WO2013099147A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2013099147A1
WO2013099147A1 PCT/JP2012/008056 JP2012008056W WO2013099147A1 WO 2013099147 A1 WO2013099147 A1 WO 2013099147A1 JP 2012008056 W JP2012008056 W JP 2012008056W WO 2013099147 A1 WO2013099147 A1 WO 2013099147A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigeration cycle
cycle apparatus
power supply
power consumption
Prior art date
Application number
PCT/JP2012/008056
Other languages
French (fr)
Japanese (ja)
Inventor
善直 中本
章博 田中
太一 梅田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013099147A1 publication Critical patent/WO2013099147A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor

Definitions

  • the present invention relates to a refrigeration cycle apparatus.
  • FIG. 9 is a block diagram showing a configuration of a refrigeration cycle apparatus according to the first prior art mounted on a heat pump water heater.
  • the refrigeration cycle apparatus of FIG. 9 includes a refrigerant circuit 5 that is formed by sequentially connecting a compressor 1, a radiator 2, an expansion valve 3, and an evaporator 4 in an annular manner using pipes.
  • the water inlet pipe 6 and the hot water outlet pipe 7 are connected to the radiator 2.
  • the pressure switch 8 is connected to a branch pipe 10 branched from a pipe between the compressor 1 and the radiator 2.
  • the switch means 9 is provided on an AC power supply circuit that supplies AC power to the refrigeration cycle apparatus (see, for example, Patent Document 1).
  • the high-pressure refrigerant discharged from the compressor 1 is supplied to the radiator 2, and heat is exchanged with the water in the water inlet pipe 6 in the radiator 2, and then supplied to the expansion valve 3. Further, the refrigerant is decompressed by the expansion valve 3, supplied to the evaporator 4, absorbs heat, and is sucked into the compressor 1.
  • an abnormal increase in discharge pressure can be detected by estimating the discharge pressure from the condensation temperature of the radiator 2 (condenser). .
  • the pressure switch 8 is provided so as to operate when the pressure of the refrigerant discharged from the compressor 1 exceeds a preset threshold value. Further, the switch means 9 is switched from on to off in accordance with the operation of the pressure switch 8 to cut off the AC power supply circuit. Therefore, even in a refrigeration cycle apparatus in which the refrigerant is in a supercritical state on the high pressure side, an abnormal increase in discharge pressure can be detected to stop the operation of the refrigeration cycle apparatus, and an abnormal increase in discharge pressure can be prevented.
  • FIG. 10 is a block diagram showing the configuration of the refrigeration cycle apparatus according to the second prior art mounted on the heat pump water heater.
  • the refrigeration cycle apparatus of FIG. 10 includes a refrigerant circuit 5 configured in the same manner as the refrigerant circuit 5 of FIG. 9, a discharge pressure estimation means 111, a compressor current detection means 12, a compressor rotation speed detection means 13, and heat dissipation. It comprises an outlet temperature detecting means 14 and an evaporator temperature detecting means 15.
  • the compressor current detecting means 12 detects the current value of the current flowing through the electric motor of the compressor 1
  • the compressor rotational speed detecting means 13 detects the rotational speed of the electric motor of the compressor 1.
  • the radiator outlet temperature detecting means 14 detects the temperature of the refrigerant sent from the radiator 2 to the expansion valve 3, and the evaporator temperature detecting means 15 detects the refrigerant temperature in the evaporator 4.
  • the discharge pressure estimation means 111 does not include pressure detection means such as a pressure switch or a pressure sensor, and estimates the discharge pressure from the operating state of the refrigeration cycle apparatus. Specifically, the discharge pressure estimation means 111 is based on at least the detection values from the compressor current detection means 12, the compressor rotation speed detection means 13, the radiator outlet temperature detection means 14, and the evaporator temperature detection means 15. The discharge pressure is estimated using the relationship between the electric power consumption of the electric motor and the discharge pressure, which are obtained in advance (see, for example, Patent Document 2). According to the refrigeration cycle apparatus of FIG. 10, since the discharge pressure estimation means 11 is provided, the discharge pressure can be detected without the pressure detection means such as a pressure switch or a pressure sensor.
  • the refrigeration cycle apparatus described in Patent Document 2 includes the discharge pressure estimation means 11 that estimates the discharge pressure from the operating state of the refrigeration cycle apparatus without using pressure detection means such as a pressure switch or a pressure sensor. Heat leakage does not occur.
  • pressure detection means such as a pressure switch or a pressure sensor.
  • compressor current detection means 12 for detecting the current value of the current flowing through the electric motor of the compressor 1, which leads to an increase in cost of the refrigeration cycle apparatus. There was a problem.
  • the object of the present invention is to solve the above-mentioned problems, and to reduce the discharge pressure of the compressor with a low-cost configuration as compared with the prior art without providing pressure detection means such as a pressure sensor or pressure switch and compressor current detection means.
  • the object is to provide a refrigeration cycle apparatus that can be estimated.
  • a refrigeration cycle apparatus includes an annularly connected compressor, a radiator, an expansion valve, and an evaporator, a refrigerant circuit that circulates refrigerant, and a control unit that controls the refrigerant circuit.
  • the control means detects a zero cross point of the AC power supply voltage supplied to the refrigeration cycle apparatus, and generates a zero cross signal indicating a period during which the AC power supply voltage is less than zero volts.
  • Power supply voltage estimating means for estimating an effective value of the AC power supply voltage based on the zero cross signal, a current value of a power supply current supplied to the refrigeration cycle apparatus, and an effective value of the estimated AC power supply voltage
  • the compressor power consumption estimating means for estimating the power consumption of the refrigeration cycle device and outputting the estimated power consumption as the power consumption of the compressor, and the power consumption of the compressor.
  • a discharge pressure for estimating the discharge pressure of the refrigerant discharged from the compressor based on the electric power, the evaporator temperature that is the temperature of the refrigerant circulating in the evaporator, the outside air temperature, and the rotation speed of the compressor Estimation means, and the control means controls the compressor or the expansion valve based on the estimated discharge pressure.
  • the compressor power consumption used for estimating the discharge pressure is estimated using the current value of the power supply current detected by the power supply current detection means and the zero volt point of the AC power supply voltage. Since the estimation is performed using the effective value of the AC power supply voltage, the discharge pressure of the compressor can be reduced with a low-cost configuration compared to the prior art without providing pressure detection means such as a pressure sensor or a pressure switch and compressor current detection means. Can be estimated.
  • FIG. 1 It is a block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention.
  • (A) is a timing chart of the alternating current power supply voltage supplied to the refrigeration cycle apparatus of FIG. 1
  • (b) is a timing chart of the zero cross signal S20 from the zero cross detection means 20 of FIG. 2 is a graph showing a function fvhp stored in the memory 21m of FIG. 1 and showing a relationship between the pulse width Dn of the zero cross signal S20 and the effective value VHP of the AC power supply voltage.
  • FIG. 2 is a table stored in the memory 24m of FIG. 1 and showing a relationship between the power supply current value IHP and the power consumption Wp of the control unit 18. It is a table stored in the memory 11m of FIG. 1, and is a table showing the relationship between the power consumption Wc and the evaporator temperature Te of the compressor 1 and the discharge pressure Pd. It is a block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention. It is a graph which shows the correction method of the function fvhp by the power supply voltage estimation means 21A of FIG. It is a block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on the 1st prior art mounted in a heat pump water heater. It is a block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on the 2nd prior art mounted in a heat pump water heater.
  • a refrigeration cycle apparatus includes an annularly connected compressor, a radiator, an expansion valve, and an evaporator, a refrigerant circuit that circulates refrigerant, and a control unit that controls the refrigerant circuit.
  • the control means detects a zero cross point of the AC power supply voltage supplied to the refrigeration cycle apparatus and generates a zero cross signal indicating a period during which the AC power supply voltage is less than zero volts. Detecting means; power supply voltage estimating means for estimating an effective value of the AC power supply voltage based on the zero cross signal; a current value of a power supply current supplied to the refrigeration cycle apparatus; and an effective value of the estimated AC power supply voltage.
  • a compressor power consumption estimating means for estimating the power consumption of the refrigeration cycle device based on the value and outputting as power consumption of the compressor, and the compressor A discharge that estimates the discharge pressure of the refrigerant discharged from the compressor based on the power consumption, the evaporator temperature that is the temperature of the refrigerant circulating in the evaporator, the outside air temperature, and the rotation speed of the compressor Pressure estimation means, and the control means controls the compressor or the expansion valve based on the estimated discharge pressure.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect, wherein the power supply voltage estimation means is based on the zero cross signal and the period length of the period in which the AC power supply voltage is less than zero volts.
  • the effective value of the AC power supply voltage is estimated using the relationship between the effective value of the AC power supply voltage.
  • the discharge pressure of the compressor can be estimated with an inexpensive configuration compared to the conventional technology.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the second aspect, wherein the control means detects a DC voltage after rectifying and smoothing the AC power supply voltage before the operation of the compressor. And a DC voltage detecting means for detecting an effective value of the AC power supply voltage before operation of the compressor based on the detected DC voltage, and the power supply voltage estimation means is provided before the operation of the compressor. Using the effective value of the AC power supply voltage and the period length when the DC voltage is detected, the relationship between the period length of the period in which the AC power supply voltage is less than zero volts and the effective value of the AC power supply voltage And the effective value of the AC power supply voltage is estimated using the corrected relationship.
  • the effective value of the AC power supply voltage can be estimated with high accuracy compared to the refrigeration cycle apparatuses according to the first and second aspects, and as a result, the discharge pressure can be estimated with high accuracy.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to third aspects, wherein the discharge pressure estimation means includes the estimated power consumption of the compressor and the evaporation. After the discharge pressure is estimated using the relationship between the compressor temperature and the discharge pressure, the estimated discharge pressure is corrected using the compressor rotation speed and the outside air temperature.
  • the discharge pressure of the compressor can be estimated with an inexpensive configuration compared to the conventional technology.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to fourth aspects, wherein the refrigeration cycle apparatus promotes evaporation of the refrigerant in the evaporator.
  • the control means further includes a blower power consumption estimation means for estimating the power consumption of the blower based on the number of rotations of the blower, and the compressor power consumption estimation means includes the refrigeration unit. The power consumption of the blower is subtracted from the power consumption of the cycle device, and the power consumption after the subtraction is output as the power consumption of the compressor.
  • the compressor power consumption can be estimated with higher accuracy than the refrigeration cycle apparatuses according to the first to fourth aspects, and as a result, the discharge pressure can be estimated with high accuracy.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the fifth aspect, wherein the control means detects the rotational speed of the blower and outputs it to the blower power consumption estimation means. Is further provided.
  • the compressor power consumption can be estimated with higher accuracy than the refrigeration cycle apparatuses according to the first to fourth aspects, and as a result, the discharge pressure can be estimated with high accuracy.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to sixth aspects, wherein the control means sets a current value of a power supply current supplied to the refrigeration cycle apparatus. And a controller power consumption estimating means for estimating the power consumption of the control means based on the power consumption of the control means by subtracting the power consumption of the control means from the power consumption of the refrigeration cycle apparatus. Is output as the power consumption of the compressor.
  • the compressor power consumption can be estimated with higher accuracy than the refrigeration cycle apparatuses according to the first to sixth aspects, and as a result, the discharge pressure can be estimated with high accuracy.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to seventh aspects, wherein the control means sets the estimated discharge pressure to a predetermined discharge pressure target value.
  • the compressor or the expansion valve is controlled so as to substantially match.
  • the refrigeration cycle apparatus can be operated with relatively high energy efficiency.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to eighth aspects, wherein the control means is a discharge pressure preset for the estimated discharge pressure. When larger than the threshold value, the compressor is stopped or the rotational speed of the compressor is reduced.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to eighth aspects, wherein the control means is a discharge pressure preset for the estimated discharge pressure. When larger than the threshold value, the opening degree of the expansion valve is increased.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to tenth aspects, wherein the control means is configured such that when the compressor is driven, the pressure of the refrigerant is the refrigerant. Control is performed so that a supercritical pressure is obtained on the high pressure side of the circuit.
  • a refrigeration cycle apparatus is characterized in that in the refrigeration cycle apparatus according to the eleventh aspect, the refrigerant is carbon dioxide.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to twelfth aspects, wherein the control means determines a current value of a power supply current supplied to the refrigeration cycle apparatus. It further comprises power supply current detection means for detecting and outputting to the compressor power consumption estimation means.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to thirteenth aspects, wherein the control means detects the rotation speed of the compressor and estimates the discharge pressure.
  • the compressor rotation speed detection means for outputting to the means is further provided.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to fourteenth aspects, wherein the evaporator temperature is detected and output to the discharge pressure estimating means. It further has a detecting means.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to fifteenth aspects, wherein the outside air temperature detecting means detects the outside air temperature and outputs the detected temperature to the discharge pressure estimating means. Is further provided.
  • FIG. 1 is a block diagram showing a configuration of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus includes a refrigerant circuit 5, a control unit 18 (control means), a blower 17, an evaporator temperature detection means 15, an outside air temperature detection means 16, and a discharge temperature. And a detection means 29.
  • the control unit 18 includes a power supply current detection means 19, a zero cross detection means 20, a power supply voltage estimation means 21 provided with a memory 21m, a blower rotation speed detection means 22, and a blower power consumption estimation means provided with a memory 23m. 23, a control unit power consumption estimation means 24 having a memory 24m, a compressor power consumption estimation means 25, a compressor rotation speed detection means 28, an expansion valve control means 26, a compressor control means 27, a memory And a discharge pressure estimating means 11 having 11 m.
  • the refrigerant circuit 5 is configured by sequentially connecting the compressor 1, the radiator 2, the expansion valve 3 (decompression mechanism), and the evaporator 4 in an annular manner using pipes. Further, the water inlet pipe 6 and the hot water outlet pipe 7 are connected to the radiator 2. The high-pressure refrigerant discharged from the compressor 1 is supplied to the radiator 2, and heat is exchanged with the water in the water inlet pipe 6 in the radiator 2 to dissipate heat and then supplied to the expansion valve 3. Further, the refrigerant is decompressed by the expansion valve 3, supplied to the evaporator 4, absorbs heat, and is sucked into the compressor 1.
