JP2010203673A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2010203673A
JP2010203673A JP2009049018A JP2009049018A JP2010203673A JP 2010203673 A JP2010203673 A JP 2010203673A JP 2009049018 A JP2009049018 A JP 2009049018A JP 2009049018 A JP2009049018 A JP 2009049018A JP 2010203673 A JP2010203673 A JP 2010203673A
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
outdoor
opening
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009049018A
Other languages
Japanese (ja)
Other versions
JP5310101B2 (en
Inventor
Meiji Kojima
明治 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009049018A priority Critical patent/JP5310101B2/en
Publication of JP2010203673A publication Critical patent/JP2010203673A/en
Application granted granted Critical
Publication of JP5310101B2 publication Critical patent/JP5310101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To smoothly continue defrosting operation and shorten time for the defrosting operation. <P>SOLUTION: This air conditioner includes a refrigerant circuit (10) having two outdoor heat exchangers (17) interconnected in parallel. During the defrosting operation, in the refrigerant circuit (10), a refrigerant is circulated in the direction reverse to that during heating operation so as to defrost the two outdoor heat exchangers (17) simultaneously. During the defrosting operation, when defrosting of either one of the outdoor heat exchangers (17) is completed, an opening of an outdoor expansion valve (18) corresponding to the outdoor heat exchanger (17) is reduced. Then, when a suction superheat degree of a compressor (11) exceeds a predetermined value, shortage of refrigerant circulation amount in the refrigerant circuit (10) is determined, and the opening of the outdoor expansion valve (18) with the reduced opening is increased. After that, when the suction superheat degree of the compressor (11) is lowered to less than the predetermined value, it is determined that the refrigerant circulation amount is recovered, and the opening of the outdoor expansion valve (18) with the increased opening is reduced again. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数の室外ユニットを備え、それら室外ユニットに対して逆サイクルデフロストを行う空気調和装置に関するものである。     The present invention relates to an air conditioner that includes a plurality of outdoor units and performs reverse cycle defrost on the outdoor units.

従来より、いわゆる逆サイクルデフロスト運転を実行可能な冷凍装置が知られている。例えば、特許文献1には次のような冷凍装置が開示されている。この冷凍装置は、1つの室外ユニットと、互いに並列に接続された2つの冷凍ショーケースとを備えている。室外ユニットには圧縮機と室外熱交換器(熱源側熱交換器)が設けられ、各冷凍ショーケースには庫内を冷却するための冷却熱交換器(利用側熱交換器)が設けられている。     Conventionally, a refrigeration apparatus capable of performing a so-called reverse cycle defrost operation is known. For example, Patent Document 1 discloses the following refrigeration apparatus. This refrigeration apparatus includes one outdoor unit and two refrigeration showcases connected in parallel to each other. The outdoor unit is provided with a compressor and an outdoor heat exchanger (heat source side heat exchanger), and each refrigeration showcase is provided with a cooling heat exchanger (use side heat exchanger) for cooling the interior. Yes.

この冷凍装置では、庫内を冷却する冷却運転と、冷却熱交換器の除霜を行うデフロスト運転とが実行可能である。冷却運転では、圧縮機の吐出冷媒が室外熱交換器で凝縮し、凝縮後の冷媒が冷却熱交換器で蒸発して圧縮機へ戻る。デフロスト運転では、冷却運転とは逆サイクルで冷媒が循環し、いわゆる逆サイクルデフロストが行われる。具体的には、先ず、圧縮機の吐出冷媒が各冷却熱交換器へ分流し、各冷却熱交換器の除霜が行われる。各冷却熱交換器で除霜に利用された冷媒は、合流した後、室外熱交換器で蒸発して圧縮機へ戻る。このように、上記冷凍装置のデフロスト運転では、2つの冷却熱交換器に対し同時に除霜が行われる。そして、何れかの冷却熱交換器の除霜が完了すると、その完了した冷却熱交換器の上流側配管に設けられた電磁弁が閉じられる。これにより、除霜が完了した冷却熱交換器へは冷媒が供給されないため、その冷却熱交換器における液冷媒の寝込みが抑制される。一方、除霜が完了した冷却熱交換器への冷媒の流入が遮断されることで、未だ除霜が完了していない冷却熱交換器への冷媒の供給量は増加するため、この冷却熱交換器の除霜に要する時間が短縮される。
特開2008−164205号公報
In this refrigeration apparatus, a cooling operation for cooling the interior of the refrigerator and a defrost operation for defrosting the cooling heat exchanger can be performed. In the cooling operation, the refrigerant discharged from the compressor is condensed by the outdoor heat exchanger, and the condensed refrigerant is evaporated by the cooling heat exchanger and returned to the compressor. In the defrost operation, the refrigerant circulates in a reverse cycle to the cooling operation, and so-called reverse cycle defrost is performed. Specifically, first, refrigerant discharged from the compressor is diverted to each cooling heat exchanger, and each cooling heat exchanger is defrosted. The refrigerants used for defrosting in each cooling heat exchanger merge and then evaporate in the outdoor heat exchanger and return to the compressor. As described above, in the defrosting operation of the refrigeration apparatus, defrosting is simultaneously performed on the two cooling heat exchangers. And when the defrosting of any cooling heat exchanger is completed, the solenoid valve provided in the upstream piping of the completed cooling heat exchanger will be closed. Thereby, since a refrigerant | coolant is not supplied to the cooling heat exchanger which completed defrosting, the stagnation of the liquid refrigerant in the cooling heat exchanger is suppressed. On the other hand, since the flow of refrigerant into the cooling heat exchanger that has been defrosted is blocked, the amount of refrigerant supplied to the cooling heat exchanger that has not yet been defrosted increases. The time required for defrosting the vessel is shortened.
JP 2008-164205 A

ところで、上記特許文献1のデフロスト運転では、除霜が完了した冷却熱交換器の上流側の電磁弁を閉じるため次のような問題があった。電磁弁が閉じられると、除霜が完了した冷却熱交換器への冷媒の流入が急に遮断される。そのため、冷凍サイクルの高圧(即ち、圧縮機の吐出圧力)が瞬時に上昇して高圧異常となる虞があり、圧縮機が強制的に停止されてしまう。その結果、デフロスト運転を円滑に継続して行うことができず、却ってデフロスト運転の時間が長くなってしまうという問題があった。     By the way, in the defrost operation of the said patent document 1, since the solenoid valve of the upstream of the cooling heat exchanger which completed the defrost was closed, there existed the following problems. When the solenoid valve is closed, the inflow of refrigerant to the cooling heat exchanger that has been defrosted is suddenly cut off. Therefore, the high pressure of the refrigeration cycle (that is, the discharge pressure of the compressor) may increase instantaneously, resulting in a high pressure abnormality, and the compressor is forcibly stopped. As a result, there has been a problem that the defrost operation cannot be performed smoothly and the defrost operation takes longer.

本発明は、かかる点に鑑みてなされたものであり、その目的は、互いに並列接続された熱交換器に対し同時に除霜する逆サイクルデフロスト運転が実行可能な空気調和装置において、熱交換器内の冷媒の寝込みを解消しながら、デフロスト運転に要する時間を短縮することにある。     The present invention has been made in view of the above points, and an object of the present invention is to provide an air conditioner capable of performing a reverse cycle defrost operation for simultaneously defrosting heat exchangers connected in parallel with each other. This is to reduce the time required for the defrost operation while eliminating the stagnation of the refrigerant.

第1の発明は、圧縮機(11)と、室内熱交換器(13)と、互いに並列に設けられた複数の室外熱交換器(17)と、該各室外熱交換器(17)毎に設けられる該室外熱交換器(17)のための室外膨張弁(18)とを有し冷凍サイクルを行う冷媒回路(10)を備え、該冷媒回路(10)を冷媒が暖房サイクルで循環する暖房運転と、上記冷媒回路(10)を冷媒が上記暖房運転時と逆方向に循環して上記複数の室外熱交換器(17)を同時に除霜するデフロスト運転とが実行可能に構成された空気調和装置を前提としている。そして、本発明は、上記デフロスト運転中に、上記各室外熱交換器(17)について除霜の完了を個別に検出するように構成される一方、該除霜の完了を検出すると該検出された上記室外熱交換器(17)に対応する上記室外膨張弁(18)の開度を絞る動作を行い、該動作を行った後、上記冷媒回路(10)の冷媒循環量が所定値以下まで減少すると上記開度を絞った室外膨張弁(18)の開度を増大させる動作を行うように構成された制御手段(40)を備えているものである。     The first invention includes a compressor (11), an indoor heat exchanger (13), a plurality of outdoor heat exchangers (17) provided in parallel to each other, and each of the outdoor heat exchangers (17). A refrigerant circuit (10) having an outdoor expansion valve (18) for the outdoor heat exchanger (17) provided and performing a refrigeration cycle, wherein the refrigerant circulates through the refrigerant circuit (10) in a heating cycle An air conditioner configured to be capable of performing an operation and a defrost operation in which the refrigerant circulates in the refrigerant circuit (10) in the opposite direction to that in the heating operation and simultaneously defrosts the plurality of outdoor heat exchangers (17). The equipment is assumed. And while this invention is comprised so that the completion of defrosting may be detected separately about each said outdoor heat exchanger (17) during the said defrost operation, it will be detected if the completion of this defrost is detected After the operation of reducing the opening of the outdoor expansion valve (18) corresponding to the outdoor heat exchanger (17) is performed, the refrigerant circulation amount of the refrigerant circuit (10) is reduced to a predetermined value or less. Then, the control means (40) comprised so that the operation | movement which increases the opening degree of the outdoor expansion valve (18) which restrict | squeezed the said opening degree is provided.

上記第1の発明では、暖房運転の場合、冷媒回路(10)において、圧縮機(11)の吐出冷媒が室内熱交換器(13)で凝縮し室外膨張弁(18)で減圧された後、各室外熱交換器(17)へ分流して蒸発する。一方、デフロスト運転では、圧縮機(11)の吐出冷媒が各室外熱交換器(17)へ分流する。各室外熱交換器(17)では、冷媒の熱により霜が融けて除霜される。各室外熱交換器(17)で除霜に利用された冷媒は、室内熱交換器(13)で蒸発した後、圧縮機(11)へ戻る。     In the first invention, in the heating operation, in the refrigerant circuit (10), the refrigerant discharged from the compressor (11) is condensed in the indoor heat exchanger (13) and depressurized in the outdoor expansion valve (18). It diverts to each outdoor heat exchanger (17) and evaporates. On the other hand, in the defrost operation, the refrigerant discharged from the compressor (11) is diverted to each outdoor heat exchanger (17). In each outdoor heat exchanger (17), the frost is melted and defrosted by the heat of the refrigerant. The refrigerant used for defrosting in each outdoor heat exchanger (17) evaporates in the indoor heat exchanger (13) and then returns to the compressor (11).

そして、デフロスト運転中に、何れかの室外熱交換器(17)の除霜が完了すると、その室外熱交換器(17)に対応する室外膨張弁(18)の開度が絞られる。そうすると、その室外熱交換器(17)への冷媒供給量が減少し、それに伴い、未だ除霜が完了していない室外熱交換器(17)への冷媒供給量が増大する。そのため、未だ除霜が完了していない室外熱交換器(17)における除霜能力が高くなる。     When the defrosting of any outdoor heat exchanger (17) is completed during the defrost operation, the opening degree of the outdoor expansion valve (18) corresponding to the outdoor heat exchanger (17) is reduced. Then, the refrigerant supply amount to the outdoor heat exchanger (17) decreases, and accordingly, the refrigerant supply amount to the outdoor heat exchanger (17) that has not yet been defrosted increases. Therefore, the defrosting capability in the outdoor heat exchanger (17) that has not yet been defrosted is increased.

また、本発明は、室外膨張弁(18)を閉じるのではなく絞るだけなので、除霜が完了した室外熱交換器(17)における冷媒の流れは遮断されない。つまり、室外熱交換器(17)において冷媒循環量は減少するが、冷媒流れが遮断されることはない。そのため、冷媒回路(10)の高圧(即ち、冷凍サイクルの高圧、圧縮機(11)の吐出圧力)はそれほど高くは上昇しない。しかも、デフロスト運転時の室外膨張弁(18)は室外熱交換器(17)の流出側に位置するため、その室外膨張弁(18)を絞っても冷媒回路(10)の高圧はそれほど急激には上昇しない。つまり、室外膨張弁(18)を絞っても室外熱交換器(17)への冷媒の流入は遮断されないため、圧縮機(11)の吐出冷媒が幾分か室外熱交換器(17)へ流入し続ける。したがって、冷媒回路(10)の高圧はそれほど急上昇はしない。     Further, according to the present invention, the flow of the refrigerant in the outdoor heat exchanger (17) after the defrosting is not interrupted because the outdoor expansion valve (18) is only throttled rather than closed. That is, in the outdoor heat exchanger (17), the refrigerant circulation amount decreases, but the refrigerant flow is not interrupted. Therefore, the high pressure of the refrigerant circuit (10) (that is, the high pressure of the refrigeration cycle and the discharge pressure of the compressor (11)) does not rise so high. Moreover, since the outdoor expansion valve (18) during the defrost operation is located on the outflow side of the outdoor heat exchanger (17), the high pressure in the refrigerant circuit (10) is so drastically reduced even if the outdoor expansion valve (18) is throttled. Does not rise. That is, even if the outdoor expansion valve (18) is throttled, the refrigerant flow into the outdoor heat exchanger (17) is not blocked, so some of the refrigerant discharged from the compressor (11) flows into the outdoor heat exchanger (17). Keep doing. Therefore, the high pressure of the refrigerant circuit (10) does not rise so much.

