JP2017156003A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2017156003A
JP2017156003A JP2016038860A JP2016038860A JP2017156003A JP 2017156003 A JP2017156003 A JP 2017156003A JP 2016038860 A JP2016038860 A JP 2016038860A JP 2016038860 A JP2016038860 A JP 2016038860A JP 2017156003 A JP2017156003 A JP 2017156003A
Authority
JP
Japan
Prior art keywords
refrigerant
indoor
unit
indoor unit
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016038860A
Other languages
Japanese (ja)
Other versions
JP6716960B2 (en
Inventor
康弘 岡
Yasuhiro Oka
康弘 岡
松永 隆廣
Takahiro Matsunaga
隆廣 松永
隆志 木村
Takashi Kimura
隆志 木村
恵明 須山
Yoshiaki Suyama
恵明 須山
廣太郎 戸矢
Kotaro Toya
廣太郎 戸矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2016038860A priority Critical patent/JP6716960B2/en
Publication of JP2017156003A publication Critical patent/JP2017156003A/en
Application granted granted Critical
Publication of JP6716960B2 publication Critical patent/JP6716960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner that allows refrigerator oil stagnating in an indoor machine in heating operation together with a liquid refrigerant to flow out of the indoor machine when an outdoor machine is installed at a position higher than a plurality of indoor machines.SOLUTION: A CPU 210 determines whether there is an indoor machine such that a refrigerant supercooling degree SC is equal to or larger than a liquid refrigerant stagnation-time supercooling degree SCp. On determining that there is an indoor machine such that a refrigerant supercooling degree SC is equal to or larger than a liquid refrigerant stagnation-time supercooling degree SCp, the CPU 210 starts measuring a liquid refrigerant stagnation time tlr which is a time for which the refrigerant supercooling degree SC is equal to or larger than the liquid refrigerant stagnation-time supercooling degree SCp, and determines whether the time reaches or exceeds a predetermined time tp. On determining that the liquid refrigerant stagnation time tlr reaches or exceeds the predetermined time tp, the CPU 210 calculates an average refrigerant supercooling degree SCv using refrigerant supercooling degrees Sc of respective indoor machines, and performs oil outflow control to adjust openings of respective indoor expansion valves so that the refrigerant supercooling degrees SC of the respective indoor machine reach the average refrigerant supercooling degree SCv.SELECTED DRAWING: Figure 3

Description

本発明は、少なくとも1台の室外機に複数台の室内機が冷媒配管で接続された空気調和装置に関する。   The present invention relates to an air conditioner in which a plurality of indoor units are connected to a refrigerant pipe by at least one outdoor unit.

従来、少なくとも1台の室外機に複数台の室内機が液管とガス管で接続された空気調和装置では、室外機の設置場所と各室内機の設置場所の高低差や、各室内機間の高低差を考慮して冷媒回路を制御することで、各室内機で十分な空調能力を発揮できるようにしたものが提案されている。   Conventionally, in an air conditioner in which a plurality of indoor units are connected to at least one outdoor unit by liquid pipes and gas pipes, the difference in height between the location of the outdoor unit and the location of each indoor unit, By controlling the refrigerant circuit in consideration of the height difference between the two, it has been proposed that each indoor unit can exhibit a sufficient air conditioning capability.

例えば、特許文献1に記載の空気調和装置は、圧縮機と四方弁と室外熱交換器と室外ファンと室外膨張弁を備えた室外機を地上に設置する一方、室内熱交換器と室内膨張弁と室内ファンを備えた2台の室内機が高低差をもって(特許文献1では、建物の1階に1台の室内機が、4階にもう1台の室内機が各々)室外機より高い場所に設置され、2台の室内機と室外機を冷媒配管で接続して冷媒回路を形成している。   For example, an air conditioner described in Patent Document 1 installs an outdoor unit including a compressor, a four-way valve, an outdoor heat exchanger, an outdoor fan, and an outdoor expansion valve on the ground, while the indoor heat exchanger and the indoor expansion valve And two indoor units equipped with indoor fans have a height difference (in Patent Document 1, one indoor unit on the first floor of the building and another indoor unit on the fourth floor, respectively) higher than the outdoor unit The refrigerant circuit is formed by connecting the two indoor units and the outdoor unit with refrigerant piping.

この空気調和装置で冷房運転を行うとき、室外機で凝縮し室外機から液管に流入した液冷媒は、重力に逆らって各室内機へと流れるので、高い位置に設置された室内機の室内膨張弁の上流側(室外機側)における液冷媒の圧力は、低い位置に設置された室内機の室内膨張弁の上流側における液冷媒の圧力よりも低くなる。このため、高い位置に設置された室内機の室内膨張弁の上流側の冷媒圧力と下流側(室内熱交換器側)の冷媒圧力の圧力差が、低い位置に設置された室内機の室内膨張弁の上流側の冷媒圧力と下流側の冷媒圧力の圧力差に比べて小さくなる。室内膨張弁の上流側と下流側との圧力差が小さいほど室内膨張弁を流れる冷媒量が少なくなるので、低い位置に設置された室内機に多くの冷媒が流れる一方、高い位置に設置された室内機に流れる冷媒量が減少して十分な冷房能力が得られない虞がある。   When performing cooling operation with this air conditioner, the liquid refrigerant condensed in the outdoor unit and flowing into the liquid pipe from the outdoor unit flows into each indoor unit against the gravity, so the indoor unit installed at a high position The pressure of the liquid refrigerant on the upstream side (outdoor unit side) of the expansion valve is lower than the pressure of the liquid refrigerant on the upstream side of the indoor expansion valve of the indoor unit installed at a low position. For this reason, the indoor expansion of the indoor unit installed at a low position is the difference between the refrigerant pressure upstream of the indoor expansion valve of the indoor unit installed at a high position and the refrigerant pressure downstream (the indoor heat exchanger side). It becomes smaller than the pressure difference between the refrigerant pressure upstream of the valve and the refrigerant pressure downstream. The smaller the pressure difference between the upstream side and the downstream side of the indoor expansion valve, the smaller the amount of refrigerant flowing through the indoor expansion valve. Therefore, more refrigerant flows to the indoor unit installed in the lower position, while it is installed in the higher position. There is a possibility that the amount of refrigerant flowing to the indoor unit decreases and sufficient cooling capacity cannot be obtained.

そこで、特許文献1の空気調和装置では、低い位置に設置された室内機の室内膨張弁の開度を、高い位置に設置された室内機の室内膨張弁の開度より所定開度小さくすることで、低い位置に設置された室内機における冷媒流量を少なくし、高い位置に設置された室内機における冷媒流量を増やしている。これにより、室外機を地上に設置する一方、2台の室内機が高低差をもって室外機より高い場所に設置されている空気調和装置であっても、高い位置に設置された室内機で十分な冷房能力を発揮できる。   Therefore, in the air conditioner of Patent Document 1, the opening degree of the indoor expansion valve of the indoor unit installed at a low position is made smaller than the opening degree of the indoor expansion valve of the indoor unit installed at a high position by a predetermined opening degree. Thus, the refrigerant flow rate in the indoor unit installed at the low position is decreased, and the refrigerant flow rate in the indoor unit installed at the high position is increased. Thereby, while the outdoor unit is installed on the ground, even if the air conditioner is installed in a place where the two indoor units are higher than the outdoor unit with a height difference, the indoor unit installed at a high position is sufficient. Can demonstrate cooling capacity.

特開平4−28970号公報JP-A-4-28970

ところで、特許文献1の空気調和装置とは異なり、各室内機が高低差をもって設置され、かつ、室外機が各室内機より高い位置に設置されている空気調和装置で暖房運転を行うときは、以下の記載する問題があった。   By the way, unlike the air conditioner of Patent Document 1, when each indoor unit is installed with a height difference, and when the outdoor unit performs a heating operation with an air conditioner installed at a position higher than each indoor unit, There were the following problems.

暖房運転では、圧縮機から吐出されたガス冷媒は各室内機の室内熱交換器に流入して凝縮するが、室内熱交換器で凝縮し液管に流入した液冷媒が高い位置に設置された室外機に向かい重力に逆らって流れるため、低い位置に設置された室内機程、当該室内機から液管に流出した液冷媒が室外機に向かって流れにくくなる。これにより、低い位置に設置された室内機の室内膨張弁の下流側(室外機側)における液冷媒の圧力は、高い位置に設置された室内機の室内膨張弁の下流側における液冷媒の圧力よりも高くなる。従って、低い位置に設置された室内機の室内膨張弁の上流側(室内熱交換器側)の冷媒圧力と下流側の冷媒圧力の圧力差が、高い位置に設置された室内機の室内膨張弁の上流側の冷媒圧力と下流側の冷媒圧力の圧力差に比べて小さくなる。   In the heating operation, the gas refrigerant discharged from the compressor flows into the indoor heat exchanger of each indoor unit and condenses, but the liquid refrigerant condensed in the indoor heat exchanger and flowing into the liquid pipe is installed at a high position. Since the air flows toward the outdoor unit against the gravity, the indoor unit installed at a lower position, the liquid refrigerant flowing out from the indoor unit to the liquid pipe is less likely to flow toward the outdoor unit. Thereby, the pressure of the liquid refrigerant on the downstream side (outdoor unit side) of the indoor expansion valve of the indoor unit installed at the low position is the pressure of the liquid refrigerant on the downstream side of the indoor expansion valve of the indoor unit installed at the high position. Higher than. Therefore, the indoor expansion valve of the indoor unit installed at a position where the pressure difference between the refrigerant pressure on the upstream side (indoor heat exchanger side) and the refrigerant pressure on the downstream side of the indoor expansion valve of the indoor unit installed at a low position is high. The pressure difference between the refrigerant pressure on the upstream side and the refrigerant pressure on the downstream side becomes smaller.

室内膨張弁の上流側の冷媒圧力と下流側の冷媒圧力との圧力差が小さいほど室内膨張弁を流れる冷媒量が少なくなるので、高い位置に設置された室内機に多くの冷媒が流れる一方、低い位置に設置された室内機に流れる冷媒量が減少する。特に、低い位置に設置された室内機と高い位置に設置された室内機との高低差が大きいときは、低い位置に設置された室内機の室内膨張弁の上流側の冷媒圧力と下流側の冷媒圧力との圧力差がほぼゼロとなって当該室内機から室外機に向けて液冷媒が流れなくなる、つまり、当該室内機に液冷媒が滞留する。この場合、圧縮機から冷媒とともに吐出されて冷媒とともに低い位置に設置された室内機に流入した冷凍機油も当該室内機に液冷媒とともに滞留するため、圧縮機に戻る冷凍機油量が減少して圧縮機が潤滑不良となる恐れがあった。   The smaller the pressure difference between the refrigerant pressure upstream of the indoor expansion valve and the refrigerant pressure downstream, the smaller the amount of refrigerant flowing through the indoor expansion valve, so that more refrigerant flows to the indoor unit installed at a high position, The amount of refrigerant flowing to the indoor unit installed at a low position decreases. In particular, when the height difference between an indoor unit installed at a low position and an indoor unit installed at a high position is large, the refrigerant pressure on the upstream side of the indoor expansion valve of the indoor unit installed at a low position and the downstream side The pressure difference from the refrigerant pressure becomes almost zero, and the liquid refrigerant does not flow from the indoor unit toward the outdoor unit, that is, the liquid refrigerant stays in the indoor unit. In this case, since the refrigerating machine oil discharged from the compressor together with the refrigerant and flowing into the indoor unit installed at a low position together with the refrigerant stays with the liquid refrigerant in the indoor unit, the amount of refrigerating machine oil returning to the compressor is reduced and compressed. The machine could become poorly lubricated.

