JP2010002090A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2010002090A
JP2010002090A JP2008159972A JP2008159972A JP2010002090A JP 2010002090 A JP2010002090 A JP 2010002090A JP 2008159972 A JP2008159972 A JP 2008159972A JP 2008159972 A JP2008159972 A JP 2008159972A JP 2010002090 A JP2010002090 A JP 2010002090A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
discharge pressure
pressure
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008159972A
Other languages
Japanese (ja)
Inventor
Yoshiki Yamaoka
由樹 山岡
Kenji Shirai
健二 白井
Masayuki Hamada
真佐行 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008159972A priority Critical patent/JP2010002090A/en
Publication of JP2010002090A publication Critical patent/JP2010002090A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle device capable of estimating a discharge pressure with high accuracy and using it for the prevention of an abnormal rise of discharge pressure and for the highly efficient operation of a refrigerating cycle by computing the enthalpy difference of a refrigerant and using adiabatic efficiency based on experimental data to estimate the discharge pressure. <P>SOLUTION: The refrigerating cycle device comprises a refrigerant circuit 5 formed by connecting at least a compressor 1, a radiator 2, a pressure reducing mechanism 3 and an evaporator 4 annularly and circulating the refrigerant, and a discharge pressure estimating means 28 estimating the discharge pressure. The discharge pressure estimating means 28 estimates the pressure of the refrigerant discharged from the compressor 1 using an arithmetic expression. The discharge pressure is appropriately estimated without providing a pressure detecting means or a pressure switch, and the estimated discharge pressure is used to prevent the abnormal rise of discharge pressure and to operate the refrigerating cycle device with high efficiency. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高圧側で超臨界状態となり得る冷媒を用い、ヒートポンプ給湯機や空気調和機などに搭載される冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus mounted on a heat pump water heater or an air conditioner using a refrigerant that can be in a supercritical state on the high pressure side.

従来、この種の冷凍サイクル装置は、図9に示すような構造を有していた.なお、以下では、冷媒の冷却熱を用いて温水を生成するヒートポンプ給湯機に搭載の冷凍サイクル装置を代表例として用いて述べる。   Conventionally, this type of refrigeration cycle apparatus has a structure as shown in FIG. In the following description, a refrigeration cycle apparatus mounted on a heat pump water heater that generates hot water using the cooling heat of the refrigerant will be described as a representative example.

図9において、1は圧縮機、2は放熱器、3は膨張弁、4は蒸発器であり、これらはこの順で環状に構成され、冷媒サイクル5を形成している。なお、6は圧力スイッチであり、圧縮機1と放熱器2との間に備えている。   In FIG. 9, reference numeral 1 is a compressor, 2 is a radiator, 3 is an expansion valve, and 4 is an evaporator, which are configured in an annular shape in this order to form a refrigerant cycle 5. A pressure switch 6 is provided between the compressor 1 and the radiator 2.

また、11は貯湯タンク、12は積層ポンプ、13は三方弁、14は給湯混合弁であり、貯湯タンク11の底部から積層ポンプ12、放熱器2、三方弁13を経て貯湯タンク11の頂部へ還流する沸き上げ回路16を構成し、給湯混合弁14は供給水配管と貯湯タンク11からの給湯配管の混合部に設けられている。   Further, 11 is a hot water storage tank, 12 is a stacking pump, 13 is a three-way valve, and 14 is a hot water mixing valve. From the bottom of the hot water storage tank 11 to the top of the hot water storage tank 11 via the stacking pump 12, the radiator 2 and the three-way valve 13. The recirculating boiling circuit 16 is configured, and the hot water supply mixing valve 14 is provided in a mixing portion of the supply water pipe and the hot water supply pipe from the hot water storage tank 11.

以上のように構成された冷凍サイクル装置について、以下にその動作を説明する。   About the refrigerating-cycle apparatus comprised as mentioned above, the operation | movement is demonstrated below.

圧縮機1から吐出された超臨界状態の高圧冷媒は放熱器2へ供給され、放熱器2において水と熱交換を行い、温度の低下した冷媒は膨張弁3に供給される。膨張弁3にて減圧された後、蒸発器4に供給されて吸熱した後、圧縮機1へ吸入される。なお、圧力スイッチ6は、吐出圧力が一定値に達すると作動して、電源供給回路の電気的接続を切断するものである。   The supercritical high-pressure refrigerant discharged from the compressor 1 is supplied to the radiator 2, performs heat exchange with water in the radiator 2, and the refrigerant whose temperature has decreased is supplied to the expansion valve 3. After being depressurized by the expansion valve 3, it is supplied to the evaporator 4, absorbs heat, and then sucked into the compressor 1. The pressure switch 6 is activated when the discharge pressure reaches a certain value and disconnects the electrical connection of the power supply circuit.

一方、放熱器2において加熱される水は、貯湯タンク11の底部より供給され、放熱器2において加熱された後に、温水となって貯湯タンク11の頂部に還流される。   On the other hand, the water heated in the radiator 2 is supplied from the bottom of the hot water storage tank 11, heated in the radiator 2, and then heated to return to the top of the hot water storage tank 11.

圧力スイッチ6は、吐出圧力が設計圧力を超えて異常上昇した場合に、安全を確保するために備えられている。   The pressure switch 6 is provided to ensure safety when the discharge pressure rises abnormally beyond the design pressure.

