圧弁3、及びファンモータ5は、制御装置10の出力側に対して電気的に接続される。 Various sensors included in the heat pump hot water supply apparatus 100 are electrically connected to the input side of the control apparatus 10. Specifically, the first temperature sensor 16, the second temperature sensor 17, the third temperature sensor 18, the outside air temperature sensor 19, the fourth temperature sensor 7, and the fifth temperature sensor 8 are connected to the input side of the control device 10. Are electrically connected. The compressor 1, the pressure reducing valve 3, and the fan motor 5 are electrically connected to the output side of the control device 10.
 制御装置10は、ヒートポンプ式給湯装置100の熱源機50の各種制御を実行するための機能ブロックとして、吐出圧力推定部20と、圧縮機制御部30と、を備えている。吐出圧力推定部20は、圧縮機1から吐出される冷媒の圧力を推定する吐出圧力推定制御を実行するための機能ブロックである。以下の説明では、圧縮機1から吐出される冷媒の圧力を「吐出圧力Pd」と称する。吐出圧力推定部20の構成は、本実施の形態のヒートポンプ式給湯装置100の特徴であるため、詳細を後述する。 The control device 10 includes a discharge pressure estimation unit 20 and a compressor control unit 30 as functional blocks for executing various controls of the heat source device 50 of the heat pump hot water supply device 100. The discharge pressure estimation unit 20 is a functional block for executing discharge pressure estimation control for estimating the pressure of the refrigerant discharged from the compressor 1. In the following description, the pressure of the refrigerant discharged from the compressor 1 is referred to as “discharge pressure Pd”. The configuration of the discharge pressure estimation unit 20 is a feature of the heat pump hot water supply apparatus 100 of the present embodiment, and will be described in detail later.
 圧縮機制御部30は、圧縮機1の動作を制御するための機能ブロックである。圧縮機1の動作速度は、可変である。圧縮機制御部30は、圧縮機1の運転回転数(Hz)をインバーター制御により可変にすることで、圧縮機1の動作速度を変化させることができる。圧縮機1の運転回転数が高いほど、圧縮機1の動作速度が高くなる。圧縮機1の動作速度が高いほど、冷媒の循環速度が高くなり、冷媒が冷媒-水熱交換器2へ供給する時間当たりの熱量が高くなる。圧縮機制御部30は、熱源機50の冷媒回路の保護を目的として、冷媒回路の過剰な昇圧を防ぐための圧縮機制御を実行する。以下、フローチャートを参照して、圧縮機制御の詳細について説明する。 The compressor control unit 30 is a functional block for controlling the operation of the compressor 1. The operating speed of the compressor 1 is variable. The compressor control unit 30 can change the operating speed of the compressor 1 by making the operation rotation speed (Hz) of the compressor 1 variable by inverter control. The higher the operation speed of the compressor 1, the higher the operating speed of the compressor 1. The higher the operating speed of the compressor 1, the higher the circulation speed of the refrigerant, and the higher the amount of heat per hour that the refrigerant supplies to the refrigerant-water heat exchanger 2. For the purpose of protecting the refrigerant circuit of the heat source device 50, the compressor control unit 30 executes compressor control for preventing excessive pressure increase in the refrigerant circuit. Hereinafter, the details of the compressor control will be described with reference to the flowchart.
[圧縮機制御の具体的処理]
 図3は、実施の形態1のヒートポンプ式給湯装置が圧縮機制御を実行するルーチンのフローチャートである。図3に示すルーチンは、熱源機50の駆動指示が出された場合に制御装置10によって実行される。図3に示すルーチンのステップS2では、先ず圧縮機1が駆動される。ここでは、具体的には、制御装置10が圧縮機制御の開始の指令を受けてから一定時間経過後に圧縮機1が駆動される。
[Specific processing of compressor control]
FIG. 3 is a flowchart of a routine in which the heat pump hot water supply apparatus according to the first embodiment executes compressor control. The routine shown in FIG. 3 is executed by the control device 10 when an instruction to drive the heat source device 50 is issued. In step S2 of the routine shown in FIG. 3, the compressor 1 is first driven. Specifically, the compressor 1 is driven after a predetermined time has elapsed since the control device 10 received a command to start compressor control.