本発明は以上述べた問題点を解決するものであって、室外機が複数の室内機より高い位置に設置されている場合に、暖房運転時に室内機に液冷媒とともに滞留する冷凍機油を当該室内機から流出させる空気調和装置を提供することを目的とする。   The present invention solves the above-described problems, and when the outdoor unit is installed at a position higher than the plurality of indoor units, the refrigerating machine oil staying with the liquid refrigerant in the indoor unit during the heating operation is supplied to the indoor unit. An object of the present invention is to provide an air conditioner that flows out of a machine.

上記の課題を解決するために、本発明の空気調和装置は、圧縮機とこの圧縮機から吐出される冷媒の圧力である吐出圧力を検出する吐出圧力検出手段を有する室外機と、室内熱交換器と室内膨張弁と室内熱交換器が凝縮器として機能しているときに室内熱交換器から流出する冷媒の温度である熱交出口温度を検出する液側温度検出手段を有する複数の室内機を有し、室外機が複数の室内機より上方に設置されるとともに複数の室内機の設置場所に高低差があるものである。そして、室内熱交換器が凝縮器として機能しているときに、複数の室内機に圧縮機から冷媒とともに吐出された冷凍機油が滞留していることを示す油滞留条件が成立している室内機がある場合は、各室内機の冷媒過冷却度が冷媒過冷却度の最大値と最小値を用いて求める平均冷媒過冷却度となるように、あるいは、各室内機の熱交出口温度が熱交出口温度の最大値と最小値を用いて求める平均熱交出口温度となるように、各室内膨張弁の開度を調整する油流出制御を実行する制御手段を有する。   In order to solve the above problems, an air conditioner according to the present invention includes an outdoor unit having a compressor and a discharge pressure detecting means for detecting a discharge pressure that is a pressure of a refrigerant discharged from the compressor, and an indoor heat exchange. A plurality of indoor units having liquid side temperature detecting means for detecting a heat exchange outlet temperature which is a temperature of a refrigerant flowing out of the indoor heat exchanger when the condenser, the indoor expansion valve and the indoor heat exchanger function as a condenser The outdoor unit is installed above the plurality of indoor units, and the installation locations of the plurality of indoor units have a height difference. And when the indoor heat exchanger is functioning as a condenser, the indoor unit in which the oil retention condition which shows that the refrigerating machine oil discharged with the refrigerant | coolant from the compressor is retaining in several indoor units is hold | maintained If there is, the refrigerant subcooling degree of each indoor unit becomes the average refrigerant subcooling degree obtained using the maximum and minimum values of the refrigerant subcooling degree, or the heat exchange outlet temperature of each indoor unit is hot. Control means for performing oil outflow control for adjusting the opening degree of each indoor expansion valve so as to obtain an average heat exchange outlet temperature obtained using the maximum value and the minimum value of the exchange outlet temperature.

上記のように構成した本発明の空気調和装置によれば、室内熱交換器が凝縮器として機能しているとき、つまり、暖房運転時に室内機に液冷媒とともに滞留する冷凍機油を当該室内機から流出させる油流出制御を実行する。これにより、圧縮機に十分な量の冷凍機油を戻せるので、圧縮機が循環不良となることを防止できる。   According to the air conditioner of the present invention configured as described above, when the indoor heat exchanger functions as a condenser, that is, the refrigerating machine oil staying with the liquid refrigerant in the indoor unit during the heating operation is discharged from the indoor unit. Execute oil spill control to spill. Thereby, since sufficient quantity of freezer oil can be returned to a compressor, it can prevent that a compressor becomes poor circulation.

本発明の実施形態における、空気調和装置の説明図であり、(A)は冷媒回路図、(B)は室外機制御手段および室内機制御手段のブロック図である。It is explanatory drawing of the air conditioning apparatus in embodiment of this invention, (A) is a refrigerant circuit figure, (B) is a block diagram of an outdoor unit control means and an indoor unit control means. 本発明の実施形態における、室内機および室外機の設置図である。It is an installation figure of an indoor unit and an outdoor unit in an embodiment of the present invention. 本発明の実施形態における、室外機制御部での処理を説明するフローチャートである。It is a flowchart explaining the process in the outdoor unit control part in embodiment of this invention.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、建物の屋上に設置される1台の室外機に、建物の各階に設置される3台の室内機が並列に接続され、全ての室内機で同時に冷房運転あるいは暖房運転が行える空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an embodiment, three indoor units installed on each floor of a building are connected in parallel to one outdoor unit installed on the roof of a building, and cooling operation or heating operation can be performed simultaneously on all indoor units An air conditioning apparatus will be described as an example. The present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention.

図1(A)および図2に示すように、本実施形態における空気調和装置1は、建物の屋上に設置される1台の室外機2と、建物の各階に設置され、室外機2に液管8およびガス管9で並列に接続された3台の室内機5a〜5cを備えている。詳細には、液管8は、一端が室外機2の閉鎖弁25に、他端が分岐して室内機5a〜5cの各液管接続部53a〜53cに、それぞれ接続されている。また、ガス管9は、一端が室外機2の閉鎖弁26に、他端が分岐して室内機5a〜5cの各ガス管接続部54a〜54cに、それぞれ接続されている。以上により、空気調和装置1の冷媒回路100が構成されている。   As shown in FIG. 1 (A) and FIG. 2, an air conditioner 1 in the present embodiment is installed on one floor of a building and on each floor of the building. Three indoor units 5 a to 5 c connected in parallel by a pipe 8 and a gas pipe 9 are provided. Specifically, the liquid pipe 8 has one end connected to the closing valve 25 of the outdoor unit 2 and the other end branched to be connected to the liquid pipe connecting portions 53a to 53c of the indoor units 5a to 5c. The gas pipe 9 has one end connected to the closing valve 26 of the outdoor unit 2 and the other end branched to be connected to the gas pipe connecting portions 54a to 54c of the indoor units 5a to 5c. The refrigerant circuit 100 of the air conditioner 1 is configured as described above.

まずは、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、室外膨張弁24と、液管8の一端が接続された閉鎖弁25と、ガス管9の一端が接続された閉鎖弁26と、冷媒貯留器であるアキュムレータ28と、室外ファン27を備えている。そして、室外ファン27を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路100の一部をなす室外機冷媒回路20を構成している。   First, the outdoor unit 2 will be described. The outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an outdoor expansion valve 24, a closing valve 25 to which one end of the liquid pipe 8 is connected, and one end of the gas pipe 9. And a close-up valve 26, an accumulator 28 as a refrigerant reservoir, and an outdoor fan 27. These devices other than the outdoor fan 27 are connected to each other through refrigerant pipes described in detail below to constitute an outdoor unit refrigerant circuit 20 that forms part of the refrigerant circuit 100.

圧縮機21は、インバータにより回転数が制御される図示しないモータによって駆動されることで、運転容量を可変できる能力可変型圧縮機である。圧縮機21の冷媒吐出側は、後述する四方弁22のポートaに吐出管41で接続されており、また、圧縮機21の冷媒吸入側は、アキュムレータ28の冷媒流出側に吸入管42で接続されている。   The compressor 21 is a variable capacity compressor that can vary its operating capacity by being driven by a motor (not shown) whose rotation speed is controlled by an inverter. The refrigerant discharge side of the compressor 21 is connected to a port a of a four-way valve 22 described later by a discharge pipe 41, and the refrigerant suction side of the compressor 21 is connected to the refrigerant outflow side of the accumulator 28 by a suction pipe 42. Has been.

四方弁22は、冷媒の流れる方向を切り換えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、上述したように圧縮機21の冷媒吐出側に吐出管41で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口に冷媒配管43で接続されている。ポートcは、アキュムレータ28の冷媒流入側に冷媒配管46で接続されている。そして、ポートdは、閉鎖弁26に室外機ガス管45で接続されている。   The four-way valve 22 is a valve for switching the direction in which the refrigerant flows, and includes four ports a, b, c, and d. The port a is connected to the refrigerant discharge side of the compressor 21 by the discharge pipe 41 as described above. The port b is connected to one refrigerant inlet / outlet of the outdoor heat exchanger 23 by a refrigerant pipe 43. The port c is connected to the refrigerant inflow side of the accumulator 28 by a refrigerant pipe 46. The port d is connected to the closing valve 26 by an outdoor unit gas pipe 45.

室外熱交換器23は、冷媒と、後述する室外ファン27の回転により室外機2の内部に取り込まれた外気を熱交換させるものである。室外熱交換器23の一方の冷媒出入口は、上述したように四方弁22のポートbに冷媒配管43で接続され、他方の冷媒出入口は室外機液管44で閉鎖弁25に接続されている。   The outdoor heat exchanger 23 exchanges heat between the refrigerant and outside air taken into the outdoor unit 2 by rotation of an outdoor fan 27 described later. As described above, one refrigerant inlet / outlet of the outdoor heat exchanger 23 is connected to the port b of the four-way valve 22 by the refrigerant pipe 43, and the other refrigerant inlet / outlet is connected to the closing valve 25 by the outdoor unit liquid pipe 44.

室外膨張弁24は、室外機液管44に設けられている。室外膨張弁24は電子膨張弁であり、その開度が調整されることで、室外熱交換器23に流入する冷媒量、あるいは、室外熱交換器23から流出する冷媒量を調整する。室外膨張弁24の開度は、空気調和装置1が冷房運転を行っている場合は全開とされる。また、空気調和装置1が暖房運転を行っている場合は、後述する吐出温度センサ33で検出した圧縮機21の吐出温度に応じてその開度を制御することで、吐出温度が性能上限値を超えないようにしている。   The outdoor expansion valve 24 is provided in the outdoor unit liquid pipe 44. The outdoor expansion valve 24 is an electronic expansion valve, and the amount of refrigerant flowing into the outdoor heat exchanger 23 or the amount of refrigerant flowing out of the outdoor heat exchanger 23 is adjusted by adjusting the opening thereof. The opening degree of the outdoor expansion valve 24 is fully opened when the air conditioner 1 is performing a cooling operation. In addition, when the air conditioner 1 is performing a heating operation, the opening temperature is controlled according to the discharge temperature of the compressor 21 detected by a discharge temperature sensor 33 described later, so that the discharge temperature has a performance upper limit value. I do not exceed it.

室外ファン27は樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン27は、図示しないファンモータによって回転することで図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を図示しない吹出口から室外機2の外部へ放出する。   The outdoor fan 27 is formed of a resin material and is disposed in the vicinity of the outdoor heat exchanger 23. The outdoor fan 27 is rotated by a fan motor (not shown) to take outside air from a suction port (not shown) into the outdoor unit 2, and the outdoor air heat exchanged with the refrigerant in the outdoor heat exchanger 23 is sent from the blower outlet (not shown) to the outdoor unit 2. To the outside.

アキュムレータ28は、上述したように、冷媒流入側が四方弁22のポートcに冷媒配管46で接続されるとともに、冷媒流出側が圧縮機21の冷媒吸入側に吸入管42で接続されている。アキュムレータ28は、冷媒配管46からアキュムレータ28の内部に流入した冷媒をガス冷媒と液冷媒に分離してガス冷媒のみを圧縮機21に吸入させる。   As described above, the accumulator 28 has the refrigerant inflow side connected to the port c of the four-way valve 22 via the refrigerant pipe 46 and the refrigerant outflow side connected to the refrigerant intake side of the compressor 21 via the suction pipe 42. The accumulator 28 separates the refrigerant flowing into the accumulator 28 from the refrigerant pipe 46 into a gas refrigerant and a liquid refrigerant, and causes the compressor 21 to suck only the gas refrigerant.