そのため、一般に、圧力スイッチ6が作動する圧力は、冷凍サイクル装置の設計圧力程度に設定されている。特に、吐出圧力を非常に高くして(約10MPa)動作させる二酸化炭素を冷媒とするヒートポンプ給湯機に搭載の冷凍サイクル装置おいては、その果たす役割は大きい。   Therefore, generally, the pressure at which the pressure switch 6 operates is set to about the design pressure of the refrigeration cycle apparatus. In particular, in a refrigeration cycle apparatus mounted on a heat pump water heater using carbon dioxide as a refrigerant to be operated at a very high discharge pressure (about 10 MPa), its role plays a large role.

しかしながら、圧力スイッチ6は吐出圧力の異常上昇に対する保安装置としては大きな役割を果たすが、吐出圧力を制御して冷凍サイクル装置を高い効率で動作させることはできない。また、冷媒を超臨界状態にして動作させる冷凍サイクル装置においては、吐出圧力が非常に高くなるため、圧力スイッチを含む冷媒回路からの冷媒漏洩も危惧される。   However, although the pressure switch 6 plays a large role as a safety device against an abnormal increase in the discharge pressure, the refrigeration cycle apparatus cannot be operated with high efficiency by controlling the discharge pressure. Further, in the refrigeration cycle apparatus that operates with the refrigerant in a supercritical state, the discharge pressure becomes very high, and there is also a risk of refrigerant leakage from the refrigerant circuit including the pressure switch.

このような課題を解決する冷凍サイクル装置として、以下に記載の冷凍サイクル装置がある(例えば、特許文献1参照)。これに記載の冷凍サイクル装置は、冷凍サイクル装置の各部温度や圧縮機回転数などの動作状態から吐出圧力を推定する吐出圧力推定手段を備え、冷凍サイクル装置を高い効率で運転させることができるものであるが、この吐出推定手段を用いれば圧力スイッチを備えずとも、推定した吐出圧力が設計圧力を超えて異常上
昇した場合に圧縮機を停止するなどして吐出圧力の異常上昇を防止することができる。
特開2004−3692号公報
As a refrigeration cycle apparatus that solves such a problem, there is a refrigeration cycle apparatus described below (for example, see Patent Document 1). The refrigeration cycle apparatus described herein includes discharge pressure estimation means for estimating the discharge pressure from the operating state such as the temperature of each part of the refrigeration cycle apparatus and the compressor rotation speed, and can operate the refrigeration cycle apparatus with high efficiency. However, if this discharge estimation means is used, even if no pressure switch is provided, when the estimated discharge pressure rises abnormally beyond the design pressure, the compressor is stopped to prevent abnormal discharge pressure rise. Can do.
JP 20043692 A

しかしながら上記従来の構成では、蒸発器における冷媒の蒸発温度、放熱器出口における冷媒温度、圧縮機の回転数、および圧縮機駆動電力の4つの物理量および運転状態を示す変数に対して吐出圧力を一義的に決定するため、四次元的に多量のデータを所有しておく必要がある。   However, in the above-described conventional configuration, the discharge pressure is unambiguous with respect to the four physical quantities and the variables indicating the operating state of the refrigerant evaporation temperature in the evaporator, the refrigerant temperature at the radiator outlet, the compressor rotation speed, and the compressor driving power. It is necessary to have a large amount of data in four dimensions.

そのため、高い精度で吐出圧力を推定しようとすると、それらのデータを保存する制御用マイコンまたはROMに大容量を必要とし、データ量を低減しようとすると、推定する吐出圧力の精度が損なわれるという課題があった。   Therefore, if the discharge pressure is estimated with high accuracy, the control microcomputer or ROM for storing the data requires a large capacity, and if the data amount is reduced, the accuracy of the estimated discharge pressure is impaired. was there.

本発明は上記の課題を解決するものであり、冷媒のエンタルピ差を演算し、実験データに基づく断熱効率を用いて吐出圧力を推定することによって、高い精度で吐出圧力を推定して、吐出圧力の異常上昇防止や冷凍サイクルの高効率運転に用いることができる冷凍サイクル装置を提供することを目的とする。   The present invention solves the above-described problem, and calculates the discharge pressure with high accuracy by calculating the enthalpy difference of the refrigerant and estimating the discharge pressure using the adiabatic efficiency based on the experimental data. An object of the present invention is to provide a refrigeration cycle apparatus that can be used for preventing abnormal rise of the refrigeration and for high efficiency operation of the refrigeration cycle.

上記目的を達成するために、本発明は、少なくとも圧縮機、放熱器、減圧機構、蒸発器が環状に接続されて冷媒が循環する冷媒回路と、吐出圧力を推定する吐出圧力推定手段とを備え、前記吐出圧力推定手段において、前記圧縮機から吐出される冷媒の圧力を、演算式を用いて推定することを特徴とする冷凍サイクル装置で、推定された吐出圧力を冷凍サイクル装置の運転制御に用いるものである。   In order to achieve the above object, the present invention comprises at least a compressor, a radiator, a decompression mechanism, a refrigerant circuit in which an evaporator is connected in an annular shape and a refrigerant circulates, and a discharge pressure estimating means for estimating a discharge pressure. The discharge pressure estimation means estimates the refrigerant pressure discharged from the compressor using an arithmetic expression, and the estimated discharge pressure is used for operation control of the refrigeration cycle apparatus. It is what is used.