  • the blower 17 is provided in the vicinity of the evaporator 4 so as to promote the evaporation of the refrigerant in the evaporator 4, and is controlled by the control unit 18.
  • the refrigerant is carbon dioxide that becomes a supercritical state on the high-pressure side of the refrigerant circuit 5 when the compressor 1 is driven.
  • the control unit 18 controls the carbon dioxide pressure to be a supercritical pressure on the high pressure side of the refrigerant circuit 5.
  • the evaporator temperature detection means 15 is provided on the pipe surface of the refrigerant inlet of the evaporator 4, detects the temperature of the pipe surface at the refrigerant side inlet of the evaporator 4 as the evaporator temperature Te, and indicates the evaporator temperature Te. Is output to the discharge pressure estimating means 11. Since the evaporator temperature detection means 15 detects the temperature of the pipe surface, the detected evaporator temperature Te circulates in the evaporator 4 when the operation state of the refrigeration cycle apparatus is substantially steady. It becomes substantially the same as the temperature of the refrigerant.
  • the outside air temperature detecting means 16 is provided on the windward side of the evaporator 4 so as to detect the temperature of the air introduced into the evaporator 4 (outside air temperature).
  • the outside air temperature detection means 16 detects the temperature of the air introduced into the evaporator 4 as the outside air temperature Tat, and outputs a signal including the outside air temperature Tat to the discharge pressure estimation means 11.
  • the discharge temperature detecting means 29 is provided on the surface of the pipe for introducing the refrigerant from the compressor 1 to the radiator 2, detects the discharge temperature Td, and outputs a signal including the discharge temperature Td to the expansion valve control means 26. .
  • the compressor control means 27 sets the rotation speed fc of the compressor 1 in advance so that the heating capacity in the radiator 2 becomes a predetermined heating capacity target value. And the compressor 1 is rotated at the determined rotational speed.
  • the refrigeration cycle apparatus can be operated by selecting a compressor rotational speed that satisfies the required heating capacity in accordance with the operating conditions.
  • the expansion valve control means 26 determines the opening degree of the expansion valve 3 so that the discharge temperature Td detected by the discharge temperature detection means 29 substantially matches a predetermined target discharge temperature target value set in advance. Control. By controlling in this way, the expansion valve 3 can be controlled and operated so that the energy consumption efficiency of the refrigeration cycle apparatus is maximized.
  • the expansion valve control means 26 controls the expansion valve 3 so that the degree of superheat of the refrigerant increases as the outside air temperature Tat increases. Therefore, the degree of superheat of the refrigerant sucked into the compressor 1 correlates with the outside air temperature Tat. Have.
  • the power supply current detection means 19 is, for example, a current probe, detects the current value IHP of all power supply currents supplied to the refrigeration cycle apparatus, and outputs a signal including the detected power supply current value IHP to the control unit power consumption estimation means. 24 and the compressor power consumption estimation means 25.
  • the zero cross detection means 20 detects a zero cross point where the AC power supply voltage supplied to the refrigeration cycle apparatus crosses the 0V level, and generates a zero cross signal S20 which is a pulse signal indicating a period during which the AC power supply voltage is less than 0V.
  • FIG. 2A is a timing chart of the AC power supply voltage supplied to the refrigeration cycle apparatus of FIG. 1
  • FIG. 2B is a timing chart of the zero cross signal S20 from the zero cross detection means 20 of FIG. .
  • the pulse width Dn of the zero cross signal S20 is inversely proportional to the effective value of the AC AC power supply voltage.
  • the power supply voltage estimation means 21 stores a function fvhp indicating the relationship between the pulse width Dn of the zero cross signal S20 and the effective value VHP of the AC power supply voltage in the memory 21m in advance.
  • FIG. 3 is a graph showing the function fvhp stored in the memory 21m of FIG. 1 and showing the relationship between the pulse width Dn of the zero cross signal S20 and the effective value VHP of the AC power supply voltage. As shown in FIG. 3, the effective value VHP of the AC power supply voltage is inversely proportional to the pulse width Dn.
  • the power supply voltage estimation means 21 estimates the effective value VHP of the AC power supply voltage using the pulse width Dn of the input zero-cross signal S20 and the function fvhp, and compresses the signal indicating the estimated effective value VHP of the AC power supply voltage. It outputs to the machine power consumption estimation means 25.
  • the blower rotation speed detection means 22 detects the rotation speed FM (rpm) of the blower 17 and outputs a signal indicating the detected rotation speed FM to the blower power consumption estimation means 23.
  • the blower power consumption estimation means 23 stores in advance a table indicating the relationship between the rotational speed FM of the blower 17 and the power consumption Wf of the blower 17 in the memory 23m.
  • FIG. 4 is a table stored in the memory 23m of FIG. 1 and showing a relationship between the rotational speed FM of the blower 17 and the power consumption Wf of the blower 17. As shown in FIG. 4, the power consumption Wf of the blower 17 increases as the rotational speed FM of the blower 17 increases.
  • the blower power consumption estimation unit 23 estimates the power consumption Wf of the blower 17 based on the input rotation speed FM and estimates a signal indicating the estimated power consumption Wf as compressor power consumption estimation. Output to means 25.
  • control unit power consumption estimation means 24 stores a table indicating the relationship between the power supply current value IHP and the power consumption Wp of the control unit 18 in the memory 24m in advance.
  • FIG. 5 is a table stored in the memory 24m of FIG. 1 and showing a relationship between the power supply current value IHP and the power consumption Wp of the control unit 18. As shown in FIG. 5, the power consumption Wp of the control unit 18 increases as the power supply current value IHP increases.
  • the control unit power consumption estimation means 24 estimates the power consumption Wp of the control unit 18 with reference to the table of FIG. 5 based on the input power supply current value IHP, and outputs a signal indicating the estimated power consumption Wp to the compressor. Output to the power consumption estimation means 25.
  • the compressor rotation speed detection means 28 detects the rotation speed of the compressor 1 and outputs a signal indicating the compressor rotation speed f (HZ) to the discharge pressure estimation means 11.
  • the discharge pressure estimation means 11 stores in advance in the memory 11m a table showing the relationship between the power consumption Wc and the evaporator temperature Te of the compressor 1 and the discharge pressure Pd (Mpa).
  • FIG. 6 is a table stored in the memory 11m of FIG. 1 and shows a relationship between the power consumption Wc and the evaporator temperature Te of the compressor 1 and the discharge pressure Pd. As shown in FIG. 6, the discharge pressure Pd increases as the power consumption Wc increases, and the discharge pressure Pd increases as the evaporator temperature Te increases. In FIG. 1, the discharge pressure estimation means 11 estimates the discharge pressure Pd with reference to the table of FIG. 6 based on the input power consumption Wc and the evaporator temperature Te.
  • the discharge pressure estimating means 11 uses the outside air temperature Ta and the compressor rotational speed f as the discharge pressure estimating means 11 so as to remove the influence of the fluctuation of the outside air temperature Ta and the fluctuation of the compression machine point f on the discharge pressure Pd.
  • a signal indicating the corrected discharge pressure Pdc is output to the compressor control means 27 and the expansion valve control means 26.
  • the compressor control means 27 compares the discharge pressure Pdc estimated by the discharge pressure estimation means 11 with a preset discharge pressure threshold value P0. Then, when the discharge pressure Pdc is greater than the discharge pressure threshold value P0, the compressor control means 27 determines that an abnormal increase in pressure has occurred in the refrigeration cycle apparatus, and stops the compressor 1 to stop the refrigeration cycle apparatus. Stop operation. Further, when the discharge pressure Pdc estimated by the discharge pressure estimation means 11 is equal to or lower than the preset discharge pressure threshold value P0, the compressor control means 27 determines that the discharge pressure Pdc estimated by the discharge pressure estimation means 11 is The compressor 1 is controlled so as to substantially coincide with the predetermined discharge pressure target value.
  • the function fvhp stored in advance in the memory 21m and the tables stored in advance in the memories 11m, 23m, and 24m are created in advance by experiments or simulations.
  • the compressor current detection means for detecting the current value of the current flowing through the electric motor of the compressor 1 (for example, the compressor current detection in FIG. 10).
  • the compressor power consumption Wc is estimated using the power supply voltage value estimated using the power supply current value IHP detected by the power supply current detection means and the pulse width Dn of the zero cross signal S20 without the need for the means 12). Therefore, without providing a pressure switch, a pressure sensor, and a compressor current detection means, the discharge pressure Pdc can be estimated with the same or higher accuracy as the refrigeration cycle apparatus according to the prior art, and the refrigeration is less expensive than the prior art.
  • a cycle device can be provided. For this reason, it is possible to correctly detect the occurrence of an abnormal increase in the discharge pressure Pdc, stop the operation of the refrigeration cycle apparatus, and prevent the operation at an abnormal pressure exceeding the design pressure.
  • the discharge pressure estimating means 11 corrects the discharge pressure Pd using the outside air temperature Tat and the compressor speed f, the discharge pressure is increased even if the outside air temperature Tat and the compressor speed f fluctuate. Can be estimated with accuracy.
  • FIG. 7 is a block diagram showing the configuration of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • the refrigeration cycle apparatus according to the present embodiment is different from the refrigeration cycle apparatus according to the first embodiment in that a control unit 18A (control means) is provided instead of the control unit 18. Further, the control unit 18A is different from the control unit 18 in that it includes a power supply voltage estimation unit 21A instead of the power supply voltage estimation unit 21 and further includes a DC voltage detection unit 30.
  • the refrigeration cycle apparatus according to the present embodiment is configured and operates in the same manner as the refrigeration cycle apparatus according to the first embodiment, and thus the description thereof is omitted. Only differences from the refrigeration cycle apparatus according to Embodiment 1 will be described below.
  • the power supply voltage estimating means 21A stores in advance in the memory 21m a function fvhp indicating the relationship between the pulse width Dn of the zero cross signal S20 and the effective value VHP of the AC power supply voltage. .
  • the power supply voltage estimation means 21A corrects the function fvhp using the effective value VHPAC of the AC power supply voltage when the compressor 1 is stopped.
  • FIG. 8 is a graph showing a method for correcting the function fvhp by the power supply voltage estimating means 21A of FIG. In FIG.
  • the power supply voltage estimation means 21A calculates the effective value VHP0 of the AC power supply voltage corresponding to the pulse width Dn of the zero cross signal S20 at the detection timing of the DC voltage VHPDC by the DC voltage detection means 30 using the function fvhp. . Then, the function fvhp is corrected by subtracting the difference value ⁇ VHP between the effective value VHP0 and the effective value VHPAC from the function fvhp. Therefore, the corrected function fvhpc is expressed by the following equation.
  • the power supply voltage estimating means 21A uses the corrected function fvhpc instead of the function fvhp, and based on the pulse width Dn of the input zero-cross signal S20, as in the power supply voltage estimating means 21, the effective value VHP of the AC power supply voltage. And a signal indicating the estimated effective value VHP of the AC power supply voltage is output to the compressor power consumption estimation means 25.
  • the function fvhp is not corrected during the operation of the compressor 1 in order to avoid the influence of the power factor correction circuit or the like.
  • the effective value VHP of the AC power supply voltage during the operation of the compressor 1 can be detected with higher accuracy than in the first embodiment. Therefore, the compressor power consumption Wc can be detected with higher accuracy than in the first embodiment, and the discharge pressure estimation means 11 can improve the estimation accuracy of the discharge pressure Pd.
  • the compressor control means 27 determines that an abnormal increase in pressure has occurred in the refrigeration cycle apparatus, and stops the compressor 1. Thus, the operation of the refrigeration cycle apparatus is stopped, but the present invention is not limited to this.
  • the compressor control means 27 may reduce the rotation speed of the compressor 1 when the discharge pressure Pdc is larger than the discharge pressure threshold value P0.
  • the expansion valve control means 26 of the present embodiment may increase the opening degree of the expansion valve 3 when the discharge pressure Pdc is larger than the discharge pressure threshold value P0. Thereby, even in a transient state such as immediately after the start of the refrigeration cycle apparatus, it is possible to correctly determine the occurrence of an abnormal pressure increase, increase the opening of the expansion valve 3, and suppress the abnormal increase in the discharge pressure exceeding the design pressure.
  • the refrigerant is carbon dioxide, but the present invention is not limited to this.
  • the compressor 1 when the compressor 1 is driven, such as R32, carbon dioxide, ethane, ethylene, nitrogen oxide and a mixed refrigerant containing them, the refrigerant circuit 5 is connected to the high pressure side (from the compressor 1 to the expansion valve 3 via the radiator 2).
  • the refrigerant that becomes the supercritical state is used.
  • carbon dioxide is used as the refrigerant. Thereby, there is no danger of burning even if the refrigerant leaks, and the refrigeration cycle apparatus can be operated safely.
  • the power consumption Wc is estimated, the present invention is not limited to this.
  • the blower power consumption value Wf and the control unit power consumption Wp are sufficiently smaller than the refrigeration cycle power consumption WHP, the refrigeration cycle power consumption WHP is output to the discharge pressure estimating means 11 as the compressor power consumption Wc. Good.
  • the compressor power consumption Wc is estimated by subtracting only the control unit power consumption Wp from the refrigeration cycle power consumption WHP. Also good.
  • the compressor power consumption Wc is estimated by subtracting only the blower power consumption value Wf from the control unit power consumption Wp. Also good.
  • the power source current detection means 19, the blower rotation speed detection means 22, and the compressor rotation speed detection means 28 are provided in the control unit 18 or 18A.
  • the present invention is not limited to this. I can't.
  • the power supply current detection means 19, the blower rotation speed detection means 22, and the compressor rotation speed detection means 28 may be provided outside the control unit 18 or 18A.
  • the compressor control means 27 determines that the discharge pressure Pdc estimated by the discharge pressure estimation means 11 is
  • the compressor 1 is controlled so as to substantially coincide with the predetermined discharge pressure target value
  • the present invention is not limited to this.
  • the expansion valve control means 26 uses the discharge pressure estimation means 11 when the discharge pressure Pdc estimated by the discharge pressure estimation means 11 is equal to or less than a preset discharge pressure threshold value P0.
  • the expansion valve 3 may be controlled so that the estimated discharge pressure Pdc substantially matches a predetermined discharge pressure target value.
  • the refrigeration cycle apparatus can estimate the discharge pressure of the refrigerant from the compressor including the supercritical pressure without providing pressure detection means such as a pressure sensor or a pressure switch.
  • the refrigeration cycle apparatus according to the present invention can be applied to a refrigeration cycle apparatus that uses a refrigerant in a supercritical state on the high-pressure side of a refrigerant circuit, such as a heat pump water heater or a hot water heater, and its protection device, and can improve energy efficiency.

Abstract

A zero-cross detection means (20) detects the zero-cross point of the alternating current power supply voltage supplied to a refrigeration cycle device, and generates a zero-cross signal (S20) indicating a period of time in which the alternating current power supply voltage is less than zero volts. A power supply voltage estimation means (21) estimates the effective value (VHP) of the alternating current power supply voltage on the basis of the zero-cross signal (S20). A compressor power consumption estimation means (25) estimates the compressor power consumption (Wc) on the basis of the current value (IHP) for the power supply current supplied to the refrigeration cycle device and the effective value (VHP). A discharge pressure estimation means (11) estimates the discharge pressure (Pdc) of the refrigerant discharged from the compressor on the basis of the compressor power consumption (Wc), the evaporator temperature (Te), the outside air temperature (Tat), and the compressor rotational frequency (f).