また、室外膨張弁(18)の開度が絞られると、室外熱交換器(17)から流出してゆく液冷媒の量が減少する。そのため、室外熱交換器(17)では、ガス冷媒の滞留時間が長くなり、ガス冷媒が次第に凝縮して液冷媒となる。この凝縮によって冷媒の体積が減少した分、新たに圧縮機(11)の吐出冷媒が室外熱交換器(17)に流入する。その流入したガス冷媒は凝縮して液冷媒となる。このように、除霜が完了して室外膨張弁(18)が絞られた室外熱交換器(17)では、流出してゆく液冷媒の量よりも凝縮して液冷媒となる量が多くなる。そうすると、室外熱交換器(17)では、時間の経過と共に液冷媒が溜まってゆき、いわゆる冷媒(液冷媒)の寝込みが生じる虞がある。この冷媒の寝込みが生じると、冷媒回路(10)における冷媒循環量が減少して不足状態となる。その結果、未だ除霜が完了していない室外熱交換器(17)への冷媒供給量が減少し高い除霜能力を稼げない。ところが、本発明では、冷媒回路(10)の冷媒循環量が所定値以下まで減少すると、除霜が完了した室外熱交換器(17)に対応する室外膨張弁(18)の開度が増大されるため、その室外熱交換器(17)での冷媒の寝込みが解消され、冷媒回路(10)の冷媒循環量が回復する。     Moreover, when the opening degree of the outdoor expansion valve (18) is reduced, the amount of liquid refrigerant flowing out of the outdoor heat exchanger (17) decreases. Therefore, in the outdoor heat exchanger (17), the residence time of the gas refrigerant becomes long, and the gas refrigerant gradually condenses into a liquid refrigerant. The refrigerant discharged from the compressor (11) newly flows into the outdoor heat exchanger (17) as much as the volume of the refrigerant is reduced by this condensation. The inflowing gas refrigerant is condensed to become a liquid refrigerant. Thus, in the outdoor heat exchanger (17) in which the defrosting is completed and the outdoor expansion valve (18) is throttled, the amount of liquid refrigerant that condenses and becomes larger than the amount of liquid refrigerant that flows out increases. . Then, in the outdoor heat exchanger (17), liquid refrigerant accumulates over time, and so-called refrigerant (liquid refrigerant) may stagnate. When the stagnation of the refrigerant occurs, the refrigerant circulation amount in the refrigerant circuit (10) is reduced to be in an insufficient state. As a result, the amount of refrigerant supplied to the outdoor heat exchanger (17) that has not yet been defrosted decreases, and high defrosting capacity cannot be achieved. However, in the present invention, when the refrigerant circulation amount in the refrigerant circuit (10) decreases to a predetermined value or less, the opening degree of the outdoor expansion valve (18) corresponding to the outdoor heat exchanger (17) that has completed defrosting is increased. Therefore, the stagnation of the refrigerant in the outdoor heat exchanger (17) is eliminated, and the refrigerant circulation amount in the refrigerant circuit (10) is recovered.

第2の発明は、上記第1の発明において、上記制御手段(40)は、上記デフロスト運転中に、上記室外膨張弁(18)の開度を絞る動作を行った後、上記圧縮機(11)の吸入冷媒の過熱度または吐出冷媒の過熱度が所定値を超えると、上記冷媒回路(10)の冷媒循環量が所定値以下まで減少したと判断して上記室外膨張弁(18)の開度を増大させる動作を行うように構成されているものである。     In a second aspect based on the first aspect, the control means (40) performs an operation of reducing the opening of the outdoor expansion valve (18) during the defrost operation, and then the compressor (11 When the superheat degree of the suction refrigerant or the superheat degree of the discharged refrigerant exceeds a predetermined value, it is determined that the refrigerant circulation amount in the refrigerant circuit (10) has decreased to a predetermined value or less, and the outdoor expansion valve (18) is opened. It is configured to perform an operation of increasing the degree.

上記第2の発明では、除霜が完了した室外熱交換器(17)に対応する室外膨張弁(18)を絞った後、圧縮機(11)の吸入過熱度または吐出過熱度が所定値を超えると、冷媒回路(10)の冷媒循環量が所定値以下まで減少したと判断される。デフロスト運転時に、冷媒回路(10)の冷媒循環量が減少(不足)してゆくに従って、室内熱交換器(13)の冷媒に対する加熱量が見かけ上増大し、圧縮機(11)の吸入過熱度が増大する。この吸入過熱度の増大に伴い、圧縮機(11)の吐出過熱度も増大する。この吸入過熱度または吐出過熱度の増大量をもって冷媒循環量の減少具合が認識される。     In the second invention, after the outdoor expansion valve (18) corresponding to the outdoor heat exchanger (17) having been defrosted is throttled, the suction superheat degree or the discharge superheat degree of the compressor (11) has a predetermined value. If it exceeds, it is determined that the refrigerant circulation amount in the refrigerant circuit (10) has decreased to a predetermined value or less. During the defrost operation, as the refrigerant circulation rate in the refrigerant circuit (10) decreases (insufficient), the heating amount of the refrigerant in the indoor heat exchanger (13) apparently increases, and the intake superheat degree of the compressor (11) Will increase. As the suction superheat increases, the discharge superheat of the compressor (11) also increases. The decrease degree of the refrigerant circulation amount is recognized with the increase amount of the suction superheat degree or the discharge superheat degree.

第3の発明は、上記第1の発明において、上記制御手段(40)は、上記デフロスト運転中に、上記室外膨張弁(18)の開度を絞る動作を行った後、上記圧縮機(11)の吸入冷媒の圧力が所定値未満となると、上記冷媒回路(10)の冷媒循環量が所定値以下まで減少したと判断して上記室外膨張弁(18)の開度を増大させる動作を行うように構成されているものである。     In a third aspect based on the first aspect, the control means (40) performs an operation of reducing the opening of the outdoor expansion valve (18) during the defrost operation, and then the compressor (11 ), The refrigerant circulation amount in the refrigerant circuit (10) is determined to have decreased to a predetermined value or less, and the opening degree of the outdoor expansion valve (18) is increased. It is comprised as follows.

上記第3の発明では、除霜が完了した室外熱交換器(17)に対応する室外膨張弁(18)を絞った後、圧縮機(11)の吸入圧力(吸入冷媒の圧力)が所定値未満となると、冷媒回路(10)の冷媒循環量が所定値以下まで減少したと判断される。デフロスト運転時に、冷媒回路(10)の冷媒循環量が減少(不足)してゆくに従って、圧縮機(11)の吸入圧力が低下する。この吸入圧力の低下量をもって冷媒循環量の減少具合が認識される。     In the third aspect of the invention, after the outdoor expansion valve (18) corresponding to the outdoor heat exchanger (17) having been defrosted is throttled, the suction pressure (pressure of the suction refrigerant) of the compressor (11) is a predetermined value. If it is less than that, it is determined that the refrigerant circulation amount of the refrigerant circuit (10) has decreased to a predetermined value or less. During the defrost operation, the suction pressure of the compressor (11) decreases as the refrigerant circulation amount in the refrigerant circuit (10) decreases (is insufficient). The reduction degree of the refrigerant circulation amount is recognized by the reduction amount of the suction pressure.

第4の発明は、上記第1の発明において、上記冷媒回路(10)は、上記室内熱交換器(13)のための室内膨張弁(14)を有している。そして、上記制御手段(40)は、上記デフロスト運転中に、上記圧縮機(11)の吸入冷媒の過熱度または吸入冷媒の圧力が所定値となるように上記室内膨張弁(14)の開度を制御する一方、上記デフロスト運転中に、上記室外膨張弁(18)の開度を絞る動作を行った後、上記室内膨張弁(14)の開度が所定値を超えると、上記冷媒回路(10)の冷媒循環量が所定値以下まで減少したと判断して上記室外膨張弁(18)の開度を増大させる動作を行うように構成されているものである。     In a fourth aspect based on the first aspect, the refrigerant circuit (10) has an indoor expansion valve (14) for the indoor heat exchanger (13). Then, the control means (40) opens the opening of the indoor expansion valve (14) so that the degree of superheat of the suction refrigerant of the compressor (11) or the pressure of the suction refrigerant becomes a predetermined value during the defrost operation. On the other hand, during the defrost operation, after the operation of reducing the opening of the outdoor expansion valve (18) is performed, if the opening of the indoor expansion valve (14) exceeds a predetermined value, the refrigerant circuit ( It is determined that the refrigerant circulation amount in 10) has been reduced to a predetermined value or less and an operation for increasing the opening of the outdoor expansion valve (18) is performed.

上記第4の発明では、除霜が完了した室外熱交換器(17)に対応する室外膨張弁(18)を絞った後、室内膨張弁(14)の開度が所定値を超えると、冷媒回路(10)の冷媒循環量が所定値以下まで減少したと判断される。冷媒回路(10)の冷媒循環量が減少して、圧縮機(11)の吸入過熱度が増大すると、その過熱度を所定値まで低下させるため室内膨張弁(14)の開度が増大される。また、冷媒回路(10)の冷媒循環量が減少して、圧縮機(11)の吸入圧力が低下すると、その吸入圧力を所定値まで増大させるため、この場合も室内膨張弁(14)の開度が増大される。この室内膨張弁(14)の開度の増大量をもって冷媒循環量の減少具合が認識される。     In the fourth aspect of the invention, after the outdoor expansion valve (18) corresponding to the outdoor heat exchanger (17) that has been defrosted is throttled, when the opening of the indoor expansion valve (14) exceeds a predetermined value, the refrigerant It is determined that the refrigerant circulation amount in the circuit (10) has decreased to a predetermined value or less. When the refrigerant circulation amount in the refrigerant circuit (10) decreases and the intake superheat degree of the compressor (11) increases, the degree of opening of the indoor expansion valve (14) is increased to reduce the superheat degree to a predetermined value. . Further, when the refrigerant circulation amount in the refrigerant circuit (10) decreases and the suction pressure of the compressor (11) decreases, the suction pressure is increased to a predetermined value. In this case as well, the indoor expansion valve (14) is opened. The degree is increased. The decrease degree of the refrigerant circulation amount is recognized by the increase amount of the opening degree of the indoor expansion valve (14).

第5の発明は、上記第1乃至第4の何れか1の発明において、上記制御手段(40)は、上記デフロスト運転中に、上記室外膨張弁(18)の開度を増大させる動作を行った後、上記冷媒回路(10)の冷媒循環量が所定値以上まで増大すると上記開度を増大させた室外膨張弁(18)の開度を再び絞る動作を行うように構成されているものである。     In a fifth aspect based on any one of the first to fourth aspects, the control means (40) performs an operation of increasing the opening of the outdoor expansion valve (18) during the defrost operation. After that, when the refrigerant circulation amount of the refrigerant circuit (10) increases to a predetermined value or more, the operation of reducing the opening degree of the outdoor expansion valve (18) that has increased the opening degree is performed again. is there.

上記第5の発明では、室外膨張弁(18)の開度を増大させることによって冷媒回路(10)の冷媒循環量が回復すると、その室外膨張弁(18)の開度が再び絞られる。これにより、未だ除霜が完了していない室外熱交換器(17)への冷媒供給量が再び増大するため、その室外熱交換器(17)に対する除霜能力が高くなる。     In the fifth aspect of the invention, when the refrigerant circulation amount of the refrigerant circuit (10) is recovered by increasing the opening degree of the outdoor expansion valve (18), the opening degree of the outdoor expansion valve (18) is reduced again. Thereby, since the refrigerant | coolant supply amount to the outdoor heat exchanger (17) which has not completed defrosting increases again, the defrosting capability with respect to the outdoor heat exchanger (17) becomes high.

第6の発明は、上記第5の発明において、上記制御手段(40)は、上記デフロスト運転中に、上記室外膨張弁(18)の開度を増大させる動作を行った後、上記圧縮機(11)の吸入冷媒の過熱度または吐出冷媒の過熱度が所定値未満となると、上記冷媒回路(10)の冷媒循環量が所定値以上まで増大したと判断して上記室外膨張弁(18)の開度を再び絞る動作を行うように構成されているものである。     In a sixth aspect based on the fifth aspect, the control means (40) performs an operation of increasing the opening of the outdoor expansion valve (18) during the defrost operation, and then the compressor ( 11) When the superheat degree of the intake refrigerant or the superheat degree of the discharged refrigerant becomes less than a predetermined value, it is determined that the refrigerant circulation amount of the refrigerant circuit (10) has increased to a predetermined value or more, and the outdoor expansion valve (18) It is configured to perform an operation of reducing the opening again.

上記第6の発明では、除霜が完了した室外熱交換器(17)に対応する室外膨張弁(18)の開度を増大させた後、圧縮機(11)の吸入過熱度または吐出過熱度が所定値未満となると、冷媒回路(10)の冷媒循環量が回復した(所定値以上まで増大した)と判断される。デフロスト運転時に、冷媒回路(10)の冷媒循環量が増大(回復)してゆくに従って、室内熱交換器(13)の冷媒に対する加熱量が見かけ上減少し、圧縮機(11)の吸入過熱度が低下する。この吸入過熱度の低下に伴い、圧縮機(11)の吐出過熱度も低下する。この吸入過熱度または吐出過熱度の低下量をもって冷媒循環量の回復具合が認識される。     In the sixth aspect of the invention, after increasing the opening degree of the outdoor expansion valve (18) corresponding to the outdoor heat exchanger (17) that has been defrosted, the suction superheat degree or the discharge superheat degree of the compressor (11) Is less than a predetermined value, it is determined that the refrigerant circulation amount in the refrigerant circuit (10) has recovered (increased to a predetermined value or more). During the defrost operation, as the refrigerant circulation rate in the refrigerant circuit (10) increases (recovers), the heating amount of the refrigerant in the indoor heat exchanger (13) apparently decreases, and the degree of suction superheat of the compressor (11) Decreases. As the suction superheat level decreases, the discharge superheat level of the compressor (11) also decreases. The degree of recovery of the refrigerant circulation amount is recognized based on the amount of decrease in the suction superheat degree or the discharge superheat degree.