以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管41には、圧縮機21から吐出される冷媒の圧力である吐出圧力を検出する吐出圧力検出手段である吐出圧力センサ31と、圧縮機21から吐出される冷媒の温度を検出する吐出温度センサ33が設けられている。冷媒配管46におけるアキュムレータ28の冷媒流入口近傍には、圧縮機21に吸入される冷媒の圧力を検出する吸入圧力センサ32と、圧縮機21に吸入される冷媒の温度を検出する吸入温度センサ34とが設けられている。   In addition to the configuration described above, the outdoor unit 2 is provided with various sensors. As shown in FIG. 1A, a discharge pressure sensor 31 that is a discharge pressure detecting unit that detects a discharge pressure that is a pressure of a refrigerant discharged from the compressor 21 and a discharge pressure sensor 31 that discharges from the compressor 21 A discharge temperature sensor 33 for detecting the temperature of the refrigerant to be discharged is provided. Near the refrigerant inlet of the accumulator 28 in the refrigerant pipe 46, a suction pressure sensor 32 that detects the pressure of the refrigerant sucked into the compressor 21 and a suction temperature sensor 34 that detects the temperature of the refrigerant sucked into the compressor 21. And are provided.

室外機液管44における室外熱交換器23と室外膨張弁24との間には、室外熱交換器23に流入する冷媒の温度あるいは室外熱交換器23から流出する冷媒の温度を検出するための熱交温度センサ35が設けられている。そして、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ36が備えられている。   Between the outdoor heat exchanger 23 and the outdoor expansion valve 24 in the outdoor unit liquid pipe 44, the temperature of the refrigerant flowing into the outdoor heat exchanger 23 or the temperature of the refrigerant flowing out of the outdoor heat exchanger 23 is detected. A heat exchanger temperature sensor 35 is provided. An outdoor air temperature sensor 36 that detects the temperature of the outside air that flows into the outdoor unit 2, that is, the outside air temperature, is provided near the suction port (not shown) of the outdoor unit 2.

また、室外機2には、室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納されている制御基板に搭載されている。図1(B)に示すように、室外機制御手段200は、CPU210と、記憶部220と、通信部230と、センサ入力部240を備えている。   The outdoor unit 2 includes an outdoor unit control means 200. The outdoor unit control means 200 is mounted on a control board stored in an electrical component box (not shown) of the outdoor unit 2. As shown in FIG. 1B, the outdoor unit control means 200 includes a CPU 210, a storage unit 220, a communication unit 230, and a sensor input unit 240.

記憶部220は、ROMやRAMで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン27の制御状態等を記憶している。通信部230は、室内機5a〜5cとの通信を行うインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。   The storage unit 220 includes a ROM and a RAM, and stores a control program for the outdoor unit 2, detection values corresponding to detection signals from various sensors, control states of the compressor 21 and the outdoor fan 27, and the like. The communication unit 230 is an interface that performs communication with the indoor units 5a to 5c. The sensor input unit 240 captures detection results from various sensors of the outdoor unit 2 and outputs them to the CPU 210.

CPU210は、前述した室外機2の各センサでの検出結果をセンサ入力部240を介して取り込む。また、CPU210は、室内機5a〜5cから送信される制御信号を通信部230を介して取り込む。CPU210は、取り込んだ検出結果や制御信号に基づいて、圧縮機21や室外ファン27の駆動制御を行う。また、CPU210は、取り込んだ検出結果や制御信号に基づいて、四方弁22の切り換え制御を行う。さらには、CPU210は、取り込んだ検出結果や制御信号に基づいて、室外膨張弁24の開度調整を行う。   CPU210 takes in the detection result in each sensor of outdoor unit 2 mentioned above via sensor input part 240. FIG. In addition, the CPU 210 takes in control signals transmitted from the indoor units 5 a to 5 c via the communication unit 230. The CPU 210 performs drive control of the compressor 21 and the outdoor fan 27 based on the detection results and control signals taken in. In addition, the CPU 210 performs switching control of the four-way valve 22 based on the detection results and control signals taken in. Furthermore, the CPU 210 adjusts the opening degree of the outdoor expansion valve 24 based on the acquired detection result and control signal.

次に、3台の室内機5a〜5cについて説明する。3台の室内機5a〜5cは、室内熱交換器51a〜51cと、室内膨張弁52a〜52cと、分岐した液管8の他端が接続された液管接続部53a〜53cと、分岐したガス管9の他端が接続されたガス管接続部54a〜54cと、室内ファン55a〜55cを備えている。そして、室内ファン55a〜55cを除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路100の一部をなす室内機冷媒回路50a〜50cを構成している。尚、3台の室内機5a〜5cは全て同じ能力であり、暖房運転時の室内熱交換器51a〜51cの冷媒出口側における冷媒過冷却度を所定値(例えば、10deg)以下とできれば、各室内機で十分な暖房能力を発揮できるものである。   Next, the three indoor units 5a to 5c will be described. The three indoor units 5a to 5c are branched into indoor heat exchangers 51a to 51c, indoor expansion valves 52a to 52c, and liquid pipe connection portions 53a to 53c to which the other ends of the branched liquid pipes 8 are connected. Gas pipe connection parts 54a to 54c to which the other end of the gas pipe 9 is connected and indoor fans 55a to 55c are provided. And these each apparatus except indoor fan 55a-55c is mutually connected by each refrigerant | coolant piping explained in full detail below, and comprises the indoor unit refrigerant circuit 50a-50c which makes a part of refrigerant circuit 100. FIG. The three indoor units 5a to 5c all have the same capacity, and if the refrigerant supercooling degree on the refrigerant outlet side of the indoor heat exchangers 51a to 51c during the heating operation can be set to a predetermined value (for example, 10 deg) or less, The indoor unit can demonstrate sufficient heating capacity.

尚、室内機5a〜5cの構成は全て同じであるため、以下の説明では、室内機5aの構成についてのみ説明を行い、その他の室内機5b、5cについては説明を省略する。また、図1では、室内機5aの構成装置に付与した番号の末尾をaからbおよびcにそれぞれ変更したものが、室外機5aの構成装置と対応する室内機5b、5cの構成装置となる。   In addition, since the structure of all the indoor units 5a-5c is the same, in the following description, only the structure of the indoor unit 5a is demonstrated and description is abbreviate | omitted about the other indoor units 5b and 5c. Moreover, in FIG. 1, what changed the end of the number provided to the component apparatus of the indoor unit 5a from a to b and c becomes the component apparatus of the indoor units 5b and 5c corresponding to the component apparatus of the outdoor unit 5a. .

室内熱交換器51aは、冷媒と後述する室内ファン55aの回転により図示しない吸込口から室内機5aの内部に取り込まれた室内空気を熱交換させるものであり、一方の冷媒出入口と液管接続部53aが室内機液管71aで接続され、他方の冷媒出入口とガス管接続部54aが室内機ガス管72aで接続されている。室内熱交換器51aは、室内機5aが冷房運転を行う場合は蒸発器として機能し、室内機5aが暖房運転を行う場合は凝縮器として機能する。
尚、液管接続部53aやガス管接続部54aは、各冷媒配管が溶接やフレアナット等により接続されている。
The indoor heat exchanger 51a exchanges heat between indoor air taken into the indoor unit 5a from a suction port (not shown) by rotation of a refrigerant and an indoor fan 55a described later. 53a is connected by the indoor unit liquid pipe 71a, and the other refrigerant inlet / outlet and the gas pipe connecting part 54a are connected by the indoor unit gas pipe 72a. The indoor heat exchanger 51a functions as an evaporator when the indoor unit 5a performs a cooling operation, and functions as a condenser when the indoor unit 5a performs a heating operation.
Note that the refrigerant pipes of the liquid pipe connecting part 53a and the gas pipe connecting part 54a are connected by welding, flare nuts, or the like.

室内膨張弁52aは、室内機液管71aに設けられている。室内膨張弁52aは電子膨張弁であり、室内熱交換器51aが蒸発器として機能する場合すなわち室内機5aが冷房運転を行う場合は、その開度は、室内熱交換器51aの冷媒出口(ガス管接続部54a側)での冷媒過熱度が目標冷媒過熱度となるように調整される。ここで、目標冷媒過熱度とは、室内機5aで十分な冷房能力が発揮されるための冷媒過熱度である。また、室内膨張弁52aは、室内熱交換器51aが凝縮器として機能する場合すなわち室内機5aが暖房運転を行う場合は、その開度は、室内熱交換器51aの冷媒出口(液管接続部53a側)での冷媒過冷却度が後述する平均冷媒過冷却度となるように調整される。   The indoor expansion valve 52a is provided in the indoor unit liquid pipe 71a. The indoor expansion valve 52a is an electronic expansion valve, and when the indoor heat exchanger 51a functions as an evaporator, that is, when the indoor unit 5a performs a cooling operation, the opening degree of the indoor expansion valve 52a depends on the refrigerant outlet (gas gas) of the indoor heat exchanger 51a. The refrigerant superheat degree at the pipe connecting portion 54a side) is adjusted to be the target refrigerant superheat degree. Here, the target refrigerant superheat degree is a refrigerant superheat degree for exhibiting sufficient cooling capacity in the indoor unit 5a. Further, when the indoor heat exchanger 51a functions as a condenser, that is, when the indoor unit 5a performs a heating operation, the opening of the indoor expansion valve 52a is the refrigerant outlet (liquid pipe connection portion) of the indoor heat exchanger 51a. 53a side) is adjusted so that the refrigerant subcooling degree on the refrigerant side becomes an average refrigerant subcooling degree described later.

室内ファン55aは樹脂材で形成されており、室内熱交換器51aの近傍に配置されている。室内ファン55aは、図示しないファンモータによって回転することで、図示しない吸込口から室内機5aの内に室内空気を取り込み、室内熱交換器51aにおいて冷媒と熱交換した室内空気を図示しない吹出口から室内へ供給する。   The indoor fan 55a is formed of a resin material and is disposed in the vicinity of the indoor heat exchanger 51a. The indoor fan 55a is rotated by a fan motor (not shown) to take indoor air from the suction port (not shown) into the indoor unit 5a, and the indoor air exchanged with the refrigerant in the indoor heat exchanger 51a from the blower outlet (not shown). Supply indoors.

以上説明した構成の他に、室内機5aには各種のセンサが設けられている。室内機液管71aにおける室内熱交換器51aと室内膨張弁52aとの間には、室内熱交換器51aに流入あるいは室内熱交換器51aから流出する冷媒の温度を検出する液側温度検出手段である液側温度センサ61aが設けられている。室内機ガス管72aには、室内熱交換器51aから流出あるいは室内熱交換器51aに流入する冷媒の温度を検出するガス側温度センサ62aが設けられている。室内機5aの図示しない吸込口付近には、室内機5aの内部に流入する室内空気の温度、すなわち吸込温度を検出する吸込温度検出手段である吸込温度センサ63aが備えられている。そして、室内機5aの図示しない吹出口付近には、室内熱交換器51aで冷媒と熱交換を行って室内機5aから室内に放出される空気の温度、すなわち吹出温度を検出する吹出温度検出手段である吹出温度センサ64aが備えられている。   In addition to the configuration described above, the indoor unit 5a is provided with various sensors. Between the indoor heat exchanger 51a and the indoor expansion valve 52a in the indoor unit liquid pipe 71a, liquid side temperature detecting means for detecting the temperature of the refrigerant flowing into or out of the indoor heat exchanger 51a. A certain liquid side temperature sensor 61a is provided. The indoor unit gas pipe 72a is provided with a gas side temperature sensor 62a that detects the temperature of the refrigerant flowing out of the indoor heat exchanger 51a or flowing into the indoor heat exchanger 51a. Near the suction port (not shown) of the indoor unit 5a, there is provided a suction temperature sensor 63a which is a suction temperature detecting means for detecting the temperature of the indoor air flowing into the indoor unit 5a, that is, the suction temperature. In the vicinity of a blow-out opening (not shown) of the indoor unit 5a, blow-out temperature detecting means for detecting the temperature of the air discharged from the indoor unit 5a into the room by exchanging heat with the refrigerant in the indoor heat exchanger 51a, that is, the blow-out temperature. The blowout temperature sensor 64a is provided.