 次に、ステップS4では、圧縮機1の周波数が決定される。ここでは、先ず第四温度センサ7の検出値を用いて、冷媒-水熱交換器2に入水する熱媒体の任意時間の平均入水温度Twiが算出される。また、外気温度センサ19の検出値を用いて、任意時間の平均外気温度Taが算出される。図4は、平均入水温度Twiと平均外気温度Taと圧縮機周波数との関係を規定した圧縮機周波数マップである。ここでは、図4に示すマップを用いて、算出された平均入水温度Twiと平均外気温度Taに対応する圧縮機周波数Fqが算出される。なお、算出された平均入水温度Twiと平均外気温度Taが図4に示すマップ中に存在しない場合には、線形補間を行い圧縮機周波数Fqが算出される。 Next, in step S4, the frequency of the compressor 1 is determined. Here, first, using the detected value of the fourth temperature sensor 7, an average incoming water temperature Twi of an arbitrary time of the heat medium entering the refrigerant-water heat exchanger 2 is calculated. Further, an average outside air temperature Ta for an arbitrary time is calculated using the detection value of the outside air temperature sensor 19. FIG. 4 is a compressor frequency map that defines the relationship between the average incoming water temperature Twi, the average outside air temperature Ta, and the compressor frequency. Here, the compressor frequency Fq corresponding to the calculated average incoming water temperature Twi and average outdoor air temperature Ta is calculated using the map shown in FIG. If the calculated average incoming water temperature Twi and average outside air temperature Ta do not exist in the map shown in FIG. 4, linear interpolation is performed to calculate the compressor frequency Fq.
 次のステップS6では、吐出圧力Pdが算出される。ここでは、後述する吐出圧力推定制御によって吐出圧力Pdが算出される。次のステップS8では、吐出圧力Pdが熱源機50の許容上限値を超えたか否かが判定される。ここでの許容上限値は、熱源機50の設計で定められる許容圧力の上限値を用いることができる。その結果、判定の成立が認められない場合には、熱源機50の耐久性能上の問題は生じないと判断されて、再びステップS4の処理へと移行する。一方、上記ステップS8において判定の成立が認められた場合には、熱源機50の耐久性能上の問題が生じる可能性があると判断されて、次のステップS10へ移行する。ステップS10では、熱源機50の保護を目的として圧縮機1の駆動が停止される。 In the next step S6, the discharge pressure Pd is calculated. Here, the discharge pressure Pd is calculated by discharge pressure estimation control described later. In the next step S8, it is determined whether or not the discharge pressure Pd exceeds the allowable upper limit value of the heat source unit 50. As the allowable upper limit value here, the upper limit value of the allowable pressure determined by the design of the heat source device 50 can be used. As a result, if the determination is not confirmed, it is determined that there is no problem in durability performance of the heat source device 50, and the process proceeds to step S4 again. On the other hand, if the determination in step S8 is confirmed, it is determined that there may be a problem in durability performance of the heat source unit 50, and the process proceeds to the next step S10. In step S10, the driving of the compressor 1 is stopped for the purpose of protecting the heat source device 50.
 このように、上述した圧縮機制御によれば、熱源機50の冷媒回路の過剰な昇圧を防ぐことができる。これにより、信頼性の高いヒートポンプ式給湯装置100を提供することが可能となる。 Thus, according to the compressor control described above, it is possible to prevent excessive pressure increase in the refrigerant circuit of the heat source device 50. Thereby, it becomes possible to provide the heat pump type hot water supply apparatus 100 with high reliability.
 [吐出圧力推定部の構成]
 次に、実施の形態1のヒートポンプ式給湯装置100の特徴である吐出圧力推定部20の構成について説明する。上述したように、吐出圧力推定部20は、吐出圧力Pdを推定する吐出圧力推定制御を実行するための機能ブロックである。吐出圧力推定部20は、吐出圧力Pdを推定するための演算を実行するための複数の機能ブロックを含んで構成されている。図5は、吐出圧力推定部20の機能ブロックの構成を説明するための図である。また、図6は、実施の形態1の熱源機で用いられる冷媒のモリエル線図である。なお、図6は、冷媒としてCO2(R744)を用いた場合のモリエル線図を示している。このモリエル線図では、横軸を冷媒のエンタルピとし縦軸を冷媒の圧力とした座標面上に、等温線、等エントロピ線、等比体積線、そして、飽和液・飽和蒸気線が描かれている。
[Configuration of discharge pressure estimation unit]
Next, the structure of the discharge pressure estimation part 20 which is the characteristic of the heat pump type hot water supply apparatus 100 of Embodiment 1 is demonstrated. As described above, the discharge pressure estimation unit 20 is a functional block for executing the discharge pressure estimation control for estimating the discharge pressure Pd. The discharge pressure estimation unit 20 is configured to include a plurality of functional blocks for executing a calculation for estimating the discharge pressure Pd. FIG. 5 is a diagram for explaining a functional block configuration of the discharge pressure estimation unit 20. FIG. 6 is a Mollier diagram of the refrigerant used in the heat source device of the first embodiment. FIG. 6 shows a Mollier diagram when CO2 (R744) is used as the refrigerant. In this Mollier diagram, isotherms, isentropic lines, isovolume lines, and saturated liquid / saturated vapor lines are drawn on the coordinate plane with the horizontal axis representing the enthalpy of the refrigerant and the vertical axis representing the pressure of the refrigerant. Yes.