第7の発明は、上記第5の発明において、上記制御手段(40)は、上記デフロスト運転中に、上記室外膨張弁(18)の開度を増大させる動作を行った後、上記圧縮機(11)の吸入冷媒の圧力が所定値を超えると、上記冷媒回路(10)の冷媒循環量が所定値以上まで増大したと判断して上記室外膨張弁(18)の開度を再び絞る動作を行うように構成されているものである。     In a seventh aspect based on the fifth aspect, the control means (40) performs an operation of increasing the opening of the outdoor expansion valve (18) during the defrost operation, and then the compressor ( 11) When the suction refrigerant pressure exceeds a predetermined value, it is determined that the refrigerant circulation amount in the refrigerant circuit (10) has increased to a predetermined value or more, and the opening of the outdoor expansion valve (18) is throttled again. Is configured to do.

上記第7の発明では、除霜が完了した室外熱交換器(17)に対応する室外膨張弁(18)の開度を増大させた後、圧縮機(11)の吸入圧力が所定値を超えると、冷媒回路(10)の冷媒循環量が回復した(所定値以上まで増大した)と判断される。デフロスト運転時に、冷媒回路(10)の冷媒循環量が増大(回復)してゆくに従って、圧縮機(11)の吸入圧力が上昇する。この吸入圧力の上昇量をもって冷媒循環量の回復具合が認識される。     In the seventh aspect of the invention, after increasing the opening of the outdoor expansion valve (18) corresponding to the outdoor heat exchanger (17) that has been defrosted, the suction pressure of the compressor (11) exceeds a predetermined value. Then, it is determined that the refrigerant circulation amount in the refrigerant circuit (10) has recovered (increased to a predetermined value or more). During the defrost operation, the suction pressure of the compressor (11) increases as the refrigerant circulation amount in the refrigerant circuit (10) increases (recovers). The degree of recovery of the refrigerant circulation amount is recognized from the increase in the suction pressure.

第8の発明は、上記第5の発明において、上記冷媒回路(10)は、上記室内熱交換器(13)のための室内膨張弁(14)を有している。そして、上記制御手段(40)は、上記デフロスト運転中に、上記圧縮機(11)の吸入冷媒の過熱度または吸入冷媒の圧力が所定値となるように上記室内膨張弁(14)の開度を制御する一方、上記デフロスト運転中に、上記室外膨張弁(18)の開度を増大させる動作を行った後、上記室内膨張弁(14)の開度が所定値未満となると、上記冷媒回路(10)の冷媒循環量が所定値以上まで増大したと判断して上記室外膨張弁(18)の開度を再び絞る動作を行うように構成されているものである。     In an eighth aspect based on the fifth aspect, the refrigerant circuit (10) has an indoor expansion valve (14) for the indoor heat exchanger (13). Then, the control means (40) opens the opening of the indoor expansion valve (14) so that the degree of superheat of the suction refrigerant of the compressor (11) or the pressure of the suction refrigerant becomes a predetermined value during the defrost operation. On the other hand, when the opening of the indoor expansion valve (14) becomes less than a predetermined value after performing an operation of increasing the opening of the outdoor expansion valve (18) during the defrost operation, the refrigerant circuit It is determined that the refrigerant circulation amount in (10) is increased to a predetermined value or more and the opening of the outdoor expansion valve (18) is reduced again.

上記第8の発明では、除霜が完了した室外熱交換器(17)に対応する室外膨張弁(18)の開度を増大させた後、室内膨張弁(14)の開度が所定値未満となると、冷媒回路(10)の冷媒循環量が回復した(所定値以上まで増大した)と判断される。冷媒回路(10)の冷媒循環量が増大して、圧縮機(11)の吸入過熱度が低下すると、その過熱度を所定値まで上昇させるため室内膨張弁(14)の開度が減少される。また、冷媒回路(10)の冷媒循環量が増大して、圧縮機(11)の吸入圧力が上昇すると、その吸入圧力を所定値まで低下させるため、この場合も室内膨張弁(14)の開度が減少される。この室内膨張弁(14)の開度の減少量をもって冷媒循環量の回復具合が認識される。     In the eighth aspect of the invention, after increasing the opening of the outdoor expansion valve (18) corresponding to the outdoor heat exchanger (17) that has been defrosted, the opening of the indoor expansion valve (14) is less than a predetermined value. Then, it is determined that the refrigerant circulation amount in the refrigerant circuit (10) has recovered (increased to a predetermined value or more). When the refrigerant circulation amount in the refrigerant circuit (10) increases and the suction superheat degree of the compressor (11) decreases, the degree of opening of the indoor expansion valve (14) is reduced to increase the superheat degree to a predetermined value. . Further, when the refrigerant circulation amount in the refrigerant circuit (10) increases and the suction pressure of the compressor (11) increases, the suction pressure is reduced to a predetermined value. In this case, the indoor expansion valve (14) is opened. The degree is reduced. The degree of recovery of the refrigerant circulation amount is recognized by the amount of decrease in the opening of the indoor expansion valve (14).

したがって、本発明によれば、デフロスト運転中に何れかの室外熱交換器(17)について除霜が完了すると、その室外熱交換器(17)に対応する室外膨張弁(18)の開度を絞るようにした。そのため、未だ除霜が完了していない室外熱交換器(17)に対する冷媒供給量を増大させることができる。これにより、未だ除霜が完了していない室外熱交換器(17)の除霜能力を高めることができ、デフロスト運転の完了に要する時間を短縮することができる。     Therefore, according to the present invention, when defrosting is completed for any of the outdoor heat exchangers (17) during the defrost operation, the opening degree of the outdoor expansion valve (18) corresponding to the outdoor heat exchanger (17) is set. I tried to squeeze it. Therefore, it is possible to increase the amount of refrigerant supplied to the outdoor heat exchanger (17) that has not yet been defrosted. Thereby, the defrosting capability of the outdoor heat exchanger (17) that has not yet been defrosted can be increased, and the time required to complete the defrost operation can be shortened.

また、デフロスト運転では室外熱交換器(17)の流出側に位置する室外膨張弁(18)を絞るため、その室外熱交換器(17)への冷媒流れの急な遮断を回避することができる。そのため、冷媒回路(10)の高圧が著しく高くなったり、その高圧が瞬時に上昇することを抑えることができる。その結果、高圧異常によってデフロスト運転が中断する(圧縮機(11)が強制停止される)ことを回避することができる。     Further, in the defrost operation, the outdoor expansion valve (18) located on the outflow side of the outdoor heat exchanger (17) is throttled, so that sudden shutoff of the refrigerant flow to the outdoor heat exchanger (17) can be avoided. . Therefore, the high pressure of the refrigerant circuit (10) can be prevented from becoming extremely high, or the high pressure can be prevented from rising instantaneously. As a result, it is possible to avoid that the defrost operation is interrupted (the compressor (11) is forcibly stopped) due to the high pressure abnormality.

さらには、除霜が完了した室外熱交換器(17)に対応する室外膨張弁(18)の開度を絞った後、その室外熱交換器(17)における冷媒の寝込みにより冷媒回路(10)の冷媒循環量が減少して不足状態(ガス欠状態)となると、その室外膨張弁(18)の開度を増大させるようにした。そのため、冷媒の寝込みを解消して、冷媒回路(10)の冷媒循環量を回復させることができる。これにより、未だ除霜が完了していない室外熱交換器(17)に対する冷媒供給量および除霜能力を確保することができる。     Further, after reducing the degree of opening of the outdoor expansion valve (18) corresponding to the outdoor heat exchanger (17) that has been defrosted, the refrigerant circuit (10) is caused by the stagnation of the refrigerant in the outdoor heat exchanger (17). When the refrigerant circulation amount decreased and became in a shortage state (gas shortage state), the opening degree of the outdoor expansion valve (18) was increased. Therefore, the refrigerant stagnation can be eliminated, and the refrigerant circulation amount of the refrigerant circuit (10) can be recovered. Thereby, the refrigerant | coolant supply amount with respect to the outdoor heat exchanger (17) which has not completed defrosting yet, and a defrosting capability can be ensured.

以上により、デフロスト運転を円滑に継続することができ、且つ、そのデフロスト運転の時間を確実に短縮することができる。     As described above, the defrosting operation can be continued smoothly, and the time for the defrosting operation can be surely shortened.

また、第2〜第4,第6〜第8の発明によれば、圧縮機(11)の吐出冷媒の過熱度や吸入冷媒の過熱度、吸入冷媒の圧力、室内膨張弁(14)の開度に基づいて、冷媒回路(10)における冷媒循環量の減少具合および回復具合を判断するようにしたため、その過熱度や圧力、開度の増減から冷媒循環量の不足状態を容易且つ確実に判断することができる。その結果、デフロスト運転時の室外膨張弁(18)の開度制御を高精度に行うことができ、信頼性の高いデフロスト運転が可能となる。     Further, according to the second to fourth, sixth to eighth inventions, the degree of superheat of the refrigerant discharged from the compressor (11), the degree of superheat of the suction refrigerant, the pressure of the suction refrigerant, and the opening of the indoor expansion valve (14). Since the degree of decrease and recovery of the refrigerant circulation amount in the refrigerant circuit (10) is determined based on the degree, the insufficient state of the refrigerant circulation amount can be easily and reliably determined from the increase / decrease in the degree of superheat, pressure and opening degree. can do. As a result, the opening degree control of the outdoor expansion valve (18) during the defrost operation can be performed with high accuracy, and a highly reliable defrost operation is possible.

また、第5の発明によれば、除霜が完了した室外熱交換器(17)に対応する室外膨張弁(18)の開度を増大させることで冷媒の寝込みが解消されて冷媒循環量が回復すると、その室外膨張弁(18)を再び絞るようにした。これにより、未だ除霜が完了していない室外熱交換器(17)への冷媒供給量を増大させて除霜能力を高めることができる。その結果、デフロスト運転時間の一層の短縮化が可能となる。     Moreover, according to 5th invention, the stagnation of a refrigerant | coolant is eliminated by increasing the opening degree of the outdoor expansion valve (18) corresponding to the outdoor heat exchanger (17) which completed defrosting, and refrigerant | coolant circulation amount is increased. When recovered, the outdoor expansion valve (18) was throttled again. Thereby, the refrigerant | coolant supply amount to the outdoor heat exchanger (17) which has not yet completed defrosting can be increased, and defrosting capability can be improved. As a result, the defrost operation time can be further shortened.

本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。     Embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.

図1に示すように、本実施形態の空気調和装置(1)は、1つの室内ユニット(2)と、2つの第1室外ユニット(3a)および第2室外ユニット(3b)を備えており、いわゆる室外マルチタイプのものである。各室外ユニット(3a,3b)は、互いに室内ユニット(2)に対して並列に接続されている。室内ユニット(2)は利用側ユニットを構成し、各室外ユニット(3a,3b)は熱源側ユニットを構成している。     As shown in FIG. 1, the air conditioner (1) of this embodiment includes one indoor unit (2), two first outdoor units (3a), and second outdoor units (3b). This is a so-called outdoor multi type. Each outdoor unit (3a, 3b) is connected in parallel to the indoor unit (2). The indoor unit (2) constitutes a use side unit, and each outdoor unit (3a, 3b) constitutes a heat source side unit.

上記室内ユニット(2)と各室外ユニット(3a,3b)とは、ガス側連絡配管(4)と液側連絡配管(5)により接続されている。具体的に、ガス側連絡配管(4)は、一端が室内ユニット(2)に接続され、他端が2つに分岐してそれぞれ各室外ユニット(3a,3b)に接続されている。液側連絡配管(5)は、一端が室内ユニット(2)に接続され、他端が2つに分岐してそれぞれ各室外ユニット(3a,3b)に接続されている。     The indoor unit (2) and each outdoor unit (3a, 3b) are connected by a gas side communication pipe (4) and a liquid side communication pipe (5). Specifically, one end of the gas side connecting pipe (4) is connected to the indoor unit (2), and the other end is branched into two and connected to each outdoor unit (3a, 3b). The liquid side connection pipe (5) has one end connected to the indoor unit (2) and the other end branched into two to be connected to each outdoor unit (3a, 3b).

上記空気調和装置(1)では、室内ユニット(2)と各室外ユニット(3a,3b)とが各連絡配管(4,5)で接続されてなる閉回路が冷媒回路(10)を構成している。冷媒回路(10)は、冷媒が循環して蒸気圧縮式冷凍サイクルが行われる。     In the air conditioner (1), a closed circuit in which the indoor unit (2) and the outdoor units (3a, 3b) are connected by the connecting pipes (4, 5) constitutes the refrigerant circuit (10). Yes. In the refrigerant circuit (10), the refrigerant circulates to perform a vapor compression refrigeration cycle.

上記室内ユニット(2)は、空調対象室内に設置され、圧縮機(11)と、四路切換弁(12)と、室内熱交換器(13)と、室内膨張弁(14)と、アキュムレータ(16)とを備えている。室内熱交換器(13)の近傍には室内ファン(15)が設けられている。圧縮機(11)は、インバータの周波数制御により運転回転数が可変に構成されている。室内膨張弁(14)は、開度が変更自在な電子膨張弁により構成されている。室内熱交換器(13)は、室内ファン(15)によって取り込まれた室内空気が冷媒と熱交換する。     The indoor unit (2) is installed in an air-conditioned room, and includes a compressor (11), a four-way switching valve (12), an indoor heat exchanger (13), an indoor expansion valve (14), an accumulator ( And 16). An indoor fan (15) is provided in the vicinity of the indoor heat exchanger (13). The compressor (11) is configured such that the operating rotational speed is variable by frequency control of the inverter. The indoor expansion valve (14) is an electronic expansion valve whose opening degree can be changed. In the indoor heat exchanger (13), the indoor air taken in by the indoor fan (15) exchanges heat with the refrigerant.