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle apparatus.
 図9は、ヒートポンプ給湯機に搭載される第1の従来技術に係る冷凍サイクル装置の構成を示すブロック図である。図9の冷凍サイクル装置は、圧縮機1と、放熱器2と、膨張弁3と、蒸発器4とを配管を用いて順次環状に接続してなる冷媒回路5を備えて構成される。ここで、入水配管6と出湯配管7とは放熱器2に接続されている。また、圧力スイッチ8は、圧縮機1と放熱器2との間の配管から分岐した分岐配管10に連結されている。さらに、スイッチ手段9は、冷凍サイクル装置に交流電力を供給するAC電源回路上に設けられる(例えば、特許文献1参照)。 FIG. 9 is a block diagram showing a configuration of a refrigeration cycle apparatus according to the first prior art mounted on a heat pump water heater. The refrigeration cycle apparatus of FIG. 9 includes a refrigerant circuit 5 that is formed by sequentially connecting a compressor 1, a radiator 2, an expansion valve 3, and an evaporator 4 in an annular manner using pipes. Here, the water inlet pipe 6 and the hot water outlet pipe 7 are connected to the radiator 2. The pressure switch 8 is connected to a branch pipe 10 branched from a pipe between the compressor 1 and the radiator 2. Furthermore, the switch means 9 is provided on an AC power supply circuit that supplies AC power to the refrigeration cycle apparatus (see, for example, Patent Document 1).
 図9において、圧縮機1から吐出された高圧の冷媒は放熱器2へ供給され、放熱器2において入水配管6内の水と熱交換を行って放熱した後に膨張弁3に供給される。さらに、冷媒は膨張弁3にて減圧された後、蒸発器4に供給されて吸熱し、圧縮機1に吸入される。ここで、例えば、R410Aを冷媒として使用する空気調和機に搭載される冷凍サイクル装置では、放熱器2(凝縮器)の凝縮温度から吐出圧力を推定することにより、吐出圧力の異常上昇を検出できる。しかしながら、例えば、二酸化炭素を冷媒として使用するヒートポンプ給湯機に搭載の冷凍サイクル装置では、吐出圧力が臨界圧力を超えるので、放熱器2の温度から吐出圧力を推定することが難しい。そこで、圧力スイッチ8は、圧縮機1が吐出する冷媒の圧力があらかじめ設定されたしきい値を超えたときに動作するように設けられる。また、スイッチ手段9は、圧力スイッチ8の動作に伴ってオンからオフへと切り替えられて、AC電源回路を遮断する。従って、高圧側において冷媒が超臨界状態となる冷凍サイクル装置においても、吐出圧力の異常上昇を検出して冷凍サイクル装置の運転を停止でき、吐出圧力の異常上昇を防止できる。 9, the high-pressure refrigerant discharged from the compressor 1 is supplied to the radiator 2, and heat is exchanged with the water in the water inlet pipe 6 in the radiator 2, and then supplied to the expansion valve 3. Further, the refrigerant is decompressed by the expansion valve 3, supplied to the evaporator 4, absorbs heat, and is sucked into the compressor 1. Here, for example, in a refrigeration cycle apparatus mounted on an air conditioner that uses R410A as a refrigerant, an abnormal increase in discharge pressure can be detected by estimating the discharge pressure from the condensation temperature of the radiator 2 (condenser). . However, for example, in a refrigeration cycle apparatus mounted on a heat pump water heater that uses carbon dioxide as a refrigerant, it is difficult to estimate the discharge pressure from the temperature of the radiator 2 because the discharge pressure exceeds the critical pressure. Therefore, the pressure switch 8 is provided so as to operate when the pressure of the refrigerant discharged from the compressor 1 exceeds a preset threshold value. Further, the switch means 9 is switched from on to off in accordance with the operation of the pressure switch 8 to cut off the AC power supply circuit. Therefore, even in a refrigeration cycle apparatus in which the refrigerant is in a supercritical state on the high pressure side, an abnormal increase in discharge pressure can be detected to stop the operation of the refrigeration cycle apparatus, and an abnormal increase in discharge pressure can be prevented.
 また、図10は、ヒートポンプ給湯機に搭載される第2の従来技術に係る冷凍サイクル装置の構成を示すブロック図である。図10の冷凍サイクル装置は、図9の冷媒回路5と同様に構成された冷媒回路5と、吐出圧力推定手段111と、圧縮機電流検出手段12と、圧縮機回転速度検出手段13と、放熱器出口温度検出手段14と、蒸発器温度検出手段15とを備えて構成される。ここで、圧縮機電流検出手段12は圧縮機1の電動機に流れる電流の電流値を検出し、圧縮機回転速度検出手段13は圧縮機1の電動機の回転速度を検出する。また、放熱器出口温度検出手段14は放熱器2から膨張弁3へ送られる冷媒の温度を検出し、蒸発器温度検出手段15は蒸発器4での冷媒温度を検出する。さらに、吐出圧力推定手段111は、圧力スイッチ又は圧力センサーなどの圧力検出手段を備えず、吐出圧力を冷凍サイクル装置の運転状態から推定する。具体的には、吐出圧力推定手段111は、少なくとも圧縮機電流検出手段12、圧縮機回転速度検出手段13、放熱器出口温度検出手段14及び蒸発器温度検出手段15からの各検出値に基づいて、あらかじめ求められている電動機の消費電力と吐出圧力との間の関係を用いて吐出圧力を推定する(例えば、特許文献2参照)。図10の冷凍サイクル装置によれば、吐出圧力推定手段11を備えたので、圧力スイッチ又は圧力センサーなどの圧力検出手段を備えずとも、吐出圧力を検出できる。 FIG. 10 is a block diagram showing the configuration of the refrigeration cycle apparatus according to the second prior art mounted on the heat pump water heater. The refrigeration cycle apparatus of FIG. 10 includes a refrigerant circuit 5 configured in the same manner as the refrigerant circuit 5 of FIG. 9, a discharge pressure estimation means 111, a compressor current detection means 12, a compressor rotation speed detection means 13, and heat dissipation. It comprises an outlet temperature detecting means 14 and an evaporator temperature detecting means 15. Here, the compressor current detecting means 12 detects the current value of the current flowing through the electric motor of the compressor 1, and the compressor rotational speed detecting means 13 detects the rotational speed of the electric motor of the compressor 1. The radiator outlet temperature detecting means 14 detects the temperature of the refrigerant sent from the radiator 2 to the expansion valve 3, and the evaporator temperature detecting means 15 detects the refrigerant temperature in the evaporator 4. Furthermore, the discharge pressure estimation means 111 does not include pressure detection means such as a pressure switch or a pressure sensor, and estimates the discharge pressure from the operating state of the refrigeration cycle apparatus. Specifically, the discharge pressure estimation means 111 is based on at least the detection values from the compressor current detection means 12, the compressor rotation speed detection means 13, the radiator outlet temperature detection means 14, and the evaporator temperature detection means 15. The discharge pressure is estimated using the relationship between the electric power consumption of the electric motor and the discharge pressure, which are obtained in advance (see, for example, Patent Document 2). According to the refrigeration cycle apparatus of FIG. 10, since the discharge pressure estimation means 11 is provided, the discharge pressure can be detected without the pressure detection means such as a pressure switch or a pressure sensor.
特開2005-249293号公報JP 2005-249293 A 特開2010-2090号公報JP 2010-2090 A
 しかしながら、特許文献1記載の冷凍サイクル装置においては、圧力スイッチ8及び分岐配管10が圧縮機1から吐出される冷媒の温度と実質的に同一の温度(約90~120℃)に上昇する。従って、圧力スイッチ8及び分岐配管10からの熱漏洩が生じて、冷凍サイクル装置のエネルギー消費効率が低下するという課題があった。 However, in the refrigeration cycle apparatus described in Patent Document 1, the pressure switch 8 and the branch pipe 10 rise to substantially the same temperature (about 90 to 120 ° C.) as the refrigerant discharged from the compressor 1. Accordingly, there is a problem that heat leakage from the pressure switch 8 and the branch pipe 10 occurs and the energy consumption efficiency of the refrigeration cycle apparatus is lowered.
 また、特許文献2記載の冷凍サイクル装置においては、圧力スイッチ又は圧力センサーなどの圧力検出手段を用いずに冷凍サイクル装置の運転状態から吐出圧力を推定する吐出圧力推定手段11を備えるので、上述した熱漏洩は生じない。しかしながら、圧縮機動力の算出に用いるために、圧縮機1の電動機に流れる電流の電流値を検出するための圧縮機電流検出手段12を具備する必要があり、冷凍サイクル装置のコストアップにつながるという課題があった。 In addition, the refrigeration cycle apparatus described in Patent Document 2 includes the discharge pressure estimation means 11 that estimates the discharge pressure from the operating state of the refrigeration cycle apparatus without using pressure detection means such as a pressure switch or a pressure sensor. Heat leakage does not occur. However, in order to use for calculation of compressor power, it is necessary to include compressor current detection means 12 for detecting the current value of the current flowing through the electric motor of the compressor 1, which leads to an increase in cost of the refrigeration cycle apparatus. There was a problem.
 本発明の目的は以上の問題点を解決し、圧力センサー又は圧力スイッチなどの圧力検出手段及び圧縮機電流検出手段を備えることなく、従来技術に比較して安価な構成で圧縮機の吐出圧力を推定できる冷凍サイクル装置を提供することにある。 The object of the present invention is to solve the above-mentioned problems, and to reduce the discharge pressure of the compressor with a low-cost configuration as compared with the prior art without providing pressure detection means such as a pressure sensor or pressure switch and compressor current detection means. The object is to provide a refrigeration cycle apparatus that can be estimated.
 本発明に係る冷凍サイクル装置は、環状に接続された圧縮機と、放熱器と、膨張弁と、蒸発器とを備え、冷媒を循環させる冷媒回路と、上記冷媒回路を制御する制御手段とを備えた冷凍サイクル装置において、上記制御手段は、上記冷凍サイクル装置に供給される交流電源電圧のゼロクロス点を検出し、上記交流電源電圧がゼロボルト未満である期間を示すゼロクロス信号を発生するゼロクロス検出手段と、上記ゼロクロス信号に基づいて上記交流電源電圧の実効値を推定する電源電圧推定手段と、上記冷凍サイクル装置に供給される電源電流の電流値と、上記推定された交流電源電圧の実効値とに基づいて、上記冷凍サイクル装置の消費電力を推定して、上記圧縮機の消費電力として出力する圧縮機消費電力推定手段と、上記圧縮機の消費電力と、上記蒸発器を循環する冷媒の温度である蒸発器温度と、外気温度と、上記圧縮機の回転数とに基づいて、上記圧縮機から吐出される冷媒の吐出圧力を推定する吐出圧力推定手段とを備え、上記制御手段は、上記推定された吐出圧力に基づいて上記圧縮機又は上記膨張弁を制御することを特徴とする。 A refrigeration cycle apparatus according to the present invention includes an annularly connected compressor, a radiator, an expansion valve, and an evaporator, a refrigerant circuit that circulates refrigerant, and a control unit that controls the refrigerant circuit. In the refrigeration cycle apparatus provided, the control means detects a zero cross point of the AC power supply voltage supplied to the refrigeration cycle apparatus, and generates a zero cross signal indicating a period during which the AC power supply voltage is less than zero volts. Power supply voltage estimating means for estimating an effective value of the AC power supply voltage based on the zero cross signal, a current value of a power supply current supplied to the refrigeration cycle apparatus, and an effective value of the estimated AC power supply voltage The compressor power consumption estimating means for estimating the power consumption of the refrigeration cycle device and outputting the estimated power consumption as the power consumption of the compressor, and the power consumption of the compressor. A discharge pressure for estimating the discharge pressure of the refrigerant discharged from the compressor based on the electric power, the evaporator temperature that is the temperature of the refrigerant circulating in the evaporator, the outside air temperature, and the rotation speed of the compressor Estimation means, and the control means controls the compressor or the expansion valve based on the estimated discharge pressure.
 従って、圧力センサー又は圧力スイッチなどの圧力検出手段及び圧縮機電流検出手段を備えることなく、従来技術に比較して安価な構成で圧縮機の吐出圧力を推定できる。このため、吐出圧力の異常上昇の発生を従来技術に比較して正確に検出し、冷凍サイクル装置の運転を適切に停止して、設計圧力を超える異常圧力での運転を防止できる。 Therefore, it is possible to estimate the discharge pressure of the compressor with a low-cost configuration as compared with the prior art without providing pressure detection means such as a pressure sensor or a pressure switch and compressor current detection means. For this reason, it is possible to accurately detect the occurrence of an abnormal increase in the discharge pressure as compared with the prior art, appropriately stop the operation of the refrigeration cycle apparatus, and prevent the operation at an abnormal pressure exceeding the design pressure.
 本発明に係る冷凍サイクル装置によれば、吐出圧力の推定に用いる圧縮機消費電力を、電源電流検出手段により検出された電源電流の電流値と、交流電源電圧のゼロボルト点を用いて推定された交流電源電圧の実効値を用いて推定するので、圧力センサー又は圧力スイッチなどの圧力検出手段及び圧縮機電流検出手段を備えることなく、従来技術に比較して安価な構成で圧縮機の吐出圧力を推定できる。 According to the refrigeration cycle apparatus according to the present invention, the compressor power consumption used for estimating the discharge pressure is estimated using the current value of the power supply current detected by the power supply current detection means and the zero volt point of the AC power supply voltage. Since the estimation is performed using the effective value of the AC power supply voltage, the discharge pressure of the compressor can be reduced with a low-cost configuration compared to the prior art without providing pressure detection means such as a pressure sensor or a pressure switch and compressor current detection means. Can be estimated.
本発明の実施の形態1に係る冷凍サイクル装置の構成を示すブロック図である。It is a block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. (a)は、図1の冷凍サイクル装置に供給される交流電源電圧のタイミングチャートであり、(b)は、図1のゼロクロス検出手段20からのゼロクロス信号S20のタイミングチャートである。(A) is a timing chart of the alternating current power supply voltage supplied to the refrigeration cycle apparatus of FIG. 1, and (b) is a timing chart of the zero cross signal S20 from the zero cross detection means 20 of FIG. 図1のメモリ21mに格納される関数fvhpであって、ゼロクロス信号S20のパルス幅Dnと交流電源電圧の実効値VHPとの間の関係を示す関数fvhpを示すグラフである。2 is a graph showing a function fvhp stored in the memory 21m of FIG. 1 and showing a relationship between the pulse width Dn of the zero cross signal S20 and the effective value VHP of the AC power supply voltage. 図1のメモリ23mに格納されるテーブルであって、送風機17の回転数FMと送風機17の消費電力Wfとの間の関係を示すテーブルを示す表である。It is a table stored in the memory 23m of FIG. 1, and is a table showing a relationship between the rotational speed FM of the blower 17 and the power consumption Wf of the blower 17. 図1のメモリ24mに格納されるテーブルであって、電源電流値IHPと制御部18の消費電力Wpとの間の関係を示すテーブルである。2 is a table stored in the memory 24m of FIG. 1 and showing a relationship between the power supply current value IHP and the power consumption Wp of the control unit 18. 図1のメモリ11mに格納されるテーブルであって、圧縮機1の消費電力Wc及び蒸発器温度Teと、吐出圧力Pdとの間の関係を示すテーブルである。It is a table stored in the memory 11m of FIG. 1, and is a table showing the relationship between the power consumption Wc and the evaporator temperature Te of the compressor 1 and the discharge pressure Pd. 本発明の実施の形態2に係る冷凍サイクル装置の構成を示すブロック図である。It is a block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention. 図7の電源電圧推定手段21Aによる関数fvhpの補正方法を示すグラフである。It is a graph which shows the correction method of the function fvhp by the power supply voltage estimation means 21A of FIG. ヒートポンプ給湯機に搭載される第1の従来技術に係る冷凍サイクル装置の構成を示すブロック図である。It is a block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on the 1st prior art mounted in a heat pump water heater. ヒートポンプ給湯機に搭載される第2の従来技術に係る冷凍サイクル装置の構成を示すブロック図である。It is a block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on the 2nd prior art mounted in a heat pump water heater.
 第1の態様に係る冷凍サイクル装置は、環状に接続された圧縮機と、放熱器と、膨張弁と、蒸発器とを備え、冷媒を循環させる冷媒回路と、上記冷媒回路を制御する制御手段とを備えた冷凍サイクル装置において、上記制御手段は、上記冷凍サイクル装置に供給される交流電源電圧のゼロクロス点を検出し、上記交流電源電圧がゼロボルト未満である期間を示すゼロクロス信号を発生するゼロクロス検出手段と、上記ゼロクロス信号に基づいて上記交流電源電圧の実効値を推定する電源電圧推定手段と、上記冷凍サイクル装置に供給される電源電流の電流値と、上記推定された交流電源電圧の実効値とに基づいて、上記冷凍サイクル装置の消費電力を推定して、上記圧縮機の消費電力として出力する圧縮機消費電力推定手段と、上記圧縮機の消費電力と、上記蒸発器を循環する冷媒の温度である蒸発器温度と、外気温度と、上記圧縮機の回転数とに基づいて、上記圧縮機から吐出される冷媒の吐出圧力を推定する吐出圧力推定手段とを備え、上記制御手段は、上記推定された吐出圧力に基づいて上記圧縮機又は上記膨張弁を制御することを特徴とする。 A refrigeration cycle apparatus according to a first aspect includes an annularly connected compressor, a radiator, an expansion valve, and an evaporator, a refrigerant circuit that circulates refrigerant, and a control unit that controls the refrigerant circuit. The control means detects a zero cross point of the AC power supply voltage supplied to the refrigeration cycle apparatus and generates a zero cross signal indicating a period during which the AC power supply voltage is less than zero volts. Detecting means; power supply voltage estimating means for estimating an effective value of the AC power supply voltage based on the zero cross signal; a current value of a power supply current supplied to the refrigeration cycle apparatus; and an effective value of the estimated AC power supply voltage. A compressor power consumption estimating means for estimating the power consumption of the refrigeration cycle device based on the value and outputting as power consumption of the compressor, and the compressor A discharge that estimates the discharge pressure of the refrigerant discharged from the compressor based on the power consumption, the evaporator temperature that is the temperature of the refrigerant circulating in the evaporator, the outside air temperature, and the rotation speed of the compressor Pressure estimation means, and the control means controls the compressor or the expansion valve based on the estimated discharge pressure.