 図5に示すように、吐出圧力推定部20は、圧縮機入口冷媒圧力算出部202と、圧縮機入口エントロピ算出部204と、圧縮機入口エンタルピ算出部206と、理論エンタルピ算出部208と、断熱効率算出部210と、実エンタルピ算出部212と、圧縮機出口圧力算出部214と、を備える。 As shown in FIG. 5, the discharge pressure estimation unit 20 includes a compressor inlet refrigerant pressure calculation unit 202, a compressor inlet entropy calculation unit 204, a compressor inlet enthalpy calculation unit 206, a theoretical enthalpy calculation unit 208, An efficiency calculation unit 210, an actual enthalpy calculation unit 212, and a compressor outlet pressure calculation unit 214 are provided.
 圧縮機入口冷媒圧力算出部202は、蒸発器入口温度Teiの入力を受けて圧縮機1の入口側の冷媒圧力を算出する機能ブロックである。以下の説明では、圧縮機1の入口側の冷媒圧力を「圧縮機入口冷媒圧力Ps」と称する。圧縮機入口冷媒圧力算出部202は、入力された蒸発器入口温度Teiに対応する飽和圧力を図6のモリエル線図に示す関係から算出する。そして、算出された飽和圧力を圧縮機入口冷媒圧力Psとする。 The compressor inlet refrigerant pressure calculation unit 202 is a functional block that receives the input of the evaporator inlet temperature Tei and calculates the refrigerant pressure on the inlet side of the compressor 1. In the following description, the refrigerant pressure on the inlet side of the compressor 1 is referred to as “compressor inlet refrigerant pressure Ps”. The compressor inlet refrigerant pressure calculation unit 202 calculates the saturation pressure corresponding to the input evaporator inlet temperature Tei from the relationship shown in the Mollier diagram of FIG. The calculated saturation pressure is set as the compressor inlet refrigerant pressure Ps.
 圧縮機入口エントロピ算出部204は、圧縮機入口冷媒圧力Psと蒸発器出口温度Teoの入力を受けて圧縮機1の入口側のエントロピを算出する機能ブロックである。以下の説明では、圧縮機1の入口側のエントロピを「圧縮機入口エントロピSi」と称する。圧縮機入口エントロピ算出部204は、入力された圧縮機入口冷媒圧力Psと蒸発器出口温度Teoに対応するエントロピを図6のモリエル線図に示す関係から算出し、圧縮機入口エントロピSiとする。 The compressor inlet entropy calculating unit 204 is a functional block that receives the input of the compressor inlet refrigerant pressure Ps and the evaporator outlet temperature Teo and calculates the inlet-side entropy of the compressor 1. In the following description, the entropy on the inlet side of the compressor 1 is referred to as “compressor inlet entropy Si”. The compressor inlet entropy calculation unit 204 calculates the entropy corresponding to the input compressor inlet refrigerant pressure Ps and the evaporator outlet temperature Teo from the relationship shown in the Mollier diagram of FIG. 6, and sets it as the compressor inlet entropy Si.
 圧縮機入口エンタルピ算出部206は、圧縮機入口冷媒圧力Psと蒸発器出口温度Teoの入力を受けて圧縮機1の入口側のエンタルピを算出する機能ブロックである。以下の説明では、圧縮機1の入口側のエンタルピを「圧縮機入口エンタルピhi」と称する。圧縮機入口エンタルピ算出部206は、入力された圧縮機入口冷媒圧力Psと蒸発器出口温度Teoに対応するエンタルピを図6のモリエル線図に示す関係から算出し、圧縮機入口エンタルピhiとする。 The compressor inlet enthalpy calculating unit 206 is a functional block that receives the inputs of the compressor inlet refrigerant pressure Ps and the evaporator outlet temperature Teo and calculates the enthalpy on the inlet side of the compressor 1. In the following description, the enthalpy on the inlet side of the compressor 1 is referred to as “compressor inlet enthalpy hi”. The compressor inlet enthalpy calculation unit 206 calculates the enthalpy corresponding to the input compressor inlet refrigerant pressure Ps and the evaporator outlet temperature Teo from the relationship shown in the Mollier diagram of FIG. 6 and sets it as the compressor inlet enthalpy hi.
 理論エンタルピ算出部208は、圧縮機1において理想的な断熱圧縮が行われたと仮定した場合の圧縮機1の出口側のエンタルピの理論値を算出する機能ブロックである。以下の説明では、圧縮機1の出口側のエンタルピの理論値を「圧縮機出口理論エンタルピho´」と称する。圧縮機1において理想的な断熱圧縮が行われたと仮定した場合の圧縮機1の出口のエントロピの理論値を「圧縮機出口理論エントロピSo´」とすると、圧縮機出口理論エントロピSo´は圧縮機入口エントロピSiと等しい値となる。理論エンタルピ算出部208は、図6のモリエル線図に示す関係を用いて、入力された圧縮機出口理論エントロピSo´と吐出温度Tdに対応するエンタルピを算出し、圧縮機出口理論エンタルピho´とする。 The theoretical enthalpy calculation unit 208 is a functional block that calculates the theoretical value of the enthalpy on the outlet side of the compressor 1 when it is assumed that ideal adiabatic compression is performed in the compressor 1. In the following description, the theoretical value of the enthalpy on the outlet side of the compressor 1 is referred to as “compressor outlet theoretical enthalpy ho ′”. If the theoretical value of the entropy at the outlet of the compressor 1 assuming that ideal adiabatic compression is performed in the compressor 1 is “compressor outlet theoretical entropy So ′”, the compressor outlet theoretical entropy So ′ is the compressor. It becomes a value equal to the entrance entropy Si. The theoretical enthalpy calculation unit 208 calculates the enthalpy corresponding to the input compressor outlet theoretical entropy So ′ and the discharge temperature Td using the relationship shown in the Mollier diagram of FIG. 6, and the compressor outlet theoretical enthalpy ho ′ To do.