上記室内ユニット(2)において、圧縮機(11)の吐出配管(21)は四路切換弁(12)の第1ポートに接続され、圧縮機(11)の吸入配管(22)は四路切換弁(12)の第2ポートに接続されている。上記吸入配管(22)の途中にはアキュムレータ(16)が設けられている。四路切換弁(12)の第3ポートは、室内ガス管(23)を介してガス側連絡配管(4)の一端に接続されている。四路切換弁(12)の第4ポートは、室内熱交換器(13)のガス側端部に接続されている。室内熱交換器(13)の液側端部は、室内液管(24)を介して液側連絡配管(5)に接続されている。上記室内液管(24)の途中には室内膨張弁(14)が設けられている。     In the indoor unit (2), the discharge pipe (21) of the compressor (11) is connected to the first port of the four-way switching valve (12), and the suction pipe (22) of the compressor (11) is four-way switching. Connected to the second port of the valve (12). An accumulator (16) is provided in the middle of the suction pipe (22). The third port of the four-way selector valve (12) is connected to one end of the gas side communication pipe (4) via the indoor gas pipe (23). The fourth port of the four-way selector valve (12) is connected to the gas side end of the indoor heat exchanger (13). The liquid side end of the indoor heat exchanger (13) is connected to the liquid side communication pipe (5) via the indoor liquid pipe (24). An indoor expansion valve (14) is provided in the middle of the indoor liquid pipe (24).

上記四路切換弁(12)は、第1ポートと第3ポートが連通し且つ第2ポートと第4ポートが連通する第1状態(図に実線で示す状態)と、第1ポートと第4ポートが連通し且つ第2ポートと第3ポートが連通する第2状態(図に破線で示す状態)とに切り換え可能に構成されている。この四路切換弁(12)は、冷房運転時には第1位置に設定され、暖房運転時には第2位置に設定される。     The four-way selector valve (12) includes a first state (state indicated by a solid line in the drawing) in which the first port and the third port communicate with each other, and the second port and the fourth port communicate with each other; It is configured to be switchable to a second state (state indicated by a broken line in the figure) in which the ports communicate and the second port and the third port communicate. The four-way selector valve (12) is set to the first position during the cooling operation, and is set to the second position during the heating operation.

上記各室外ユニット(3a,3b)は、空調対象室外に設置されている。各室外ユニット(3a,3b)は、室外熱交換器(17)と、室外膨張弁(18)と、レシーバ(19)とを備えている。室外熱交換器(17)の近傍には室外ファン(20)が設けられている。室外膨張弁(18)は、開度が変更自在な電子膨張弁により構成されている。室外熱交換器(17)は、室外ファン(20)によって取り込まれた室外空気が冷媒と熱交換する。     Each of the outdoor units (3a, 3b) is installed outside the air conditioning target room. Each outdoor unit (3a, 3b) includes an outdoor heat exchanger (17), an outdoor expansion valve (18), and a receiver (19). An outdoor fan (20) is provided in the vicinity of the outdoor heat exchanger (17). The outdoor expansion valve (18) is an electronic expansion valve whose opening degree can be changed. In the outdoor heat exchanger (17), the outdoor air taken in by the outdoor fan (20) exchanges heat with the refrigerant.

上記各室外ユニット(3a,3b)において、室外熱交換器(17)の液側端部は室外液管(25)を介して液側連絡配管(5)の分岐配管に接続され、ガス側端部は室外ガス管(26)を介してガス側連絡配管(4)の分岐配管に接続されている。室外液管(25)には、室外熱交換器(17)側から順に、室外膨張弁(18)およびレシーバ(19)が設けられている。     In each of the above outdoor units (3a, 3b), the liquid side end of the outdoor heat exchanger (17) is connected to the branch pipe of the liquid side communication pipe (5) via the outdoor liquid pipe (25), and the gas side end The section is connected to the branch pipe of the gas side connecting pipe (4) through the outdoor gas pipe (26). The outdoor liquid pipe (25) is provided with an outdoor expansion valve (18) and a receiver (19) in order from the outdoor heat exchanger (17) side.

なお、本実施形態の空気調和装置(1)では、室内熱交換器(13)が利用側熱交換器を構成し、室外熱交換器(17)が熱源側熱交換器を構成している。室内膨張弁(14)および室外膨張弁(18)は膨張機構を構成している。また、四路切換弁(12)は冷媒回路(10)における冷媒の循環方向を可逆に切り換えるための流路切換手段を構成している。     In the air conditioner (1) of the present embodiment, the indoor heat exchanger (13) constitutes a use side heat exchanger, and the outdoor heat exchanger (17) constitutes a heat source side heat exchanger. The indoor expansion valve (14) and the outdoor expansion valve (18) constitute an expansion mechanism. The four-way switching valve (12) constitutes a flow path switching means for reversibly switching the refrigerant circulation direction in the refrigerant circuit (10).

また、上記空気調和装置(1)には各種センサが設けられている。具体的に、吐出配管(21)に吐出圧力センサ(31)と吐出温度センサ(33)が設けられ、吸入配管(22)に吸入圧力センサ(32)と吸入温度センサ(34)が設けられている。吐出圧力センサ(31)および吐出温度センサ(33)は、それぞれ圧縮機(11)から吐出された冷媒の圧力および温度を検出する。吸入圧力センサ(32)および吸入温度センサ(34)は、それぞれ圧縮機(11)へ吸入される冷媒の圧力および温度を検出する。     The air conditioner (1) is provided with various sensors. Specifically, the discharge pipe (21) is provided with a discharge pressure sensor (31) and a discharge temperature sensor (33), and the suction pipe (22) is provided with a suction pressure sensor (32) and a suction temperature sensor (34). Yes. The discharge pressure sensor (31) and the discharge temperature sensor (33) detect the pressure and temperature of the refrigerant discharged from the compressor (11), respectively. The suction pressure sensor (32) and the suction temperature sensor (34) detect the pressure and temperature of the refrigerant sucked into the compressor (11), respectively.

さらに、室内熱交換器(13)に室内熱交温度センサ(35)が設けられ、各室外熱交換器(17)に室外熱交温度センサ(36)が設けられている。各熱交温度センサ(35,36)は、各熱交換器(13,17)における冷媒の温度を検出する。なお、各熱交温度センサ(35,36)は、熱交換器(13,17)における液側端部寄りに配置されている。つまり、室内熱交温度センサ(35)は、冷房運転時には冷媒の蒸発温度を、暖房運転時には冷媒の凝縮温度をそれぞれ検出する。つまり、室外熱交温度センサ(36)は、冷房運転時には冷媒の凝縮温度を、暖房運転時には冷媒の蒸発温度をそれぞれ検出する。     Furthermore, an indoor heat exchanger temperature sensor (35) is provided in the indoor heat exchanger (13), and an outdoor heat exchanger temperature sensor (36) is provided in each outdoor heat exchanger (17). Each heat exchange temperature sensor (35, 36) detects the temperature of the refrigerant in each heat exchanger (13, 17). In addition, each heat exchange temperature sensor (35, 36) is arrange | positioned near the liquid side edge part in a heat exchanger (13, 17). That is, the indoor heat exchanger temperature sensor (35) detects the evaporating temperature of the refrigerant during the cooling operation and the condensing temperature of the refrigerant during the heating operation. That is, the outdoor heat exchange temperature sensor (36) detects the refrigerant condensation temperature during the cooling operation and the refrigerant evaporation temperature during the heating operation.

上記空気調和装置(1)は、冷房運転、暖房運転およびデフロスト運転(除霜運転)とが実行可能に構成されている。デフロスト運転は、室外熱交換器(17)に着霜した霜を融かすための運転である。また、空気調和装置(1)は、上述した各種運転の制御を行う制御手段であるコントローラ(40)を備えている。     The air conditioner (1) is configured to be capable of performing a cooling operation, a heating operation, and a defrost operation (defrosting operation). The defrost operation is an operation for melting the frost formed on the outdoor heat exchanger (17). The air conditioner (1) includes a controller (40) that is a control means for controlling the various operations described above.

上記コントローラ(40)は、上述した各センサの検出値が入力される。コントローラ(40)は、上述した各運転の切り換えを行う。そして、コントローラ(40)は、冷房運転時および暖房運転時における制御は勿論のこと、デフロスト運転において室外膨張弁(18)の開度制御を行う。このコントローラ(40)の詳細な制御動作については後述する。     The controller (40) receives the detection value of each sensor described above. The controller (40) switches each operation described above. The controller (40) controls the opening of the outdoor expansion valve (18) in the defrost operation as well as the control during the cooling operation and the heating operation. Detailed control operation of the controller (40) will be described later.

−運転動作−
この空気調和装置(1)は、冷房運転と、暖房運転と、デフロスト運転(除霜運転)とが切り換えて行われる。以下に、各運転動作およびコントローラ(40)の制御動作について説明する。
-Driving action-
The air conditioner (1) is switched between a cooling operation, a heating operation, and a defrost operation (defrosting operation). Below, each driving | operation operation | movement and control operation | movement of a controller (40) are demonstrated.

〈冷房運転および暖房運転〉
冷房運転では、四路切換弁(12)が第1状態に設定され、冷媒回路(10)において冷媒が図1に実線で示す矢印の方向に循環する。つまり、冷媒回路(10)では、室内熱交換器(13)が蒸発器となり各室外熱交換器(17)が凝縮器となる冷房サイクルで冷媒が循環する。また、室外膨張弁(18)は全開に設定される。室内膨張弁(14)の開度は、圧縮機(11)へ吸入される冷媒の過熱度(例えば、5度)が所定値となるように、コントローラ(40)によって制御される。つまり、この制御は、いわゆる過熱度制御(吸入SH制御)である。具体的に、コントローラ(40)は、吸入圧力センサ(32)の圧力値から圧力相当飽和温度を導出し、その導出した飽和温度を吸入温度センサ(34)の温度値から差し引いた値を過熱度として導出する。
<Cooling operation and heating operation>
In the cooling operation, the four-way switching valve (12) is set to the first state, and the refrigerant circulates in the direction of the arrow indicated by the solid line in FIG. 1 in the refrigerant circuit (10). That is, in the refrigerant circuit (10), the refrigerant circulates in a cooling cycle in which the indoor heat exchanger (13) serves as an evaporator and each outdoor heat exchanger (17) serves as a condenser. The outdoor expansion valve (18) is set to fully open. The opening degree of the indoor expansion valve (14) is controlled by the controller (40) so that the superheat degree (for example, 5 degrees) of the refrigerant sucked into the compressor (11) becomes a predetermined value. That is, this control is so-called superheat control (suction SH control). Specifically, the controller (40) derives a pressure equivalent saturation temperature from the pressure value of the suction pressure sensor (32), and subtracts the derived saturation temperature from the temperature value of the suction temperature sensor (34). Derived as

この状態において、圧縮機(11)が駆動されると、圧縮機(11)の吐出冷媒が各室外ユニット(3a,3b)へ分流する。室外ユニット(3a,3b)では、冷媒が室外熱交換器(17)で室外空気と熱交換して凝縮する。凝縮した液冷媒は、室外膨張弁(18)およびレシーバ(19)を通って室内ユニット(2)へ流れる。室内ユニット(2)では、冷媒が室内膨張弁(14)で減圧された後、室内熱交換器(13)へ流入する。室内熱交換器(13)では、冷媒が室内空気と熱交換して蒸発し、室内空気が冷却される。これにより、室内の冷房が行われる。室内熱交換器(13)で蒸発したガス冷媒は、アキュムレータ(16)を通って圧縮機(11)へ吸入される。     In this state, when the compressor (11) is driven, the refrigerant discharged from the compressor (11) is diverted to the outdoor units (3a, 3b). In the outdoor units (3a, 3b), the refrigerant condenses by exchanging heat with outdoor air in the outdoor heat exchanger (17). The condensed liquid refrigerant flows to the indoor unit (2) through the outdoor expansion valve (18) and the receiver (19). In the indoor unit (2), the refrigerant is decompressed by the indoor expansion valve (14) and then flows into the indoor heat exchanger (13). In the indoor heat exchanger (13), the refrigerant exchanges heat with the room air to evaporate, and the room air is cooled. Thereby, indoor cooling is performed. The gas refrigerant evaporated in the indoor heat exchanger (13) is sucked into the compressor (11) through the accumulator (16).

一方、暖房運転では、四路切換弁(12)が第2状態に設定され、冷媒回路(10)において冷媒が図1に破線で示す矢印の方向に循環する。つまり、冷媒回路(10)では、室内熱交換器(13)が凝縮器となり各室外熱交換器(17)が蒸発器となる暖房サイクルで冷媒が循環する。また、室内膨張弁(14)が全開に設定される。室外膨張弁(18)は、冷房運転時の室内膨張弁(14)と同様に、コントローラ(40)によって過熱度制御(吸入SH制御)される。     On the other hand, in the heating operation, the four-way selector valve (12) is set to the second state, and the refrigerant circulates in the direction of the arrow indicated by the broken line in FIG. 1 in the refrigerant circuit (10). That is, in the refrigerant circuit (10), the refrigerant circulates in a heating cycle in which the indoor heat exchanger (13) serves as a condenser and each outdoor heat exchanger (17) serves as an evaporator. The indoor expansion valve (14) is set to fully open. The outdoor expansion valve (18) is superheated (suction SH control) by the controller (40), similarly to the indoor expansion valve (14) during the cooling operation.