本発明によれば、冷媒のエンタルピ差を演算し、実験データに基づく断熱効率を用いて吐出圧力を推定することによって、必要とするデータ量を少なくしながらも、高い精度で吐出圧力を推定して、吐出圧力の異常上昇防止や冷凍サイクルの高効率運転に用いることができる冷凍サイクル装置を提供できる。   According to the present invention, by calculating the enthalpy difference of the refrigerant and estimating the discharge pressure using the adiabatic efficiency based on the experimental data, the discharge pressure is estimated with high accuracy while reducing the amount of data required. Thus, it is possible to provide a refrigeration cycle apparatus that can be used for preventing an abnormal increase in discharge pressure and for highly efficient operation of the refrigeration cycle.

第1の発明は、少なくとも圧縮機、放熱器、減圧機構、蒸発器が環状に接続されて冷媒が循環する冷媒回路と、吐出圧力を推定する吐出圧力推定手段とを備え、前記吐出圧力推定手段において、前記圧縮機から吐出される冷媒の圧力を、演算式を用いて推定することを特徴とする冷凍サイクル装置で、圧力検出手段や圧力スイッチを備えずとも吐出圧力を適切に推定し、推定した吐出圧力を用いて、吐出圧力の異常上昇を防止し、冷凍サイクル装置を高い効率で運転させたりすることを可能にするという効果を奏する。   The first invention includes at least a compressor, a radiator, a decompression mechanism, a refrigerant circuit in which an evaporator is annularly connected to circulate the refrigerant, and a discharge pressure estimating means for estimating a discharge pressure, the discharge pressure estimating means The refrigerant pressure discharged from the compressor is estimated using an arithmetic expression, and the discharge pressure is appropriately estimated and estimated without a pressure detecting means or a pressure switch. Using the discharged pressure, it is possible to prevent the discharge pressure from rising abnormally and to operate the refrigeration cycle apparatus with high efficiency.

第2の発明は、少なくとも圧縮機、放熱器、減圧機構、蒸発器が環状に接続されて冷媒が循環する冷媒回路と、前記蒸発器の冷媒二層域の温度を検出する温度検出手段と、前記圧縮機の吸入温度を検出する検出手段とを備え、前記蒸発器の冷媒二層域の温度を検出する温度検出手段の検出値、前記圧縮機の吸入温度を検出する検出手段の検出値に基づいて、前記圧縮機の吸入エントロピを算出し、供給電源から冷媒に伝達されたエネルギー量と冷媒循環量とから圧縮機における冷媒の比エンタルピ差を算出することを特徴とするもので、吸入圧力を検知するための圧力検出手段を備えずとも、蒸発器入口冷媒温度を飽和温度として、吸入圧力を推定することができる。   The second invention includes at least a compressor, a radiator, a decompression mechanism, a refrigerant circuit in which an evaporator is connected in an annular shape and a refrigerant circulates, and a temperature detection means for detecting the temperature of the refrigerant two-layer region of the evaporator, Detection means for detecting the suction temperature of the compressor, and the detection value of the temperature detection means for detecting the temperature of the refrigerant two-layer region of the evaporator, and the detection value of the detection means for detecting the suction temperature of the compressor And calculating a specific enthalpy difference of the refrigerant in the compressor from the amount of energy transmitted from the supply power source to the refrigerant and the refrigerant circulation amount based on the suction entropy of the compressor. Without the pressure detection means for detecting the intake pressure, the suction pressure can be estimated with the evaporator inlet refrigerant temperature as the saturation temperature.

第3の発明は、圧縮機の回転数を検出する圧縮機回転数検出手段と、電源電流を検出す
る電流検出手段とを備え、前記圧縮機回転数検出手段が検出した圧縮機回転数に基づいて、冷媒循環量を算出し、前記電流検出手段において検出した電源電流に基づいて、供給電源から冷媒に伝達されたエネルギー量を算出することを特徴とするもので、吐出圧力を圧縮機回転数、電源電流が変化しても適切に吐出圧力を推定することができる。
According to a third aspect of the present invention, there is provided a compressor rotational speed detecting means for detecting the rotational speed of the compressor, and a current detecting means for detecting a power supply current, and based on the compressor rotational speed detected by the compressor rotational speed detecting means. And calculating the amount of energy transferred from the supply power source to the refrigerant based on the power source current detected by the current detecting means. Even if the power supply current changes, the discharge pressure can be estimated appropriately.

第4の発明は、電源電圧を検出する電圧検出手段を備え、前記電圧検出手段が検出した電圧値に基づいて、供給電源から冷媒に伝達されたエネルギー量を算出することを特徴とするもので、電源電圧が変動しても、冷凍サイクル装置が消費する電力を正確に検出することができ、適切に吐出圧力を推定することができる。   According to a fourth aspect of the invention, there is provided voltage detection means for detecting a power supply voltage, and the amount of energy transmitted from the supply power source to the refrigerant is calculated based on the voltage value detected by the voltage detection means. Even if the power supply voltage fluctuates, the power consumed by the refrigeration cycle apparatus can be accurately detected, and the discharge pressure can be estimated appropriately.