 断熱効率算出部210は、圧縮機周波数Fqを用いて圧縮機断熱効率ηcを算出する機能ブロックである。図7は、圧縮機周波数Fqに対する圧縮機断熱効率ηcの関係を規定した規則の一例を示す図である。圧縮機断熱効率ηcは、圧縮機1のモータ効率に大きく依存している。このため、圧縮機断熱効率ηcは、図7に示すように、圧縮機1のモータ効率が最大となる圧縮機周波数Fqの最大値において最大となり、圧縮機周波数Fqが当該最大値から離れるほど圧縮機断熱効率ηcは小さな値となる。断熱効率算出部210には、図4に示す圧縮機周波数マップを用いて算出された圧縮機周波数Fqが入力される。断熱効率算出部210は、図7に規定された規則を反映した算出式に従い、入力された圧縮機周波数Fqに対応する圧縮機断熱効率ηcを算出する。 The adiabatic efficiency calculation unit 210 is a functional block that calculates the compressor adiabatic efficiency ηc using the compressor frequency Fq. FIG. 7 is a diagram illustrating an example of a rule defining the relationship of the compressor adiabatic efficiency ηc with respect to the compressor frequency Fq. The compressor heat insulation efficiency ηc greatly depends on the motor efficiency of the compressor 1. Therefore, as shown in FIG. 7, the compressor adiabatic efficiency ηc is maximized at the maximum value of the compressor frequency Fq at which the motor efficiency of the compressor 1 is maximized, and the compression is reduced as the compressor frequency Fq is further away from the maximum value. The machine insulation efficiency ηc is a small value. The adiabatic efficiency calculation unit 210 receives the compressor frequency Fq calculated using the compressor frequency map shown in FIG. The adiabatic efficiency calculation unit 210 calculates a compressor adiabatic efficiency ηc corresponding to the input compressor frequency Fq according to a calculation formula reflecting the rules defined in FIG.
 実エンタルピ算出部212は、圧縮機1の出口側のエンタルピの実際値を算出するための機能ブロックである。以下の説明では、圧縮機1の出口側のエンタルピの実際値を「圧縮機出口実エンタルピho」と称する。ここで、圧縮機1による冷媒の圧縮は、実際には断熱圧縮されない。すなわち、圧縮機1の実際の圧縮機断熱効率ηcは、理想的な“1”よりも低い値となる。このため、圧縮機出口実エンタルピhoは、圧縮機出口理論エンタルピho´よりも大きな値となる。実エンタルピ算出部212は、圧縮機断熱効率ηc、圧縮機出口理論エンタルピho´、及び圧縮機入口エンタルピhiを用いた以下の式によって圧縮機出口実エンタルピhoを算出する。この式によれば、圧縮機断熱効率ηcが1に近づくほど圧縮機出口実エンタルピhoが圧縮機出口理論エンタルピho´に近づくように算出される。 The actual enthalpy calculation unit 212 is a functional block for calculating the actual value of the enthalpy on the outlet side of the compressor 1. In the following description, the actual value of the enthalpy on the outlet side of the compressor 1 is referred to as “compressor actual enthalpy ho”. Here, the compression of the refrigerant by the compressor 1 is not actually adiabatic compression. That is, the actual compressor adiabatic efficiency ηc of the compressor 1 is lower than the ideal “1”. For this reason, the compressor outlet actual enthalpy ho is larger than the compressor outlet theoretical enthalpy ho ′. The actual enthalpy calculating unit 212 calculates the compressor outlet actual enthalpy ho by the following equation using the compressor adiabatic efficiency ηc, the compressor outlet theoretical enthalpy ho ′, and the compressor inlet enthalpy hi. According to this equation, the compressor outlet actual enthalpy ho is calculated so as to approach the compressor outlet theoretical enthalpy ho ′ as the compressor adiabatic efficiency ηc approaches 1.
 ho=(ho´-hi)/ηc+hi   ・・・(1) Ho = (ho'-hi) / ηc + hi (1)
 圧縮機出口圧力算出部214は、圧縮機出口実エンタルピhoと吐出温度Tdの入力を受けて、圧縮機1から吐出される冷媒の吐出圧力Pdを算出するための機能ブロックである。圧縮機出口圧力算出部214は、入力された圧縮機出口実エンタルピhoと吐出温度Tdに対応する圧力を図6のモリエル線図に示す関係から算出し、吐出圧力Pdとする。 The compressor outlet pressure calculation unit 214 is a functional block for receiving the input of the compressor outlet actual enthalpy ho and the discharge temperature Td and calculating the refrigerant discharge pressure Pd discharged from the compressor 1. The compressor outlet pressure calculation unit 214 calculates the pressure corresponding to the input compressor outlet actual enthalpy ho and the discharge temperature Td from the relationship shown in the Mollier diagram of FIG. 6, and sets it as the discharge pressure Pd.
[吐出圧力推定制御の具体的処理]
 図8は、実施の形態1のヒートポンプ式給湯装置が吐出圧力推定制御を実行するルーチンのフローチャートである。図8に示すルーチンは、熱源機50の駆動中に制御装置10の吐出圧力推定部20によって繰り返し実行される。図8に示すルーチンのステップS20では、圧縮機入口冷媒圧力算出部202は、第三温度センサ18によって検出された蒸発器入口温度Teiを用いて圧縮機入口冷媒圧力Psを算出する。次のステップS22では、圧縮機入口エントロピ算出部204は、算出された圧縮機入口冷媒圧力Psと第二温度センサ17によって検出された蒸発器出口温度Teoを用いて、圧縮機入口エントロピSiを算出する。次のステップS24では、圧縮機入口エンタルピ算出部206は、算出された圧縮機入口冷媒圧力Psと第二温度センサ17によって検出された蒸発器出口温度Teoを用いて、圧縮機入口エンタルピhiを算出する。