この状態において、圧縮機(11)が駆動されると、圧縮機(11)の吐出冷媒が室内熱交換器(13)へ流入する。室内熱交換器(13)では、冷媒が室内空気と熱交換して凝縮し、室内空気が加熱される。これにより、室内の暖房が行われる。室内熱交換器(13)で凝縮した冷媒は、室内膨張弁(14)を通って各室外ユニット(3a,3b)へ分流する。室外ユニット(3a,3b)では、冷媒がレシーバ(19)を通った後、室外膨張弁(18)で減圧される。減圧された冷媒は、室外熱交換器(17)で室外空気と熱交換して蒸発する。蒸発したガス冷媒は、アキュムレータ(16)を通って圧縮機(11)へ吸入される。     In this state, when the compressor (11) is driven, the refrigerant discharged from the compressor (11) flows into the indoor heat exchanger (13). In the indoor heat exchanger (13), the refrigerant exchanges heat with room air to condense, and the room air is heated. Thereby, indoor heating is performed. The refrigerant condensed in the indoor heat exchanger (13) is diverted to the outdoor units (3a, 3b) through the indoor expansion valve (14). In the outdoor units (3a, 3b), the refrigerant is decompressed by the outdoor expansion valve (18) after passing through the receiver (19). The decompressed refrigerant evaporates by exchanging heat with outdoor air in the outdoor heat exchanger (17). The evaporated gas refrigerant is sucked into the compressor (11) through the accumulator (16).

〈デフロスト運転〉
本実施形態のデフロスト運転は、冬場などの暖房運転中に適宜行われるもので、全ての室外熱交換器(17)(室外ユニット(3a,3b))に対して同時に除霜を行う運転である。デフロスト運転では、冷房運転と同様に、四路切換弁(12)が第1状態に設定される。つまり、本実施形態のデフロスト運転は、暖房運転時と逆方向に冷媒が循環する、いわゆる逆サイクルデフロストが行われる。また、室内膨張弁(14)の開度についても、冷房運転と同様に、過熱度制御が行われる。そして、室外膨張弁(18)は基本的に全開に設定され、各ファン(13,20)は停止される。
<Defrost operation>
The defrost operation of the present embodiment is appropriately performed during a heating operation such as in winter, and is an operation in which defrosting is simultaneously performed on all outdoor heat exchangers (17) (outdoor units (3a, 3b)). . In the defrost operation, the four-way switching valve (12) is set to the first state as in the cooling operation. That is, in the defrosting operation of the present embodiment, so-called reverse cycle defrosting is performed in which the refrigerant circulates in the opposite direction to that in the heating operation. Also, the degree of superheat is controlled for the opening of the indoor expansion valve (14) as in the cooling operation. The outdoor expansion valve (18) is basically set to fully open, and the fans (13, 20) are stopped.

このデフロスト運転では、圧縮機(11)の吐出冷媒が各室外熱交換器(17)へ分流する。各室外熱交換器(17)では、冷媒の熱によって霜が融け除霜される。室外熱交換器(17)を出た冷媒は、室外膨張弁(18)およびレシーバ(19)を通って室内ユニット(2)へ流入する。室内ユニット(2)では、冷媒が室内膨張弁(14)で減圧された後、室内熱交換器(13)で蒸発する。蒸発したガス冷媒は、圧縮機(11)へ吸入される。     In this defrosting operation, the refrigerant discharged from the compressor (11) is diverted to each outdoor heat exchanger (17). In each outdoor heat exchanger (17), frost is melted and defrosted by the heat of the refrigerant. The refrigerant that has exited the outdoor heat exchanger (17) flows into the indoor unit (2) through the outdoor expansion valve (18) and the receiver (19). In the indoor unit (2), the refrigerant is depressurized by the indoor expansion valve (14) and then evaporated by the indoor heat exchanger (13). The evaporated gas refrigerant is sucked into the compressor (11).

〈コントローラの制御動作〉
コントローラ(40)は、ユーザーのリモコン操作による信号を受けて冷房運転と暖房運転とを切り換える。そして、冷房運転および暖房運転の場合、コントローラ(40)は空調対象室の設定温度に基づいて圧縮機の容量制御を行う。
<Control action of controller>
The controller (40) switches between the cooling operation and the heating operation in response to a signal from the user's remote control operation. In the cooling operation and the heating operation, the controller (40) controls the capacity of the compressor based on the set temperature of the air-conditioning target room.

また、コントローラ(40)は、暖房運転中において、図3に示すフローに基づいてデフロスト運転の開始および完了を判断する。具体的に、暖房運転中において、少なくとも1つの室外熱交温度センサ(36)の温度値が所定値T1未満となると(ステップST1)、室外熱交換器(17)が着霜したとしてデフロスト運転が開始される(ステップST2)。つまり、本実施形態では、何れか1つの室外熱交換器(17)でも着霜したと判断されるとデフロスト運転が開始される。室外熱交換器(17)が着霜すると、通常の暖房運転時よりも、室外熱交温度センサ(36)の温度値(即ち、室外熱交換器(17)における冷媒の温度)が著しく低下する。したがって、この冷媒温度の低下をもって室外熱交換器(17)が着霜したと判断できる。     Further, the controller (40) determines the start and completion of the defrost operation based on the flow shown in FIG. 3 during the heating operation. Specifically, during the heating operation, when the temperature value of at least one outdoor heat exchange temperature sensor (36) becomes less than a predetermined value T1 (step ST1), it is assumed that the outdoor heat exchanger (17) is frosted and defrost operation is performed. Start (step ST2). That is, in this embodiment, when it is determined that any one of the outdoor heat exchangers (17) is frosted, the defrost operation is started. When the outdoor heat exchanger (17) is frosted, the temperature value of the outdoor heat exchanger temperature sensor (36) (that is, the temperature of the refrigerant in the outdoor heat exchanger (17)) is significantly lower than during normal heating operation. . Therefore, it can be determined that the outdoor heat exchanger (17) is frosted with the decrease in the refrigerant temperature.

そして、デフロスト運転中において、室外熱交温度センサ(36)の温度値が所定値T2を超えると(ステップST3)、その室外熱交温度センサ(36)に対応する室外熱交換器(17)の除霜が完了したと判断される(ステップST4)。つまり、本実施形態のコントローラ(40)では、個々の室外ユニット(3a,3b)毎にデフロスト(除霜)の完了が判断される。室外熱交換器(17)が着霜していると、冷媒が霜によって冷却されるため室外熱交温度センサ(36)の温度値(即ち、室外熱交換器(17)における冷媒の温度)は比較的低いが、室外熱交換器(17)が除霜されると、その冷媒温度が高くなる。したがって、この冷媒温度の上昇をもって室外熱交換器(17)が除霜されたと判断できる。なお、当然ではあるが、所定値T2は所定値T1よりも大きい値である。     During the defrost operation, when the temperature value of the outdoor heat exchange temperature sensor (36) exceeds a predetermined value T2 (step ST3), the outdoor heat exchanger (17) corresponding to the outdoor heat exchange temperature sensor (36) It is determined that the defrosting has been completed (step ST4). That is, in the controller (40) of the present embodiment, completion of defrosting (defrosting) is determined for each outdoor unit (3a, 3b). When the outdoor heat exchanger (17) is frosted, the refrigerant is cooled by the frost, so the temperature value of the outdoor heat exchanger temperature sensor (36) (that is, the refrigerant temperature in the outdoor heat exchanger (17)) is Although relatively low, when the outdoor heat exchanger (17) is defrosted, the refrigerant temperature increases. Therefore, it can be determined that the outdoor heat exchanger (17) has been defrosted with the rise in the refrigerant temperature. Of course, the predetermined value T2 is larger than the predetermined value T1.

また、コントローラ(40)は、デフロスト運転中は図4に示すフローに基づいて室外膨張弁(18)の開度制御を行う。本実施形態のデフロスト運転は、何れの室外膨張弁(18)も全開に設定された状態で開始される。     The controller (40) controls the opening of the outdoor expansion valve (18) based on the flow shown in FIG. 4 during the defrost operation. The defrosting operation of the present embodiment is started in a state where any outdoor expansion valve (18) is set to fully open.

先ず、コントローラ(40)は、デフロスト運転中であると判断すると(ステップST11)、デフロスト(除霜)が完了した室外ユニット(3a,3b)が1つでもあるか否かを判断する(ステップST12)。そして、デフロストが完了した室外ユニット(3a,3b)が1つでもあると、全ての室外ユニット(3a,3b)についてデフロストが完了したか否かが判断される(ステップST13)。全ての室外ユニット(3a,3b)についてデフロストが完了していると、デフロスト運転が終了する(ステップST14)。デフロスト運転が終了すると、上述した暖房運転が再び開始される。     First, when determining that the defrosting operation is being performed (step ST11), the controller (40) determines whether there is even one outdoor unit (3a, 3b) that has completed defrosting (step ST12). ). If there is even one outdoor unit (3a, 3b) that has completed defrosting, it is determined whether or not defrosting has been completed for all outdoor units (3a, 3b) (step ST13). When defrosting is completed for all the outdoor units (3a, 3b), the defrosting operation ends (step ST14). When the defrost operation ends, the heating operation described above is started again.

本実施形態のデフロスト運転では、全ての室外ユニット(3a,3b)に対して同時に除霜が開始されるが、通常、着霜量などの違いから各室外熱交換器(17)毎にデフロスト(除霜)完了までに要する時間が異なる場合が多い。つまり、一方の室外ユニット(3a,3b)についてはデフロスト完了と判断されたが、他方の室外ユニット(3a,3b)については未だデフロスト完了と判断されていない場合が多い。その場合、図4においてステップST13からステップST15へ移行し、冷媒回路(10)におけるガス欠レベルが判断される。即ち、冷媒回路(10)における冷媒循環量の不足状態が判断される。なお、この段階においてもデフロスト運転は継続中である。     In the defrosting operation of the present embodiment, defrosting is started simultaneously for all the outdoor units (3a, 3b), but normally, the defrosting ( The time required to complete (defrosting) is often different. That is, although it is determined that the defrosting is completed for one outdoor unit (3a, 3b), it is often not determined that the defrosting is completed for the other outdoor unit (3a, 3b). In that case, the process proceeds from step ST13 to step ST15 in FIG. 4, and the out-of-gas level in the refrigerant circuit (10) is determined. That is, it is determined whether the refrigerant circulation amount in the refrigerant circuit (10) is insufficient. Even at this stage, the defrost operation is ongoing.

コントローラ(40)は、図5に示すフローに基づいて冷媒回路(10)におけるガス欠レベルを判断する。先ず、デフロスト運転時において、以下に示す4つの条件のうち1つでも満たすと(ステップST21)、冷媒回路(10)の冷媒循環量が所定値以下まで減少したとしてガス欠レベル「大」と判断される(ステップST22)。4つの条件は、「圧縮機(11)の吐出冷媒の過熱度(吐出SH)が所定値A1を超えたか」という条件と、「圧縮機(11)の吸入冷媒の過熱度(吸入SH)が所定値B1を超えたか」という条件と、「圧縮機(11)の吸入冷媒の圧力(吸入圧力)が所定値C1よりも低くなったか」という条件と、「室内膨張弁(14)の開度が所定値D1を超えたか」という条件である。ステップST21において何れの条件も満たさない場合は、以下に示す新たな4つの条件のうち1つでも満たすかどうかが判断される(ステップST23)。4つの条件は、「圧縮機(11)の吐出冷媒の過熱度(吐出SH)が所定値A2(<A1)よりも低いか」という条件と、「圧縮機(11)の吸入冷媒の過熱度(吸入SH)が所定値B2(<B1)よりも低いか」という条件と、「圧縮機(11)の吸入冷媒の圧力(吸入圧力)が所定値C2(>C1)よりも高いか」という条件と、「室内膨張弁(14)の開度が所定値D2(<D1)よりも低いか」という条件である。そして、ステップST23において、1つでも条件を満たすと、冷媒回路(10)の冷媒循環量は所定値以上になったとしてガス欠レベル「小」と判断される(ステップST25)。また、ステップST23において、何れの条件も満たさないと、冷媒回路(10)の冷媒循環量はそれほど減少していないとしてガス欠レベル「中」と判断される(ステップST24)。このように、ガス欠レベルが3段階評価され、ガス欠レベル「小」<「中」<「大」の順に冷媒回路(10)の冷媒循環量が不足していることとなる。     The controller (40) determines the out-of-gas level in the refrigerant circuit (10) based on the flow shown in FIG. First, at the time of defrost operation, if any one of the following four conditions is satisfied (step ST21), it is determined that the refrigerant circulation level in the refrigerant circuit (10) has decreased to a predetermined value or less and the gas shortage level is “high”. (Step ST22). The four conditions are “whether the superheat degree of the refrigerant discharged from the compressor (11) (discharge SH) exceeds a predetermined value A1” and “the superheat degree of the refrigerant sucked by the compressor (11) (suction SH). The condition “whether or not the predetermined value B1 has been exceeded”, the condition “whether the suction refrigerant pressure (suction pressure) of the compressor (11) is lower than the predetermined value C1”, and the “opening degree of the indoor expansion valve (14)” Is the predetermined value D1? If none of the conditions is satisfied in step ST21, it is determined whether any one of the following four new conditions is satisfied (step ST23). The four conditions are “whether the superheat degree (discharge SH) of the refrigerant discharged from the compressor (11) is lower than a predetermined value A2 (<A1)” and “superheat degree of the refrigerant sucked by the compressor (11)”. (Whether the suction SH is lower than a predetermined value B2 (<B1)) and “whether the suction refrigerant pressure (suction pressure) of the compressor (11) is higher than a predetermined value C2 (> C1)” And a condition “whether the opening of the indoor expansion valve (14) is lower than a predetermined value D2 (<D1)”. If at least one of the conditions is satisfied in step ST23, it is determined that the refrigerant circulation amount in the refrigerant circuit (10) is equal to or greater than a predetermined value and the gas shortage level is “low” (step ST25). If none of the conditions is satisfied in step ST23, it is determined that the refrigerant circulation amount in the refrigerant circuit (10) has not decreased so much and the gas shortage level is “medium” (step ST24). In this way, the gas shortage level is evaluated in three stages, and the refrigerant circulation amount of the refrigerant circuit (10) is insufficient in the order of the gas shortage level “small” <“medium” <“large”.