第5の発明は、冷媒として二酸化炭素を用いるもので、高圧側で超臨界状態となり得る冷媒を用いる冷凍サイクル装置においても、圧力検出手段や圧力スイッチを備えずとも吐出圧力を適切に推定し、推定した吐出圧力を用いて、吐出圧力の異常上昇を防止し、冷凍サイクル装置を高い効率で運転させたりすることを可能にするという効果を奏する。   The fifth invention uses carbon dioxide as the refrigerant, and in the refrigeration cycle apparatus using the refrigerant that can be in a supercritical state on the high pressure side, the discharge pressure is appropriately estimated without the pressure detection means and the pressure switch, Using the estimated discharge pressure, it is possible to prevent the discharge pressure from rising abnormally and to operate the refrigeration cycle apparatus with high efficiency.

以下、本発明の実施の形態におけるヒートポンプ給湯機搭載の冷凍サイクル装置について、図面を参照しながら述べる。なお、実施の形態は、ヒートポンプ給湯機搭載の冷凍サイクル装置について述べるが、本発明の実施の形態はヒートポンプ給湯機に限定されるものでなく、空気調和機などに搭載の冷凍サイクル装置であってもよい。   Hereinafter, a refrigeration cycle apparatus equipped with a heat pump water heater in an embodiment of the present invention will be described with reference to the drawings. Although the embodiment describes a refrigeration cycle apparatus mounted on a heat pump water heater, the embodiment of the present invention is not limited to a heat pump water heater, and is a refrigeration cycle apparatus mounted on an air conditioner or the like. Also good.

(実施の形態1)
まず、本発明の実施の形態1における冷凍サイクル装置の構成について述べる。構成図を図1に示す。図1において、21は蒸発器入口温度検出手段、22は圧縮機吸入温度検出手段、23は外気温度検出手段、24は吸入圧力演算手段、25は圧縮機回転数検出手段、26は電圧検出手段、27は電流検出手段、28は吐出圧力推定手段である。
(Embodiment 1)
First, the configuration of the refrigeration cycle apparatus in Embodiment 1 of the present invention will be described. A block diagram is shown in FIG. In FIG. 1, 21 is an evaporator inlet temperature detecting means, 22 is a compressor intake temperature detecting means, 23 is an outside air temperature detecting means, 24 is an intake pressure calculating means, 25 is a compressor rotational speed detecting means, and 26 is a voltage detecting means. , 27 is current detection means, and 28 is discharge pressure estimation means.

次に、上記のように構成された冷凍サイクル装置の動作および作用について述べる。冷媒サイクル5を循環する冷媒と、沸き上げ回路16を循環する水の動作は従来の冷凍サイクル装置と同様であるので、ここでは説明を省略する。吐出圧力推定手段28は一定の時間間隔(例えば、10秒)ごとに吐出圧力を推定し、推定された吐出圧力が予め定められた所定の圧力以下であれば、現状の運転状態を維持し、推定された吐出圧力が予め定められた所定の圧力を超えると圧縮機1の回転数を下げる、もしくは運転を停止したり、膨張弁3の開度を大きくしたりするなどの保安措置をとる。   Next, the operation and action of the refrigeration cycle apparatus configured as described above will be described. Since the operation of the refrigerant circulating in the refrigerant cycle 5 and the water circulating in the boiling circuit 16 is the same as that of the conventional refrigeration cycle apparatus, the description thereof is omitted here. The discharge pressure estimating means 28 estimates the discharge pressure at regular time intervals (for example, 10 seconds), and maintains the current operating state if the estimated discharge pressure is equal to or lower than a predetermined pressure, When the estimated discharge pressure exceeds a predetermined pressure, safety measures are taken such as reducing the rotational speed of the compressor 1, stopping the operation, or increasing the opening of the expansion valve 3.

以下では、吐出圧力推定手段28における吐出圧力の推定方法について述べる。本実施の形態における吐出圧力推定手段28は、供給電源から冷媒に伝達されたエネルギー量Wと冷媒の循環量Grから圧縮機1における冷媒の比エンタルピ差ΔhCOMPを演算し、演算された比エンタルピ差ΔhCOMPと圧縮機1の各種効率(機械効率、断熱効率、体積効率)を用いて吐出圧力を推定するものである。 Hereinafter, a method for estimating the discharge pressure in the discharge pressure estimating means 28 will be described. The discharge pressure estimation means 28 in the present embodiment calculates the refrigerant specific enthalpy difference Δh COMP in the compressor 1 from the energy amount W transmitted from the supply power source to the refrigerant and the refrigerant circulation amount Gr, and calculates the calculated specific enthalpy. The discharge pressure is estimated using the difference Δh COMP and various efficiencies (mechanical efficiency, adiabatic efficiency, volumetric efficiency) of the compressor 1.

図2に概念を示す。まず、圧縮機吸入冷媒の諸状態量(圧力、密度、比エンタルピ、エントロピ)を決定する。蒸発器の冷媒二層域の温度を検出する蒸発器入口温度検出手段21において検出した蒸発器入口温度TEIを用いて、吸入圧力演算手段24において吸入圧力Pを推定する。吸入圧力演算手段24は、例えば、図3に示すような物性対応図を有して吸入圧力Pを推定してもよいし、推算式を用いて推定してもよい。 The concept is shown in FIG. First, various state quantities (pressure, density, specific enthalpy, and entropy) of the compressor suction refrigerant are determined. Using an evaporator inlet temperature T EI detected in the evaporator inlet temperature detecting means 21 for detecting the temperature of the refrigerant bilayer region of the evaporator, and estimates a suction pressure P S in the suction pressure calculating means 24. Suction pressure calculating means 24, for example, it may be estimated suction pressure P S has a physical property corresponding diagram as shown in FIG. 3, may be estimated using the estimating equation.