[Specific processing of discharge pressure estimation control]
FIG. 8 is a flowchart of a routine in which the heat pump type hot water supply apparatus of the first embodiment executes discharge pressure estimation control. The routine shown in FIG. 8 is repeatedly executed by the discharge pressure estimation unit 20 of the control device 10 while the heat source device 50 is being driven. In step S20 of the routine shown in FIG. 8, the compressor inlet refrigerant pressure calculation unit 202 calculates the compressor inlet refrigerant pressure Ps using the evaporator inlet temperature Tei detected by the third temperature sensor 18. In the next step S22, the compressor inlet entropy calculation unit 204 calculates the compressor inlet entropy Si using the calculated compressor inlet refrigerant pressure Ps and the evaporator outlet temperature Teo detected by the second temperature sensor 17. To do. In the next step S24, the compressor inlet enthalpy calculating unit 206 calculates the compressor inlet enthalpy hi using the calculated compressor inlet refrigerant pressure Ps and the evaporator outlet temperature Teo detected by the second temperature sensor 17. To do.
 次のステップS26では、理論エンタルピ算出部208は、第一温度センサ16によって検出された吐出温度Tdと算出された圧縮機入口エントロピSiを用いて、圧縮機出口理論エンタルピho´を算出する。次のステップS28では、断熱効率算出部210は、圧縮機周波数Fqを用いて圧縮機断熱効率ηcを算出する。ここでの圧縮機周波数Fqは、図4に示す圧縮機周波数マップを用いて算出された圧縮機周波数Fqが使用される。次のステップS30では、実エンタルピ算出部212は、圧縮機断熱効率ηc、圧縮機出口理論エンタルピho´、及び圧縮機入口エンタルピhiを式(1)に入力することにより、圧縮機出口実エンタルピhoを算出する。次のステップS32では、圧縮機出口圧力算出部214は、圧縮機出口実エンタルピhoと吐出温度Tdを用いて吐出圧力Pdを算出する。 In the next step S26, the theoretical enthalpy calculation unit 208 calculates the compressor outlet theoretical enthalpy ho ′ using the discharge temperature Td detected by the first temperature sensor 16 and the calculated compressor inlet entropy Si. In the next step S28, the adiabatic efficiency calculation unit 210 calculates the compressor adiabatic efficiency ηc using the compressor frequency Fq. The compressor frequency Fq calculated here using the compressor frequency map shown in FIG. 4 is used as the compressor frequency Fq. In the next step S30, the actual enthalpy calculating unit 212 inputs the compressor adiabatic efficiency ηc, the compressor outlet theoretical enthalpy ho ′, and the compressor inlet enthalpy hi into the equation (1), whereby the compressor outlet actual enthalpy ho Is calculated. In the next step S32, the compressor outlet pressure calculation unit 214 calculates the discharge pressure Pd using the compressor outlet actual enthalpy ho and the discharge temperature Td.
 このように、図8に示すルーチンの吐出圧力推定制御によれば、蒸発器入口温度Tei、蒸発器出口温度Teo及び吐出温度Tdを用いて、吐出圧力Pdを精度よく算出することができる。本実施の形態1のヒートポンプ式給湯装置では、算出された吐出圧力Pdが圧縮機制御に利用されるので、熱源機50の冷媒回路の過剰な昇圧を有効に防ぐことができる。これにより、信頼性の高いヒートポンプ式給湯装置100を提供することが可能となる。 Thus, according to the discharge pressure estimation control in the routine shown in FIG. 8, the discharge pressure Pd can be accurately calculated using the evaporator inlet temperature Tei, the evaporator outlet temperature Teo, and the discharge temperature Td. In the heat pump type hot water supply apparatus according to the first embodiment, the calculated discharge pressure Pd is used for compressor control, so that excessive pressure increase in the refrigerant circuit of the heat source unit 50 can be effectively prevented. Thereby, it becomes possible to provide the heat pump type hot water supply apparatus 100 with high reliability.
 ところで、実施の形態1のヒートポンプ式給湯装置100が備える制御装置10は、以下のように構成されてもよい。図9は、実施の形態のヒートポンプ式給湯装置100が備える制御装置10のハードウェア構成の例を示す図である。制御装置10の各機能は、処理回路により実現される。図9に示す例では、制御装置10の処理回路は、少なくとも1つのプロセッサ101と少なくとも1つのメモリ102とを備える。 By the way, the control apparatus 10 with which the heat pump type hot-water supply apparatus 100 of Embodiment 1 is provided may be comprised as follows. FIG. 9 is a diagram illustrating an example of a hardware configuration of the control device 10 included in the heat pump hot water supply apparatus 100 according to the embodiment. Each function of the control device 10 is realized by a processing circuit. In the example illustrated in FIG. 9, the processing circuit of the control device 10 includes at least one processor 101 and at least one memory 102.