冷媒回路(10)において冷媒循環量が不足してゆくに従って、室内熱交換器(13)の冷媒に対する加熱量が見かけ上増大し、その結果、冷媒の過熱度が増大する。即ち、圧縮機(11)の吸入冷媒の過熱度が増大する。吸入冷媒の過熱度が増大するに伴い、圧縮機(11)の吐出冷媒の過熱度も増大する。そして、本実施形態のデフロスト運転では、上述したように室内膨張弁(14)の開度が過熱度制御されることから、吸入冷媒の過熱度が増大すると、その過熱度を所定値(5度)まで低下させるため室内膨張弁(14)の開度が増大される。また、冷媒回路(10)において冷媒循環量が不足してゆくに従って、圧縮機(11)の吸入冷媒量が減少するため、圧縮機(11)の吸入圧力(吸入冷媒の圧力)が低下する。このように、冷媒回路(10)がガス欠状態になると、圧縮機(11)の吸入冷媒および吐出冷媒のそれぞれの過熱度や室内膨張弁(14)の開度が増大する一方、圧縮機(11)の吸入圧力が低下する。したがって、これら過熱度等の増大量や吸入圧力の低下量によってガス欠レベルを判断できる。なお、デフロスト運転において、圧縮機(11)の吸入圧力(吸入冷媒の圧力)が所定値となるように室内膨張弁(14)の開度を制御するようにした場合でも、冷媒回路(10)の冷媒循環量が不足してゆくに従って、室内膨張弁(14)の開度が増大される。つまり、冷媒回路(10)がガス欠状態になり、圧縮機(11)の吸入圧力が低下すると、その吸入圧力を所定値まで上昇させるため室内膨張弁(14)の開度が増大される。     As the refrigerant circulation amount becomes insufficient in the refrigerant circuit (10), the heating amount of the indoor heat exchanger (13) with respect to the refrigerant apparently increases, and as a result, the degree of superheat of the refrigerant increases. That is, the degree of superheat of the refrigerant sucked in the compressor (11) increases. As the degree of superheat of the suction refrigerant increases, the degree of superheat of the refrigerant discharged from the compressor (11) also increases. In the defrost operation of the present embodiment, since the degree of superheat of the indoor expansion valve (14) is controlled as described above, when the degree of superheat of the intake refrigerant increases, the degree of superheat is set to a predetermined value (5 degrees). ), The opening of the indoor expansion valve (14) is increased. Further, as the refrigerant circulation amount becomes insufficient in the refrigerant circuit (10), the amount of refrigerant sucked by the compressor (11) decreases, so that the suction pressure (pressure of sucked refrigerant) of the compressor (11) decreases. Thus, when the refrigerant circuit (10) is out of gas, the degree of superheat of the suction refrigerant and the discharge refrigerant of the compressor (11) and the opening of the indoor expansion valve (14) are increased, while the compressor ( 11) The suction pressure decreases. Therefore, the out-of-gas level can be determined from the amount of increase in the degree of superheat and the like and the amount of decrease in the suction pressure. In the defrost operation, even when the opening of the indoor expansion valve (14) is controlled so that the suction pressure (pressure of the suction refrigerant) of the compressor (11) becomes a predetermined value, the refrigerant circuit (10) As the refrigerant circulation amount becomes insufficient, the opening of the indoor expansion valve (14) is increased. That is, when the refrigerant circuit (10) runs out of gas and the suction pressure of the compressor (11) decreases, the opening of the indoor expansion valve (14) is increased to increase the suction pressure to a predetermined value.

ここで、デフロスト運転中に、例えば第2室外ユニット(3b)が先にデフロスト完了した場合について考える。第2室外ユニット(3b)がデフロスト完了した時点では、各室外膨張弁(18)の開度は全開であるため、圧縮機(11)から各室外ユニット(3a,3b)へ流れた冷媒は再び圧縮機(11)へ戻る。つまり、冷媒回路(10)において、冷媒循環量はデフロスト運転開始時と比べて殆ど変化せず不足していない。そのため、図5のガス欠判断フローによってガス欠レベル「小」と判断される。この場合、図4のフローにおいてステップST15からステップST16へ移行し、第2室外ユニット(3b)の室外膨張弁(18)の開度が所定量だけ減少される。即ち、デフロストが完了した室外熱交換器(17)に対応する室外膨張弁(18)の開度が絞られる。そうすると、第2室外ユニット(3b)における冷媒循環量が減少するため、その減少した分だけ第1室外ユニット(3a)における冷媒循環量が増大する。つまり、圧縮機(11)から第1室外ユニット(3a)の室外熱交換器(17)へ供給される冷媒量が増大する。そのため、第1室外ユニット(3a)の室外熱交換器(17)における加熱能力が増大し、除霜能力が向上する。その結果、第1室外ユニット(3a)のデフロスト完了に要する時間が短縮される。     Here, consider the case where, for example, the second outdoor unit (3b) has completed defrosting first during the defrosting operation. When the second outdoor unit (3b) completes defrosting, the degree of opening of each outdoor expansion valve (18) is fully open, so that the refrigerant flowing from the compressor (11) to each outdoor unit (3a, 3b) again Return to compressor (11). That is, in the refrigerant circuit (10), the refrigerant circulation amount hardly changes compared with that at the start of the defrost operation and is not insufficient. Therefore, it is determined that the gas shortage level is “low” by the gas shortage determination flow of FIG. In this case, the process proceeds from step ST15 to step ST16 in the flow of FIG. 4, and the opening degree of the outdoor expansion valve (18) of the second outdoor unit (3b) is decreased by a predetermined amount. That is, the opening degree of the outdoor expansion valve (18) corresponding to the outdoor heat exchanger (17) that has completed defrosting is reduced. Then, since the refrigerant circulation amount in the second outdoor unit (3b) is reduced, the refrigerant circulation amount in the first outdoor unit (3a) is increased by the reduced amount. That is, the amount of refrigerant supplied from the compressor (11) to the outdoor heat exchanger (17) of the first outdoor unit (3a) increases. Therefore, the heating capability in the outdoor heat exchanger (17) of the first outdoor unit (3a) is increased, and the defrosting capability is improved. As a result, the time required to complete defrosting of the first outdoor unit (3a) is shortened.

また、上述したように室外膨張弁(18)を完全に閉じるのではなく絞るだけなので、第2室外ユニット(3b)における冷媒の流れは遮断されない。つまり、第2室外ユニット(3b)において冷媒循環量は減少するが、冷媒流れが遮断されることはない。そのため、冷媒回路(10)の高圧(即ち、冷凍サイクルの高圧、圧縮機(11)の吐出圧力)はそれほど高くは上昇しない。さらに、デフロスト運転時の室外膨張弁(18)は室外熱交換器(17)の流出側に位置するため、その室外膨張弁(18)を絞っても冷媒回路(10)の高圧はそれほど急激には上昇しない。例えば、室外熱交換器の流入側に配置した弁を閉じるようにした場合、室外熱交換器への冷媒の流入が急に遮断されることとなり、そのため冷媒回路の高圧が瞬時に上昇して高圧異常が検知される。つまり、高圧が瞬時に上昇するため、圧縮機の容量(運転回転数)を下げて吐出圧力を低下させる時間(余裕)がない。高圧異常が検知されると圧縮機が強制停止され、その結果デフロスト運転が中断してしまう。本実施形態では、室外熱交換器(17)の流出側に位置する室外膨張弁(18)を絞るため、室外熱交換器(17)への冷媒の流入は遮断されない。そのため、室外膨張弁(18)を絞った直後においても、圧縮機(11)の吐出冷媒が幾分か室外熱交換器(17)へ流入し続ける。したがって、冷媒回路(10)の高圧はそれほど急上昇はしない。その結果、上述した作用効果(冷媒回路(10)の高圧がそれほど高くは上昇しない)とも相まって、高圧異常が検知される虞がなくなる。     Further, as described above, the outdoor expansion valve (18) is not completely closed, but is only throttled, so that the refrigerant flow in the second outdoor unit (3b) is not blocked. That is, the refrigerant circulation amount is reduced in the second outdoor unit (3b), but the refrigerant flow is not interrupted. Therefore, the high pressure of the refrigerant circuit (10) (that is, the high pressure of the refrigeration cycle and the discharge pressure of the compressor (11)) does not rise so high. Furthermore, since the outdoor expansion valve (18) at the time of defrost operation is located on the outflow side of the outdoor heat exchanger (17), the high pressure of the refrigerant circuit (10) is not so sharp even if the outdoor expansion valve (18) is throttled. Does not rise. For example, when the valve arranged on the inflow side of the outdoor heat exchanger is closed, the inflow of refrigerant to the outdoor heat exchanger is suddenly interrupted, so that the high pressure of the refrigerant circuit rises instantaneously and the high pressure An abnormality is detected. That is, since the high pressure rises instantaneously, there is no time (margin) for lowering the compressor capacity (operating speed) and lowering the discharge pressure. When a high pressure abnormality is detected, the compressor is forcibly stopped, and as a result, the defrost operation is interrupted. In this embodiment, since the outdoor expansion valve (18) located on the outflow side of the outdoor heat exchanger (17) is throttled, the inflow of the refrigerant to the outdoor heat exchanger (17) is not blocked. Therefore, even immediately after the outdoor expansion valve (18) is throttled, some of the refrigerant discharged from the compressor (11) continues to flow into the outdoor heat exchanger (17). Therefore, the high pressure of the refrigerant circuit (10) does not rise so much. As a result, in combination with the above-described effects (the high pressure of the refrigerant circuit (10) does not rise so high), there is no possibility of detecting a high pressure abnormality.

このように、本実施形態では、何れかの室外ユニット(3a,3b)についてデフロスト完了と判断されると、その室外ユニット(3b)の室外膨張弁(18)を絞る。これにより、デフロストが完了した室外ユニット(3b)に対する冷媒供給量を減少させ、未だデフロストが完了していない室外ユニット(3a)に対する冷媒供給量を増大させることができる。そのため、デフロストが完了した室外ユニット(3b)へ無駄に冷媒を供給しなくてもすむ一方、未だデフロストが完了していない室外ユニット(3a)に対する除霜能力を高めることができる。さらには、冷媒回路(10)の高圧の急上昇をも回避することができ、デフロスト運転を円滑に継続することができる。     Thus, in this embodiment, when it is determined that any of the outdoor units (3a, 3b) is completed, the outdoor expansion valve (18) of the outdoor unit (3b) is throttled. Thereby, the refrigerant | coolant supply amount with respect to the outdoor unit (3b) in which defrost was completed can be decreased, and the refrigerant | coolant supply amount with respect to the outdoor unit (3a) in which defrost has not been completed can be increased. Therefore, it is not necessary to wastefully supply the refrigerant to the outdoor unit (3b) where the defrost is completed, while it is possible to increase the defrosting capability for the outdoor unit (3a) where the defrost is not yet completed. Furthermore, a sudden increase in the high pressure of the refrigerant circuit (10) can be avoided, and the defrosting operation can be continued smoothly.

ステップST16において第2室外ユニット(3b)の室外膨張弁(18)が絞られると、再びステップST13において全ての室外ユニット(3a,3b)がデフロスト完了したか否かが判断される。そして、未だ、第1室外ユニット(3a)のデフロストが完了していないと、再びステップST15において冷媒回路(10)のガス欠レベルが判断される。     When the outdoor expansion valve (18) of the second outdoor unit (3b) is throttled in step ST16, it is determined again in step ST13 whether all the outdoor units (3a, 3b) have been defrosted. If the defrosting of the first outdoor unit (3a) has not been completed yet, the out-of-gas level of the refrigerant circuit (10) is determined again in step ST15.

ここで、第2室外ユニット(3b)の室外熱交換器(17)では、流入したガス冷媒が凝縮し液冷媒となって流出してゆくが、上述したように室外膨張弁(18)の開度が絞られると、室外熱交換器(17)から流出してゆく液冷媒の量が減少する。つまり、室外膨張弁(18)が絞られるため、室外熱交換器(17)から液冷媒がなかなか流出しない。そのため、室外熱交換器(17)ではガス冷媒の滞留時間が長くなる。そうすると、室外熱交換器(17)では、霜が融けても外気温度が低いことから、ガス冷媒が次第に凝縮して液冷媒となる。この凝縮によって冷媒の体積が減少した分、新たに圧縮機(11)の吐出冷媒が室外熱交換器(17)に流入する。その流入したガス冷媒は凝縮して液冷媒となる。このように、デフロストが完了して室外膨張弁(18)が絞られた室外熱交換器(17)では、流出してゆく液冷媒の量よりも凝縮して液冷媒となる量が多くなる。そうすると、室外熱交換器(17)では、時間の経過と共に液冷媒が溜まってゆき、いわゆる冷媒(液冷媒)の寝込みが生じる(図2参照)。第2室外ユニット(3b)の室外熱交換器(17)で冷媒の寝込みが生じると、冷媒回路(10)全体の冷媒循環量が減少して不足状態となる。     Here, in the outdoor heat exchanger (17) of the second outdoor unit (3b), the inflowing gas refrigerant is condensed and flows out as a liquid refrigerant, but as described above, the outdoor expansion valve (18) is opened. When the degree is reduced, the amount of liquid refrigerant flowing out of the outdoor heat exchanger (17) decreases. That is, since the outdoor expansion valve (18) is throttled, the liquid refrigerant hardly flows out from the outdoor heat exchanger (17). Therefore, the residence time of the gas refrigerant is increased in the outdoor heat exchanger (17). Then, in the outdoor heat exchanger (17), since the outside air temperature is low even when the frost melts, the gas refrigerant is gradually condensed to become a liquid refrigerant. The refrigerant discharged from the compressor (11) newly flows into the outdoor heat exchanger (17) as much as the volume of the refrigerant is reduced by this condensation. The inflowing gas refrigerant is condensed to become a liquid refrigerant. Thus, in the outdoor heat exchanger (17) in which the defrosting is completed and the outdoor expansion valve (18) is throttled, the amount of liquid refrigerant that condenses and becomes larger than the amount of liquid refrigerant that flows out. Then, in the outdoor heat exchanger (17), the liquid refrigerant accumulates with time, and so-called refrigerant (liquid refrigerant) stagnation occurs (see FIG. 2). When the stagnation of the refrigerant occurs in the outdoor heat exchanger (17) of the second outdoor unit (3b), the refrigerant circulation amount of the entire refrigerant circuit (10) decreases and becomes in a deficient state.