また、室内機5aには、室内機制御手段500aが備えられている。室内機制御手段500aは、室内機5aの図示しない電装品箱に格納された制御基板に搭載されており、図1(B)に示すように、CPU510aと、記憶部520aと、通信部530aと、センサ入力部540aとを備えている。   The indoor unit 5a includes an indoor unit control means 500a. The indoor unit control means 500a is mounted on a control board stored in an electrical component box (not shown) of the indoor unit 5a. As shown in FIG. 1B, a CPU 510a, a storage unit 520a, a communication unit 530a, And a sensor input unit 540a.

記憶部520aは、ROMやRAMで構成されており、室内機5aの制御プログラムや各種センサからの検出信号に対応した検出値、使用者による空調運転に関する設定情報等を記憶する。通信部530aは、室外機2および他の室内機5b、5cとの通信を行うインターフェイスである。センサ入力部540aは、室内機5aの各種センサでの検出結果を取り込んでCPU510aに出力する。   The storage unit 520a includes a ROM and a RAM, and stores a control program for the indoor unit 5a, detection values corresponding to detection signals from various sensors, setting information regarding air conditioning operation by the user, and the like. The communication unit 530a is an interface that communicates with the outdoor unit 2 and the other indoor units 5b and 5c. The sensor input unit 540a captures detection results from various sensors of the indoor unit 5a and outputs them to the CPU 510a.

CPU510aは、前述した室内機5aの各センサでの検出結果をセンサ入力部540aを介して取り込む。また、CPU510aは、使用者が図示しないリモコンを操作して設定した運転情報やタイマー運転設定等を含んだ信号を図示しないリモコン受光部を介して取り込む。また、CPU510aは、運転開始/停止信号や運転情報(設定温度や室内温度等)を含んだ制御信号を、通信部530aを介して室外機2に送信するとともに、室外機2が検出した吐出圧力等の情報を含む制御信号を通信部530aを介して室外機2から受信する。CPU510aは、取り込んだ検出結果やリモコンおよび室外機2から送信された信号に基づいて、室内膨張弁52aの開度調整や室内ファン55aの駆動制御を行う。
尚、以上説明した室外機制御手段200と室内機制御手段500a〜500cとで、本発明の制御手段が構成される。
The CPU 510a takes in the detection result of each sensor of the indoor unit 5a described above via the sensor input unit 540a. Further, the CPU 510a takes in a signal including operation information set by operating a remote controller (not shown), a timer operation setting, and the like via a remote control light receiving unit (not shown). Further, the CPU 510a transmits a control signal including an operation start / stop signal and operation information (set temperature, indoor temperature, etc.) to the outdoor unit 2 via the communication unit 530a, and discharge pressure detected by the outdoor unit 2. A control signal including such information is received from the outdoor unit 2 via the communication unit 530a. The CPU 510a performs the opening degree adjustment of the indoor expansion valve 52a and the drive control of the indoor fan 55a based on the acquired detection result and the signal transmitted from the remote controller and the outdoor unit 2.
The outdoor unit control unit 200 and the indoor unit control units 500a to 500c described above constitute the control unit of the present invention.

以上説明した空気調和装置1が、図2に示す建物600に設置されている。具体的には、室外機2が屋上(RF)に配置されており、室内機5aが3階(3F)、室内機5bが2階(2F)、室内機5cが1階(1F)に、それぞれ設置されている。そして、室外機2と室内機5a〜5cとは、上述した液管8とガス管9とで相互に接続されており、これら液管8とガス管9とは、図示しない建物600の壁面内や天井裏に埋設されている。尚、図2では、最上階である3階に設置されている室内機5aと最下階である1階に設置されている室内機5cとの高低差をHで表している。   The air conditioning apparatus 1 described above is installed in a building 600 shown in FIG. Specifically, the outdoor unit 2 is arranged on the roof (RF), the indoor unit 5a is on the third floor (3F), the indoor unit 5b is on the second floor (2F), and the indoor unit 5c is on the first floor (1F), Each is installed. And the outdoor unit 2 and the indoor units 5a-5c are mutually connected by the liquid pipe 8 and the gas pipe 9 which were mentioned above, and these liquid pipe 8 and the gas pipe 9 are in the wall surface of the building 600 which is not shown in figure. Or buried in the ceiling. In FIG. 2, the height difference between the indoor unit 5a installed on the third floor, which is the top floor, and the indoor unit 5c installed on the first floor, which is the bottom floor, is represented by H.

次に、本実施形態における空気調和装置1の空調運転時の冷媒回路100における冷媒の流れや各部の動作について、図1(A)を用いて説明する。尚、以下の説明では、室内機5a〜5cが暖房運転を行う場合について説明し、冷房/除霜運転を行う場合については詳細な説明を省略する。また、図1(A)における矢印は暖房運転時の冷媒の流れを示している。   Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 100 during the air conditioning operation of the air-conditioning apparatus 1 in the present embodiment will be described with reference to FIG. In the following description, the case where the indoor units 5a to 5c perform the heating operation will be described, and the detailed description will be omitted when the cooling / defrosting operation is performed. Moreover, the arrow in FIG. 1 (A) has shown the flow of the refrigerant | coolant at the time of heating operation.

図1(A)に示すように、室内機5a〜5cが暖房運転を行う場合、室外機制御手段200のCPU210は、四方弁22を実線で示す状態、すなわち、四方弁22のポートaとポートdが連通するよう、また、ポートbとポートcが連通するよう、切り換える。これにより、冷媒回路100が、室外熱交換器23が蒸発器として機能するとともに室内熱交換器51a〜51cが凝縮器として機能する暖房サイクルとなる。   As shown in FIG. 1A, when the indoor units 5a to 5c perform the heating operation, the CPU 210 of the outdoor unit control means 200 is in a state where the four-way valve 22 is indicated by a solid line, that is, the port a and the port of the four-way valve 22 Switching is performed so that d communicates and port b and port c communicate. Thereby, the refrigerant circuit 100 becomes a heating cycle in which the outdoor heat exchanger 23 functions as an evaporator and the indoor heat exchangers 51a to 51c function as condensers.

圧縮機21から吐出された高圧の冷媒は、吐出管41を流れて四方弁22に流入し、四方弁22から室外機ガス管45、閉鎖弁26、ガス管9、ガス管接続部54a〜54cの順に流れて室内機5a〜5cに流入する。室内機5a〜5cに流入した冷媒は、室内機ガス管72a〜72cを流れて室内熱交換器51a〜51cに流入し、室内ファン55a〜55cの回転により室内機5a〜5cの内部に取り込まれた室内空気と熱交換を行って凝縮する。このように、室内熱交換器51a〜51cが凝縮器として機能し、室内熱交換器51a〜51cで冷媒と熱交換を行って加熱された室内空気が図示しない吹出口から室内に吹き出されることによって、室内機5a〜5cが設置された室内の暖房が行われる。   The high-pressure refrigerant discharged from the compressor 21 flows through the discharge pipe 41 and flows into the four-way valve 22, and from the four-way valve 22 to the outdoor unit gas pipe 45, the closing valve 26, the gas pipe 9, and the gas pipe connection portions 54 a to 54 c. In this order and flow into the indoor units 5a to 5c. The refrigerant that has flowed into the indoor units 5a to 5c flows through the indoor unit gas pipes 72a to 72c, flows into the indoor heat exchangers 51a to 51c, and is taken into the indoor units 5a to 5c by the rotation of the indoor fans 55a to 55c. Heat exchanges with room air and condenses. In this way, the indoor heat exchangers 51a to 51c function as condensers, and the indoor air heated by exchanging heat with the refrigerant in the indoor heat exchangers 51a to 51c is blown into the room from a blower outlet (not shown). Thus, the room where the indoor units 5a to 5c are installed is heated.

室内熱交換器51a〜51cから流出した冷媒は室内機液管71a〜71cを流れ、室内膨張弁52a〜52cを通過して減圧される。減圧された冷媒は、室内機液管71a〜71cを流れて液管接続部53a〜53cを介して液管8に流入する。   The refrigerant flowing out of the indoor heat exchangers 51a to 51c flows through the indoor unit liquid pipes 71a to 71c, passes through the indoor expansion valves 52a to 52c, and is decompressed. The decompressed refrigerant flows through the indoor unit liquid pipes 71a to 71c and flows into the liquid pipe 8 through the liquid pipe connection portions 53a to 53c.

液管8を流れる冷媒は、閉鎖弁25を介して室外機2に流入する。室外機2に流入した冷媒は、室外機液管44を流れ、吐出温度センサ33で検出した圧縮機21の吐出温度に応じた開度とされた室外膨張弁24を通過するときにさらに減圧される。室外機液管44から室外熱交換器23に流入した冷媒は、室外ファン27の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。室外熱交換器23から流出した冷媒は、冷媒配管43、四方弁22、冷媒配管46、アキュムレータ28、吸入管42の順に流れ、圧縮機21に吸入されて再び圧縮される。   The refrigerant flowing through the liquid pipe 8 flows into the outdoor unit 2 through the closing valve 25. The refrigerant flowing into the outdoor unit 2 flows through the outdoor unit liquid pipe 44 and is further reduced in pressure when passing through the outdoor expansion valve 24 having an opening degree corresponding to the discharge temperature of the compressor 21 detected by the discharge temperature sensor 33. The The refrigerant flowing into the outdoor heat exchanger 23 from the outdoor unit liquid pipe 44 evaporates by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27. The refrigerant flowing out of the outdoor heat exchanger 23 flows in the order of the refrigerant pipe 43, the four-way valve 22, the refrigerant pipe 46, the accumulator 28, and the suction pipe 42, and is sucked into the compressor 21 and compressed again.

尚、室内機5a〜5cが冷房/除霜運転を行う場合、CPU210は、四方弁22を破線で示す状態、すなわち、四方弁22のポートaとポートbとが連通するよう、また、ポートcとポートdとが連通するように切り換える。これにより、冷媒回路100が、室外熱交換器23が凝縮器として機能するとともに室内熱交換器51a〜51cが蒸発器として機能する冷房サイクルとなる。   When the indoor units 5a to 5c perform the cooling / defrosting operation, the CPU 210 indicates that the four-way valve 22 is indicated by a broken line, that is, the port a and the port b of the four-way valve 22 communicate with each other. And so that port d communicates. Thereby, the refrigerant circuit 100 becomes a cooling cycle in which the outdoor heat exchanger 23 functions as a condenser and the indoor heat exchangers 51a to 51c function as evaporators.

次に、図1乃至図3を用いて、本実施形態の空気調和装置1において、本発明に関わる冷媒回路の動作やその作用、および、効果について説明する。尚、室内熱交換器51aが凝縮器として機能するときの液側温度センサ61a〜61cが、本発明の熱交出口温度センサとなる。   Next, with reference to FIGS. 1 to 3, the operation, action, and effect of the refrigerant circuit according to the present invention in the air-conditioning apparatus 1 of the present embodiment will be described. In addition, the liquid side temperature sensors 61a-61c when the indoor heat exchanger 51a functions as a condenser serve as the heat exchange outlet temperature sensor of the present invention.