 処理回路が少なくとも1つのプロセッサ101と少なくとも1つのメモリ102とを備える場合、制御装置10の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。ソフトウェアおよびファームウェアの少なくとも一方は、少なくとも1つのメモリ102に格納される。少なくとも1つのプロセッサ101は、少なくとも1つのメモリ102に記憶されたプログラムを読み出して実行することにより、制御装置10の各機能を実現する。少なくとも1つのプロセッサ101は、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)ともいう。例えば、少なくとも1つのメモリ102は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)等である。 When the processing circuit includes at least one processor 101 and at least one memory 102, each function of the control device 10 is realized by software, firmware, or a combination of software and firmware. At least one of software and firmware is described as a program. At least one of software and firmware is stored in at least one memory 102. At least one processor 101 implements each function of the control device 10 by reading and executing a program stored in at least one memory 102. The at least one processor 101 is also referred to as a CPU (Central Processing Unit), a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, and a DSP (Digital Signal Processor). For example, the at least one memory 102 includes a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Portable Memory, etc.). Alternatively, a volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), or the like.
 図10は、実施の形態のヒートポンプ式給湯装置100が備える制御装置10のハードウェア構成の他の例を示す図である。図10に示す例では、制御装置10の処理回路は、少なくとも1つの専用のハードウェア103を備える。 FIG. 10 is a diagram illustrating another example of the hardware configuration of the control device 10 included in the heat pump hot water supply apparatus 100 according to the embodiment. In the example illustrated in FIG. 10, the processing circuit of the control device 10 includes at least one dedicated hardware 103.
 処理回路が少なくとも1つの専用のハードウェア103を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものである。制御装置10の各部の機能がそれぞれ処理回路で実現されても良い。また、制御装置10の各部の機能がまとめて処理回路で実現されても良い。 When the processing circuit includes at least one dedicated hardware 103, the processing circuit may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field). -Programmable Gate Array) or a combination of these. The function of each unit of the control device 10 may be realized by a processing circuit. Further, the functions of the respective units of the control device 10 may be collectively realized by a processing circuit.
 また、制御装置10の各機能について、一部を専用のハードウェア103で実現し、他の一部をソフトウェアまたはファームウェアで実現してもよい。このように、処理回路は、ハードウェア103、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、制御装置10の各機能を実現する。 Further, a part of each function of the control device 10 may be realized by the dedicated hardware 103, and the other part may be realized by software or firmware. As described above, the processing circuit realizes each function of the control device 10 by the hardware 103, software, firmware, or a combination thereof.
 1 圧縮機、 2 冷媒-水熱交換器、 3 減圧弁、 4 蒸発器、 5 ファンモータ、 6 ファン、 7 第四温度センサ、 8 第五温度センサ、 9 循環ポンプ、 10 制御装置、 12 冷媒配管、 13 温水タンク装置、 14 第一温水循環配管、 15 第二温水循環配管、 16 第一温度センサ、 17 第二温度センサ、 18 第三温度センサ、 19 外気温度センサ、 20 吐出圧力推定部、 30 圧縮機制御部、 40 循環ポンプ用制御装置、 42 操作部、 50 熱源機、 100 ヒートポンプ式給湯装置、 101 プロセッサ、 102 メモリ、 103 ハードウェア、 202 圧縮機入口冷媒圧力算出部、 204 圧縮機入口エントロピ算出部、 206 圧縮機入口エンタルピ算出部、 208 理論エンタルピ算出部、 210 断熱効率算出部、 212 実エンタルピ算出部、 214 圧縮機出口圧力算出部 1 compressor, 2 refrigerant-water heat exchanger, 3 pressure reducing valve, 4 evaporator, 5 fan motor, 6 fan, 7 fourth temperature sensor, 8 fifth temperature sensor, 9 circulation pump, 10 control device, 12 refrigerant piping , 13 Hot water tank device, 14 First hot water circulation piping, 15 Second hot water circulation piping, 16 First temperature sensor, 17 Second temperature sensor, 18 Third temperature sensor, 19 Outside air temperature sensor, 20 Discharge pressure estimation unit, 30 Compressor control unit, 40 control device for circulation pump, 42 operation unit, 50 heat source machine, 100 heat pump hot water supply device, 101 processor, 102 memory, 103 hardware, 202 compressor inlet refrigerant pressure calculation unit, 204 compressor inlet entropy Calculation unit, 206 compressor Mouth enthalpy calculation unit, 208 theoretical enthalpy calculation unit, 210 adiabatic efficiency calculation unit, 212 real enthalpy calculation unit, 214 a compressor outlet pressure calculating section