次に、推定された吸入圧力Pと圧縮機吸入温度検出手段22において検出された圧縮機吸入温度Tを用いて、吸入密度d(kg/m)、吸入比エンタルピh(kJ/kg)および吸入エントロピS(kJ/(kg・K))を決定する。このとき、例えば、図4〜図6に示すような対応図を用いてもよい。 Then, using a compressor suction temperature T S detected and the estimated suction pressure P S in the compressor suction temperature detecting means 22, the suction density d S (kg / m 3) , the suction specific enthalpy h S (kJ / Kg) and inhalation entropy S S (kJ / (kg · K)). At this time, for example, correspondence diagrams as shown in FIGS. 4 to 6 may be used.

続いて、圧縮機1において供給電源から冷媒に伝達されたエネルギー量Wを求め、冷媒の循環量Grを用いて圧縮機1における比エンタルピ差ΔhCOMPを演算によって決定する。圧縮機1において冷媒に伝達されるエネルギー量Wは、電圧検出手段26において検出された電源電圧V、電流検出手段27において検出された電源電流Iおよび圧縮機1の機械効率ηmにより決まる。 Subsequently, the amount of energy W transmitted from the supply power source to the refrigerant in the compressor 1 is obtained, and the specific enthalpy difference Δh COMP in the compressor 1 is determined by calculation using the refrigerant circulation amount Gr. The amount of energy W transmitted to the refrigerant in the compressor 1 is determined by the power supply voltage V detected by the voltage detection means 26, the power supply current I detected by the current detection means 27, and the mechanical efficiency ηm of the compressor 1.

ここで、圧縮機1の機械効率ηmは、図7に示すように外気温度Tatに依存するものとする。一方、冷媒の循環量Grは圧縮機回転数検出手段25において検出された圧縮機回転数f、圧縮機1の圧縮室容積V、吸入密度dおよび体積効率ηvによって決まる。これらを用いて、圧縮機1における比エンタルピ差ΔhCOMPは次のような式1で演算される。 Here, it is assumed that the mechanical efficiency ηm of the compressor 1 depends on the outside air temperature T at as shown in FIG. On the other hand, the refrigerant circulation amount Gr is determined by the compressor rotational speed f detected by the compressor rotational speed detection means 25, the compression chamber volume V C of the compressor 1, the suction density d S and the volume efficiency ηv. Using these, the specific enthalpy difference Δh COMP in the compressor 1 is calculated by the following equation 1.

Figure 2010002090
Figure 2010002090

圧縮機1における圧縮過程が完全断熱圧縮であれば、前もって決定した吸入比エンタルピhおよび吸入エントロピSとを用いて吐出圧力Pdを決定することができるが、圧縮機1における圧縮過程は完全な断熱圧縮ではなく、1未満の断熱効率ηで圧縮されるのが通常であるため、演算した圧縮機比エンタルピ差ΔhCOMPを用いて、吐出エンタルピhを決定しても吐出エントロピSが不明であるため、吐出圧力Pdを決定することはできない。そこで、式2のように圧縮機比エンタルピ差ΔhCOMPを断熱効率ηで補正する。 If the compression process in the compressor 1 is complete adiabatic compression, the discharge pressure Pd can be determined using the suction ratio enthalpy h S and the suction entropy S S determined in advance, but the compression process in the compressor 1 is complete. Since the compression is usually performed with an adiabatic efficiency η C of less than 1, rather than adiabatic compression, even if the discharge enthalpy h d is determined using the calculated compressor specific enthalpy difference Δh COMP , the discharge entropy S d Since it is unknown, the discharge pressure Pd cannot be determined. Therefore, the compressor specific enthalpy difference Δh COMP is corrected by the adiabatic efficiency η C as shown in Equation 2.

Figure 2010002090
Figure 2010002090

そして圧縮機比エンタルピ差ΔhCOMPや完全断熱圧縮としたときの理論圧縮機比エンタルピ差ΔhCOMP(theo)を演算して、式3のように理論吐出エンタルピh(theo)を決定し、決定した理論吐出エンタルピh(theo)と吸入エンタルピSを用いて吐出圧力Pd(MPa)を決定する。このとき、例えば、図8に示すような対応図を用いてもよい。 The compressor ratio enthalpy difference Delta] h COMP and theories compressor specific enthalpy difference when a complete adiabatic compression Delta] h COMP the (theo) was computed to determine the theoretical discharge enthalpy h d (theo) as in Equation 3, determined determining a discharge pressure Pd (MPa) using the theoretical discharge enthalpy h d (theo) and the suction enthalpy S S. At this time, for example, a correspondence diagram as shown in FIG. 8 may be used.