 従って、圧力センサー又は圧力スイッチなどの圧力検出手段及び圧縮機電流検出手段を備えることなく、従来技術に比較して安価な構成で圧縮機の吐出圧力を推定できる。このため、吐出圧力の異常上昇の発生を従来技術に比較して正確に検出し、冷凍サイクル装置の運転を適切に停止して、設計圧力を超える異常圧力での運転を防止できる。 Therefore, it is possible to estimate the discharge pressure of the compressor with a low-cost configuration as compared with the prior art without providing pressure detection means such as a pressure sensor or a pressure switch and compressor current detection means. For this reason, it is possible to accurately detect the occurrence of an abnormal increase in the discharge pressure as compared with the prior art, appropriately stop the operation of the refrigeration cycle apparatus, and prevent the operation at an abnormal pressure exceeding the design pressure.
 第2の態様に係る冷凍サイクル装置は、第1の態様に係る冷凍サイクル装置において、上記電源電圧推定手段は、上記ゼロクロス信号に基づいて、上記交流電源電圧がゼロボルト未満である期間の期間長と、上記交流電源電圧の実効値との間の関係を用いて、上記交流電源電圧の実効値を推定することを特徴とする。 The refrigeration cycle apparatus according to a second aspect is the refrigeration cycle apparatus according to the first aspect, wherein the power supply voltage estimation means is based on the zero cross signal and the period length of the period in which the AC power supply voltage is less than zero volts. The effective value of the AC power supply voltage is estimated using the relationship between the effective value of the AC power supply voltage.
 従って、従来技術に比較して安価な構成で圧縮機の吐出圧力を推定できる。 Therefore, the discharge pressure of the compressor can be estimated with an inexpensive configuration compared to the conventional technology.
 第3の態様に係る冷凍サイクル装置は、第2の態様に係る冷凍サイクル装置において、上記制御手段は、上記圧縮機の運転前に、上記交流電源電圧を整流及び平滑した後の直流電圧を検出し、当該検出された直流電圧に基づいて、上記圧縮機の運転前の交流電源電圧の実効値を検出する直流電圧検出手段をさらに備え、上記電源電圧推定手段は、上記圧縮機の運転前の交流電源電圧の実効値と、上記直流電圧の検出時の上記期間長とを用いて、上記交流電源電圧がゼロボルト未満である期間の期間長と、上記交流電源電圧の実効値との間の関係を補正し、上記補正後の関係を用いて、上記交流電源電圧の実効値を推定することを特徴とする。 The refrigeration cycle apparatus according to a third aspect is the refrigeration cycle apparatus according to the second aspect, wherein the control means detects a DC voltage after rectifying and smoothing the AC power supply voltage before the operation of the compressor. And a DC voltage detecting means for detecting an effective value of the AC power supply voltage before operation of the compressor based on the detected DC voltage, and the power supply voltage estimation means is provided before the operation of the compressor. Using the effective value of the AC power supply voltage and the period length when the DC voltage is detected, the relationship between the period length of the period in which the AC power supply voltage is less than zero volts and the effective value of the AC power supply voltage And the effective value of the AC power supply voltage is estimated using the corrected relationship.
 従って、第1及び第2の態様に係る冷凍サイクル装置に比較して高い精度で交流電源電圧の実効値を推定でき、その結果、高い精度で吐出圧力を推定できる。 Therefore, the effective value of the AC power supply voltage can be estimated with high accuracy compared to the refrigeration cycle apparatuses according to the first and second aspects, and as a result, the discharge pressure can be estimated with high accuracy.
 第4の態様に係る冷凍サイクル装置は、第1から第3のうちのいずれか1つの態様に係る冷凍サイクル装置において、上記吐出圧力推定手段は、上記推定された圧縮機の消費電力及び上記蒸発器温度と、上記吐出圧力との間の関係を用いて上記吐出圧力を推定した後、上記推定した吐出圧力を上記圧縮機回転数及び上記外気温度を用いて補正することを特徴とする。 The refrigeration cycle apparatus according to a fourth aspect is the refrigeration cycle apparatus according to any one of the first to third aspects, wherein the discharge pressure estimation means includes the estimated power consumption of the compressor and the evaporation. After the discharge pressure is estimated using the relationship between the compressor temperature and the discharge pressure, the estimated discharge pressure is corrected using the compressor rotation speed and the outside air temperature.
 従って、従来技術に比較して安価な構成で圧縮機の吐出圧力を推定できる。 Therefore, the discharge pressure of the compressor can be estimated with an inexpensive configuration compared to the conventional technology.
 第5の態様に係る冷凍サイクル装置は、第1から第4のうちのいずれか1つの態様に係る冷凍サイクル装置において、上記冷凍サイクル装置は、上記蒸発器内における上記冷媒の蒸発を促進するように設けられた送風機をさらに備え、上記制御手段は、上記送風機の回転数に基づいて上記送風機の消費電力を推定する送風機消費電力推定手段をさらに備え、上記圧縮機消費電力推定手段は、上記冷凍サイクル装置の消費電力から上記送風機の消費電力を減算し、減算後の消費電力を上記圧縮機の消費電力として出力することを特徴とする。 A refrigeration cycle apparatus according to a fifth aspect is the refrigeration cycle apparatus according to any one of the first to fourth aspects, wherein the refrigeration cycle apparatus promotes evaporation of the refrigerant in the evaporator. The control means further includes a blower power consumption estimation means for estimating the power consumption of the blower based on the number of rotations of the blower, and the compressor power consumption estimation means includes the refrigeration unit. The power consumption of the blower is subtracted from the power consumption of the cycle device, and the power consumption after the subtraction is output as the power consumption of the compressor.
 従って、第1から第4の態様に係る冷凍サイクル装置に比較して高い精度で圧縮機消費電力を推定でき、その結果、高い精度で吐出圧力を推定できる。 Therefore, the compressor power consumption can be estimated with higher accuracy than the refrigeration cycle apparatuses according to the first to fourth aspects, and as a result, the discharge pressure can be estimated with high accuracy.
 第6の態様に係る冷凍サイクル装置は、第5の態様に係る冷凍サイクル装置において、上記制御手段は、上記送風機の回転数を検出して上記送風機消費電力推定手段に出力する送風機回転数検出手段をさらに備えたことを特徴とする。 The refrigeration cycle apparatus according to a sixth aspect is the refrigeration cycle apparatus according to the fifth aspect, wherein the control means detects the rotational speed of the blower and outputs it to the blower power consumption estimation means. Is further provided.
 従って、第1から第4の態様に係る冷凍サイクル装置に比較して高い精度で圧縮機消費電力を推定でき、その結果、高い精度で吐出圧力を推定できる。 Therefore, the compressor power consumption can be estimated with higher accuracy than the refrigeration cycle apparatuses according to the first to fourth aspects, and as a result, the discharge pressure can be estimated with high accuracy.
 第7の態様に係る冷凍サイクル装置は、第1から第6のうちのいずれか1つの態様に係る冷凍サイクル装置において、上記制御手段は、上記冷凍サイクル装置に供給される電源電流の電流値に基づいて上記制御手段の消費電力を推定する制御部消費電力推定手段をさらに備え、上記圧縮機消費電力推定手段は、上記冷凍サイクル装置の消費電力から上記制御手段の消費電力を減算し、減算後の消費電力を上記圧縮機の消費電力として出力することを特徴とする。 A refrigeration cycle apparatus according to a seventh aspect is the refrigeration cycle apparatus according to any one of the first to sixth aspects, wherein the control means sets a current value of a power supply current supplied to the refrigeration cycle apparatus. And a controller power consumption estimating means for estimating the power consumption of the control means based on the power consumption of the control means by subtracting the power consumption of the control means from the power consumption of the refrigeration cycle apparatus. Is output as the power consumption of the compressor.
 従って、第1から第6の態様に係る冷凍サイクル装置に比較して高い精度で圧縮機消費電力を推定でき、その結果、高い精度で吐出圧力を推定できる。 Therefore, the compressor power consumption can be estimated with higher accuracy than the refrigeration cycle apparatuses according to the first to sixth aspects, and as a result, the discharge pressure can be estimated with high accuracy.
 第8の態様に係る冷凍サイクル装置は、第1から第7のうちのいずれか1つの態様に係る冷凍サイクル装置において、上記制御手段は、上記推定された吐出圧力が所定の吐出圧力目標値に実質的に一致するように、上記圧縮機又は上記膨張弁を制御することを特徴とする。 The refrigeration cycle apparatus according to an eighth aspect is the refrigeration cycle apparatus according to any one of the first to seventh aspects, wherein the control means sets the estimated discharge pressure to a predetermined discharge pressure target value. The compressor or the expansion valve is controlled so as to substantially match.
 従って、冷凍サイクル装置を比較的高いエネルギー効率で運転できる。 Therefore, the refrigeration cycle apparatus can be operated with relatively high energy efficiency.
 第9の態様に係る冷凍サイクル装置は、第1から第8のうちのいずれか1つの態様に係る冷凍サイクル装置において、上記制御手段は、上記推定された吐出圧力があらかじめ設定された吐出圧力しきい値より大きいとき、上記圧縮機を停止し又は上記圧縮機の回転数を低下させることを特徴とする。 The refrigeration cycle apparatus according to a ninth aspect is the refrigeration cycle apparatus according to any one of the first to eighth aspects, wherein the control means is a discharge pressure preset for the estimated discharge pressure. When larger than the threshold value, the compressor is stopped or the rotational speed of the compressor is reduced.
 従って、冷凍サイクル装置の吐出圧力の異常な上昇を防止できる。 Therefore, an abnormal increase in the discharge pressure of the refrigeration cycle apparatus can be prevented.
 第10の態様に係る冷凍サイクル装置は、第1から第8のうちのいずれか1つの態様に係る冷凍サイクル装置において、上記制御手段は、上記推定された吐出圧力があらかじめ設定された吐出圧力しきい値より大きいとき、上記膨張弁の開度を大きくすることを特徴とする。 The refrigeration cycle apparatus according to a tenth aspect is the refrigeration cycle apparatus according to any one of the first to eighth aspects, wherein the control means is a discharge pressure preset for the estimated discharge pressure. When larger than the threshold value, the opening degree of the expansion valve is increased.
 従って、冷凍サイクル装置の吐出圧力の異常な上昇を防止できる。 Therefore, an abnormal increase in the discharge pressure of the refrigeration cycle apparatus can be prevented.
 第11の態様に係る冷凍サイクル装置は、第1から第10のうちのいずれか1つの態様に係る冷凍サイクル装置において、上記制御手段は、上記圧縮機の駆動時に、上記冷媒の圧力が上記冷媒回路の高圧側において超臨界圧力になるように制御することを特徴とする。 The refrigeration cycle apparatus according to an eleventh aspect is the refrigeration cycle apparatus according to any one of the first to tenth aspects, wherein the control means is configured such that when the compressor is driven, the pressure of the refrigerant is the refrigerant. Control is performed so that a supercritical pressure is obtained on the high pressure side of the circuit.
 従って、冷凍サイクル装置の効率を向上できる。 Therefore, the efficiency of the refrigeration cycle apparatus can be improved.
 第12の態様に係る冷凍サイクル装置は、第11の態様に係る冷凍サイクル装置において、上記冷媒は二酸化炭素であることを特徴とする。 A refrigeration cycle apparatus according to a twelfth aspect is characterized in that in the refrigeration cycle apparatus according to the eleventh aspect, the refrigerant is carbon dioxide.
 従って、冷媒が漏洩しても燃焼の危険がなく、冷凍サイクル装置を安全に運転できる。 Therefore, even if the refrigerant leaks, there is no danger of combustion, and the refrigeration cycle apparatus can be operated safely.
 第13の態様に係る冷凍サイクル装置は、第1から第12のうちのいずれか1つの態様に係る冷凍サイクル装置において、上記制御手段は、上記冷凍サイクル装置に供給される電源電流の電流値を検出して上記圧縮機消費電力推定手段に出力する電源電流検出手段をさらに備えたことを特徴とする。 A refrigeration cycle apparatus according to a thirteenth aspect is the refrigeration cycle apparatus according to any one of the first to twelfth aspects, wherein the control means determines a current value of a power supply current supplied to the refrigeration cycle apparatus. It further comprises power supply current detection means for detecting and outputting to the compressor power consumption estimation means.
 第14の態様に係る冷凍サイクル装置は、第1から第13のうちのいずれか1つの態様に係る冷凍サイクル装置において、上記制御手段は、上記圧縮機の回転数を検出して上記吐出圧力推定手段に出力する圧縮機回転数検出手段をさらに備えたことを特徴とする。 The refrigeration cycle apparatus according to a fourteenth aspect is the refrigeration cycle apparatus according to any one of the first to thirteenth aspects, wherein the control means detects the rotation speed of the compressor and estimates the discharge pressure. The compressor rotation speed detection means for outputting to the means is further provided.
 第15の態様に係る冷凍サイクル装置は、第1から第14のうちのいずれか1つの態様に係る冷凍サイクル装置において、上記蒸発器温度を検出して上記吐出圧力推定手段に出力する蒸発器温度検出手段をさらに備えたことを特徴とする。 The refrigeration cycle apparatus according to the fifteenth aspect is the refrigeration cycle apparatus according to any one of the first to fourteenth aspects, wherein the evaporator temperature is detected and output to the discharge pressure estimating means. It further has a detecting means.
 第16の態様に係る冷凍サイクル装置は、第1から第15のうちのいずれか1つの態様に係る冷凍サイクル装置において、上記外気温度を検出して上記吐出圧力推定手段に出力する外気温度検出手段をさらに備えたことを特徴とする。 The refrigeration cycle apparatus according to a sixteenth aspect is the refrigeration cycle apparatus according to any one of the first to fifteenth aspects, wherein the outside air temperature detecting means detects the outside air temperature and outputs the detected temperature to the discharge pressure estimating means. Is further provided.
 以下、本発明に係る実施形態について図面を参照して説明する。なお、同様の構成要素については同一の符号を付している。また、以下の各実施の形態によって本発明が限定されるものではない。 Embodiments according to the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected about the same component. Further, the present invention is not limited to the following embodiments.
 (実施の形態1)
 図1は、本発明の実施の形態1に係る冷凍サイクル装置の構成を示すブロック図である。図1において、本実施の形態に係る冷凍サイクル装置は、冷媒回路5と、制御部18(制御手段)と、送風機17と、蒸発器温度検出手段15と、外気温度検出手段16と、吐出温度検出手段29とを備えて構成される。また、制御部18は、電源電流検出手段19と、ゼロクロス検出手段20と、メモリ21mを備えた電源電圧推定手段21と、送風機回転数検出手段22と、メモリ23mを備えた送風機消費電力推定手段23と、メモリ24mを備えた制御部消費電力推定手段24と、圧縮機消費電力推定手段25と、圧縮機回転数検出手段28と、膨張弁制御手段26と、圧縮機制御手段27と、メモリ11mを備えた吐出圧力推定手段11とを備えて構成される。
(Embodiment 1)
FIG. 1 is a block diagram showing a configuration of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. 1, the refrigeration cycle apparatus according to the present embodiment includes a refrigerant circuit 5, a control unit 18 (control means), a blower 17, an evaporator temperature detection means 15, an outside air temperature detection means 16, and a discharge temperature. And a detection means 29. Further, the control unit 18 includes a power supply current detection means 19, a zero cross detection means 20, a power supply voltage estimation means 21 provided with a memory 21m, a blower rotation speed detection means 22, and a blower power consumption estimation means provided with a memory 23m. 23, a control unit power consumption estimation means 24 having a memory 24m, a compressor power consumption estimation means 25, a compressor rotation speed detection means 28, an expansion valve control means 26, a compressor control means 27, a memory And a discharge pressure estimating means 11 having 11 m.