図2に示すように、本実施形態の空気調和装置1では、室外機2が建物600の屋上に設置されるとともに室内機5a〜5cが各階に設置されている。つまり、室外機2が室内機5a〜5cより高い位置に設置されるとともに、室内機5aと室内機5cの設置場所にも高低差Hがある設置となっている。この場合に、空気調和装置1で暖房運転を行ったときは、以下のような問題がある。   As shown in FIG. 2, in the air conditioning apparatus 1 of this embodiment, the outdoor unit 2 is installed on the rooftop of the building 600, and the indoor units 5a to 5c are installed on each floor. That is, the outdoor unit 2 is installed at a position higher than the indoor units 5a to 5c, and the installation location of the indoor unit 5a and the indoor unit 5c has a height difference H. In this case, when the air conditioning apparatus 1 performs a heating operation, there are the following problems.

暖房運転では、圧縮機21から吐出されたガス冷媒は、吐出管41から四方弁22を介して室外機ガス管45を流れて室外機2から流出し、室内機5a〜5cの室内熱交換器51a〜51cに流入して凝縮する。このとき、室外機2が室内機5a〜5cより高い位置に設置されているために、室内熱交換器51a〜51cで凝縮し液管8に流出した液冷媒は、重力に逆らって室外機2に向かって液管8を流れることになる。   In the heating operation, the gas refrigerant discharged from the compressor 21 flows through the outdoor unit gas pipe 45 from the discharge pipe 41 through the four-way valve 22, flows out of the outdoor unit 2, and the indoor heat exchangers of the indoor units 5a to 5c. It flows into 51a-51c and condenses. At this time, since the outdoor unit 2 is installed at a position higher than the indoor units 5a to 5c, the liquid refrigerant condensed in the indoor heat exchangers 51a to 51c and flowing out to the liquid pipe 8 is against the gravity against the outdoor unit 2 Will flow through the liquid pipe 8.

従って、室外機2の設置位置に対して室内機5a〜5cの設置位置が低くなる程液管8に流出した液冷媒が室外機2に向かって流れにくくなる。このため、1階に設置されている室内機5cの室内膨張弁52cの下流側(室外機2側)における液冷媒の圧力は、他の階に設置されている室内機5a、5bの室内膨張弁52a、52bの下流側における液冷媒の圧力よりも高くなる。この結果、室内機5cの室内膨張弁52cの上流側(室内熱交換器51c側)の冷媒圧力と下流側の冷媒圧力の圧力差が、室内機5a、5bの室内膨張弁52a、52bの上流側の冷媒圧力と下流側の冷媒圧力の圧力差に比べて小さくなる。   Accordingly, the lower the installation position of the indoor units 5 a to 5 c with respect to the installation position of the outdoor unit 2, the more difficult the liquid refrigerant flowing out to the liquid pipe 8 flows toward the outdoor unit 2. Therefore, the pressure of the liquid refrigerant on the downstream side (outdoor unit 2 side) of the indoor expansion valve 52c of the indoor unit 5c installed on the first floor is the indoor expansion of the indoor units 5a and 5b installed on the other floors. It becomes higher than the pressure of the liquid refrigerant on the downstream side of the valves 52a and 52b. As a result, the pressure difference between the refrigerant pressure on the upstream side (indoor heat exchanger 51c side) of the indoor expansion valve 52c of the indoor unit 5c and the refrigerant pressure on the downstream side is upstream of the indoor expansion valves 52a and 52b of the indoor units 5a and 5b. It becomes smaller than the pressure difference between the refrigerant pressure on the side and the refrigerant pressure on the downstream side.

上記のような冷媒回路100の状態では、室内膨張弁52a〜52cの上流側の冷媒圧力と下流側の冷媒圧力の圧力差が小さいほど、室内膨張弁52a〜52cを流れる冷媒量が少なくなる。従って、1階に設置された室内機5cを流れる冷媒量は、他の室内機5a、5bを流れる冷媒量と比べて少なくなる。このことは、1階(一番低い位置)に設置された室内機5cと3階(一番高い位置)に設置された室内機5aとの高低差Hが大きくなる程顕著になり、高低差が大きくなる(例えば、50m)と室内機5cの室内膨張弁52cの上流側と下流側の圧力差がほぼゼロとなって室内機5cから室外機2に向かって液冷媒が流れなくなる、つまり、室内機5cに液冷媒が滞留する。この場合、圧縮機21から冷媒とともに冷媒回路100に吐出されて冷媒とともに冷媒回路100を流れて室内機5cに流入した冷凍機油も、室内機5cに液冷媒とともに滞留する。このため、圧縮機21に戻る冷凍機油量が減少して圧縮機21が潤滑不良となる恐れがあった。   In the state of the refrigerant circuit 100 as described above, the smaller the pressure difference between the refrigerant pressure upstream of the indoor expansion valves 52a to 52c and the refrigerant pressure downstream, the smaller the amount of refrigerant flowing through the indoor expansion valves 52a to 52c. Accordingly, the amount of refrigerant flowing through the indoor unit 5c installed on the first floor is smaller than the amount of refrigerant flowing through the other indoor units 5a and 5b. This becomes more significant as the height difference H between the indoor unit 5c installed on the first floor (lowest position) and the indoor unit 5a installed on the third floor (highest position) increases. Increases (for example, 50 m), the pressure difference between the upstream side and the downstream side of the indoor expansion valve 52c of the indoor unit 5c becomes almost zero, and the liquid refrigerant does not flow from the indoor unit 5c toward the outdoor unit 2, that is, The liquid refrigerant stays in the indoor unit 5c. In this case, the refrigeration oil discharged from the compressor 21 together with the refrigerant to the refrigerant circuit 100, flowing through the refrigerant circuit 100 together with the refrigerant, and flowing into the indoor unit 5c also stays with the liquid refrigerant in the indoor unit 5c. For this reason, the amount of refrigeration oil returning to the compressor 21 may decrease, and the compressor 21 may be poorly lubricated.

そこで、本発明では、空気調和装置1が暖房運転を行っているときに、室内機5a〜5cのうちで冷凍機油が滞留していることを示す油滞留条件が成立している室内機が存在する場合は、当該室内機から冷媒回路100に冷凍機油を流出させる油流出制御を実行する。ここで、油滞留条件とは、室内膨張弁52a〜52cの冷媒出口側(室外膨張弁52a〜52c側)における冷媒過冷却度が所定の液冷媒滞留時過冷却度(例えば、20deg)以上となっている状態が継続している時間である液冷媒滞留時間が所定時間(例えば、10分間)継続している室内機5a〜5cがあれば、当該室内機に圧縮機21に潤滑に支障をきたすことを示すものである。   Therefore, in the present invention, when the air conditioner 1 is performing the heating operation, among the indoor units 5a to 5c, there is an indoor unit that satisfies the oil retention condition indicating that the refrigerating machine oil is retained. When doing so, oil outflow control is performed so that the refrigeration oil flows out from the indoor unit to the refrigerant circuit 100. Here, the oil retention condition is that the refrigerant supercooling degree on the refrigerant outlet side (outdoor expansion valves 52a to 52c side) of the indoor expansion valves 52a to 52c is equal to or higher than a predetermined supercooling degree (for example, 20 deg) when the liquid refrigerant stays. If there is an indoor unit 5a to 5c in which the liquid refrigerant residence time, which is the time during which the state has been continued, continues for a predetermined time (for example, 10 minutes), the indoor unit may interfere with lubrication of the compressor 21. It shows that it comes.

尚、液冷媒滞留時過冷却度は予め試験等を行って求められて室外機制御手段200の記憶部220に記憶されているものであり、室内機5a〜5cに液冷媒が滞留して室内膨張弁52a〜52cの冷媒出口側(室外膨張弁52a〜52c側)における液冷媒温度が室温になじんで低い温度となったときの冷媒過冷却度に相当する。つまり、冷媒過冷却度が液冷媒滞留時過冷却度以上となっている室内機5a〜5cでは、当該室内機に液冷媒が滞留している。   Note that the degree of supercooling at the time of liquid refrigerant retention is obtained by performing a test or the like in advance and stored in the storage unit 220 of the outdoor unit control means 200, and the liquid refrigerant accumulates in the indoor units 5a to 5c. This corresponds to the degree of refrigerant supercooling when the liquid refrigerant temperature on the refrigerant outlet side (outdoor expansion valves 52a to 52c side) of the expansion valves 52a to 52c becomes a low temperature that is familiar with the room temperature. That is, in the indoor units 5a to 5c in which the degree of refrigerant supercooling is equal to or higher than the degree of supercooling during liquid refrigerant retention, the liquid refrigerant stays in the indoor unit.

また、油滞留条件の所定時間も予め試験等を行って求められて室外機制御手段200の記憶部220に記憶されているものである。室内機5a〜5cで上述した冷媒過冷却度が液冷媒滞留時過冷却度以上となっている状態、つまり、室内機5a〜5cに液冷媒が滞留している状態が継続している時間である液冷媒滞留時間が所定時間以上となれば、この所定時間の間、室内機5a〜5cから冷凍機油が流出して室外機2に戻らないことが原因で圧縮機21に潤滑に支障をきたす恐れがあることを示す。   Further, the predetermined time of the oil retention condition is also obtained in advance by performing a test or the like and stored in the storage unit 220 of the outdoor unit control means 200. In the indoor units 5a to 5c, the above-described refrigerant supercooling degree is equal to or higher than the liquid refrigerant retention supercooling degree, that is, the time in which the liquid refrigerant is staying in the indoor units 5a to 5c. If a certain liquid refrigerant residence time is equal to or longer than a predetermined time, the compressor 21 is troubled with lubrication because the refrigeration oil flows out of the indoor units 5a to 5c and does not return to the outdoor unit 2 during the predetermined time. Indicates that there is a fear.

そして、本発明の空気調和装置1では、暖房運転を行っているときに上記油滞留条件が成立している室内機5a〜5cが存在する場合に、以下に説明する油流出制御を実行する。油流出制御では、室内膨張弁52a〜52cの冷媒出口側における冷媒過冷却度を定期的(例えば、30秒毎)に算出し、算出した冷媒過冷却度のうち最大値と最小値を抽出してこれらの平均値である平均冷媒過冷却度を求める。次に、室内熱交換器51a〜51cの冷媒出口側における冷媒過冷却度が求めた平均冷媒過冷却度となるように室内機5a〜5cの室内膨張弁52a〜52cの開度を調整する。   And in the air conditioning apparatus 1 of this invention, when the indoor unit 5a-5c with which the said oil retention condition is satisfied exists during the heating operation, the oil outflow control demonstrated below is performed. In the oil spill control, the refrigerant supercooling degree on the refrigerant outlet side of the indoor expansion valves 52a to 52c is calculated periodically (for example, every 30 seconds), and the maximum value and the minimum value are extracted from the calculated refrigerant subcooling degree. Then, an average refrigerant supercooling degree that is an average value of these is obtained. Next, the opening degree of the indoor expansion valves 52a to 52c of the indoor units 5a to 5c is adjusted so that the refrigerant subcooling degree on the refrigerant outlet side of the indoor heat exchangers 51a to 51c becomes the average refrigerant subcooling degree.

例えば、空気調和装置1が暖房運転を行っているときに、室内機5aの冷媒過冷却度が6deg、室内機5bの冷媒過冷却度が10degである一方、室内機5cには液冷媒が滞留して冷媒過冷却度が液冷媒滞留時過冷却度:20degより大きい26degとなっているとする。そして、室内機5cで冷媒過冷却度が液冷媒滞留時過冷却度以上となっている状態が所定時間:10分間以上継続すれば、つまり、室内機5cで油滞留条件が成立すれば、室内機5cに滞留する冷凍機油を室内機5cから流出させるために油流出制御を実行する。   For example, when the air conditioner 1 is performing a heating operation, the refrigerant supercooling degree of the indoor unit 5a is 6 deg and the refrigerant subcooling degree of the indoor unit 5b is 10 deg, while liquid refrigerant is accumulated in the indoor unit 5c. It is assumed that the refrigerant supercooling degree is 26 deg., Which is larger than 20 deg. If the state in which the refrigerant supercooling degree is equal to or higher than the supercooling degree during liquid refrigerant retention in the indoor unit 5c continues for a predetermined time: 10 minutes or more, that is, if the oil retention condition is satisfied in the indoor unit 5c, Oil outflow control is executed to cause the refrigeration oil staying in the unit 5c to flow out from the indoor unit 5c.