Figure 2010002090
Figure 2010002090

上記のような推定方法により吐出圧力を推定する吐出圧力推定手段28を備えることによって、吸入圧力P、吸入密度d、吸入比エンタルピh、および吸入エントロピSなどの状態量や機械効率ηmを新たに決定する必要があるが、いずれも2つ以下の物理量により一義的に決定することができ、吐出圧力Pdについても理論吐出エンタルピh(theo)と吸入エンタルピSの2つの物理量により一義的に決定することができる。 By providing the discharge pressure estimating means 28 for estimating the discharge pressure by the estimation method as described above, state quantities such as the suction pressure P S , the suction density d S , the suction ratio enthalpy h S , and the suction entropy S S and the mechanical efficiency are obtained. it is necessary to newly determine the [eta] m, both can be determined uniquely by the two following physical quantity, two physical quantity for the discharge pressure Pd is also a theoretical discharge enthalpy h d (theo) intake enthalpy S S Can be determined uniquely.

そのため、従来技術に記載のような4つの物理量や運転状態を示す変数より一義的に吐出圧力を決定する吐出圧力推定手段と比べて、必要とするデータ量を大幅に低減すること
ができる。このようにすることによって、精度を損なうことなく吐出圧力を推定することができるため、必要とするデータ量を低減することを可能とし、それらのデータを保存する制御用マイコンやROMを小容量化することができる。
Therefore, the required data amount can be greatly reduced as compared with the discharge pressure estimating means that uniquely determines the discharge pressure from the variables indicating the four physical quantities and the operating state as described in the prior art. In this way, the discharge pressure can be estimated without sacrificing accuracy, so the amount of data required can be reduced, and the capacity of the control microcomputer and ROM for storing these data can be reduced. can do.

本実施の形態によれば、上記の構成により、高圧側で超臨界状態となり得る冷媒を用いる冷凍サイクル装置において、圧縮機回転数、電源電流および外気温度などの冷凍サイクルの運転状態を用いて比エンタルピ差ΔhCOMPを演算して吐出圧力を推定することによって、推定に用いるデータ量を低減しながらも高い精度で吐出圧力を推定し、吐出圧力の推定に用いるデータなどを保存する制御用マイコンまたはROMの小容量化を実現できるという効果を奏する。 According to the present embodiment, in the refrigeration cycle apparatus using the refrigerant that can be in a supercritical state on the high pressure side by the above configuration, the operation state of the refrigeration cycle such as the compressor rotation speed, the power supply current, and the outside air temperature is used. By calculating the enthalpy difference Δh COMP to estimate the discharge pressure, the control microcomputer that estimates the discharge pressure with high accuracy while saving the amount of data used for the estimation and stores the data used for the estimation of the discharge pressure or the like There is an effect that the capacity of the ROM can be reduced.

なお、電圧検出手段や圧縮機吸入温度検出手段など各種検出手段を備えない場合は、各々を一定値として吐出圧力を推定するものとする。例えば、電圧検出手段を備えない場合においては、冷凍サイクル装置が使用される環境を想定して電圧値を200Vなどと設定として推定を行う。   When various detection means such as a voltage detection means and a compressor intake temperature detection means are not provided, the discharge pressure is estimated with each as a constant value. For example, when the voltage detection means is not provided, the voltage value is estimated to be set to 200 V or the like assuming an environment where the refrigeration cycle apparatus is used.

本発明は、圧力スイッチや吐出圧力検出手段などを含む冷媒回路からの冷媒漏洩の危険性を回避できるという効果も有し、ヒートポンプ給湯機や車両用空調装置の省エネルギー化および安全な運転に対して有用である。   The present invention also has an effect of avoiding the risk of refrigerant leakage from a refrigerant circuit including a pressure switch, a discharge pressure detecting means, and the like, and for energy saving and safe operation of a heat pump water heater and a vehicle air conditioner. Useful.

本発明の実施の形態1における冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. 同吐出圧力演算方法の概念図Conceptual diagram of the discharge pressure calculation method 同蒸発器温度TEIと吸入圧力Pの物性対応図Properties corresponding view of the evaporator temperature T EI and the suction pressure P S 同吸入圧力Pおよび吸入温度Tと吸入密度dの物性対応図Properties corresponding view of the suction pressure P S and the suction temperature T S and the suction density d S 同吸入圧力Pおよび吸入温度Tと吸入比エンタルピhの物性対応図Properties corresponding view of the suction pressure P S and the suction temperature T S and the suction specific enthalpy h S 同吸入圧力Pおよび吸入温度Tと吸入エントロピSの物性対応図Properties corresponding view of the suction pressure P S and the suction temperature T S and the suction entropy S S 同圧縮機機械効率hの外気温度特性図Outside temperature characteristic diagram of the compressor mechanical efficiency h C 同理論吐出エンタルピh(theo)および吸入エントロピSと吐出圧力Pdの物性対応図Properties corresponding view of the theoretical discharge enthalpy h d (theo) and the suction entropy S S between the discharge pressure Pd 従来のヒートポンプ給湯機搭載の冷凍サイクル装置の構成図Configuration diagram of a conventional refrigeration cycle system equipped with a heat pump water heater