冷媒回路(10)の冷媒循環量が減少すると、上述したように、圧縮機(11)の吸入冷媒の過熱度および吐出冷媒の過熱度や室内膨張弁(14)の開度が増大し、圧縮機(11)の吸入圧力が低下する。この場合、図5のガス欠判断フローにおいてガス欠レベル「大」またはガス欠レベル「中」と判断される(ステップST22またはステップST24)。例えばガス欠レベル「中」と判断された場合、第2室外ユニット(3b)の室外膨張弁(18)の開度は変更しない(図4のステップST17)。つまり、現時点では、室外膨張弁(18)の開度を変更するほど冷媒循環量は大して不足していないと判断される。その後、室外熱交換器(17)における冷媒の寝込みがすすみ、図4のステップST15(図5の判断フロー)でガス欠レベル「大」と判断されると、第2室外ユニット(3b)の室外膨張弁(18)の開度が所定量だけ増大される(ステップST18)。そうすると、第2室外ユニット(3b)の室外熱交換器(17)では、流出する液冷媒の量が増大し、冷媒の寝込みが解消される。その結果、冷媒回路(10)において冷媒循環量が回復する。そして、その後のステップST15(図5の判断フロー)においてガス欠レベル「小」と判断されると、再び第2室外ユニット(3b)の室外膨張弁(18)の開度が絞られる(ステップST16)。このような室外膨張弁(18)の開度制御は、第1室外ユニット(3a)のデフロストが完了するまで、即ち全ての室外ユニット(3a,3b)でデフロストが完了するまで行われる。第1室外ユニット(3a)のデフロストが完了すると(ステップST13)、デフロスト運転が終了し(ステップST14)、再び上述した暖房運転が再開される。     When the refrigerant circulation amount in the refrigerant circuit (10) decreases, as described above, the superheat degree of the refrigerant sucked in the compressor (11), the superheat degree of the discharged refrigerant, and the opening degree of the indoor expansion valve (14) increase, and compression The suction pressure of the machine (11) decreases. In this case, in the gas shortage determination flow of FIG. 5, it is determined that the gas shortage level is “high” or the gas shortage level “medium” (step ST22 or step ST24). For example, when it is determined that the gas shortage level is “medium”, the opening degree of the outdoor expansion valve (18) of the second outdoor unit (3b) is not changed (step ST17 in FIG. 4). That is, at present, it is determined that the refrigerant circulation amount is not so short that the opening degree of the outdoor expansion valve (18) is changed. Thereafter, the refrigerant stagnates in the outdoor heat exchanger (17), and if it is determined in step ST15 of FIG. 4 (determination flow of FIG. 5) that the gas shortage level is “high”, the outdoor of the second outdoor unit (3b) The opening degree of the expansion valve (18) is increased by a predetermined amount (step ST18). Then, in the outdoor heat exchanger (17) of the second outdoor unit (3b), the amount of the liquid refrigerant flowing out increases, and the stagnation of the refrigerant is eliminated. As a result, the refrigerant circulation amount is recovered in the refrigerant circuit (10). If it is determined in step ST15 (determination flow in FIG. 5) that the gas shortage level is “low”, the opening degree of the outdoor expansion valve (18) of the second outdoor unit (3b) is reduced again (step ST16). ). The opening degree control of the outdoor expansion valve (18) is performed until the defrosting of the first outdoor unit (3a) is completed, that is, until the defrosting is completed in all the outdoor units (3a, 3b). When the defrosting of the first outdoor unit (3a) is completed (step ST13), the defrosting operation is ended (step ST14), and the above-described heating operation is resumed.

−実施形態の効果−
この実施形態によれば、デフロスト運転中に何れかの室外ユニット(3a,3b)についてデフロスト(除霜)が完了すると、その室外ユニット(3a,3b)の室外膨張弁(18)の開度を絞るようにした。そのため、未だデフロストが完了していない室外ユニット(3a,3b)に対する冷媒供給量を増大させることができる。これにより、未だデフロストが完了していない室外ユニット(3a,3b)の除霜能力を高めることができ、デフロスト完了に要する時間を短縮することができる。
-Effect of the embodiment-
According to this embodiment, when defrosting (defrosting) is completed for any of the outdoor units (3a, 3b) during the defrosting operation, the degree of opening of the outdoor expansion valve (18) of the outdoor unit (3a, 3b) is set. I tried to squeeze it. Therefore, it is possible to increase the amount of refrigerant supplied to the outdoor units (3a, 3b) that have not been defrosted yet. Thereby, the defrosting capability of the outdoor units (3a, 3b) where defrosting has not been completed can be increased, and the time required for completion of defrosting can be shortened.

また、室外熱交換器(17)の流出側に位置する室外膨張弁(18)を絞るため、その室外熱交換器(17)への冷媒流れの急な遮断を回避することができる。そのため、冷媒回路(10)の高圧が著しく高くなることや、その高圧が瞬時に上昇することを抑えることができる。その結果、高圧異常となるのを回避できる。     Further, since the outdoor expansion valve (18) located on the outflow side of the outdoor heat exchanger (17) is throttled, it is possible to avoid a sudden interruption of the refrigerant flow to the outdoor heat exchanger (17). Therefore, it can suppress that the high voltage | pressure of a refrigerant circuit (10) becomes high remarkably, and the high voltage | pressure raises instantaneously. As a result, a high pressure abnormality can be avoided.

さらには、デフロストが完了した室外熱交換器(17)に対応する室外膨張弁(18)の開度を絞った後、その室外熱交換器(17)における冷媒の寝込みにより冷媒回路(10)の冷媒循環量が減少してガス欠状態となると、その室外膨張弁(18)の開度を増大させるようにした。そのため、冷媒の寝込みを解消して、冷媒回路(10)の冷媒循環量を回復させることができる。これにより、未だデフロストが完了していない室外熱交換器(17)に対する冷媒供給量および除霜能力を確保することができる。     Furthermore, after the opening degree of the outdoor expansion valve (18) corresponding to the outdoor heat exchanger (17) that has completed defrosting is reduced, the refrigerant circuit (10) When the refrigerant circulation amount decreases and the gas runs out, the opening degree of the outdoor expansion valve (18) is increased. Therefore, the refrigerant stagnation can be eliminated, and the refrigerant circulation amount of the refrigerant circuit (10) can be recovered. Thereby, the refrigerant | coolant supply amount with respect to the outdoor heat exchanger (17) which has not completed defrost yet, and a defrost capability can be ensured.

以上の結果、デフロスト運転を円滑に継続することができると共に、そのデフロスト運転の時間を確実に短縮することができる。     As a result, the defrosting operation can be continued smoothly and the time for the defrosting operation can be reliably shortened.

また、本実施形態では、圧縮機(11)の吐出冷媒の過熱度や吸入冷媒の過熱度、吸入冷媒の圧力、室内膨張弁(14)の開度に基づいて、冷媒回路(10)におけるガス欠レベルを判断するようにしたため、その過熱度や圧力、開度の増減からガス欠レベルを容易且つ確実に判断することができる。その結果、デフロスト運転時の室外膨張弁(18)の開度制御を高精度に行うことができ、信頼性の高いデフロスト運転が可能となる。     In the present embodiment, the gas in the refrigerant circuit (10) is based on the degree of superheat of the refrigerant discharged from the compressor (11), the degree of superheat of the suction refrigerant, the pressure of the suction refrigerant, and the opening of the indoor expansion valve (14). Since the shortage level is determined, the gas shortage level can be easily and reliably determined from the increase or decrease in the degree of superheat, pressure, or opening degree. As a result, the opening degree control of the outdoor expansion valve (18) during the defrost operation can be performed with high accuracy, and a highly reliable defrost operation is possible.

さらに、本実施形態では、デフロストが完了した室外熱交換器(17)に対応する室外膨張弁(18)の開度を増大させることで冷媒の寝込みが解消されて冷媒循環量が回復すると、再び室外膨張弁(18)を絞るようにした。これにより、未だデフロストが完了していない室外熱交換器(17)への冷媒供給量を増大させて除霜能力を高めることができる。その結果、デフロスト運転時間の一層の短縮化が可能となる。     Furthermore, in this embodiment, when the refrigerant stagnation is eliminated by increasing the opening degree of the outdoor expansion valve (18) corresponding to the outdoor heat exchanger (17) for which the defrosting is completed, The outdoor expansion valve (18) was throttled. Thereby, the refrigerant | coolant supply amount to the outdoor heat exchanger (17) which has not completed defrost yet can be increased, and defrosting capability can be improved. As a result, the defrost operation time can be further shortened.

《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.

例えば、上記実施形態では、室外ユニット(3a,3b)を2台備えた空気調和装置(1)について説明したが、3台以上の室外ユニットが互いに並列に接続された形態であっても同様の作用効果を奏する。     For example, in the above-described embodiment, the air conditioner (1) including two outdoor units (3a, 3b) has been described. However, the same applies to a configuration in which three or more outdoor units are connected in parallel to each other. Has an effect.

また、上記実施形態の室内ユニット(2)において、圧縮機(11)および室内熱交換器(13)の数量は1台に限らず複数であってもよいことは勿論である。     In the indoor unit (2) of the above embodiment, the number of compressors (11) and indoor heat exchangers (13) is not limited to one, and may be plural.

以上説明したように、本発明は、複数の室外熱交換器に対し同時に除霜する逆サイクルデフロストを行う空気調和装置について有用である。     As described above, the present invention is useful for an air conditioner that performs reverse cycle defrosting that simultaneously defrosts a plurality of outdoor heat exchangers.

図1は、実施形態に係る空気調和装置の構成を示す配管系統図である。FIG. 1 is a piping system diagram illustrating a configuration of an air conditioner according to an embodiment. 図2は、デフロスト運転時の冷媒流れを示す配管系統図である。FIG. 2 is a piping system diagram showing the refrigerant flow during the defrost operation. 図3は、デフロスト運転の開始、完了の判断動作を示すフローチャートである。FIG. 3 is a flowchart showing the start / end determination operation of the defrost operation. 図4は、デフロスト運転時の室外膨張弁の制御動作を示すフローチャートである。FIG. 4 is a flowchart showing the control operation of the outdoor expansion valve during the defrost operation. 図5は、デフロスト運転時のガス欠レベルの判断動作を示すフローチャートである。FIG. 5 is a flowchart showing an operation of determining the gas shortage level during the defrost operation.

1 空気調和装置
10 冷媒回路
11 圧縮機
13 室内熱交換器
14 室内膨張弁
17 室外熱交換器
18 室外膨張弁
40 コントローラ(変更手段)
1 Air conditioner
10 Refrigerant circuit
11 Compressor
13 Indoor heat exchanger
14 Indoor expansion valve
17 Outdoor heat exchanger
18 Outdoor expansion valve
40 Controller (change means)

Claims (8)