 また、冷媒回路5は、圧縮機1と、放熱器2と、膨張弁3(減圧機構)と、蒸発器4とを配管を用いて順次環状に接続して構成される。さらに、入水配管6と出湯配管7とは放熱器2に接続されている。圧縮機1から吐出された高圧の冷媒は放熱器2へ供給され、放熱器2において入水配管6内の水と熱交換を行って放熱した後に膨張弁3に供給される。さらに、冷媒は膨張弁3にて減圧された後、蒸発器4に供給されて吸熱し、圧縮機1に吸入される。また、送風機17は、蒸発器4内の冷媒の蒸発を促進するように蒸発器4の近傍に設けられ、制御部18により制御される。本実施の形態において、冷媒は、圧縮機1の駆動時に冷媒回路5の高圧側で超臨界状態になる二酸化炭素である。制御部18は、圧縮機1の駆動時に、二酸化炭素の圧力が冷媒回路5の高圧側において超臨界圧力になるように制御する。 The refrigerant circuit 5 is configured by sequentially connecting the compressor 1, the radiator 2, the expansion valve 3 (decompression mechanism), and the evaporator 4 in an annular manner using pipes. Further, the water inlet pipe 6 and the hot water outlet pipe 7 are connected to the radiator 2. The high-pressure refrigerant discharged from the compressor 1 is supplied to the radiator 2, and heat is exchanged with the water in the water inlet pipe 6 in the radiator 2 to dissipate heat and then supplied to the expansion valve 3. Further, the refrigerant is decompressed by the expansion valve 3, supplied to the evaporator 4, absorbs heat, and is sucked into the compressor 1. The blower 17 is provided in the vicinity of the evaporator 4 so as to promote the evaporation of the refrigerant in the evaporator 4, and is controlled by the control unit 18. In the present embodiment, the refrigerant is carbon dioxide that becomes a supercritical state on the high-pressure side of the refrigerant circuit 5 when the compressor 1 is driven. When the compressor 1 is driven, the control unit 18 controls the carbon dioxide pressure to be a supercritical pressure on the high pressure side of the refrigerant circuit 5.
 蒸発器温度検出手段15は、蒸発器4の冷媒入口の配管表面上に設けられ、蒸発器4の冷媒側入口における配管表面の温度を蒸発器温度Teとして検出し、蒸発器温度Teを示す信号を吐出圧力推定手段11に出力する。なお、蒸発器温度検出手段15は配管表面の温度を検出しているため、冷凍サイクル装置の運転状態が実質的に定常状態である場合は、検出した蒸発器温度Teは、蒸発器4を循環する冷媒の温度と実質的に同一になる。 The evaporator temperature detection means 15 is provided on the pipe surface of the refrigerant inlet of the evaporator 4, detects the temperature of the pipe surface at the refrigerant side inlet of the evaporator 4 as the evaporator temperature Te, and indicates the evaporator temperature Te. Is output to the discharge pressure estimating means 11. Since the evaporator temperature detection means 15 detects the temperature of the pipe surface, the detected evaporator temperature Te circulates in the evaporator 4 when the operation state of the refrigeration cycle apparatus is substantially steady. It becomes substantially the same as the temperature of the refrigerant.
 外気温度検出手段16は、蒸発器4へと導入される空気の温度(外気温度)を検出するように、蒸発器4の風上側に設けられる。外気温度検出手段16は、蒸発器4へと導入される空気の温度を外気温度Tatとして検出し、外気温度Tatを含む信号を吐出圧力推定手段11に出力する。吐出温度検出手段29は、圧縮機1から放熱器2へと冷媒を導入する配管の表面上に設けられ、吐出温度Tdを検出し、吐出温度Tdを含む信号を膨張弁制御手段26に出力する。 The outside air temperature detecting means 16 is provided on the windward side of the evaporator 4 so as to detect the temperature of the air introduced into the evaporator 4 (outside air temperature). The outside air temperature detection means 16 detects the temperature of the air introduced into the evaporator 4 as the outside air temperature Tat, and outputs a signal including the outside air temperature Tat to the discharge pressure estimation means 11. The discharge temperature detecting means 29 is provided on the surface of the pipe for introducing the refrigerant from the compressor 1 to the radiator 2, detects the discharge temperature Td, and outputs a signal including the discharge temperature Td to the expansion valve control means 26. .
 冷凍サイクル装置が運転を行っているとき、圧縮機制御手段27は、放熱器2における加熱能力が所定の加熱能力目標値となるように、圧縮機1の回転数fcをあらかじめ設定された回転数に決定し、決定された回転数で圧縮機1を回転させる。これによって、冷凍サイクル装置は、運転条件に応じて必要な加熱能力を満足する圧縮機回転数を選択して運転を行うことができる。 When the refrigeration cycle apparatus is in operation, the compressor control means 27 sets the rotation speed fc of the compressor 1 in advance so that the heating capacity in the radiator 2 becomes a predetermined heating capacity target value. And the compressor 1 is rotated at the determined rotational speed. As a result, the refrigeration cycle apparatus can be operated by selecting a compressor rotational speed that satisfies the required heating capacity in accordance with the operating conditions.
 また、膨張弁制御手段26は、吐出温度検出手段29によって検出される吐出温度Tdがあらかじめ設定された所定の吐出温度目標値に実質的に一致するように、膨張弁3の開度を決定して制御する。このように制御することにより、冷凍サイクル装置のエネルギー消費効率が最大になるように膨張弁3を制御して動作させることができる。なお、膨張弁制御手段26は、外気温度Tatが高くなるほど冷媒の過熱度が大きくなるように膨張弁3を制御するので、圧縮機1に吸入される冷媒の過熱度は外気温度Tatと相関を有する。 The expansion valve control means 26 determines the opening degree of the expansion valve 3 so that the discharge temperature Td detected by the discharge temperature detection means 29 substantially matches a predetermined target discharge temperature target value set in advance. Control. By controlling in this way, the expansion valve 3 can be controlled and operated so that the energy consumption efficiency of the refrigeration cycle apparatus is maximized. The expansion valve control means 26 controls the expansion valve 3 so that the degree of superheat of the refrigerant increases as the outside air temperature Tat increases. Therefore, the degree of superheat of the refrigerant sucked into the compressor 1 correlates with the outside air temperature Tat. Have.
 電源電流検出手段19は、例えばカレントプローブであって、冷凍サイクル装置に供給される全ての電源電流の電流値IHPを検出し、検出した電源電流値IHPを含む信号を、制御部消費電力推定手段24と、圧縮機消費電力推定手段25とに出力する。 The power supply current detection means 19 is, for example, a current probe, detects the current value IHP of all power supply currents supplied to the refrigeration cycle apparatus, and outputs a signal including the detected power supply current value IHP to the control unit power consumption estimation means. 24 and the compressor power consumption estimation means 25.
 ゼロクロス検出手段20は、冷凍サイクル装置に供給される交流電源電圧が0Vレベルを交叉するゼロクロス点を検出し、交流電源電圧が0V未満である期間を示すパルス信号であるゼロクロス信号S20を発生して、電源電圧推定手段21に出力する。電源電圧推定手段21は、ゼロクロス検出手段20からのゼロクロス信号S20の周期Tn(n=1,2,…,n-2,n-1,n)を計測し、さらに、周期Tnを用いてゼロクロス信S20号のパルス幅Dn(n=1,2,…,n-2,n-1,n)を計測する。 The zero cross detection means 20 detects a zero cross point where the AC power supply voltage supplied to the refrigeration cycle apparatus crosses the 0V level, and generates a zero cross signal S20 which is a pulse signal indicating a period during which the AC power supply voltage is less than 0V. To the power supply voltage estimation means 21. The power supply voltage estimation means 21 measures the period Tn (n = 1, 2,..., N−2, n−1, n) of the zero cross signal S20 from the zero cross detection means 20, and further uses the period Tn to perform zero crossing. The pulse width Dn (n = 1, 2,..., N−2, n−1, n) of the No. S20 is measured.
 図2において、(a)は、図1の冷凍サイクル装置に供給される交流電源電圧のタイミングチャートであり、(b)は、図1のゼロクロス検出手段20からのゼロクロス信号S20のタイミングチャートである。図2(a)及び図2(b)に示すように、交流電源電圧は一般に正弦波形状を有するので、ゼロクロス信号S20のパルス幅Dnは、交流交流電源電圧の実効値に反比例する。 2A is a timing chart of the AC power supply voltage supplied to the refrigeration cycle apparatus of FIG. 1, and FIG. 2B is a timing chart of the zero cross signal S20 from the zero cross detection means 20 of FIG. . As shown in FIGS. 2A and 2B, since the AC power supply voltage generally has a sine wave shape, the pulse width Dn of the zero cross signal S20 is inversely proportional to the effective value of the AC AC power supply voltage.
 図1において、電源電圧推定手段21は、ゼロクロス信号S20のパルス幅Dnと交流電源電圧の実効値VHPとの間の関係を示す関数fvhpを、あらかじめメモリ21mに格納する。図3は、図1のメモリ21mに格納される関数fvhpであって、ゼロクロス信号S20のパルス幅Dnと交流電源電圧の実効値VHPとの間の関係を示す関数fvhpを示すグラフである。図3に示すように、交流電源電圧の実効値VHPはパルス幅Dnに反比例する。電源電圧推定手段21は、入力されるゼロクロス信号S20のパルス幅Dnと、関数fvhpとを用いて交流電源電圧の実効値VHPを推定し、推定した交流電源電圧の実効値VHPを示す信号を圧縮機消費電力推定手段25に出力する。 1, the power supply voltage estimation means 21 stores a function fvhp indicating the relationship between the pulse width Dn of the zero cross signal S20 and the effective value VHP of the AC power supply voltage in the memory 21m in advance. FIG. 3 is a graph showing the function fvhp stored in the memory 21m of FIG. 1 and showing the relationship between the pulse width Dn of the zero cross signal S20 and the effective value VHP of the AC power supply voltage. As shown in FIG. 3, the effective value VHP of the AC power supply voltage is inversely proportional to the pulse width Dn. The power supply voltage estimation means 21 estimates the effective value VHP of the AC power supply voltage using the pulse width Dn of the input zero-cross signal S20 and the function fvhp, and compresses the signal indicating the estimated effective value VHP of the AC power supply voltage. It outputs to the machine power consumption estimation means 25.
 図1において、送風機回転数検出手段22は、送風機17の回転数FM(rpm)を検出し、検出した回転数FMを示す信号を送風機消費電力推定手段23に出力する。送風機消費電力推定手段23は、送風機17の回転数FMと送風機17の消費電力Wfとの間の関係を示すテーブルを、あらかじめメモリ23mに格納する。図4は、図1のメモリ23mに格納されるテーブルであって、送風機17の回転数FMと送風機17の消費電力Wfとの間の関係を示すテーブルを示す表である。図4に示すように、送風機17の回転数FMが大きいほど、送風機17の消費電力Wfは大きくなる。送風機消費電力推定手段23は、入力される回転数FMに基づいて図4のテーブルを参照して、送風機17の消費電力Wfを推定し、推定した消費電力Wfを示す信号を圧縮機消費電力推定手段25に出力する。 1, the blower rotation speed detection means 22 detects the rotation speed FM (rpm) of the blower 17 and outputs a signal indicating the detected rotation speed FM to the blower power consumption estimation means 23. The blower power consumption estimation means 23 stores in advance a table indicating the relationship between the rotational speed FM of the blower 17 and the power consumption Wf of the blower 17 in the memory 23m. FIG. 4 is a table stored in the memory 23m of FIG. 1 and showing a relationship between the rotational speed FM of the blower 17 and the power consumption Wf of the blower 17. As shown in FIG. 4, the power consumption Wf of the blower 17 increases as the rotational speed FM of the blower 17 increases. The blower power consumption estimation unit 23 estimates the power consumption Wf of the blower 17 based on the input rotation speed FM and estimates a signal indicating the estimated power consumption Wf as compressor power consumption estimation. Output to means 25.
 また、制御部消費電力推定手段24は、電源電流値IHPと制御部18の消費電力Wpとの間の関係を示すテーブルを、あらかじめメモリ24mに格納している。図5は、図1のメモリ24mに格納されるテーブルであって、電源電流値IHPと制御部18の消費電力Wpとの間の関係を示すテーブルである。図5に示すように、電源電流値IHPが大きいほど、制御部18の消費電力Wpは大きくなる。制御部消費電力推定手段24は、入力される電源電流値IHPに基づいて図5のテーブルを参照して、制御部18の消費電力Wpを推定し、推定した消費電力Wpを示す信号を圧縮機消費電力推定手段25に出力する。 Also, the control unit power consumption estimation means 24 stores a table indicating the relationship between the power supply current value IHP and the power consumption Wp of the control unit 18 in the memory 24m in advance. FIG. 5 is a table stored in the memory 24m of FIG. 1 and showing a relationship between the power supply current value IHP and the power consumption Wp of the control unit 18. As shown in FIG. 5, the power consumption Wp of the control unit 18 increases as the power supply current value IHP increases. The control unit power consumption estimation means 24 estimates the power consumption Wp of the control unit 18 with reference to the table of FIG. 5 based on the input power supply current value IHP, and outputs a signal indicating the estimated power consumption Wp to the compressor. Output to the power consumption estimation means 25.
 圧縮機消費電力推定手段25は、入力される電源電流値IHP及び交流電源電圧の実効値VHPに基づいて冷凍サイクル消費電力WHP(=IHP×VHP)を算出し、冷凍サイクル消費電力WHPから送風機消費電力値Wf及び制御部消費電力Wpを減算することにより、圧縮機消費電力Wc(=IHP×VHP-Wf-Wp)を推定する。そして、推定した圧縮機消費電力Wcを示す信号を吐出圧力推定手段11に出力する。 The compressor power consumption estimation means 25 calculates the refrigeration cycle power consumption WHP (= IHP × VHP) based on the input power supply current value IHP and the effective value VHP of the AC power supply voltage, and the fan consumption from the refrigeration cycle power consumption WHP. The compressor power consumption Wc (= IHP × VHP−Wf−Wp) is estimated by subtracting the power value Wf and the control unit power consumption Wp. Then, a signal indicating the estimated compressor power consumption Wc is output to the discharge pressure estimating means 11.
 圧縮機回転数検出手段28は、圧縮機1の回転数を検出し、圧縮機回転数f(HZ)を示す信号を吐出圧力推定手段11に出力する。 The compressor rotation speed detection means 28 detects the rotation speed of the compressor 1 and outputs a signal indicating the compressor rotation speed f (HZ) to the discharge pressure estimation means 11.
 吐出圧力推定手段11は、圧縮機1の消費電力Wc及び蒸発器温度Teと、吐出圧力Pd(Mpa)との間の関係を示すテーブルを、あらかじめメモリ11mに格納している。図6は、図1のメモリ11mに格納されるテーブルであって、圧縮機1の消費電力Wc及び蒸発器温度Teと、吐出圧力Pdとの間の関係を示すテーブルである。図6に示すように、消費電力Wcが大きくなるほど、吐出圧力Pdは大きくなり、蒸発器温度Teが大きくなるほど、吐出圧力Pdは大きくなる。図1において、吐出圧力推定手段11は、入力される消費電力Wc及び蒸発器温度Teに基づいて図6のテーブルを参照して、吐出圧力Pdを推定する。さらに、吐出圧力推定手段11は、吐出圧力Pdを、外気温度Taと、圧縮機回転数fとを用いて外気温度Taの変動及び圧縮機械点数fの変動が吐出圧力Pdに及ぼす影響を取り除くように補正し、補正後の吐出圧力Pdcを示す信号を、圧縮機制御手段27及び膨張弁制御手段26に出力する。 The discharge pressure estimation means 11 stores in advance in the memory 11m a table showing the relationship between the power consumption Wc and the evaporator temperature Te of the compressor 1 and the discharge pressure Pd (Mpa). FIG. 6 is a table stored in the memory 11m of FIG. 1 and shows a relationship between the power consumption Wc and the evaporator temperature Te of the compressor 1 and the discharge pressure Pd. As shown in FIG. 6, the discharge pressure Pd increases as the power consumption Wc increases, and the discharge pressure Pd increases as the evaporator temperature Te increases. In FIG. 1, the discharge pressure estimation means 11 estimates the discharge pressure Pd with reference to the table of FIG. 6 based on the input power consumption Wc and the evaporator temperature Te. Further, the discharge pressure estimating means 11 uses the outside air temperature Ta and the compressor rotational speed f as the discharge pressure estimating means 11 so as to remove the influence of the fluctuation of the outside air temperature Ta and the fluctuation of the compression machine point f on the discharge pressure Pd. A signal indicating the corrected discharge pressure Pdc is output to the compressor control means 27 and the expansion valve control means 26.
 圧縮機制御手段27は、吐出圧力推定手段11によって推定された吐出圧力Pdcをあらかじめ設定された吐出圧力しきい値P0と比較する。そして、圧縮機制御手段27は、吐出圧力Pdcが吐出圧力しきい値P0より大きいとき、冷凍サイクル装置に圧力の異常上昇が発生したと判断し、圧縮機1を停止することにより冷凍サイクル装置の運転を停止する。また、圧縮機制御手段27は、吐出圧力推定手段11によって推定された吐出圧力Pdcをあらかじめ設定された吐出圧力しきい値P0以下であるとき、吐出圧力推定手段11によって推定された吐出圧力Pdcが所定の吐出圧力目標値に実質的に一致するように、圧縮機1を制御する。 The compressor control means 27 compares the discharge pressure Pdc estimated by the discharge pressure estimation means 11 with a preset discharge pressure threshold value P0. Then, when the discharge pressure Pdc is greater than the discharge pressure threshold value P0, the compressor control means 27 determines that an abnormal increase in pressure has occurred in the refrigeration cycle apparatus, and stops the compressor 1 to stop the refrigeration cycle apparatus. Stop operation. Further, when the discharge pressure Pdc estimated by the discharge pressure estimation means 11 is equal to or lower than the preset discharge pressure threshold value P0, the compressor control means 27 determines that the discharge pressure Pdc estimated by the discharge pressure estimation means 11 is The compressor 1 is controlled so as to substantially coincide with the predetermined discharge pressure target value.
 なお、メモリ21mにあらかじめ格納される関数fvhp及びメモリ11m、23m、24mにあらかじめ格納される各テーブルは、実験又はシミュレーションによりあらかじめ作成される。 The function fvhp stored in advance in the memory 21m and the tables stored in advance in the memories 11m, 23m, and 24m are created in advance by experiments or simulations.