符号の説明Explanation of symbols

1 圧縮機
2 放熱器
3 膨張弁
4 蒸発器
5 冷媒回路
21 蒸発器入口温度検出手段
22 圧縮機吸入温度検出手段
23 外気温度検出手段
24 吸入圧力演算手段
25 圧縮機回転数検出手段
26 電圧検出手段
27 電流検出手段
28 吐出圧力推定手段
DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Expansion valve 4 Evaporator 5 Refrigerant circuit 21 Evaporator inlet temperature detection means 22 Compressor intake temperature detection means 23 Outside air temperature detection means 24 Suction pressure calculation means 25 Compressor rotation speed detection means 26 Voltage detection means 27 Current detection means 28 Discharge pressure estimation means

Claims (5)

少なくとも圧縮機、放熱器、減圧機構、蒸発器が環状に接続されて冷媒が循環する冷媒回路と、吐出圧力を推定する吐出圧力推定手段とを備え、前記吐出圧力推定手段において、前記圧縮機から吐出される冷媒の圧力を、演算式を用いて推定することを特徴とする冷凍サイクル装置。 A refrigerant circuit in which at least a compressor, a radiator, a decompression mechanism, and an evaporator are connected in an annular shape so that the refrigerant circulates, and a discharge pressure estimating unit that estimates a discharge pressure. In the discharge pressure estimating unit, from the compressor A refrigeration cycle apparatus characterized by estimating the pressure of refrigerant discharged using an arithmetic expression. 少なくとも圧縮機、放熱器、減圧機構、蒸発器が環状に接続されて冷媒が循環する冷媒回路と、前記蒸発器の冷媒二層域の温度を検出する温度検出手段と、前記圧縮機の吸入温度を検出する検出手段とを備え、前記蒸発器の冷媒二層域の温度を検出する温度検出手段の検出値、前記圧縮機の吸入温度を検出する検出手段の検出値に基づいて、前記圧縮機の吸入エントロピを算出し、供給電源から冷媒に伝達されたエネルギー量と冷媒循環量とから圧縮機における冷媒の比エンタルピ差を算出することを特徴とする冷凍サイクル装置。 A refrigerant circuit in which at least a compressor, a radiator, a decompression mechanism, and an evaporator are connected in an annular shape so that the refrigerant circulates; temperature detection means for detecting the temperature of a refrigerant two-layer region of the evaporator; and an intake temperature of the compressor And detecting means for detecting the temperature of the refrigerant two-layer region of the evaporator, and the detection value of the detecting means for detecting the suction temperature of the compressor based on the detected value of the compressor. A refrigeration cycle apparatus that calculates a specific enthalpy difference of refrigerant in a compressor from an amount of energy transmitted to a refrigerant from a supply power source and a refrigerant circulation amount. 圧縮機の回転数を検出する圧縮機回転数検出手段と、電源電流を検出する電流検出手段とを備え、前記圧縮機回転数検出手段が検出した圧縮機回転数に基づいて、冷媒循環量を算出し、前記電流検出手段において検出した電源電流に基づいて、供給電源から冷媒に伝達されたエネルギー量を算出することを特徴とする請求項1または2に記載の冷凍サイクル装置。 A compressor rotation speed detecting means for detecting the rotation speed of the compressor; and a current detection means for detecting a power supply current. The refrigerant circulation amount is determined based on the compressor rotation speed detected by the compressor rotation speed detection means. The refrigeration cycle apparatus according to claim 1 or 2, wherein the amount of energy transmitted from the supply power source to the refrigerant is calculated based on the power source current calculated and detected by the current detection means. 電源電圧を検出する電圧検出手段を備え、前記電圧検出手段が検出した電圧値に基づいて、供給電源から冷媒に伝達されたエネルギー量を算出することを特徴とする請求項3に記載の冷凍サイクル装置。 4. The refrigeration cycle according to claim 3, further comprising voltage detection means for detecting a power supply voltage, wherein the amount of energy transmitted from the supply power source to the refrigerant is calculated based on a voltage value detected by the voltage detection means. apparatus. 冷媒として、二酸化炭素を用いることを特徴とする請求項1〜4のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein carbon dioxide is used as the refrigerant.
JP2008159972A 2008-06-19 2008-06-19 Refrigerating cycle device Pending JP2010002090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008159972A JP2010002090A (en) 2008-06-19 2008-06-19 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008159972A JP2010002090A (en) 2008-06-19 2008-06-19 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2010002090A true JP2010002090A (en) 2010-01-07