油流出制御では、まず室内機5a〜5cの冷媒過冷却度の平均冷媒過冷却度(上記の例の場合では、最大値:26degと最小値:6degの平均値である13deg)を求め、求めた平均冷媒過冷却度より冷媒過冷却度の小さい室内機5aおよび5bでは、冷媒過冷却度を平均冷媒過冷却度まで上昇させるために室内膨張弁52a、52bの開度が絞られて、室内膨張弁52a、52bの下流側の冷媒圧力が低下する。   In the oil spill control, first, the average refrigerant supercooling degree of the refrigerant supercooling degree of the indoor units 5a to 5c (in the case of the above example, the maximum value: 26 deg and the minimum value: 13 deg which is an average value of 6 deg) is obtained and obtained. In the indoor units 5a and 5b having a refrigerant subcooling degree smaller than the average refrigerant subcooling degree, the opening degree of the indoor expansion valves 52a and 52b is reduced to increase the refrigerant subcooling degree to the average refrigerant subcooling degree. The refrigerant pressure on the downstream side of the expansion valves 52a and 52b decreases.

一方、平均冷媒過冷却度より冷媒過冷却度の大きい室内機5cでは、室内膨張弁52a、52bの下流側の冷媒圧力が低下することによって室内膨張弁52cの下流側の冷媒圧力も低下するために、室内膨張弁52cの上流側と下流側の圧力差が大きくなる。これにより、室内機5cの冷媒過冷却度を平均冷媒過冷却度まで低下させるために室内膨張弁52cの開度を大きくしてその開度が全開となっても、室内機5cの室内熱交換器51cに滞留する液冷媒が液管8に流出する。このとき、室内機5cからは、液冷媒とともに室内機5cに滞留していた冷凍機油が液管8に流出し、液冷媒とともに液管8を流れて室外機2に流入するので、圧縮機21に十分な量の冷凍機油が戻り圧縮機21が潤滑不良となることが防止される。   On the other hand, in the indoor unit 5c having a refrigerant subcooling degree larger than the average refrigerant subcooling degree, the refrigerant pressure on the downstream side of the indoor expansion valves 52c also decreases as the refrigerant pressure on the downstream side of the indoor expansion valves 52a and 52b decreases. In addition, the pressure difference between the upstream side and the downstream side of the indoor expansion valve 52c increases. Thereby, even if the opening degree of the indoor expansion valve 52c is increased to reduce the refrigerant subcooling degree of the indoor unit 5c to the average refrigerant subcooling degree and the opening degree is fully opened, the indoor heat exchange of the indoor unit 5c is performed. The liquid refrigerant staying in the vessel 51 c flows out to the liquid pipe 8. At this time, from the indoor unit 5c, the refrigeration oil staying in the indoor unit 5c together with the liquid refrigerant flows out to the liquid pipe 8, flows through the liquid pipe 8 together with the liquid refrigerant, and flows into the outdoor unit 2. Therefore, the compressor 21 A sufficient amount of refrigeration oil is returned to prevent the compressor 21 from being poorly lubricated.

次に、図3を用いて、本実施形態の空気調和装置1における暖房運転時の制御について説明する。図3は、空気調和装置1が暖房運転を行う場合の、室外機制御部200のCPU210が行う制御に関する処理の流れを示すものである。図3において、STはステップを表し、これに続く数字はステップ番号を表している。尚、図3では本発明に関わる処理を中心に説明しており、これ以外の処理、例えば、使用者の指示した設定温度や風量等の運転条件に対応した冷媒回路100の制御、といった、空気調和装置1に関わる一般的な処理については説明を省略している。また、以下の説明では、全ての室内機5a〜5cが暖房運転を行っている場合を例に挙げて説明する。   Next, control at the time of heating operation in the air-conditioning apparatus 1 of the present embodiment will be described with reference to FIG. FIG. 3 shows a flow of processing related to control performed by the CPU 210 of the outdoor unit control unit 200 when the air-conditioning apparatus 1 performs heating operation. In FIG. 3, ST represents a step, and the number following this represents a step number. Note that FIG. 3 mainly illustrates the processing related to the present invention, and other processing, for example, control of the refrigerant circuit 100 corresponding to the operating conditions such as the set temperature and the air volume instructed by the user. Description of general processing related to the harmony device 1 is omitted. Moreover, in the following description, the case where all the indoor units 5a to 5c are performing the heating operation will be described as an example.

また、以下の説明では、室外機2の吐出圧力センサ31で検出する圧縮機21の吐出圧力をPh、吐出圧力Phを用いて求める高圧飽和温度をThs、室内機5a〜5cの液側温度センサ61a〜61cで検出する熱交出口温度をTo(各室内機に対して個別に言及する必要がある場合は、Toa〜Tocと記載)、高圧飽和温度Thsから熱交出口温度Toを減じて求める室内熱交換器51a〜51cの冷媒出口側における冷媒過冷却度をSC(各室内機に対して個別に言及する必要がある場合は、SCa〜SCcと記載)、各室内機での冷媒過冷却度SCのうち最大値と最小値を用いて求める平均冷媒過冷却度をSCv、液冷媒滞留時過冷却度をSCp、液冷媒滞留時間をtlr、所定時間をtpとする。   In the following description, the discharge pressure of the compressor 21 detected by the discharge pressure sensor 31 of the outdoor unit 2 is Ph, the high-pressure saturation temperature obtained using the discharge pressure Ph is Ths, and the liquid side temperature sensors of the indoor units 5a to 5c. The heat exchange outlet temperature detected by 61a-61c is obtained by subtracting the heat exchange outlet temperature To from the high-pressure saturation temperature Ths (To, if it is necessary to refer to each indoor unit individually, it is described as Toa-Toc). The refrigerant supercooling degree on the refrigerant outlet side of the indoor heat exchangers 51a to 51c is SC (indicated as SCa to SCc when it is necessary to refer to each indoor unit individually), and the refrigerant supercooling in each indoor unit The average refrigerant supercooling degree obtained using the maximum value and the minimum value of the degree SC is SCv, the liquid refrigerant residence supercooling degree is SCp, the liquid refrigerant residence time is tlr, and the predetermined time is tp.

まず、CPU210は、使用者の運転指示が暖房運転指示であるか否かを判断する(ST1)。暖房運転指示でなければ(ST1−No)、CPU210は、冷房運転もしくは除湿運転の開始処理である冷房/除湿運転開始処理を実行する(ST17)。ここで、冷房/除湿運転開始処理とは、CPU210が四方弁22を操作して冷媒回路100を冷房サイクルとすることであり、最初に冷房運転もしくは除湿運転を行うときに行われる処理である。そして、CPU210は、圧縮機21や室外ファン27を所定の回転数で起動するとともに、通信部230を介して室内機5a〜5cに対し室内ファン55a〜55cの駆動制御や室内膨張弁52a〜52cの開度調整を行うよう指示して冷房運転あるいは除湿運転の制御を開始し(ST18)、ST13に処理を進める。   First, CPU 210 determines whether or not the user's operation instruction is a heating operation instruction (ST1). If it is not a heating operation instruction (ST1-No), the CPU 210 executes a cooling / dehumidifying operation start process that is a start process of a cooling operation or a dehumidifying operation (ST17). Here, the cooling / dehumidifying operation start process is a process performed when the CPU 210 operates the four-way valve 22 to set the refrigerant circuit 100 to the cooling cycle, and when the cooling operation or the dehumidifying operation is first performed. Then, the CPU 210 activates the compressor 21 and the outdoor fan 27 at a predetermined rotational speed, and controls the driving of the indoor fans 55a to 55c and the indoor expansion valves 52a to 52c with respect to the indoor units 5a to 5c via the communication unit 230. Is instructed to adjust the opening degree of the air and starts control of the cooling operation or the dehumidifying operation (ST18), and the process proceeds to ST13.

ST1において、暖房運転指示であれば(ST1−Yes)、CPU210は、暖房運転開始処理を実行する(ST2)。ここで、暖房運転開始処理とは、CPU210が四方弁22を操作して冷媒回路100を図1(A)に示す状態、つまり、冷媒回路100を暖房サイクルとすることであり、最初に暖房運転を行うときに行われる処理である。   If it is a heating operation instruction in ST1 (ST1-Yes), the CPU 210 executes a heating operation start process (ST2). Here, the heating operation start process is a state in which the CPU 210 operates the four-way valve 22 to bring the refrigerant circuit 100 into the state shown in FIG. 1A, that is, the refrigerant circuit 100 is set to the heating cycle. It is a process performed when performing.

次に、CPU210は、暖房運転の開始処理を行う(ST3)。暖房運転の開始処理では、CPU210は、室内機5a〜5cからの要求能力に応じた回転数で圧縮機21や室外ファン27を起動する。また、CPU210は、吐出温度センサ33で検出した圧縮機21の吐出温度をセンサ入力部240を介して取り込み、取り込んだ吐出温度に応じて室外膨張弁24の開度を調整する。さらには、CPU210は、室内機5a〜5cに対し通信部230を介して暖房運転を開始する旨の運転開始信号を送信する。   Next, the CPU 210 performs a heating operation start process (ST3). In the heating operation start process, the CPU 210 activates the compressor 21 and the outdoor fan 27 at a rotational speed corresponding to the required capacity from the indoor units 5a to 5c. The CPU 210 takes in the discharge temperature of the compressor 21 detected by the discharge temperature sensor 33 via the sensor input unit 240 and adjusts the opening degree of the outdoor expansion valve 24 according to the taken-in discharge temperature. Furthermore, CPU210 transmits the driving | operation start signal to the effect of starting heating operation via the communication part 230 with respect to indoor unit 5a-5c.

運転開始信号を通信部530a〜530cを介して受信した室内機5a〜5cの室内機制御手段500a〜500cのCPU510a〜510cは、使用者の風量指示に応じた回転数で室内ファン55a〜55cを起動するとともに、室内熱交換器51a〜51cの冷媒出口(液管接続部53a〜53c側)での冷媒過冷却度が暖房運転時の目標冷媒過冷却度(例えば、6deg)となるように室内膨張弁52a〜52cの開度を調整する。ここで、目標冷媒過冷却度は、予め試験等を行って求めて記憶部530a〜530cに記憶されている値であり、各室内機5a〜5cで暖房能力が十分に発揮されることが確認できている値である。暖房運転時、CPU510a〜510cは、油滞留条件が成立して油流出制御を実行するとき以外は、上述した目標冷媒過冷却度となるように室内膨張弁52a〜52cの開度を調整する。   The CPUs 510a to 510c of the indoor unit control means 500a to 500c of the indoor units 5a to 5c that have received the operation start signals via the communication units 530a to 530c turn the indoor fans 55a to 55c at the number of rotations according to the air volume instruction of the user. The interior of the indoor heat exchangers 51a to 51c is turned on so that the refrigerant subcooling degree at the refrigerant outlets (liquid pipe connection parts 53a to 53c side) becomes the target refrigerant subcooling degree (for example, 6 deg) during the heating operation. The opening degree of the expansion valves 52a to 52c is adjusted. Here, the target refrigerant supercooling degree is a value obtained by performing a test or the like in advance and stored in the storage units 530a to 530c, and it is confirmed that the heating capacity is sufficiently exhibited in each of the indoor units 5a to 5c. It is the value that has been made. During the heating operation, the CPUs 510a to 510c adjust the opening degrees of the indoor expansion valves 52a to 52c so that the above-described target refrigerant subcooling degree is obtained except when the oil retention condition is established and the oil outflow control is executed.