Claims (3)

  1.  冷媒を圧縮する圧縮機と、前記圧縮機により圧縮された冷媒によって熱媒体を加熱するための熱交換器と、減圧装置と、蒸発器と、を順に環状に接続した熱源機と、
     前記圧縮機から吐出される冷媒の温度である吐出温度を検出する第一温度検出装置と、
     前記蒸発器の出口での冷媒の温度である蒸発器出口温度を検出する第二温度検出装置と、
     前記蒸発器の入口での冷媒の温度である蒸発器入口温度を検出する第三温度検出装置と、
     前記熱源機を制御して熱媒体を加熱する制御装置と、を備え、
     前記制御装置は、
     前記吐出温度、前記蒸発器出口温度、及び前記蒸発器入口温度に基づいて、前記圧縮機から吐出される冷媒の圧力である吐出圧力を推定する吐出圧力推定部と、
     前記吐出圧力が許容圧力を超えた場合に、前記圧縮機の駆動を停止する圧縮機制御部と、を含んで構成され、
     前記吐出圧力推定部は、
     前記冷媒の温度と飽和圧力の関係を用いて、前記蒸発器入口温度に対応する前記飽和圧力を、前記圧縮機の入口での冷媒圧力である圧縮機入口冷媒圧力として算出する圧縮機入口冷媒圧力算出部と、
     前記蒸発器出口温度及び前記圧縮機入口冷媒圧力を用いて、前記圧縮機の入口でのエントロピである圧縮機入口エントロピを算出する圧縮機入口エントロピ算出部と、
     前記蒸発器出口温度及び前記圧縮機入口冷媒圧力を用いて、前記圧縮機の入口でのエンタルピである圧縮機入口エンタルピを算出する圧縮機入口エンタルピ算出部と、
     前記吐出温度及び前記圧縮機入口エントロピを用いて、前記圧縮機によって冷媒が断熱圧縮されたと仮定した場合の前記圧縮機の出口でのエンタルピである圧縮機出口理論エンタルピを算出する理論エンタルピ算出部と、
     前記圧縮機の断熱効率、前記圧縮機出口理論エンタルピ、及び前記圧縮機入口エンタルピに基づいて、前記圧縮機の出口での実際のエンタルピである圧縮機出口実エンタルピを算出する実エンタルピ算出部と、
     前記冷媒についての温度、圧力及びエンタルピの関係に基づいて、前記吐出温度及び前記圧縮機出口実エンタルピに対応する圧力を前記吐出圧力として算出する圧縮機出口圧力算出部と、
     を含んで構成されることを特徴とするヒートポンプ式給湯装置。
    A compressor that compresses the refrigerant, a heat exchanger that heats the heat medium with the refrigerant compressed by the compressor, a decompression device, and a heat source device that sequentially connects the evaporator, and
    A first temperature detection device that detects a discharge temperature that is a temperature of a refrigerant discharged from the compressor;
    A second temperature detection device for detecting an evaporator outlet temperature which is a temperature of the refrigerant at the outlet of the evaporator;
    A third temperature detecting device for detecting an evaporator inlet temperature which is a temperature of the refrigerant at the inlet of the evaporator;
    A control device for controlling the heat source unit and heating the heat medium,
    The controller is
    A discharge pressure estimation unit that estimates a discharge pressure that is a pressure of a refrigerant discharged from the compressor based on the discharge temperature, the evaporator outlet temperature, and the evaporator inlet temperature;
    A compressor control unit that stops driving the compressor when the discharge pressure exceeds an allowable pressure, and
    The discharge pressure estimator is
    Compressor inlet refrigerant pressure for calculating the saturation pressure corresponding to the evaporator inlet temperature as the compressor inlet refrigerant pressure, which is the refrigerant pressure at the compressor inlet, using the relationship between the refrigerant temperature and the saturation pressure. A calculation unit;
    A compressor inlet entropy calculating unit that calculates a compressor inlet entropy that is an entropy at the inlet of the compressor, using the evaporator outlet temperature and the compressor inlet refrigerant pressure;
    A compressor inlet enthalpy calculating unit that calculates a compressor inlet enthalpy that is an enthalpy at the inlet of the compressor, using the evaporator outlet temperature and the compressor inlet refrigerant pressure;
    A theoretical enthalpy calculating unit that calculates a compressor outlet theoretical enthalpy that is an enthalpy at the outlet of the compressor when it is assumed that the refrigerant is adiabatically compressed by the compressor using the discharge temperature and the compressor inlet entropy; ,
    Based on the adiabatic efficiency of the compressor, the compressor outlet theoretical enthalpy, and the compressor inlet enthalpy, the actual enthalpy calculating unit that calculates the actual enthalpy of the compressor outlet that is the actual enthalpy at the outlet of the compressor;
    A compressor outlet pressure calculation unit that calculates, as the discharge pressure, the pressure corresponding to the discharge temperature and the actual compressor outlet enthalpy based on the relationship between the temperature, pressure, and enthalpy of the refrigerant;
    A heat pump type hot water supply apparatus characterized by comprising.
  2.  前記吐出圧力推定部は、前記圧縮機の周波数に基づいて前記断熱効率を算出する断熱効率算出部を含んで構成されることを特徴とする請求項1に記載のヒートポンプ式給湯装置。 The heat pump hot water supply apparatus according to claim 1, wherein the discharge pressure estimation unit includes an adiabatic efficiency calculating unit that calculates the adiabatic efficiency based on a frequency of the compressor.
  3.  前記断熱効率算出部は、前記圧縮機の周波数と前記断熱効率との関係を規定した規則を用いて、前記圧縮機の周波数に対応する前記断熱効率を算出するように構成され、
     前記規則は、前記圧縮機のモータ効率が最大となる周波数において前記断熱効率が最大となるように規定されていることを特徴とする請求項2に記載のヒートポンプ式給湯装置。
    The adiabatic efficiency calculation unit is configured to calculate the adiabatic efficiency corresponding to the frequency of the compressor using a rule that defines a relationship between the frequency of the compressor and the adiabatic efficiency,
    The heat pump hot water supply apparatus according to claim 2, wherein the rule is defined such that the heat insulation efficiency is maximized at a frequency at which the motor efficiency of the compressor is maximized.
PCT/JP2018/016174 2018-04-19 2018-04-19 Heat pump type hot water supply device WO2019202709A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/016174 WO2019202709A1 (en) 2018-04-19 2018-04-19 Heat pump type hot water supply device
JP2020514869A JPWO2019202709A1 (en) 2018-04-19 2018-04-19 Heat pump type hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/016174 WO2019202709A1 (en) 2018-04-19 2018-04-19 Heat pump type hot water supply device