 以上説明したように、本実施の形態に係る冷凍サイクル装置によれば、圧縮機1の電動機に流れる電流の電流値を検出するための圧縮機電流検出手段(例えば、図10の圧縮機電流検出手段12)を備える必要なしに、電源電流検出手段によって検出された電源電流値IHP及びゼロクロス信号S20のパルス幅Dnを用いて推定された電源電圧値を用いて圧縮機消費電力Wcを推定する。従って、圧力スイッチ、圧力センサー及び圧縮機電流検出手段を設けることなく、従来技術に係る冷凍サイクル装置と同様又はそれ以上の精度で吐出圧力Pdcを推定でき、かつ従来技術に比較して安価な冷凍サイクル装置を提供できる。このため、吐出圧力Pdcの異常上昇の発生を正しく検出し、冷凍サイクル装置の運転を停止して、設計圧力を超える異常圧力での運転を防止できる。 As described above, according to the refrigeration cycle apparatus according to the present embodiment, the compressor current detection means for detecting the current value of the current flowing through the electric motor of the compressor 1 (for example, the compressor current detection in FIG. 10). The compressor power consumption Wc is estimated using the power supply voltage value estimated using the power supply current value IHP detected by the power supply current detection means and the pulse width Dn of the zero cross signal S20 without the need for the means 12). Therefore, without providing a pressure switch, a pressure sensor, and a compressor current detection means, the discharge pressure Pdc can be estimated with the same or higher accuracy as the refrigeration cycle apparatus according to the prior art, and the refrigeration is less expensive than the prior art. A cycle device can be provided. For this reason, it is possible to correctly detect the occurrence of an abnormal increase in the discharge pressure Pdc, stop the operation of the refrigeration cycle apparatus, and prevent the operation at an abnormal pressure exceeding the design pressure.
 また、吐出圧力推定手段11は、吐出圧力Pdを、外気温度Tat及び圧縮機回転数fとを用いて補正するので、外気温度Tat及び圧縮機回転数fが変動しても、吐出圧力を高い精度で推定できる。 Further, since the discharge pressure estimating means 11 corrects the discharge pressure Pd using the outside air temperature Tat and the compressor speed f, the discharge pressure is increased even if the outside air temperature Tat and the compressor speed f fluctuate. Can be estimated with accuracy.
 (実施の形態2)
 図7は、本発明の実施の形態2に係る冷凍サイクル装置の構成を示すブロック図である。本実施の形態に係る冷凍サイクル装置は、実施の形態1に係る冷凍サイクル装置に比較して、制御部18に代えて制御部18A(制御手段)を備えた点が異なる。また、制御部18Aは、制御部18に比較して、電源電圧推定手段21に代えて電源電圧推定手段21Aを備え、直流電圧検出手段30をさらに備えた点が異なる。これ以外の点において、本実施の形態に係る冷凍サイクル装置は、実施の形態1に係る冷凍サイクル装置と同様に構成されて動作するので、説明を省略する。以下、実施の形態1に係る冷凍サイクル装置との間の相違点のみを説明する。
(Embodiment 2)
FIG. 7 is a block diagram showing the configuration of the refrigeration cycle apparatus according to Embodiment 2 of the present invention. The refrigeration cycle apparatus according to the present embodiment is different from the refrigeration cycle apparatus according to the first embodiment in that a control unit 18A (control means) is provided instead of the control unit 18. Further, the control unit 18A is different from the control unit 18 in that it includes a power supply voltage estimation unit 21A instead of the power supply voltage estimation unit 21 and further includes a DC voltage detection unit 30. In other respects, the refrigeration cycle apparatus according to the present embodiment is configured and operates in the same manner as the refrigeration cycle apparatus according to the first embodiment, and thus the description thereof is omitted. Only differences from the refrigeration cycle apparatus according to Embodiment 1 will be described below.
 図7において、直流電圧検出手段30は、圧縮機1の運転前に、交流電源電圧を整流及び平滑した後の直流電圧VHPDCを検出し、検出された直流電圧VHPDCに基づいて、圧縮機1の運転前の交流電源電圧の実効値VHPAC(=VHPDC/√2)を算出し、算出した交流電源電圧の実効値VHPACを示す信号を電源電圧推定手段21Aに出力する。 In FIG. 7, the DC voltage detection means 30 detects the DC voltage VHPDC after rectifying and smoothing the AC power supply voltage before the operation of the compressor 1, and based on the detected DC voltage VHPDC, The effective value VHPAC (= VHPDC / √2) of the AC power supply voltage before operation is calculated, and a signal indicating the calculated effective value VHPAC of the AC power supply voltage is output to the power supply voltage estimating means 21A.
 また、電源電圧推定手段21Aは、電源電圧推定手段21と同様に、ゼロクロス信号S20のパルス幅Dnと交流電源電圧の実効値VHPとの間の関係を示す関数fvhpを、あらかじめメモリ21mに格納する。電源電圧推定手段21Aは、圧縮機1が停止しているときに、関数fvhpを交流電源電圧の実効値VHPACを用いて補正する。図8は、図7の電源電圧推定手段21Aによる関数fvhpの補正方法を示すグラフである。図8において、電源電圧推定手段21Aは、関数fvhpを用いて、直流電圧検出手段30による直流電圧VHPDCの検出タイミングにおけるゼロクロス信号S20のパルス幅Dnに対応する交流電源電圧の実効値VHP0を算出する。そして、関数fvhpから、実効値VHP0と実効値VHPACとの間の差分値ΔVHPを減算することにより、関数fvhpを補正する。従って、補正後の関数fvhpcは次式で表される。 Similarly to the power supply voltage estimating means 21, the power supply voltage estimating means 21A stores in advance in the memory 21m a function fvhp indicating the relationship between the pulse width Dn of the zero cross signal S20 and the effective value VHP of the AC power supply voltage. . The power supply voltage estimation means 21A corrects the function fvhp using the effective value VHPAC of the AC power supply voltage when the compressor 1 is stopped. FIG. 8 is a graph showing a method for correcting the function fvhp by the power supply voltage estimating means 21A of FIG. In FIG. 8, the power supply voltage estimation means 21A calculates the effective value VHP0 of the AC power supply voltage corresponding to the pulse width Dn of the zero cross signal S20 at the detection timing of the DC voltage VHPDC by the DC voltage detection means 30 using the function fvhp. . Then, the function fvhp is corrected by subtracting the difference value ΔVHP between the effective value VHP0 and the effective value VHPAC from the function fvhp. Therefore, the corrected function fvhpc is expressed by the following equation.
fvhpc=fvhp-ΔVHP=fvhp-(VHP0-VHPAC) fvhpc = fvhp−ΔVHP = fvhp− (VHP0−VHPAC)
 電源電圧推定手段21Aは、関数fvhpに代えて補正後の関数fvhpcを用いて、入力されるゼロクロス信号S20のパルス幅Dnに基づいて、電源電圧推定手段21と同様に交流電源電圧の実効値VHPを推定し、推定した交流電源電圧の実効値VHPを示す信号を圧縮機消費電力推定手段25に出力する。なお、関数fvhpの補正は、力率改善回路等の影響を避けるため、圧縮機1の運転中は行わない。 The power supply voltage estimating means 21A uses the corrected function fvhpc instead of the function fvhp, and based on the pulse width Dn of the input zero-cross signal S20, as in the power supply voltage estimating means 21, the effective value VHP of the AC power supply voltage. And a signal indicating the estimated effective value VHP of the AC power supply voltage is output to the compressor power consumption estimation means 25. The function fvhp is not corrected during the operation of the compressor 1 in order to avoid the influence of the power factor correction circuit or the like.
 本実施の形態によれば、関数fvhpを補正して用いるので、実施の形態1に比較して圧縮機1の運転中の交流電源電圧の実効値VHPを精度良く検出できる。このため、実施の形態1に比較して、圧縮機消費電力Wcを精度よく検出でき、吐出圧力推定手段11において吐出圧力Pdの推定精度を向上できる。 According to the present embodiment, since the function fvhp is corrected and used, the effective value VHP of the AC power supply voltage during the operation of the compressor 1 can be detected with higher accuracy than in the first embodiment. Therefore, the compressor power consumption Wc can be detected with higher accuracy than in the first embodiment, and the discharge pressure estimation means 11 can improve the estimation accuracy of the discharge pressure Pd.
 なお、上記各実施の形態において、圧縮機制御手段27は、吐出圧力Pdcが吐出圧力しきい値P0より大きいとき、冷凍サイクル装置に圧力の異常上昇が発生したと判断し、圧縮機1を停止することにより冷凍サイクル装置の運転を停止したが、本発明はこれに限られない。圧縮機制御手段27は、吐出圧力Pdcが吐出圧力しきい値P0より大きいとき、圧縮機1の回転数を低下させてもよい。これにより、冷凍サイクル装置の起動直後などの過渡状態においても、冷凍サイクル装置の圧力の異常上昇発生を正しく判断し、圧縮機1の回転数を低下させて、設計圧力を超える吐出圧力の異常上昇を抑制できる。 In each of the above embodiments, when the discharge pressure Pdc is greater than the discharge pressure threshold value P0, the compressor control means 27 determines that an abnormal increase in pressure has occurred in the refrigeration cycle apparatus, and stops the compressor 1. Thus, the operation of the refrigeration cycle apparatus is stopped, but the present invention is not limited to this. The compressor control means 27 may reduce the rotation speed of the compressor 1 when the discharge pressure Pdc is larger than the discharge pressure threshold value P0. As a result, even in a transient state such as immediately after the start of the refrigeration cycle apparatus, the abnormal increase in the pressure of the refrigeration cycle apparatus is correctly determined, the rotation speed of the compressor 1 is reduced, and the discharge pressure exceeds the design pressure. Can be suppressed.
 また、本実施の形態の膨張弁制御手段26は、吐出圧力Pdcが吐出圧力しきい値P0より大きいとき、膨張弁3の開度を大きくしてもよい。これにより、冷凍サイクル装置の起動直後などの過渡状態においても、圧力の異常上昇発生を正しく判断し、膨張弁3の開度を大きくして、設計圧力を超える吐出圧力の異常上昇を抑制できる。 Further, the expansion valve control means 26 of the present embodiment may increase the opening degree of the expansion valve 3 when the discharge pressure Pdc is larger than the discharge pressure threshold value P0. Thereby, even in a transient state such as immediately after the start of the refrigeration cycle apparatus, it is possible to correctly determine the occurrence of an abnormal pressure increase, increase the opening of the expansion valve 3, and suppress the abnormal increase in the discharge pressure exceeding the design pressure.
 さらに、上記各実施の形態において、冷媒は二酸化炭素であったが、本発明はこれに限られない。好ましくは、R32、二酸化炭素、エタン、エチレン、酸化窒素及びこれらを含む混合冷媒などの、圧縮機1の駆動時に冷媒回路5の高圧側(圧縮機1から放熱器2を介して膨張弁3までの部分)において超臨界状態になる冷媒を用いる。これにより、冷凍サイクル装置の効率を向上できる。さらに好ましくは、冷媒として二酸化炭素を用いる。これにより、冷媒が漏洩しても燃焼する危険性がなく、冷凍サイクル装置を安全に運転できる。 Furthermore, in each of the above embodiments, the refrigerant is carbon dioxide, but the present invention is not limited to this. Preferably, when the compressor 1 is driven, such as R32, carbon dioxide, ethane, ethylene, nitrogen oxide and a mixed refrigerant containing them, the refrigerant circuit 5 is connected to the high pressure side (from the compressor 1 to the expansion valve 3 via the radiator 2). The refrigerant that becomes the supercritical state is used. Thereby, the efficiency of the refrigeration cycle apparatus can be improved. More preferably, carbon dioxide is used as the refrigerant. Thereby, there is no danger of burning even if the refrigerant leaks, and the refrigeration cycle apparatus can be operated safely.
 またさらに、上記各実施の形態において、圧縮機消費電力推定手段25は、冷凍サイクル消費電力WHP(=IHP×VHP)から送風機消費電力値Wf及び制御部消費電力Wpを減算することにより、圧縮機消費電力Wcを推定したが、本発明はこれに限られない。送風機消費電力値Wf及び制御部消費電力Wpが冷凍サイクル消費電力WHPに比較して十分に小さいときは、冷凍サイクル消費電力WHPを、圧縮機消費電力Wcとして吐出圧力推定手段11に出力してもよい。また、送風機消費電力値Wfが冷凍サイクル消費電力WHPに比較して十分に小さいときは、冷凍サイクル消費電力WHPから制御部消費電力Wpのみを減算することにより、圧縮機消費電力Wcを推定してもよい。さらに、制御部消費電力Wpが冷凍サイクル消費電力WHPに比較して十分に小さいときは、制御部消費電力Wpから送風機消費電力値Wfのみを減算することにより、圧縮機消費電力Wcを推定してもよい。 Furthermore, in each of the above-described embodiments, the compressor power consumption estimation means 25 subtracts the blower power consumption value Wf and the control unit power consumption Wp from the refrigeration cycle power consumption WHP (= IHP × VHP). Although the power consumption Wc is estimated, the present invention is not limited to this. When the blower power consumption value Wf and the control unit power consumption Wp are sufficiently smaller than the refrigeration cycle power consumption WHP, the refrigeration cycle power consumption WHP is output to the discharge pressure estimating means 11 as the compressor power consumption Wc. Good. Further, when the blower power consumption value Wf is sufficiently smaller than the refrigeration cycle power consumption WHP, the compressor power consumption Wc is estimated by subtracting only the control unit power consumption Wp from the refrigeration cycle power consumption WHP. Also good. Further, when the control unit power consumption Wp is sufficiently smaller than the refrigeration cycle power consumption WHP, the compressor power consumption Wc is estimated by subtracting only the blower power consumption value Wf from the control unit power consumption Wp. Also good.
 また、上記各実施の形態において、電源電流検出手段19と、送風機回転数検出手段22と、圧縮機回転数検出手段28とを制御部18又は18A内に設けたが、本発明はこれに限られない。電源電流検出手段19と、送風機回転数検出手段22と、圧縮機回転数検出手段28とを制御部18又は18Aの外部に設けてもよい。 In each of the above embodiments, the power source current detection means 19, the blower rotation speed detection means 22, and the compressor rotation speed detection means 28 are provided in the control unit 18 or 18A. However, the present invention is not limited to this. I can't. The power supply current detection means 19, the blower rotation speed detection means 22, and the compressor rotation speed detection means 28 may be provided outside the control unit 18 or 18A.
 さらに、圧縮機制御手段27は、吐出圧力推定手段11によって推定された吐出圧力Pdcをあらかじめ設定された吐出圧力しきい値P0以下であるとき、吐出圧力推定手段11によって推定された吐出圧力Pdcが所定の吐出圧力目標値に実質的に一致するように、圧縮機1を制御したが、本発明はこれに限られない。圧縮機制御手段27に代えて、膨張弁制御手段26は、吐出圧力推定手段11によって推定された吐出圧力Pdcをあらかじめ設定された吐出圧力しきい値P0以下であるとき、吐出圧力推定手段11によって推定された吐出圧力Pdcが所定の吐出圧力目標値に実質的に一致するように、膨張弁3を制御してもよい。 Further, when the discharge pressure Pdc estimated by the discharge pressure estimation means 11 is equal to or less than a preset discharge pressure threshold value P0, the compressor control means 27 determines that the discharge pressure Pdc estimated by the discharge pressure estimation means 11 is Although the compressor 1 is controlled so as to substantially coincide with the predetermined discharge pressure target value, the present invention is not limited to this. Instead of the compressor control means 27, the expansion valve control means 26 uses the discharge pressure estimation means 11 when the discharge pressure Pdc estimated by the discharge pressure estimation means 11 is equal to or less than a preset discharge pressure threshold value P0. The expansion valve 3 may be controlled so that the estimated discharge pressure Pdc substantially matches a predetermined discharge pressure target value.
 以上説明したように、本発明に係る冷凍サイクル装置は、圧力センサー又は圧力スイッチなどの圧力検出手段を備えずとも、超臨界圧力を含む圧縮機からの冷媒の吐出圧力を推定できる。本発明に係る冷凍サイクル装置は、ヒートポンプ給湯機又は温水暖房装置などの、冷媒回路の高圧側で冷媒を超臨界状態で使用する冷凍サイクル装置及びその保護装置に適用でき、エネルギー効率を向上できる。 As described above, the refrigeration cycle apparatus according to the present invention can estimate the discharge pressure of the refrigerant from the compressor including the supercritical pressure without providing pressure detection means such as a pressure sensor or a pressure switch. The refrigeration cycle apparatus according to the present invention can be applied to a refrigeration cycle apparatus that uses a refrigerant in a supercritical state on the high-pressure side of a refrigerant circuit, such as a heat pump water heater or a hot water heater, and its protection device, and can improve energy efficiency.
 1 圧縮機
 2 放熱器
 3 膨張弁
 4 蒸発器
 5 冷媒回路
 6 入水配管
 7 出湯配管
 8 圧力スイッチ
 9 スイッチ手段
 10 分岐配管
 11 吐出圧力推定手段
 12 圧縮機電流検出手段
 13 圧縮機回転速度検出手段
 14 放熱器出口温度検出手段
 15 蒸発器温度検出手段
 16 外気温度検出手段
 17 送風機
 18 制御部
 19 電源電流検出手段
 20 ゼロクロス検出手段
 21 電源電圧推定手段
 22 送風機回転数検出手段
 23 送風機消費電力推定手段
 24 制御部消費電力推定手段
 25 圧縮機消費電力推定手段
 26 膨張弁制御手段
 27 圧縮機制御手段
 28 圧縮機回転数検出手段
 29 吐出温度検出手段
 30 直流電圧検出手段
DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Expansion valve 4 Evaporator 5 Refrigerant circuit 6 Inlet piping 7 Outlet piping 8 Pressure switch 9 Switch means 10 Branch piping 11 Discharge pressure estimation means 12 Compressor current detection means 13 Compressor rotation speed detection means 14 Heat radiation Outlet temperature detection means 15 Evaporator temperature detection means 16 Outside air temperature detection means 17 Blower 18 Control unit 19 Power supply current detection means 20 Zero cross detection means 21 Power supply voltage estimation means 22 Blower rotation speed detection means 23 Blower power consumption estimation means 24 Control section Power consumption estimation means 25 Compressor power consumption estimation means 26 Expansion valve control means 27 Compressor control means 28 Compressor rotation speed detection means 29 Discharge temperature detection means 30 DC voltage detection means