次に、CPU210は、吐出圧力センサ31で検出した吐出圧力Phをセンサ入力部240を介して取り込むとともに、各室内機5a〜5cから熱交出口温度To(Toa〜Toc)を通信部230を介して取り込む(ST4)。尚、熱交出口温度Toは、室内機5a〜5cにおいて液側温度センサ61a〜61cでの検出値をCPU510a〜510cが取り込み、通信部530a〜530cを介して室外機2に送信しているものである。また、上述した各検出値は、所定時間毎(例えば、30秒毎)に各CPUに取り込まれて各記憶部に記憶されている。   Next, the CPU 210 takes in the discharge pressure Ph detected by the discharge pressure sensor 31 via the sensor input unit 240, and sends the heat exchange outlet temperature To (Toa to Toc) from each of the indoor units 5 a to 5 c via the communication unit 230. (ST4). The heat exchange outlet temperature To is the value detected by the liquid side temperature sensors 61a to 61c in the indoor units 5a to 5c by the CPUs 510a to 510c and transmitted to the outdoor unit 2 via the communication units 530a to 530c. It is. Each detection value mentioned above is taken into each CPU every predetermined time (for example, every 30 seconds), and is memorized in each storage part.

次に、CPU210は、ST4で取り込んだ吐出圧力Phを用いて高圧飽和温度Thsを求め(ST5)、求めた高圧飽和温度ThsとST4で取り込んだ熱交出口温度Toを用いて、各室内機5a〜5cの冷媒過冷却度SC(SCa〜SCc)を求める(ST6)。   Next, the CPU 210 obtains the high-pressure saturation temperature Ths using the discharge pressure Ph taken in in ST4 (ST5), and uses the obtained high-pressure saturation temperature Ths and the heat exchange outlet temperature To taken in in ST4 to each indoor unit 5a. The refrigerant supercooling degree SC (SCa to SCc) of ˜5c is obtained (ST6).

次に、CPU210は、室内機5a〜5cの中でST6で求めた冷媒過冷却度SCが液冷媒滞留時過冷却度SCp以上となっている室内機があるか否かを判断する(ST7)。冷媒過冷却度SCが液冷媒滞留時過冷却度SCp以上となっている室内機がなければ(ST7−No)、CPU210は、後述するフラグFを0として記憶部220に記憶するとともに液冷媒滞留時間tlrをリセットして(ST16)。ST13に処理を進める。   Next, the CPU 210 determines whether or not there is an indoor unit in which the refrigerant supercooling degree SC obtained in ST6 is equal to or higher than the liquid refrigerant retention supercooling degree SCp among the indoor units 5a to 5c (ST7). . If there is no indoor unit in which the refrigerant supercooling degree SC is equal to or higher than the liquid refrigerant retention supercooling degree SCp (ST7-No), the CPU 210 stores a flag F, which will be described later, as 0 in the storage unit 220 and retains the liquid refrigerant. The time tlr is reset (ST16). The process proceeds to ST13.

冷媒過冷却度SCが液冷媒滞留時過冷却度SCp以上となっている室内機があれば(ST7−Yes)、CPU210は、記憶部220に記憶しているフラグFを読み出し、読み出したフラグFが0であるか否かを判断する(ST8)。   If there is an indoor unit in which the refrigerant supercooling degree SC is equal to or higher than the liquid refrigerant retention supercooling degree SCp (ST7-Yes), the CPU 210 reads the flag F stored in the storage unit 220 and reads the read flag F Is determined to be 0 (ST8).

このフラグFは、液冷媒滞留時間tlrの計測を既に開始しているか否かを判断するためのものであり、ST8においてフラグFが0であれば、室内機5a〜5cの中で冷媒過冷却度SCが液冷媒滞留時過冷却度SCp以上となっている室内機が発生して液冷媒滞留時間tlrの計測を開始する必要があることを示す。また、フラグFが1であれば既に液冷媒滞留時間tlrの計測を実行していることを示す。尚、図示は省略しているが、フラグFは空気調和装置1の起動時に0とされている。   This flag F is for determining whether or not the measurement of the liquid refrigerant residence time tlr has already started. If the flag F is 0 in ST8, the refrigerant is supercooled in the indoor units 5a to 5c. This indicates that an indoor unit having a degree SC of the supercooling degree SCp at the time of liquid refrigerant retention needs to be started and measurement of the liquid refrigerant residence time tlr needs to be started. If the flag F is 1, it indicates that the liquid refrigerant residence time tlr has already been measured. Although not shown, the flag F is set to 0 when the air conditioner 1 is started.

ST8においてフラグFが0でなければ(ST8−No)、CPU210は、ST10に処理を進める。フラグFが0であれば(ST8−Yes)、CPU210は、自己が有するタイマー機能を使用して液冷媒滞留時間tlrの計測を開始するとともにフラグFを1として(ST9)記憶部220に記憶し、ST10に処理を進める。以上説明したST7〜ST10までの処理が、油滞留条件の成立/不成立を判断する処理である。   If flag F is not 0 in ST8 (ST8-No), CPU 210 advances the process to ST10. If the flag F is 0 (ST8-Yes), the CPU 210 starts measuring the liquid refrigerant residence time tlr using its own timer function, and stores the flag F as 1 (ST9) in the storage unit 220. , The process proceeds to ST10. The processes from ST7 to ST10 described above are processes for determining whether or not the oil retention condition is satisfied.

ST10において、CPU210は、ST9で計測を開始した液冷媒滞留時間tlrが所定時間tp以上となったか否かを判断する。液冷媒滞留時間tlrが所定時間tp以上となっていなければ(ST10−No)、CPU210は、ST13に処理を進める。液冷媒滞留時間tlrが所定時間tp以上となっていれば(ST10−Yes)、CPU210は、ST6で求めた室内機5a〜5cの冷媒過冷却度SCを用いて平均冷媒過冷却度SCvを算出する(ST11)。具体的には、CPU210は、室内機5a〜5cの冷媒過冷却度SCa〜SCcの中で最大値と最小値を抽出し、これらの平均値を求めてこれを平均冷媒過冷却度SCvとする。   In ST10, the CPU 210 determines whether or not the liquid refrigerant residence time tlr started to be measured in ST9 is equal to or longer than the predetermined time tp. If the liquid refrigerant residence time tlr is not equal to or longer than the predetermined time tp (ST10-No), the CPU 210 advances the process to ST13. If the liquid refrigerant residence time tlr is equal to or longer than the predetermined time tp (ST10-Yes), the CPU 210 calculates the average refrigerant subcooling degree SCv using the refrigerant subcooling degree SC of the indoor units 5a to 5c obtained in ST6. (ST11). Specifically, the CPU 210 extracts the maximum value and the minimum value from the refrigerant supercooling degrees SCa to SCc of the indoor units 5a to 5c, obtains the average value thereof, and sets this as the average refrigerant subcooling degree SCv. .

次に、CPU210は、ST11で求めた平均冷媒過冷却度SCvとST5で求めた高圧飽和温度Thsを、通信部230を介して室内機5a〜5cに送信する(ST12)。通信部530a〜530cを介して平均冷媒過冷却度SCvと高圧飽和温度Thsを受信した室内機5a〜5cのCPU510a〜510cは、室外機2から受信した高圧飽和温度Thsから液側温度センサ61a〜61cで検出した熱交出口温度Toa〜Tocを減じて冷媒過冷却度SCa〜SCcを求め、求めた冷媒過冷却度SCa〜SCcが、室外機2から受信した平均冷媒過冷却度SCvとなるように、室内膨張弁52a〜52cの開度を調整する。
以上説明したST4〜ST12までの処理が、本発明の油流出制御に関わる処理である。
Next, the CPU 210 transmits the average refrigerant supercooling degree SCv obtained in ST11 and the high-pressure saturation temperature Ths obtained in ST5 to the indoor units 5a to 5c via the communication unit 230 (ST12). The CPUs 510a to 510c of the indoor units 5a to 5c that have received the average refrigerant supercooling degree SCv and the high pressure saturation temperature Ths via the communication units 530a to 530c, respectively, use the liquid side temperature sensors 61a to 61 from the high pressure saturation temperature Ths received from the outdoor unit 2. The heat exchanger outlet temperatures Toa to Toc detected in 61c are subtracted to obtain the refrigerant subcooling degrees SCa to SCc, and the obtained refrigerant subcooling degrees SCa to SCc become the average refrigerant subcooling degree SCv received from the outdoor unit 2. Next, the opening degree of the indoor expansion valves 52a to 52c is adjusted.
The processes from ST4 to ST12 described above are processes related to the oil spill control of the present invention.

ST12の処理を終えたCPU210は、使用者による運転モード切替指示があるか否かを判断する(ST13)。ここで、運転モード切替指示とは、現在の運転(ここでは暖房運転)から別の運転(冷房運転あるいは除湿運転)への切替を指示するものである。運転モード切替指示がある場合は(ST13−Yes)、CPU210は、ST1に処理を戻す。運転モード切替指示がない場合は(ST13−No)、CPU210は、使用者による運転停止指示があるか否かを判断する(ST14)。運転停止指示とは、全ての室内機5a〜5cが運転を停止することを指示すものである。   CPU210 which finished the process of ST12 judges whether there exists the operation mode switching instruction | indication by a user (ST13). Here, the operation mode switching instruction is an instruction to switch from the current operation (here, heating operation) to another operation (cooling operation or dehumidifying operation). When there is an operation mode switching instruction (ST13-Yes), the CPU 210 returns the process to ST1. When there is no operation mode switching instruction (ST13-No), the CPU 210 determines whether or not there is an operation stop instruction by the user (ST14). The operation stop instruction indicates that all the indoor units 5a to 5c stop the operation.

運転停止指示があれば(ST14−Yes)、CPU210は、運転停止処理を実行し(ST15)、処理を終了する。運転停止処理では、CPU210は、圧縮機21や室外ファン27を停止するとともに室外膨張弁24を全閉とする。また、CPU210は、室内機5a〜5cに対し通信部230を介して運転を停止する旨の運転停止信号を送信する。運転停止信号を通信部530a〜530cを介して受信した室内機5a〜5cのCPU510a〜510cは、室内ファン55a〜55cを停止するとともに室内膨張弁52a〜52cを全閉とする。   If there is an operation stop instruction (ST14-Yes), the CPU 210 executes an operation stop process (ST15) and ends the process. In the operation stop process, the CPU 210 stops the compressor 21 and the outdoor fan 27 and fully closes the outdoor expansion valve 24. Moreover, CPU210 transmits the driving | operation stop signal to the effect of stopping a driving | operation via the communication part 230 with respect to indoor unit 5a-5c. The CPUs 510a to 510c of the indoor units 5a to 5c that have received the operation stop signals via the communication units 530a to 530c stop the indoor fans 55a to 55c and fully close the indoor expansion valves 52a to 52c.

ST14において運転停止指示がなければ(ST14−No)、CPU210は、現在の運転が暖房運転であるか否かを判断する(ST19)。現在の運転が暖房運転であれば(ST19−Yes)、CPU210は、ST3に処理を戻す。現在の運転が暖房運転でなければ(ST19−No)、つまり、現在の運転が冷房運転もしくは除湿運転であれば、CPU210は、ST18に処理を戻す。   If there is no operation stop instruction in ST14 (ST14-No), CPU 210 determines whether or not the current operation is a heating operation (ST19). If the current operation is the heating operation (ST19-Yes), the CPU 210 returns the process to ST3. If the current operation is not the heating operation (ST19-No), that is, if the current operation is the cooling operation or the dehumidifying operation, the CPU 210 returns the process to ST18.