Publications (1)

Publication Number Publication Date
WO2019202709A1 true WO2019202709A1 (en) 2019-10-24

Family

ID=68239125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016174 WO2019202709A1 (en) 2018-04-19 2018-04-19 Heat pump type hot water supply device

Country Status (2)

Country Link
JP (1) JPWO2019202709A1 (en)
WO (1) WO2019202709A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114459152B (en) * 2022-03-01 2024-01-16 北溪特(浙江)科技有限公司 Method for predicting frosting of air energy water heater

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358063A (en) * 1986-08-29 1988-03-12 株式会社東芝 Refrigeration cycle device
JP2006046681A (en) * 2004-07-30 2006-02-16 Denso Corp Heat pump device
JP2008202809A (en) * 2007-02-16 2008-09-04 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2008267694A (en) * 2007-04-20 2008-11-06 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2010002090A (en) * 2008-06-19 2010-01-07 Panasonic Corp Refrigerating cycle device
JP2012042114A (en) * 2010-08-18 2012-03-01 Denso Corp Two-stage pressure buildup refrigeration cycle
JP2012163233A (en) * 2011-02-04 2012-08-30 Panasonic Corp Refrigeration cycle apparatus and water circulation system using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3843978B2 (en) * 2003-11-06 2006-11-08 松下電器産業株式会社 Heat pump water heater
JP2011149568A (en) * 2010-01-19 2011-08-04 Panasonic Corp Heat pump device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358063A (en) * 1986-08-29 1988-03-12 株式会社東芝 Refrigeration cycle device
JP2006046681A (en) * 2004-07-30 2006-02-16 Denso Corp Heat pump device
JP2008202809A (en) * 2007-02-16 2008-09-04 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2008267694A (en) * 2007-04-20 2008-11-06 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2010002090A (en) * 2008-06-19 2010-01-07 Panasonic Corp Refrigerating cycle device
JP2012042114A (en) * 2010-08-18 2012-03-01 Denso Corp Two-stage pressure buildup refrigeration cycle
JP2012163233A (en) * 2011-02-04 2012-08-30 Panasonic Corp Refrigeration cycle apparatus and water circulation system using the same

Also Published As

Publication number Publication date
JPWO2019202709A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
US10006678B2 (en) Air-conditioning apparatus
JP5717873B2 (en) Air conditioner
JP2006162235A (en) Multi-air conditioner system, and valve opening control method for multi-air conditioner system
JP5223795B2 (en) Heat pump water heater
CN110741208B (en) Air conditioner
JP5003542B2 (en) Refrigeration cycle equipment
EP2594867B1 (en) Refrigeration cycle apparatus and hot water producing apparatus
JP4793328B2 (en) Heat pump equipment
KR101166385B1 (en) A air conditioning system by water source and control method thereof
KR20210096481A (en) Air conditioner
WO2019202709A1 (en) Heat pump type hot water supply device
JP2009092258A (en) Refrigerating cycle device
JP2003139419A (en) Hot water supply system
KR101917391B1 (en) Air conditioner
JP2018146142A (en) Air conditioner
JP6537641B2 (en) Hot and cold air conditioning system
KR101392316B1 (en) Air conditioning system
US20210325095A1 (en) Refrigeration cycle apparatus
JP2013108672A (en) Air conditioner with crankcase heater
JP6394813B2 (en) Refrigeration cycle system
JP6763498B2 (en) Heat pump type hot water supply device
JP6555424B2 (en) Heat pump system
JP7097755B2 (en) Hot water heater
JP2002081771A (en) Heat pump
WO2022071068A1 (en) Heat capacity estimation system, refrigerant cycle device, and heat capacity estimation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914997

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514869

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914997

Country of ref document: EP

Kind code of ref document: A1