Claims (16)

  1.  環状に接続された圧縮機と、放熱器と、膨張弁と、蒸発器とを備え、冷媒を循環させる冷媒回路と、
     上記冷媒回路を制御する制御手段とを備えた冷凍サイクル装置において、
     上記制御手段は、
     上記冷凍サイクル装置に供給される交流電源電圧のゼロクロス点を検出し、上記交流電源電圧がゼロボルト未満である期間を示すゼロクロス信号を発生するゼロクロス検出手段と、
     上記ゼロクロス信号に基づいて上記交流電源電圧の実効値を推定する電源電圧推定手段と、
     上記冷凍サイクル装置に供給される電源電流の電流値と、上記推定された交流電源電圧の実効値とに基づいて、上記冷凍サイクル装置の消費電力を推定して、上記圧縮機の消費電力として出力する圧縮機消費電力推定手段と、
     上記圧縮機の消費電力と、上記蒸発器を循環する冷媒の温度である蒸発器温度と、外気温度と、上記圧縮機の回転数とに基づいて、上記圧縮機から吐出される冷媒の吐出圧力を推定する吐出圧力推定手段とを備え、
     上記制御手段は、上記推定された吐出圧力に基づいて上記圧縮機又は上記膨張弁を制御することを特徴とする冷凍サイクル装置。
    A refrigerant circuit including an annularly connected compressor, a radiator, an expansion valve, and an evaporator, and circulating a refrigerant;
    In a refrigeration cycle apparatus comprising a control means for controlling the refrigerant circuit,
    The control means includes
    Zero-cross detection means for detecting a zero-cross point of the AC power supply voltage supplied to the refrigeration cycle apparatus and generating a zero-cross signal indicating a period in which the AC power supply voltage is less than zero volts;
    Power supply voltage estimating means for estimating an effective value of the AC power supply voltage based on the zero-cross signal;
    Based on the current value of the power supply current supplied to the refrigeration cycle apparatus and the estimated effective value of the AC power supply voltage, the power consumption of the refrigeration cycle apparatus is estimated and output as the power consumption of the compressor Compressor power consumption estimating means for
    Based on the power consumption of the compressor, the evaporator temperature, which is the temperature of the refrigerant circulating in the evaporator, the outside air temperature, and the rotational speed of the compressor, the discharge pressure of the refrigerant discharged from the compressor Discharge pressure estimating means for estimating
    The refrigeration cycle apparatus characterized in that the control means controls the compressor or the expansion valve based on the estimated discharge pressure.
  2.  上記電源電圧推定手段は、上記ゼロクロス信号に基づいて、上記交流電源電圧がゼロボルト未満である期間の期間長と、上記交流電源電圧の実効値との間の関係を用いて、上記交流電源電圧の実効値を推定することを特徴とする請求項1記載の冷凍サイクル装置。 The power supply voltage estimation means uses the relationship between the period length of the period in which the AC power supply voltage is less than zero volts and the effective value of the AC power supply voltage, based on the zero cross signal, to calculate the AC power supply voltage. 2. The refrigeration cycle apparatus according to claim 1, wherein an effective value is estimated.
  3.  上記制御手段は、上記圧縮機の運転前に、上記交流電源電圧を整流及び平滑した後の直流電圧を検出し、当該検出された直流電圧に基づいて、上記圧縮機の運転前の交流電源電圧の実効値を検出する直流電圧検出手段をさらに備え、
     上記電源電圧推定手段は、上記圧縮機の運転前の交流電源電圧の実効値と、上記直流電圧の検出時の上記期間長とを用いて、上記交流電源電圧がゼロボルト未満である期間の期間長と、上記交流電源電圧の実効値との間の関係を補正し、上記補正後の関係を用いて、上記交流電源電圧の実効値を推定することを特徴とする請求項2記載の冷凍サイクル装置。
    The control means detects a DC voltage after rectifying and smoothing the AC power supply voltage before operation of the compressor, and based on the detected DC voltage, the AC power supply voltage before operation of the compressor DC voltage detection means for detecting the effective value of
    The power supply voltage estimation means uses the effective value of the AC power supply voltage before the operation of the compressor and the period length when the DC voltage is detected, and the period length of the period in which the AC power supply voltage is less than zero volts. And the effective value of the AC power supply voltage is corrected, and the effective value of the AC power supply voltage is estimated using the corrected relationship. .
  4.  上記吐出圧力推定手段は、上記推定された圧縮機の消費電力及び上記蒸発器温度と、上記吐出圧力との間の関係を用いて上記吐出圧力を推定した後、上記推定した吐出圧力を上記圧縮機回転数及び上記外気温度を用いて補正することを特徴とする請求項1から3のうちのいずれか1つに記載の冷凍サイクル装置。 The discharge pressure estimating means estimates the discharge pressure using the relationship between the estimated power consumption of the compressor and the evaporator temperature and the discharge pressure, and then compresses the estimated discharge pressure to the compression The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the refrigeration cycle apparatus corrects using the machine rotation speed and the outside air temperature.
  5.  上記冷凍サイクル装置は、上記蒸発器内における上記冷媒の蒸発を促進するように設けられた送風機をさらに備え、
     上記制御手段は、上記送風機の回転数に基づいて上記送風機の消費電力を推定する送風機消費電力推定手段をさらに備え、
     上記圧縮機消費電力推定手段は、上記冷凍サイクル装置の消費電力から上記送風機の消費電力を減算し、減算後の消費電力を上記圧縮機の消費電力として出力することを特徴とする請求項1から4のうちのいずれか1つに記載の冷凍サイクル装置。
    The refrigeration cycle apparatus further includes a blower provided to promote evaporation of the refrigerant in the evaporator,
    The control means further includes blower power consumption estimation means for estimating the power consumption of the blower based on the rotation speed of the blower,
    The compressor power consumption estimation means subtracts the power consumption of the blower from the power consumption of the refrigeration cycle apparatus, and outputs the power consumption after the subtraction as the power consumption of the compressor. The refrigeration cycle apparatus according to any one of 4.
  6.  上記制御手段は、上記送風機の回転数を検出して上記送風機消費電力推定手段に出力する送風機回転数検出手段をさらに備えたことを特徴とする請求項5記載の冷凍サイクル装置。 6. The refrigeration cycle apparatus according to claim 5, wherein the control means further includes a blower rotational speed detection means for detecting the rotational speed of the blower and outputting it to the blower power consumption estimation means.
  7.  上記制御手段は、上記冷凍サイクル装置に供給される電源電流の電流値に基づいて上記制御手段の消費電力を推定する制御部消費電力推定手段をさらに備え、
     上記圧縮機消費電力推定手段は、上記冷凍サイクル装置の消費電力から上記制御手段の消費電力を減算し、減算後の消費電力を上記圧縮機の消費電力として出力することを特徴とする請求項1から6のうちのいずれか1つに記載の冷凍サイクル装置。
    The control means further includes a control unit power consumption estimation means for estimating power consumption of the control means based on a current value of a power supply current supplied to the refrigeration cycle apparatus,
    The compressor power consumption estimation means subtracts the power consumption of the control means from the power consumption of the refrigeration cycle apparatus, and outputs the power consumption after the subtraction as the power consumption of the compressor. The refrigeration cycle apparatus according to any one of 1 to 6.
  8.  上記制御手段は、上記推定された吐出圧力が所定の吐出圧力目標値に実質的に一致するように、上記圧縮機又は上記膨張弁を制御することを特徴とする請求項1から7のうちのいずれか1つに記載の冷凍サイクル装置。 The control means controls the compressor or the expansion valve so that the estimated discharge pressure substantially matches a predetermined discharge pressure target value. The refrigeration cycle apparatus according to any one of the above.
  9.  上記制御手段は、上記推定された吐出圧力があらかじめ設定された吐出圧力しきい値より大きいとき、上記圧縮機を停止し又は上記圧縮機の回転数を低下させることを特徴とする請求項1から8のうちのいずれか1つに記載の冷凍サイクル装置。 The control means stops the compressor or lowers the rotational speed of the compressor when the estimated discharge pressure is larger than a preset discharge pressure threshold value. The refrigeration cycle apparatus according to any one of 8.
  10.  上記制御手段は、上記推定された吐出圧力があらかじめ設定された吐出圧力しきい値より大きいとき、上記膨張弁の開度を大きくすることを特徴とする請求項1から8のうちのいずれか1つに記載の冷凍サイクル装置。 The control means increases the opening of the expansion valve when the estimated discharge pressure is larger than a preset discharge pressure threshold value. The refrigeration cycle apparatus described in 1.
  11.  上記制御手段は、上記圧縮機の駆動時に、上記冷媒の圧力が上記冷媒回路の高圧側において超臨界圧力になるように制御することを特徴とする請求項1から10のうちのいずれか1つに記載の冷凍サイクル装置。 11. The control device according to claim 1, wherein when the compressor is driven, the pressure of the refrigerant is controlled to be a supercritical pressure on a high pressure side of the refrigerant circuit. The refrigeration cycle apparatus described in 1.
  12.  上記冷媒は二酸化炭素であることを特徴とする請求項11記載の冷凍サイクル装置。 12. The refrigeration cycle apparatus according to claim 11, wherein the refrigerant is carbon dioxide.
  13.  上記制御手段は、上記冷凍サイクル装置に供給される電源電流の電流値を検出して上記圧縮機消費電力推定手段に出力する電源電流検出手段をさらに備えたことを特徴とする請求項1から12のうちのいずれか1つに記載の冷凍サイクル装置。 13. The control means further comprises power supply current detection means for detecting a current value of a power supply current supplied to the refrigeration cycle apparatus and outputting the current value to the compressor power consumption estimation means. The refrigeration cycle apparatus according to any one of the above.
  14.  上記制御手段は、上記圧縮機の回転数を検出して上記吐出圧力推定手段に出力する圧縮機回転数検出手段をさらに備えたことを特徴とする請求項1から13のうちのいずれか1つに記載の冷凍サイクル装置。 14. The control means according to claim 1, further comprising a compressor rotation speed detection means for detecting the rotation speed of the compressor and outputting it to the discharge pressure estimation means. The refrigeration cycle apparatus described in 1.
  15.  上記蒸発器温度を検出して上記吐出圧力推定手段に出力する蒸発器温度検出手段をさらに備えたことを特徴とする請求項1から14のうちのいずれか1つに記載の冷凍サイクル装置。 15. The refrigeration cycle apparatus according to claim 1, further comprising an evaporator temperature detecting means for detecting the evaporator temperature and outputting the detected temperature to the discharge pressure estimating means.
  16.  上記外気温度を検出して上記吐出圧力推定手段に出力する外気温度検出手段をさらに備えたことを特徴とする請求項1から15のうちのいずれか1つに記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 15, further comprising an outside air temperature detecting means for detecting the outside air temperature and outputting the detected temperature to the discharge pressure estimating means.
PCT/JP2012/008056 2011-12-26 2012-12-17 Refrigeration cycle device WO2013099147A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-283192 2011-12-26
JP2011283192A JP2013133966A (en) 2011-12-26 2011-12-26 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
WO2013099147A1 true WO2013099147A1 (en) 2013-07-04