Family

ID=41583957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008159972A Pending JP2010002090A (en) 2008-06-19 2008-06-19 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2010002090A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057908A (en) * 2010-09-13 2012-03-22 Panasonic Corp Refrigerating cycle device
JP2013002645A (en) * 2011-06-13 2013-01-07 Panasonic Corp Refrigerating cycle device
WO2013005260A1 (en) * 2011-07-07 2013-01-10 三菱電機株式会社 Refrigeration and air conditioning device and method for controlling refrigeration and air conditioning device
US20130160470A1 (en) * 2011-12-27 2013-06-27 Don A. Schuster Air Conditioner Self-Charging And Charge Monitoring System
WO2013099147A1 (en) * 2011-12-26 2013-07-04 パナソニック株式会社 Refrigeration cycle device
WO2013101701A1 (en) * 2011-12-28 2013-07-04 Carrier Corporation Discharge pressure calculation from torque in an hvac system
EP3450880A1 (en) * 2017-09-05 2019-03-06 ALSTOM Transport Technologies Method for supervising an air-conditioning system for a railway vehicle and railway vehicle comprising an air-conditioning system implementing this method
US10330099B2 (en) 2015-04-01 2019-06-25 Trane International Inc. HVAC compressor prognostics
WO2019202709A1 (en) * 2018-04-19 2019-10-24 三菱電機株式会社 Heat pump type hot water supply device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160273A (en) * 1996-12-02 1998-06-19 Hitachi Ltd Air conditioner
JP2007187407A (en) * 2006-01-16 2007-07-26 Mitsubishi Electric Corp Refrigeration cycle device and operation method for refrigeration cycle device
JP2007225158A (en) * 2006-02-21 2007-09-06 Mitsubishi Electric Corp Defrosting operation control device and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160273A (en) * 1996-12-02 1998-06-19 Hitachi Ltd Air conditioner
JP2007187407A (en) * 2006-01-16 2007-07-26 Mitsubishi Electric Corp Refrigeration cycle device and operation method for refrigeration cycle device
JP2007225158A (en) * 2006-02-21 2007-09-06 Mitsubishi Electric Corp Defrosting operation control device and method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057908A (en) * 2010-09-13 2012-03-22 Panasonic Corp Refrigerating cycle device
JP2013002645A (en) * 2011-06-13 2013-01-07 Panasonic Corp Refrigerating cycle device
JPWO2013005260A1 (en) * 2011-07-07 2015-02-23 三菱電機株式会社 Refrigeration air conditioner and control method of refrigeration air conditioner
WO2013005260A1 (en) * 2011-07-07 2013-01-10 三菱電機株式会社 Refrigeration and air conditioning device and method for controlling refrigeration and air conditioning device
US9453671B2 (en) 2011-07-07 2016-09-27 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus and method for controlling refrigerating and air-conditioning apparatus
CN103688117B (en) * 2011-07-07 2016-04-06 三菱电机株式会社 The control method of refrigerating air conditioning device and refrigerating air conditioning device
CN103688117A (en) * 2011-07-07 2014-03-26 三菱电机株式会社 Refrigeration and air conditioning device and method for controlling refrigeration and air conditioning device
WO2013099147A1 (en) * 2011-12-26 2013-07-04 パナソニック株式会社 Refrigeration cycle device
US20130160470A1 (en) * 2011-12-27 2013-06-27 Don A. Schuster Air Conditioner Self-Charging And Charge Monitoring System
US9759465B2 (en) * 2011-12-27 2017-09-12 Carrier Corporation Air conditioner self-charging and charge monitoring system
WO2013101701A1 (en) * 2011-12-28 2013-07-04 Carrier Corporation Discharge pressure calculation from torque in an hvac system
US9885508B2 (en) 2011-12-28 2018-02-06 Carrier Corporation Discharge pressure calculation from torque in an HVAC system
US10619903B2 (en) 2011-12-28 2020-04-14 Carrier Corporation Discharge pressure calculation from torque in an HVAC system
US10330099B2 (en) 2015-04-01 2019-06-25 Trane International Inc. HVAC compressor prognostics
EP3450880A1 (en) * 2017-09-05 2019-03-06 ALSTOM Transport Technologies Method for supervising an air-conditioning system for a railway vehicle and railway vehicle comprising an air-conditioning system implementing this method
FR3070659A1 (en) * 2017-09-05 2019-03-08 Alstom Transport Technologies METHOD FOR THE SUPERVISION OF A CLIMATE SYSTEM OF A RAILWAY VEHICLE AND A RAILWAY VEHICLE COMPRISING AN AIR CONDITIONING SYSTEM USING THE SAME
WO2019202709A1 (en) * 2018-04-19 2019-10-24 三菱電機株式会社 Heat pump type hot water supply device
JPWO2019202709A1 (en) * 2018-04-19 2020-12-03 三菱電機株式会社 Heat pump type hot water supply device

Similar Documents

Publication Publication Date Title
JP2010002090A (en) Refrigerating cycle device
JP5223795B2 (en) Heat pump water heater
JP5071155B2 (en) Heat pump type hot water supply apparatus and control method thereof
KR20100114087A (en) Heat-pump hot water apparatus
JP6192806B2 (en) Refrigeration equipment
JP5034367B2 (en) Heat pump water heater
JP4552836B2 (en) Heat pump type water heater
JP4548298B2 (en) Heat pump type water heater
JP2011144966A (en) Compressor drive control device for air conditioner
JP2002188859A (en) Heat pump water heater
JP2011149568A (en) Heat pump device
JP5793670B2 (en) Air conditioner
JP2009264714A (en) Heat pump hot water system
JP5487067B2 (en) Heat pump water heater
JP2009250461A (en) Heat pump hot water supply device
JP2009250456A (en) Heat pump type hot water supply device
JP2007040555A (en) Heat pump type water heater
JP2007057148A (en) Heat pump water heater
JP2011141046A (en) Heat pump device and heat pump water heater with the same
JP2004116892A (en) Heat pump equipment
JP2010133598A (en) Heat pump type water heater
JP6394813B2 (en) Refrigeration cycle system
JP5321013B2 (en) Heat pump equipment
JP2013120041A (en) Refrigerating cycle apparatus
JP2009097797A (en) Heat pump hot water supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101220

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110113

A977 Report on retrieval

Effective date: 20120409

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

A131 Notification of reasons for refusal

Effective date: 20120821

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD01 Notification of change of attorney

Effective date: 20121213

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108