尚、以上説明した各実施形態では、各室内機の冷媒過冷却度を用いて油流出制御を実行する場合について説明したが、冷媒過冷却度に代えて液側温度検出手段(液側温度センサ61a〜61c)で検出した各室内機の室内熱交換器の熱交出口温度を用いて油流出制御を実行してもよい。熱交出口温度を用いて油流出制御を実行する場合は、各室内機の熱交出口温度が、これら熱交出口温度のうちの最大値と最小値を用いて求める平均熱交出口温度となるように、各室内膨張弁の開度を調整する。   In each of the embodiments described above, the case where oil outflow control is executed using the refrigerant supercooling degree of each indoor unit has been described. However, instead of the refrigerant supercooling degree, liquid side temperature detecting means (liquid side temperature sensor) is used. Oil outflow control may be executed using the heat exchange outlet temperature of the indoor heat exchanger of each indoor unit detected in 61a to 61c). When oil spill control is performed using the heat exchanger outlet temperature, the heat exchanger outlet temperature of each indoor unit is the average heat exchanger outlet temperature obtained using the maximum value and the minimum value of these heat exchanger outlet temperatures. Thus, the opening degree of each indoor expansion valve is adjusted.

また、油滞留条件として、各室内機の冷媒過冷却度のうち液冷媒滞留時過冷却度以上となっている液冷媒滞留時間が所定時間以上継続しているか否かを判断する場合について説明したが、これに代えて、各室内機の室内熱交換器の熱交出口温度が、室内機に液冷媒が滞留することによって室温になじんでいるときの熱交出口温度である液冷媒滞留時熱交出口温度以下となっている時間を冷媒滞留時間とし、この冷媒滞留時間が所定時間以上継続しているか否かを判断してもよい。   In addition, as the oil retention condition, a case has been described in which it is determined whether or not the liquid refrigerant residence time that is equal to or higher than the supercooling degree during liquid refrigerant residence of the refrigerant supercooling degree of each indoor unit continues for a predetermined time or more. However, instead of this, the heat at the time of liquid refrigerant retention is the heat exchange outlet temperature when the heat exchange outlet temperature of the indoor heat exchanger of each indoor unit is accustomed to room temperature by the liquid refrigerant remaining in the indoor unit. The time during which the temperature is equal to or lower than the outlet temperature may be set as the refrigerant residence time, and it may be determined whether or not the refrigerant residence time continues for a predetermined time or more.

1 空気調和装置
2 室外機
5a〜5c 室内機
31 吐出圧力センサ
51a〜51c 室内熱交換器
52a〜52c 室内膨張弁
61a〜61c 液側温度センサ
63a〜63c 吸込温度センサ
64a〜64c 吹出温度センサ
100 冷媒回路
200 室外機制御部
210 CPU
500a〜500c 室内機制御部
510a〜510c CPU
Ph 吐出圧力
SC 冷媒過冷却度
SCv 平均冷媒過冷却度
SCp 液冷媒滞留時過冷却度
Ths 高圧飽和温度
To 熱交出口温度
tlr 液冷媒滞留時間
tp 所定時間
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2 Outdoor unit 5a-5c Indoor unit 31 Discharge pressure sensor 51a-51c Indoor heat exchanger 52a-52c Indoor expansion valve 61a-61c Liquid side temperature sensor 63a-63c Suction temperature sensor 64a-64c Outlet temperature sensor 100 Refrigerant Circuit 200 Outdoor unit control unit 210 CPU
500a to 500c Indoor unit controller 510a to 510c CPU
Ph Discharge pressure SC Refrigerant supercooling degree SCv Average refrigerant supercooling degree SCp Liquid refrigerant residence supercooling degree Ths High pressure saturation temperature To Heat exchange outlet temperature tlr Liquid refrigerant residence time tp Predetermined time

Claims (2)

圧縮機と、同圧縮機から吐出される冷媒の圧力である吐出圧力を検出する吐出圧力検出手段を有する室外機と、
室内熱交換器と、室内膨張弁と、前記室内熱交換器が凝縮器として機能しているときに同室内熱交換器から流出する冷媒の温度である熱交出口温度を検出する液側温度検出手段を有する複数の室内機を有し、
前記室外機が前記複数の室内機より上方に設置されるとともに、前記複数の室内機の設置場所に高低差がある空気調和装置であって、
前記室内熱交換器が凝縮器として機能しているときに、
前記複数の室内機に、前記圧縮機から冷媒とともに吐出された冷凍機油が滞留していることを示す油滞留条件が成立している室内機がある場合は、
前記各室内機の冷媒過冷却度が同冷媒過冷却度の最大値と最小値を用いて求める平均冷媒過冷却度となるように、あるいは、前記各室内機の熱交出口温度が同熱交出口温度の最大値と最小値を用いて求める平均熱交出口温度となるように、前記各室内膨張弁の開度を調整する油流出制御を実行する制御手段を有する、
ことを特徴とする空気調和装置。
An outdoor unit having a compressor and a discharge pressure detecting means for detecting a discharge pressure that is a pressure of a refrigerant discharged from the compressor;
Liquid side temperature detection for detecting the heat exchange outlet temperature, which is the temperature of the refrigerant flowing out of the indoor heat exchanger when the indoor heat exchanger functions as a condenser. Having a plurality of indoor units having means,
The outdoor unit is installed above the plurality of indoor units, and is an air conditioner having a height difference in an installation place of the plurality of indoor units,
When the indoor heat exchanger functions as a condenser,
When there is an indoor unit in which the oil retention condition indicating that the refrigerating machine oil discharged together with the refrigerant from the compressor is retained in the plurality of indoor units,
The refrigerant subcooling degree of each indoor unit becomes the average refrigerant subcooling degree obtained using the maximum value and the minimum value of the refrigerant subcooling degree, or the heat exchange outlet temperature of each indoor unit is the same Control means for performing oil outflow control for adjusting the opening of each of the indoor expansion valves so as to obtain an average heat exchange outlet temperature determined using the maximum value and the minimum value of the outlet temperature,
An air conditioner characterized by that.
前記油滞留条件は、前記各室内機の冷媒過冷却度のうち前記各室内機に液冷媒が滞留しているときの冷媒過冷却度である液冷媒滞留時過冷却度以上となっている状態、あるいは、前記各室内機の熱交出口温度のうち前記各室内機に液冷媒が滞留しているときの熱交出口温度である液冷媒滞留時熱交出口温度以下となっている状態が継続する時間である冷媒滞留時間が、予め定められた所定時間以上となったか否かで規定される、
ことを特徴とする請求項1に記載の空気調和装置。
The state in which the oil retention condition is equal to or higher than the degree of supercooling at the time of liquid refrigerant retention, which is the degree of refrigerant supercooling when the liquid refrigerant is retained in each indoor unit among the degree of refrigerant supercooling of each indoor unit Alternatively, the state where the heat exchange outlet temperature of each indoor unit is equal to or lower than the heat exchange outlet temperature during liquid refrigerant retention, which is the heat exchange outlet temperature when liquid refrigerant is retained in each indoor unit, continues. Stipulated by whether or not the refrigerant residence time, which is the time to be, is equal to or longer than a predetermined time,
The air conditioner according to claim 1.
JP2016038860A 2016-03-01 2016-03-01 Air conditioner Active JP6716960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016038860A JP6716960B2 (en) 2016-03-01 2016-03-01 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038860A JP6716960B2 (en) 2016-03-01 2016-03-01 Air conditioner

Publications (2)

Publication Number Publication Date
JP2017156003A true JP2017156003A (en) 2017-09-07
JP6716960B2 JP6716960B2 (en) 2020-07-01

Family

ID=59808475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038860A Active JP6716960B2 (en) 2016-03-01 2016-03-01 Air conditioner

Country Status (1)

Country Link
JP (1) JP6716960B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065855A1 (en) * 2017-09-29 2019-04-04 ダイキン工業株式会社 Refrigeration device
CN110793798A (en) * 2019-11-20 2020-02-14 上海交通大学 Refrigeration system oil stagnation characteristic comprehensive test device and test method thereof
CN112066515A (en) * 2019-06-11 2020-12-11 青岛海尔空调电子有限公司 Control method for air conditioning system, air conditioning control system and air conditioning system
CN112178802A (en) * 2020-09-30 2021-01-05 青岛海尔空调器有限总公司 Method and device for determining installation position of air conditioner outdoor unit and air conditioner
WO2022180820A1 (en) 2021-02-26 2022-09-01 三菱電機株式会社 Air-conditioning device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195255A (en) * 1985-02-25 1986-08-29 株式会社日立製作所 Heat pump type air conditioner
JPH06159843A (en) * 1992-11-30 1994-06-07 Daikin Ind Ltd Multiple room type air conditioner
JP2008039375A (en) * 2006-07-12 2008-02-21 Matsushita Electric Ind Co Ltd Multi-room type air conditioner
JP2015117854A (en) * 2013-12-17 2015-06-25 株式会社富士通ゼネラル Air conditioning system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195255A (en) * 1985-02-25 1986-08-29 株式会社日立製作所 Heat pump type air conditioner
JPH06159843A (en) * 1992-11-30 1994-06-07 Daikin Ind Ltd Multiple room type air conditioner
JP2008039375A (en) * 2006-07-12 2008-02-21 Matsushita Electric Ind Co Ltd Multi-room type air conditioner
JP2015117854A (en) * 2013-12-17 2015-06-25 株式会社富士通ゼネラル Air conditioning system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065855A1 (en) * 2017-09-29 2019-04-04 ダイキン工業株式会社 Refrigeration device
JP2019066087A (en) * 2017-09-29 2019-04-25 ダイキン工業株式会社 Refrigerator
CN112066515A (en) * 2019-06-11 2020-12-11 青岛海尔空调电子有限公司 Control method for air conditioning system, air conditioning control system and air conditioning system
CN110793798A (en) * 2019-11-20 2020-02-14 上海交通大学 Refrigeration system oil stagnation characteristic comprehensive test device and test method thereof
CN110793798B (en) * 2019-11-20 2021-07-30 上海交通大学 Refrigeration system oil stagnation characteristic comprehensive test device and test method thereof
CN112178802A (en) * 2020-09-30 2021-01-05 青岛海尔空调器有限总公司 Method and device for determining installation position of air conditioner outdoor unit and air conditioner
WO2022180820A1 (en) 2021-02-26 2022-09-01 三菱電機株式会社 Air-conditioning device

Also Published As

Publication number Publication date
JP6716960B2 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
JP6569536B2 (en) Air conditioner
KR101161240B1 (en) Air conditioner
JP6693312B2 (en) Air conditioner
JP6468300B2 (en) Air conditioner
US20090044550A1 (en) Air conditioner
JP6716960B2 (en) Air conditioner
JP6870382B2 (en) Air conditioner
JP2018132219A (en) Air conditioning device
JP6733424B2 (en) Air conditioner
US20170198955A1 (en) Refrigeration apparatus
JP6350338B2 (en) Air conditioner
JP6834561B2 (en) Air conditioner
JP5138292B2 (en) Air conditioner
JP2017142017A (en) Air conditioner
JP2018115805A (en) Air conditioner
JP6930127B2 (en) Air conditioner
JP6672860B2 (en) Air conditioner
JPWO2016002009A1 (en) Air conditioner
JP5245575B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP6728749B2 (en) Air conditioner
JP2018017479A (en) Air conditioner
JP2017110855A (en) Air conditioning device
JP6638446B2 (en) Air conditioner
JP6737053B2 (en) Air conditioner
JP7408942B2 (en) air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200525

R151 Written notification of patent or utility model registration

Ref document number: 6716960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151