Family

ID=48696694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008056 WO2013099147A1 (en) 2011-12-26 2012-12-17 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP2013133966A (en)
WO (1) WO2013099147A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150219377A1 (en) * 2014-02-05 2015-08-06 Lennox Industries Inc. System for controlling operation of an hvac system
WO2015140884A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle apparatus
JP2015215112A (en) * 2014-05-09 2015-12-03 パナソニックIpマネジメント株式会社 Refrigeration cycle device
CN105509251A (en) * 2015-12-31 2016-04-20 广东美的制冷设备有限公司 Method and device for detecting oil choking of air conditioning system and air conditioner

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218909A (en) * 2014-05-14 2015-12-07 パナソニックIpマネジメント株式会社 Refrigeration cycle device and hot water generation device including the same
ES2726722T3 (en) * 2015-03-09 2019-10-08 Daikin Ind Ltd Air conditioning control device
CN112013447B (en) * 2019-05-30 2022-04-22 青岛海尔新能源电器有限公司 Control method for air source heat pump heating unit
CN112984881B (en) * 2021-03-05 2023-03-24 四川长虹空调有限公司 Liquid return judgment method and system for compressor of refrigeration system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10164829A (en) * 1996-11-27 1998-06-19 Yutaka Denki Seisakusho:Kk Power conversion device
JP2004282948A (en) * 2003-03-18 2004-10-07 Mitsubishi Electric Corp Synchronous input system for synchronous motor
JP2010002090A (en) * 2008-06-19 2010-01-07 Panasonic Corp Refrigerating cycle device
JP2012057908A (en) * 2010-09-13 2012-03-22 Panasonic Corp Refrigerating cycle device
JP2012067930A (en) * 2010-09-21 2012-04-05 Panasonic Corp Refrigerating cycle apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10164829A (en) * 1996-11-27 1998-06-19 Yutaka Denki Seisakusho:Kk Power conversion device
JP2004282948A (en) * 2003-03-18 2004-10-07 Mitsubishi Electric Corp Synchronous input system for synchronous motor
JP2010002090A (en) * 2008-06-19 2010-01-07 Panasonic Corp Refrigerating cycle device
JP2012057908A (en) * 2010-09-13 2012-03-22 Panasonic Corp Refrigerating cycle device
JP2012067930A (en) * 2010-09-21 2012-04-05 Panasonic Corp Refrigerating cycle apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150219377A1 (en) * 2014-02-05 2015-08-06 Lennox Industries Inc. System for controlling operation of an hvac system
US9982930B2 (en) * 2014-02-05 2018-05-29 Lennox Industries Inc. System for controlling operation of an HVAC system
WO2015140884A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle apparatus
JPWO2015140884A1 (en) * 2014-03-17 2017-04-06 三菱電機株式会社 Refrigeration cycle equipment
EP3121534A4 (en) * 2014-03-17 2017-12-13 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US10101069B2 (en) 2014-03-17 2018-10-16 Mitsubishi Electric Corporation Refrigeration cycle apparatus
KR101935116B1 (en) * 2014-03-17 2019-01-03 미쓰비시덴키 가부시키가이샤 Refrigeration cycle apparatus
JP2015215112A (en) * 2014-05-09 2015-12-03 パナソニックIpマネジメント株式会社 Refrigeration cycle device
CN105509251A (en) * 2015-12-31 2016-04-20 广东美的制冷设备有限公司 Method and device for detecting oil choking of air conditioning system and air conditioner
CN105509251B (en) * 2015-12-31 2018-11-20 广东美的制冷设备有限公司 Air-conditioning system oil stifled detection method and detection device, air conditioner

Also Published As

Publication number Publication date
JP2013133966A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
WO2013099147A1 (en) Refrigeration cycle device
US8234879B2 (en) Method for controlling motor of air conditioner and motor controller of the same
US10619903B2 (en) Discharge pressure calculation from torque in an HVAC system
KR20090039484A (en) Motor controller of air conditioner and method of the motor controller
US20090102412A1 (en) Motor controller and method of controlling the motor
KR101550751B1 (en) Motor control device, motor drive device using the same, compressor, refrigeration device, air conditioner, and motor control method
JP5959500B2 (en) Air conditioner and control method of air conditioner
JP3811153B2 (en) Refrigeration cycle apparatus and control method thereof
JP2009222314A (en) Refrigerating cycle device
JP4548298B2 (en) Heat pump type water heater
JP2011144966A (en) Compressor drive control device for air conditioner
JPWO2019176004A1 (en) Air conditioner
JP5258627B2 (en) Air conditioner
JP2011179762A (en) Heat pump hot water generator
JP5573526B2 (en) Refrigeration cycle equipment
JP2013120041A (en) Refrigerating cycle apparatus
JP4926145B2 (en) AC / DC converter, compressor drive, air conditioner, and abnormality detector
WO2014203522A1 (en) Refrigerating device for containers
JP2013083361A (en) Refrigeration cycle device
JP2012067930A (en) Refrigerating cycle apparatus
EP3348938B1 (en) Refrigeration cycle system
JP6319997B2 (en) Air conditioner control device
JP6208633B2 (en) Heat pump water heater
JP2012067706A (en) Drive control device
JP2011141046A (en) Heat pump device and heat pump water heater with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862219

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12862219

Country of ref document: EP

Kind code of ref document: A1