圧縮機(11)と、室内熱交換器(13)と、互いに並列に設けられた複数の室外熱交換器(17)と、該各室外熱交換器(17)毎に設けられる該室外熱交換器(17)のための室外膨張弁(18)とを有し冷凍サイクルを行う冷媒回路(10)を備え、該冷媒回路(10)を冷媒が暖房サイクルで循環する暖房運転と、上記冷媒回路(10)を冷媒が上記暖房運転時と逆方向に循環して上記複数の室外熱交換器(17)を同時に除霜するデフロスト運転とが実行可能に構成された空気調和装置であって、
上記デフロスト運転中に、上記各室外熱交換器(17)について除霜の完了を個別に検出するように構成される一方、該除霜の完了を検出すると該検出された上記室外熱交換器(17)に対応する上記室外膨張弁(18)の開度を絞る動作を行い、該動作を行った後、上記冷媒回路(10)の冷媒循環量が所定値以下まで減少すると上記開度を絞った室外膨張弁(18)の開度を増大させる動作を行うように構成された制御手段(40)を備えている
ことを特徴とする空気調和装置。
Compressor (11), indoor heat exchanger (13), a plurality of outdoor heat exchangers (17) provided in parallel to each other, and the outdoor heat exchange provided for each outdoor heat exchanger (17) A refrigerant circuit (10) having an outdoor expansion valve (18) for the vessel (17) and performing a refrigeration cycle, heating operation in which the refrigerant circulates in the heating cycle, and the refrigerant circuit (10) is an air conditioner configured to perform a defrost operation in which the refrigerant circulates in a direction opposite to that during the heating operation and simultaneously defrosts the plurality of outdoor heat exchangers (17),
During the defrost operation, each outdoor heat exchanger (17) is configured to individually detect completion of defrosting, and when the completion of defrosting is detected, the detected outdoor heat exchanger ( After the operation of reducing the opening of the outdoor expansion valve (18) corresponding to 17) is performed, the opening is reduced when the refrigerant circulation amount of the refrigerant circuit (10) decreases to a predetermined value or less. An air conditioner comprising control means (40) configured to perform an operation of increasing the degree of opening of the outdoor expansion valve (18).
請求項1において、
上記制御手段(40)は、上記デフロスト運転中に、上記室外膨張弁(18)の開度を絞る動作を行った後、上記圧縮機(11)の吸入冷媒の過熱度または吐出冷媒の過熱度が所定値を超えると、上記冷媒回路(10)の冷媒循環量が所定値以下まで減少したと判断して上記室外膨張弁(18)の開度を増大させる動作を行うように構成されている
ことを特徴とする空気調和装置。
In claim 1,
The control means (40) performs an operation of reducing the degree of opening of the outdoor expansion valve (18) during the defrost operation, and then the degree of superheat of the suction refrigerant of the compressor (11) or the degree of superheat of the discharge refrigerant. When the value exceeds a predetermined value, it is determined that the refrigerant circulation amount of the refrigerant circuit (10) has decreased to a predetermined value or less, and an operation for increasing the opening of the outdoor expansion valve (18) is performed. An air conditioner characterized by that.
請求項1において、
上記制御手段(40)は、上記デフロスト運転中に、上記室外膨張弁(18)の開度を絞る動作を行った後、上記圧縮機(11)の吸入冷媒の圧力が所定値未満となると、上記冷媒回路(10)の冷媒循環量が所定値以下まで減少したと判断して上記室外膨張弁(18)の開度を増大させる動作を行うように構成されている
ことを特徴とする空気調和装置。
In claim 1,
The control means (40) performs an operation of reducing the opening of the outdoor expansion valve (18) during the defrost operation, and then the pressure of the refrigerant sucked in the compressor (11) becomes less than a predetermined value. It is judged that the refrigerant circulation amount of the refrigerant circuit (10) has decreased to a predetermined value or less, and is configured to perform an operation of increasing the opening of the outdoor expansion valve (18). apparatus.
請求項1において、
上記冷媒回路(10)は、上記室内熱交換器(13)のための室内膨張弁(14)を有し、
上記制御手段(40)は、上記デフロスト運転中に、上記圧縮機(11)の吸入冷媒の過熱度または吸入冷媒の圧力が所定値となるように上記室内膨張弁(14)の開度を制御する一方、上記デフロスト運転中に、上記室外膨張弁(18)の開度を絞る動作を行った後、上記室内膨張弁(14)の開度が所定値を超えると、上記冷媒回路(10)の冷媒循環量が所定値以下まで減少したと判断して上記室外膨張弁(18)の開度を増大させる動作を行うように構成されている
ことを特徴とする空気調和装置。
In claim 1,
The refrigerant circuit (10) has an indoor expansion valve (14) for the indoor heat exchanger (13),
The control means (40) controls the degree of opening of the indoor expansion valve (14) during the defrost operation so that the degree of superheat of the suction refrigerant of the compressor (11) or the pressure of the suction refrigerant becomes a predetermined value. On the other hand, after the operation of reducing the opening of the outdoor expansion valve (18) is performed during the defrosting operation, if the opening of the indoor expansion valve (14) exceeds a predetermined value, the refrigerant circuit (10) An air conditioner configured to perform an operation of increasing the opening of the outdoor expansion valve (18) by determining that the refrigerant circulation amount has decreased to a predetermined value or less.
請求項1乃至4の何れか1項において、
上記制御手段(40)は、上記デフロスト運転中に、上記室外膨張弁(18)の開度を増大させる動作を行った後、上記冷媒回路(10)の冷媒循環量が所定値以上まで増大すると上記開度を増大させた室外膨張弁(18)の開度を再び絞る動作を行うように構成されている
ことを特徴とする空気調和装置。
In any one of Claims 1 thru | or 4,
When the control means (40) performs an operation of increasing the opening of the outdoor expansion valve (18) during the defrost operation, the refrigerant circulation amount of the refrigerant circuit (10) increases to a predetermined value or more. An air conditioner configured to perform an operation of reducing the opening degree of the outdoor expansion valve (18) whose opening degree is increased again.
請求項5において、
上記制御手段(40)は、上記デフロスト運転中に、上記室外膨張弁(18)の開度を増大させる動作を行った後、上記圧縮機(11)の吸入冷媒の過熱度または吐出冷媒の過熱度が所定値未満となると、上記冷媒回路(10)の冷媒循環量が所定値以上まで増大したと判断して上記室外膨張弁(18)の開度を再び絞る動作を行うように構成されている
ことを特徴とする空気調和装置。
In claim 5,
The control means (40) performs an operation of increasing the degree of opening of the outdoor expansion valve (18) during the defrost operation, and then the degree of superheat of the refrigerant sucked in the compressor (11) or the superheat of the discharged refrigerant. When the degree is less than a predetermined value, it is determined that the refrigerant circulation amount of the refrigerant circuit (10) has increased to a predetermined value or more, and the opening of the outdoor expansion valve (18) is reduced again. An air conditioner characterized by comprising:
請求項5において、
上記制御手段(40)は、上記デフロスト運転中に、上記室外膨張弁(18)の開度を増大させる動作を行った後、上記圧縮機(11)の吸入冷媒の圧力が所定値を超えると、上記冷媒回路(10)の冷媒循環量が所定値以上まで増大したと判断して上記室外膨張弁(18)の開度を再び絞る動作を行うように構成されている
ことを特徴とする空気調和装置。
In claim 5,
The control means (40) performs an operation of increasing the opening of the outdoor expansion valve (18) during the defrost operation, and then the pressure of the refrigerant sucked in the compressor (11) exceeds a predetermined value. The air is characterized in that it is configured to perform the operation of reducing the opening degree of the outdoor expansion valve (18) again by judging that the refrigerant circulation amount of the refrigerant circuit (10) has increased to a predetermined value or more. Harmony device.
請求項5において、
上記冷媒回路(10)は、上記室内熱交換器(13)のための室内膨張弁(14)を有し、
上記制御手段(40)は、上記デフロスト運転中に、上記圧縮機(11)の吸入冷媒の過熱度または吸入冷媒の圧力が所定値となるように上記室内膨張弁(14)の開度を制御する一方、上記デフロスト運転中に、上記室外膨張弁(18)の開度を増大させる動作を行った後、上記室内膨張弁(14)の開度が所定値未満となると、上記冷媒回路(10)の冷媒循環量が所定値以上まで増大したと判断して上記室外膨張弁(18)の開度を再び絞る動作を行うように構成されている
ことを特徴とする空気調和装置。
In claim 5,
The refrigerant circuit (10) has an indoor expansion valve (14) for the indoor heat exchanger (13),
The control means (40) controls the degree of opening of the indoor expansion valve (14) during the defrost operation so that the degree of superheat of the suction refrigerant of the compressor (11) or the pressure of the suction refrigerant becomes a predetermined value. On the other hand, after the operation of increasing the opening degree of the outdoor expansion valve (18) is performed during the defrost operation, when the opening degree of the indoor expansion valve (14) becomes less than a predetermined value, the refrigerant circuit (10 The air conditioning apparatus is configured to perform an operation of reducing the opening degree of the outdoor expansion valve (18) again by determining that the refrigerant circulation amount of () has increased to a predetermined value or more.
JP2009049018A 2009-03-03 2009-03-03 Air conditioner Active JP5310101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049018A JP5310101B2 (en) 2009-03-03 2009-03-03 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009049018A JP5310101B2 (en) 2009-03-03 2009-03-03 Air conditioner

Publications (2)

Publication Number Publication Date
JP2010203673A true JP2010203673A (en) 2010-09-16
JP5310101B2 JP5310101B2 (en) 2013-10-09

Family

ID=42965331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049018A Active JP5310101B2 (en) 2009-03-03 2009-03-03 Air conditioner

Country Status (1)

Country Link
JP (1) JP5310101B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059945A1 (en) * 2013-10-24 2015-04-30 三菱電機株式会社 Air conditioner
JP2016035355A (en) * 2014-08-01 2016-03-17 ダイキン工業株式会社 Refrigerating device
JP2017044419A (en) * 2015-08-27 2017-03-02 アイシン精機株式会社 Engine driving type air conditioner
CN106958889A (en) * 2016-01-12 2017-07-18 松下知识产权经营株式会社 Conditioner
JP2018013287A (en) * 2016-07-20 2018-01-25 三菱重工サーマルシステムズ株式会社 Air conditioner and control method of air conditioner
JPWO2017145826A1 (en) * 2016-02-24 2018-12-13 Agc株式会社 Refrigeration cycle equipment
JPWO2018173297A1 (en) * 2017-03-24 2019-11-07 東芝キヤリア株式会社 Air conditioner
WO2024039042A1 (en) * 2022-08-19 2024-02-22 삼성전자주식회사 Air conditioner and control method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317356A (en) * 1986-07-10 1988-01-25 三菱電機株式会社 Control circuit for air conditioner
JPH04344085A (en) * 1991-05-17 1992-11-30 Daikin Ind Ltd Defrosting operation control device for refrigerating apparatus
JP2004278813A (en) * 2003-03-12 2004-10-07 Sanyo Electric Co Ltd Air-conditioner and its controlling method
JP2005003250A (en) * 2003-06-11 2005-01-06 Toshiba Kyaria Kk Air conditioner and its control method
JP2007147242A (en) * 2005-11-30 2007-06-14 Daikin Ind Ltd Air conditioner
JP2007322038A (en) * 2006-05-31 2007-12-13 Hitachi Appliances Inc Air conditioner
JP2008128498A (en) * 2006-11-16 2008-06-05 Hitachi Appliances Inc Multi-type air conditioner
JP2008164205A (en) * 2006-12-27 2008-07-17 Daikin Ind Ltd Refrigerating device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317356A (en) * 1986-07-10 1988-01-25 三菱電機株式会社 Control circuit for air conditioner
JPH04344085A (en) * 1991-05-17 1992-11-30 Daikin Ind Ltd Defrosting operation control device for refrigerating apparatus
JP2004278813A (en) * 2003-03-12 2004-10-07 Sanyo Electric Co Ltd Air-conditioner and its controlling method
JP2005003250A (en) * 2003-06-11 2005-01-06 Toshiba Kyaria Kk Air conditioner and its control method
JP2007147242A (en) * 2005-11-30 2007-06-14 Daikin Ind Ltd Air conditioner
JP2007322038A (en) * 2006-05-31 2007-12-13 Hitachi Appliances Inc Air conditioner
JP2008128498A (en) * 2006-11-16 2008-06-05 Hitachi Appliances Inc Multi-type air conditioner
JP2008164205A (en) * 2006-12-27 2008-07-17 Daikin Ind Ltd Refrigerating device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105723168B (en) * 2013-10-24 2018-05-11 三菱电机株式会社 Air-conditioning device
CN105723168A (en) * 2013-10-24 2016-06-29 三菱电机株式会社 Air conditioner
JP6017058B2 (en) * 2013-10-24 2016-10-26 三菱電機株式会社 Air conditioner
JPWO2015059945A1 (en) * 2013-10-24 2017-03-09 三菱電機株式会社 Air conditioner
WO2015059945A1 (en) * 2013-10-24 2015-04-30 三菱電機株式会社 Air conditioner
US10775060B2 (en) 2013-10-24 2020-09-15 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2016035355A (en) * 2014-08-01 2016-03-17 ダイキン工業株式会社 Refrigerating device
JP2017044419A (en) * 2015-08-27 2017-03-02 アイシン精機株式会社 Engine driving type air conditioner
CN106958889A (en) * 2016-01-12 2017-07-18 松下知识产权经营株式会社 Conditioner
CN106958889B (en) * 2016-01-12 2019-08-20 松下知识产权经营株式会社 Conditioner
JPWO2017145826A1 (en) * 2016-02-24 2018-12-13 Agc株式会社 Refrigeration cycle equipment
JP2018013287A (en) * 2016-07-20 2018-01-25 三菱重工サーマルシステムズ株式会社 Air conditioner and control method of air conditioner
JPWO2018173297A1 (en) * 2017-03-24 2019-11-07 東芝キヤリア株式会社 Air conditioner
WO2024039042A1 (en) * 2022-08-19 2024-02-22 삼성전자주식회사 Air conditioner and control method therefor

Also Published As

Publication number Publication date
JP5310101B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5125116B2 (en) Refrigeration equipment
JP5310101B2 (en) Air conditioner
US9506674B2 (en) Air conditioner including a bypass pipeline for a defrosting operation
EP2128542B1 (en) Air conditioner
JP5213817B2 (en) Air conditioner
JP4069947B2 (en) Refrigeration equipment
JP4969608B2 (en) Air conditioner
JP4462435B2 (en) Refrigeration equipment
JP2008082589A (en) Air conditioner
JP6880204B2 (en) Air conditioner
JP2010164257A (en) Refrigerating cycle device and method of controlling the refrigerating cycle device
EP2623897B1 (en) Refrigeration cycle equipment
JP5258197B2 (en) Air conditioning system
JP2005121362A (en) Controller and method for controlling refrigerant temperature for air conditioner
JP2009145032A (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP2009243842A (en) Operation method of multiple-type air conditioner and outdoor unit
CN114364933B (en) air conditioner
JP6715655B2 (en) Cooling system
JP2021055931A (en) Heat pump cycle device
KR101692243B1 (en) Heat pump with cascade refrigerating cycle
JP7034227B1 (en) Air conditioner and management device
JP6964803B2 (en) Air conditioner
JP5927500B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP6932551B2 (en) Heat exchange system and its control method
JP2009115336A (en) Refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R151 Written notification of patent or utility model registration

Ref document number: 5310101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151